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Summary 

The PID controller, which consists of proportional, integral and derivative elements, is 
widely used in feedback control of industrial processes. In applying PID controllers, 
engineers must design the control system: that is, they must first decide which action 
mode to choose and then adjust the parameters of the controller so that their control 
problems are solved appropriately. To that end, they need to know the characteristics of 
the process. As the basis for the design procedure, they must have certain criteria to 
evaluate the performance of the control system. The basic knowledge about those topics 
is summarized in this article. 

1. Introduction 

“PID” is an acronym for “proportional, integral, and derivative.” A PID controller is a 
controller that includes elements with those three functions. In the literature on PID 
controllers, acronyms are also used at the element level: the proportional element is 
referred to as the “P element,” the integral element as the “I element,” and the derivative 
element as the “D element.” The PID controller was first placed on the market in 1939 
and has remained the most widely used controller in process control until today. An 
investigation performed in 1989 in Japan indicated that more than 90% of the 
controllers used in process industries are PID controllers and advanced versions of the 
PID controller. 
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“PID control” is the method of feedback control that uses the PID controller as the main 
tool. The basic structure of conventional feedback control systems is shown in Figure 1, 
using a block diagram representation. In this figure, the process is the object to be 
controlled. The purpose of control is to make the process variable y follow the set-point 
value r. To achieve this purpose, the manipulated variable u is changed at the command 
of the controller. As an example of processes, consider a heating tank in which some 
liquid is heated to a desired temperature by burning fuel gas. The process variable y is 
the temperature of the liquid, and the manipulated variable u is the flow of the fuel gas. 
The “disturbance” is any factor, other than the manipulated variable, that influences the 
process variable. Figure 1 assumes that only one disturbance is added to the 
manipulated variable. In some applications, however, a major disturbance enters the 
process in a different way, or plural disturbances need to be considered. The error e is 
defined by e = r – y. The compensator C(s) is the computational rule that determines the 
manipulated variable u based on its input data, which is the error e in the case of Figure 
1. The last thing to notice about Figure 1 is that the process variable y is assumed to be 
measured by the detector, which is not shown explicitly here, with sufficient accuracy 
instantaneously that the input to the controller can be regarded as being exactly equal to 
y. 

 

Figure 1. Conventional feedback control system 

Early PID control systems had exactly the structure of Figure 1, where the PID 
controller is used as the compensator C(s). When used in this way, the three elements of 
the PID controller produce outputs with the following nature: 

• P element: proportional to the error at the instant t, which is the “present” error. 
• I element: proportional to the integral of the error up to the instant t, which can 

be interpreted as the accumulation of the “past” error. 
• D element: proportional to the derivative of the error at the instant t, which can 

be interpreted as the prediction of the “future” error. 

Thus, the PID controller can be understood as a controller that takes the present, the 
past, and the future of the error into consideration. After digital implementation was 
introduced, a certain change of the structure of the control system was proposed and has 
been adopted in many applications. But that change does not influence the essential part 
of the analysis and design of PID controllers. So we will proceed based on the structure 
of Figure 1 up to Section 6, where the new structure is introduced. 
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The transfer function C(s) of the PID controller is 
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provided that all the three elements are kept in action. Here,  and T  are 
positive parameters, which are respectively referred to as “proportional gain,” “integral 
time,” and “derivative time,” and as a whole, as “PID parameters.” D(s) is the transfer 
function given by 

( ) sT1
ssD

D γ+
=

 (2) 

and is called the “approximate derivative.” The approximate derivative D(s) is used in 
place of the pure derivative s, because the latter is impossible to realize physically. In 
(2), γ is a positive parameter, which is referred to as “derivative gain.” The response of 
the approximate derivative approaches that of the pure derivative as γ increases. It must 
be noted, however, that the detection noise, which has strong components in the high 
frequency region in general, is superposed to the detected signal in most cases, and that 
choosing a large value of γ increases the amplification of the detection noise, and 
consequently causes malfunction of the controller. This means that the pure derivative is 
not the ideal element to use in a practical situation. It is usual practice to use a fixed 
value of γ, which is typically chosen as 10 for most applications. However, it is possible 
to use γ as a design parameter for the purpose of, for instance, compensating for a 
“zero” of the transfer function of the process. 

In applying PID controllers, engineers must “design” the control system. In other words, 
they must first decide which element(s) to keep in action and then adjust the parameters 
so that their control problems are solved appropriately. To that end, they need to know 
the characteristics of the process. As the basis for this design procedure, they must have 
certain criteria to evaluate the performance of the control system. Those topics will be 
treated in the following four sections. (See Elements of Control Systems.) 

2. Process Models 

(Define the unit step function )tf step
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The response  of the process variable to the unit-step manipulated variable 

 directly added to the process at rest is called the “step response” or 
“indicial response” of the process. The term “reaction curve” is also used, essentially 

y

Encyclopedia of Life Support Systems (EOLSS) 



UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. II - PID Control - Araki M. 

with the same meaning but focusing on the graphical representation. If the step response 
converges to a finite value ∞K  when →t , as exemplified in Figure 2, the process is 
said to be “with self-regulation” and K  is called “stationary gain.” If the step response 
diverges when ∞→t , the process is said to be “without self-regulation.” If a process is 
without self-regulation and its step response approaches a straight line with the slope R , 
as exemplified in Figure 3, it is said to be “with a single integrator” or simply 
“integrating.” It has been observed that step responses of many processes to which PID 
controllers are applied have monotonically increasing characteristics as shown in 
Figures 2 and 3, so most traditional design methods for PID controllers have been 
developed implicitly assuming this property. However, there exist some processes that 
exhibit oscillatory responses to step inputs. This topic will be treated later (see Section 
6.3). 

 

Figure 2. Step response of a process with self-regulation 

 

Figure 3. Step response of an integrating process 
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A more basic assumption employed in the design methods explained in the following is 
“linearity.” “Linearity” means that, if the responses of the process variable to inputs 

 and u  are, respectively, ( )tu1 ( )t2 ( )ty1  and ( )ty2

( ) utu 21 +
, then its response to the summed-up 

input  becomes ( )t ( ) ( )ty2ty1 + , all under the condition that the process is at 
rest at the initial instant. In systems theory, it is generally expected that linearity 
approximately holds true in a small range of variables, while the approximation error 
increases as the range increases. This expectation is met in some processes but upset in 
others. There are processes, for instance, such that the response to the negative step is 
largely different from the inverse of the response to the positive step. In spite of such 
reality, the linearity assumption has been employed widely, first because it is difficult to 
establish a practically tractable general method without this assumption, second because 
experience shows that the designed results work approximately well for many 
processes, and third because the results obtained from desk work are in any case 
insufficient, so that trial-and-error adjustment at actual processes is always needed, and 
the nonlinear property can be considered in that procedure. 

Under the above assumptions, the following transfer functions can be used to model the 
process. For a process with self-regulation, 

( ) Lse
Ts1

KsP −

+
=

 (4) 

is the simplest model. This model is referred to as the “first-order-lag + pure-delay” 

model, because ( )Ts1K +
Ls−

( )

 is the transfer function of the first-order-lag element whose 
stationary gain is K and time constant is T, and e  is that of the pure delay whose 
delay time is L. The simplest model for an integrating process is 

T
KRe

Ts
Ke

s
RsP LsLs === −−

 (5) 

This model is referred to as the “integrator + pure-delay” model. The parameters K and 
T of the second expression are redundant by one and so there is no way, mathematically 
speaking, to determine them uniquely. However, this expression is sometimes used, 
with understanding that the parameter T is the time constant of the process, first in order 
to make the denominator Ts dimensionless so that the time scale of the reaction curve is 
standardized, and second in order to make the equation giving the steepest slope of the 
reaction curve the same as that for the “first-order-lag + pure-delay” model. The latter 
makes the turning formulae of PID parameters applicable without confusion (see 
Section 5.3). 

The above two models have long been used as the basis of design methods for PID 
control systems, because their parameters can easily be determined from simple tests 
(see Section 5.2), and the designed results are very often sufficient as the initial values 
to start the trial-and-error adjustment procedure. But recently there has been a move to 
make full use of the capability of modern computers and sensing systems for adjusting 
the controller as exactly as possible, based on the initial test or on-line data. For that 
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purpose, the above models are too simple, so more sophisticated models are considered 
(see Section 6.3). 

3. Performance Evaluation of PID Control Systems 

PID control systems are evaluated, in normal practice, by their “unit-step set-point 
response” and “unit-step disturbance response.” The “unit-step set-point response” is 

the response  of the process variable to the unit-step set-point value 

 added to the control system at rest, keeping the disturbance d(t ) = 0. The 

“unit-step disturbance response” is the response 

( )ty stepr ,

( )tstep( ) ftr =

( )ty stepd ,

( ) ftd =

∞,ry ∞,dy

∞,r

 of the process variable to the 

unit-step disturbance  added to the control system at rest, keeping the set-
point value r(t )= 0. The most important property required for those responses is that 

they converge to constant values  and , respectively. Under the linearity 
assumption, this property is equivalent to stability of the feedback control system. 
Stability is the condition that must be guaranteed by any means, and the evaluation of 
control systems only becomes meaningful under this condition. 

( )tstep

ε  and Assuming stability, the “steady-state errors” ∞,dε  to the unit-step set-point 
input and to the unit-step disturbance input are defined respectively as follows, and their 
sizes are adopted as evaluation items for the steady-state performance: 

{ ( ) } { }( )∞∞→∞ −=−= ,,, lim rsteprtr y1ty1ε ∞∞→∞ −= − = ,,, lim dstepdtd yty0
 and 

ε
 (6) 

 

Figure 4. Oscillatory set-point response 

The next property to be assessed is the oscillatory nature of the responses. First, 
oscillation prevents the process variable from settling to the set-point value quickly. 
Second, for the process variable to become considerably larger than the set-point value 
can lead to harmful effects on the product as well as on the process. Third, for feedback 
control systems with the structure of Figure 1, oscillatory responses usually imply small 
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stability margins. Thus the responses need to be not too oscillatory. For evaluation of 

this property, the unit-step set-point response ( )ty stepr ,  is used. Assume that ( )ty stepr ,  

has the peaks as illustrated in Figure 4, and let the height of the thi −  peak be . The 

“overshoot value” A and the “decay ratio” 

iy

Γ  are defined as follows where  is the 

maximum of ’s. 
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These equations are used to evaluate the wave form of the response. A general guideline 
is to make A not larger than 20% and Γ  not larger than 4%. In some problems in which 
overshooting is harmful, it is necessary to make A = 0 (i.e. to make the response free 
from overshoot). 

 

Figure 5. Rise time and settling time 
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Another important property is the speed of the response. For a unit-step set-point 

response , the “rise time” T  is defined as the time which it takes for ( ) (ty stepr , r
)ty stepr ,

∞,ry

( )

 

to pass from 10% to 90% of , and the “settling time” T  as the minimum time for 
which the next inequality is met, where the frequently-used value of a is 2%. 

s
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yty
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rstepr 100
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The rise time and the settling time are illustrated in Figure 5. These two values are 
common evaluation items for speed, and their attainable values vary considerably, from 
seconds to hours, depending on the process. 

The preceding two groups of values, about the waveform and the speed of the unit-step 

set-point response  have conventionally been adopted to evaluate the transient-
state performance. But to derive a design method analytically, more sophisticated 
performance indices are needed. A representative and successful example of such 
indices is the ITAE (integrated time-weighted absolute error), which is defined by: 

∫
∞

∞−
0 rstepr dtytyt ,, ( )

 and ∫
∞

∞−
0 dstepd dtytyt ,,

( )

 (9) 

The ITAE can totally evaluate the transient-state performance, and has been widely 
used as a common basis for discussing PID design methods. Another performance index 
that should be mentioned is the ISE (integrated squared error), defined by: 

∫
∞

∞−
0

2

rstepr dtyty ,, ( )∫
∞

∞−
0

2

dstepd dtyty ,, and  (10) 

The control method that minimizes the ISE is called “optimal linear quadratic control 
(LQ).” It is important not only as a design method but also as a theoretical basis for 
understanding the relationship between classical and modern control strategies. 

The steady-state errors, the waveform (e.g. overshoot value and damping ratio) and the 
speed (e.g. rise time and settling time) are the major items of performance evaluation 
that can be observed explicitly, in simulation or by running the control system under a 
fixed condition. But there is another important item that must be considered in design. 
That is “robustness.” “Robustness” means the strength of the control system against the 
modeling error and changes in the characteristics of the process. The simplest measure 
of robustness is the gain and the phase margins. A guideline in PID control system 
design is to ensure a 3–10dB gain margin and 20° phase margin. Here, it must be noted 
that 3dB and 20° are the endurable minimum values, and that when these values are 
chosen, control systems are usually very oscillatory and can easily become unstable. If 
satisfactory damping and robustness are expected, a phase margin of greater than 50°is 
recommended. The LQ strategy mentioned above, for instance, guarantees a phase 
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margin of greater than 60° and an infinite gain margin. A more direct way of evaluating 
robustness is to repeat simulation for variety of plausible process models, or to run the 
system changing the operating conditions. In modern control theory, the sensitivity and 
complementary sensitivity functions are the major tools for evaluating robustness. (See 
Stability Concepts, Optimal Linear Quadratic Control, and Robust Control.) 

4. Action Modes of PID Controllers 

In application, engineers have freedom of using the three functional elements (P, I, and 
D) of the PID controller in whatever combination they consider most appropriate for 
their problems. The combination of element(s) used is called the “action mode” of the 
PID controller. Theoretically, there exist seven action modes. Among them, the five 
listed in Table 1 are important in practice. 

Action mode Element(s) used Transfer function C s  ( )

Proportional (P) P element only ( ) PC s K=  

Integral (I) with 
 1IT = ( )I element only PK

C s
s

=  

Proportional-
Integral (PI) P and I elements ( ) 11P

I
K

T s
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

C s  

Proportional-
Derivative (PD) P and D elements ( ) ( ){ }1P DT D s= +C s K  

Proportional-
Integral-Derivative 
(PID) 

All 3 elements ( ) ( )1
P D

I
T D s

T s
1C s K
⎧ ⎫⎪ ⎪+= +⎨ ⎬
⎪ ⎪⎩ ⎭

 

Table 1. Action modes of PID controllers 

5. Design of PID Control Systems 

“Design” is an engineering activity that often includes trial-and-error procedures at 
various levels. In designing PID control systems, the three basic tasks explained in the 
following must be carried out first, and then repeated if a satisfactory result is not 
obtained. 
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5.1. Selection of Action Mode 

In selecting the action mode of PID controllers, the following two facts are important. 

First, in order to make the steady-state errors ∞,rε  and ∞,dε  to step inputs zero 
robustly, it is necessary and sufficient to include the I element in the compensator C(s). 
Second, inclusion of the I element in C(s) makes the control system more likely to be 
oscillatory and, in the worst case, unstable. To be more specific, it makes the gain and 
the phase margins smaller. The details of the latter fact are as follows. 

In order to make explanation simple, let us assume that the process is modeled by (4) or 
(5), as is very often the case in PID applications. By calculating the frequency response 
of the compensator C(s), it is found that the phase shift of the return ratio P(s)C(s) of the 
control system shown in Figure 1 is increased by 90 o compared with that of the process 
P(s) at all frequencies if the controller C(s) is set in the I mode, and that it is increased 

by 90o in the low frequency range (i.e. for IT1 /<<ω ) but remains the same or 

decreased in the high frequency range (i.e. for IT1 />>ω ) if the controller C(s) is set in 
the PI or the PID mode. An increase in the overall phase shift naturally causes 
deterioration of the phase margin, but when the process is with self-regulation (i.e. when 
P(s) is given by (4)), the deterioration can be canceled out by choosing to make the 

proportional gain  small enough. However, when the process is integrating (i.e. 
when P(s) in given by (5)), the above increase of the overall phase shift causes a serious 
situation. To be exact, if the controller C(s) is set in the I mode for the integrating 
process, the phase shift of the return ration P(s)C(s) becomes more than 180

PK

IT1/

 o at all 
frequencies, and consequently it becomes impossible to stabilize the feedback control 
system. Thus, to select the I mode for an integrating process is prohibitory. The 
situation with the PI and the PID modes is a little milder. If the integral time TI of the 
compensator C(s) in the PI or the PID mode is chosen to be large enough that the phase 

shift of the process P(s) around the frequency =ω  is sufficiently small (note that 
“sufficiently small” in this case means “a little larger than 90°,” because the process 
P(s) is integrating), the overall phase shift can be made less than 180° in a certain 
interval. Then the phase margin can be made positive by choosing the proportional gain 

 appropriately, and consequently the feedback control system is stabilized. But even 
though stability is attained in that way, the phase shift of the return ratio in the low 
frequency range remains nearly 180°,

PK

 and this fact causes the phenomenon that not only 

“increase” but also “decrease” in the proportional gain  reduces the phase margin, 
and as a result makes the control system oscillatory. This means that the permissible 

range of the proportional gain  is finite in both directions, and very often fairly 
narrow. As a result, tuning of the controller parameters becomes difficult. Specifically, 
it is necessary to retune the controller parameters carefully whenever the characteristics 
of the process changes, which is often caused by changes in operating conditions. 

PK

PK

The following is a guideline for selection of the action mode. In the case of processes 
with self-regulation, the usual practice is to select PI or PID mode. This selection 
guarantees zero steady-state errors to step inputs. Inclusion of the D element (i.e. 
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selecting PID mode) improves the speed of the responses, and consequently serves to 
suppress the influence of the disturbance more strongly. However, the D element 
functions effectively only when the parameters are tuned appropriately. This means 
good maintenance is necessary to make the second choice meaningful. 

In the case of integrating processes, deterioration of the oscillatory property caused by 
inclusion of the I element is serious, as explained above, so the usual practice is to select 
P or PD mode, but PI or PID mode should be selected if making the steady-state error 

∞,dε  zero is a mandatory requirement. In this case, the initial tuning as well as the 
maintenance work must be done very carefully. Inclusion of the D element is useful, 
and in many cases necessary, to avoid undesirable oscillatory responses. 

In general, selecting P mode makes the control system simple and the design and 
maintenance activities easy. So if high performance is not necessarily required, this is a 
practical choice. 

5.2. Identification of Process Model Parameters 

Two kinds of identification method for process characteristics have been adopted 
widely in PID control system design: the “ultimate sensitivity test” and “step response 
methods.” 

The “ultimate sensitivity test” is carried out, in its standard form, as follows. For the 
given process, construct the PID control system as in Figure 1 with the compensator 

C(s) in the P mode, and increase the proportional gain  gradually, starting with a 
very small value. Provided that the process has the characteristics as given by Eqs. (4) 
or (5), the feedback control system remains stable at first. Then at a certain stage it 

reaches the stability limit; that is, it exhibits a sinusoidal oscillation. The value  of 

the proportional gain at this stage is referred to as the “ultimate gain,” and the period T  

of the exhibited sinusoid as the “ultimate period.” The “ultimate angular frequency” 

PK

PuK

u

uω  

is defined by uu T2ω = π . By the Nyquist stability condition, it can be concluded that 
the Nyquist locus of the process transfer function P(s) crosses the negative real axis at 

ujs ω=  and the gain 
( )ujP ω

PuK at that point is 1 . Thus, the ultimate sensitivity 

test gives accurate information about the frequency response ( )ωjP  of the process at 
the crossing point with the negative real axis, which is the most important part for 
stability of the feedback control system. On the other hand, this test gives no 
information at the other frequencies. 

The ultimate gain and the ultimate period are characteristic quantities of the process that 
give the condition of the stability limit. In most cases, they are directly used to 
determine the controller parameters (see Section 5.3). But they can also be used to 
estimate the parameters of the transfer function model of the process. For the model (5) 
of an integrating process, its parameters are given by the formulae: 
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4
TuL =

, uPuTK
2R π

=

1I

  (11) 

which are obtained from the Nyquist criterion. To determine the parameters of the 
model (4) and of the sophisticated models explained later, the number of data (i.e. two) 
obtained from the standard ultimate sensitivity test is too few, and some more data are 
needed. Such data, for instance, can be obtained by a modified ultimate sensitivity test 

in which the compensator C(s) is set in the I mode with T = . By the modified test, 
two more data are obtained and it becomes possible to estimate the parameters of the 
model (4), and of the models given by the first equations of (16) and (17) (see Section 
6.3). 

In step response methods, the “step response test” (i.e. to record the reaction curve) is 
carried out for the actual process first. Here, attention should be drawn to the point that 
the process must be operated under the open-loop condition in this test, so that the step 
response of the process without feedback is recorded. Then the parameters of a transfer 
function model are determined, so that its step response best fits that of the actual 
process. The simplest way is to assume model (4) or (5) and to determine the parameters 
graphically as illustrated in Figures 2 or 3. In the case of a process with self-regulation, 
the stationary gain K is determined from the reaction curve at large t. Then the tangent 
is drawn at the point of inflection, and T and L of model (4) are determined as illustrated 
in Figure 2. In the case of an integrating process, the tangent to the reaction curve at 
large t is drawn, and R and L of model (5) are determined as in Figure 3. As stated 
before, the parameters K and T of the second expression of (5) are redundant by one, so 
one of them can be chosen at the engineer’s convenience. An alternative for this choice 
is to select T so that the reaction curve exhibits significant change during the initial time 
interval of the length T. While the above method has traditionally been used for the 
design of PID control systems, several modern alternatives can be used for the 
determination of process model parameters. The most popular is the “least squared-error 
method,” which minimizes the integrated squared error between the responses of the 
model and the actual process. 

5.3. Tuning of PID Parameters 

“Tuning” is the engineering work to adjust the parameters of the controller so that the 
control system exhibits desired property. Two tuning methods were proposed by Ziegler 
and Nichols in 1942 and have been widely utilized either in the original form or in 
modified forms. One of them, referred to as Ziegler–Nichols’ ultimate sensitivity 

method, is to determine the parameters as given in Table 2 using the data  and T  
obtained from the ultimate sensitivity test. The other, referred to as Ziegler–Nichols’ 
step response method, is to assume the model (5) and to determine the parameters of the 
PID controller as given in Table 3 using the parameters R and L of (5) which are 
determined from the step response test as in Figure 3. 

PuK u

PK  Action mode IT DT  

P 0.5 PuK    

Encyclopedia of Life Support Systems (EOLSS) 



UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. II - PID Control - Araki M. 

PI 0.45 PuK  0.833 uT   
PID 0.6 PuK  0.5 uT  0.125 uT  

Table 2. Ziegler-Nichols’ ultimate sensitivity method 

Action mode PK  IT  DT  

P 1
RL    

PI 0.9
RL  3.33L  

PID 1.2  2L 0.5L RL

RL 0≠ ) Table 3. Ziegler-Nichols’ step response method (

It must be noted that the Ziegler–Nichols’ step response method can be also used for a 
process with self-regulation, by considering a virtual integrating process that 
approximates the actual process for small t. To be exact, suppose the case where the 
actual process is given by Eq. (4). Construct the reaction curve of the virtual integrating 
process by extending the actual reaction curve from the point of inflection with a 
straight line of the gradient K/T. (Note, as illustrated in Figure 2, that this straight line is 
the tangent to the actual reaction curve at the point of inflection.) Then determine the 
PID parameters by applying the formulae of Table 3 to the virtual integrating process. 
This method can be stated, in other words, as follows: “Equate R of Table 3 to K/T with 
K and T being the parameters of (4), and apply the formulae of Table 3.” This way of 
application is utilized for the purpose of starting feedback control from the very first 
start-up of the process. Frequency-domain stability analysis tells that the above way of 
applying the Ziegler–Nichols’ step response method to processes with self-regulation 
tends to set the parameters on the safe side, in the sense that the actual gain and phase 
margins become larger than the values expected in the case of integrating processes. 

Response to 
be optimized Overshoot Action mode PK  IT DT  

P 0.3T
KL    

PI 0.35T
KL 1.17T  Zero 

PID 0.6T
KL  T 0.5L 

P 0.7T
KL    

Set-point 
response 

20% 

PI 0.6T
KL  T  
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0.95TPID KL 1.36T 0.47L 

P 0.3T
KL    

PI 0.6T
KL  4L  Zero 

PID 0.95T
KL 2.38L 0.42L 

P 0.7T
KL    

PI 0.7T
KL  2.33L  

Disturbance 
response 

20% 

PID 1.2T  2L 0.417L KL
 

Table 4. Chien–Hrones–Reswick’s tuning method 
K, T and L are the parameters of model (4) 

0.05 / 1.0L T≤ ≤

01TL05 ./.

 

Several more tuning methods were proposed, and have been used, after Ziegler and 
Nichols. One of the most popular among them is Chien–Hrones–Reswick’s tuning 
method. They assumed the model (4) and derived the tuning rules given in Table 4 via 
analogue computer simulation. The formulae of Table 4 are applicable in a limited 
range of the value of L/T, as is understandable since they are empirical formulae derived 
from simulation results. It is not easy to indicate sharply in which range they are 
applicable, but experience shows that 0 ≤≤  is the safe zone. Another 
distinctive feature of Chien–Hrones–Reswick’s tuning method is that four tables are 
given, depending upon which response (i.e. set-point response or disturbance response) 
is to be optimized, and whether an overshoot is allowed or not. Consequently, in 
applying this method engineers must decide which table to use. Specifically, choice 
about which response to optimize is difficult, because optimizing the disturbance 
response usually brings about a very poor set-point response and vice versa. This 
situation is illustrated in Figure 6, in which the dotted lines are the responses of the 
control system optimally tuned for the set-point input and the continuous lines optimally 
tuned for the disturbance input. The process is assumed to be: 

( ) s20e
s1

1sP .−

+
=

 (12) 

Note that the disturbance response of the dotted line is markedly slow compared with 
that of the real line. and that on the other hand, the overshoot value of the set-point 
response of the real line is more than 50%. This problem can be solved by employing 
the two-degree-of-freedom structure (see Section 6.2). 
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Figure 6. Response of the conventional PID control system 

The above three methods determine the PID parameters using empirical formulae that 
are constructed based on the unit-step set-point response and/or the unit-step 
disturbance response. The three methods, as well as several other tuning methods 
developed on the same principle, are often referred to as “classical” tuning methods. 
There are many other tuning methods that determine the PID parameters based on 
different principles. Some of them will be introduced briefly later (see Section 6.4). 

6. Advanced Topics 

6.1. Windup of the Integral Element and Anti-Windup Mechanism 

For various physical reasons, the manipulated variable is subject to “saturation”: that is, 

it can only take values within certain limits: ( ) maxutuu ≤ ≤min . For instance, in the case 
of a heating tank, the flow of fuel gas can only take values between 0 and the maximum 
value determined by the section area of the supplying tube and the pressure difference. 
When the controller gives a command beyond the limits, the feedback mechanism stops 
functioning normally, and the error is kept larger than the value expected in normal 
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operation. As a result, the output of the I element becomes very large, provided that it is 
in action. This phenomenon is called “windup” of the I element. 

Once windup occurs, it takes a long time to bring back the I element to the normal state 
and, as a result, unfavorable results are observed. For instance, if a large step input, 
which forces the controller output to go beyond the limits, is added as the set-point 
value, an excessively large overshoot of the process variable is brought about because of 
windup. “Anti-windup” is the mechanism to avoid windup of the I element. Many 
researches on anti-windup mechanisms have been reported. In the following, a simple 
but often effective strategy is introduced. 

 

Figure 7. Anti-windup mechanism 

The modern controller is mostly implemented using digital components, and the anti-
windup mechanism is usually constructed in such a framework. Unfortunately the 
details of the digital implementation are not included in this article, so the explanation 
in the following will become rather conceptual. When the PID controller is 
implemented digitally, the three functional elements (i.e. the I, the P and the D 
elements) are often implemented as shown in the left half of Figure 7, so that the 
integration can be treated separately. The saturation element located in the right half of 
Figure 7 is very often also equipped, in order to avoid adding an excessive input signal 
to the actuator. The anti-windup mechanism can be constructed making use of those 
structures. The input v and the output u of the saturation element are compared. If the 
two signals are different, i.e. if u v≠ , integration is stopped (which means the output 

 of the I element is kept the same) in order to prevent the windup phenomenon from 
occurring. Even when the saturation element is not used in the digital controller, the 
same mechanism(in principle) can be constructed by measuring the actual output of the 
actuator. Several modifications of the above anti-windup mechanism are available, as 
well as other mechanisms based on different principles. 

Ix
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6.2. Two-Degree-of-Freedom PID Controllers 

( )sG 1yr  and (The closed-loop transfer functions )sG 1yd

( ) ( ) ( )
( ) ( )

 of the control system of Figure 
1, respectively from r to y and from d to y, are given by 

( )
( ) ( )sCsP1

sCsPsG 1yr +
= ( )

, sCsP1
sPsG 1yd +

=

( ) ( )

 (13) 

These equations show that the two closed-loop transfer functions are related by 
{ } ( )sGsG1sP 1yd1yr =−

( )sf

 and cannot be changed separately. This fact causes the 
problem of tuning as illustrated in Figure 6: that is, optimizing the disturbance response 
brings about a very poor set-point response and vice versa (see Section 5.3). 

The above problem is solved by implementing another compensator C  in addition 

to C(s) as shown in Figure 8. The closed-loop transfer functions ( )s2yr ( )s2yd

( ) ( ) ( ) ( )

G  and G  of 
this control system are 

{ } ( )
( ) ( )( ) ( )sCsP1

sCsCsP
sG f

2yr +

+
= ( )

, sCsP1
sPsG 2yd +

=

( )sC f

f

( )sf

( ) ( ){ }sDTKsC DPf

 (14) 

The existence of  in the numerator of the first equation indicates that the two 
closed-loop transfer functions can be changed separately by adjusting the two 

compensators C(s) and . The controller with the structure of Figure 8 is referred 
to as a “two-degree-of-freedom controller,” C(s) of Figure 8 as its “main compensator” 

and  as its “feedforward compensator.” A “two-degree-of-freedom PID 

controller” is the controller of this type, with C(s) being given by (1) and C  given 
by 

( )sC f

( )sC

α β+−=

PK I D

 (15) 

The parameters , T  and T  are referred to as “basic PID parameters” and α  and β  
as “two-degree-of-freedom parameters.” If the two-degree-of-freedom PID controller is 
applied to the process of Eq. (12), the responses shown in Figure 9 are attained, where 

,  and T  are set to the values obtained from the “optimize the disturbance 
response, 20% overshoot” formula of Table 4, and 

PK IT D

α  and β  are, respectively, set to: 
630.=α and 700.=β . Note that the disturbance response is exactly the same with the 

real line of Figure 5, and that the set-point response exhibits little overshoot, whereas 
the settling time is approximately the same with that of the dotted line of Figure 5. 
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Figure 8. Two-degree-of-freedom control system 

 

Figure 9. Responses of the two-degree-of-freedom PID control system 

6.3. Sophisticated Models 

As explained before, the transfer functions (4) and (5) have been and are used as 
representative process models. But they are not necessarily precise enough for the 

Encyclopedia of Life Support Systems (EOLSS) 



UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol. II - PID Control - Araki M. 

purpose of adjusting the controller accurately, making full use of the capability of 
modern computers and sensing systems, so more sophisticated models are expected. 
The following are examples of such models, for a process with self-regulation and for 
an integrating process: 

( )
( )

Ls
n e

Ts1
K −

+
= ( )

( )
sP

 and 

Ls
n e

Ts1Ts
KsP −

+
=

( )

 (16) 

where K, T, and L are positive parameters and n is a positive integer parameter. Those 
parameters are to be determined so that the response of the model best fits that of the 
actual process. However, it is not easy to determine the integer parameter n based only 
on the measured date, and some theoretical or empirical knowledge is needed for its 
determination. The next transfer functions are also used specifically when the process 
exhibits an oscillatory response: 

Ls
22 e

sTTs21
KsP −

++
=

ζ
( ) ( )

Ls
22 e

sTTs21Ts
KsP −

++
=

ζ and  (17) 

, T and L are positive parameters with 0 1ζ < <where K, ζ  (see Elements of Control 
Systems). 

6.4. Other Tuning Methods for PID Parameters 

The classical tuning methods explained in Section 5.3 have the following features: 

• The process is assumed, implicitly (in the case of Ziegler–Nichols’ ultimate 
sensitivity method) or explicitly (in the case of Ziegler–Nichols’ step response 
method and Chien–Hrones–Reswick’s method), to be modeled by the simple 
transfer function (4) or (5). 

• The optimal values of the PID parameters are given by formulae of the process 
parameters that are determined directly and uniquely from experimental data. 

The first feature is a weakness of these classical methods, in the sense that the 
applicable processes are limited, or in other words that the claimed “optimal” values are 
not necessarily, and are sometimes fairly far from, the true optimal in practical 
situations where the transfer function (4) or (5) is nothing but an approximation of the 
real process characteristics. Specifically, the problem is serious when the pure delay L 
of the process is very short or very long, where “very short” and “very long” roughly 
means outside the range 0 01TL05 ./. ≤≤ . (Note that this is the interval suggested as 
the effective range for Chien–Hrones–Reswick’s method as noted in Table 4.) The 
second feature is a strength of the methods, in the sense that they can be applied 
straightforwardly. On the other hand, it can be interpreted as a weakness in the sense 
that there is no room to improve the results by making use of more detailed information 
about the process which is obtainable from theoretical study and accurate measurement. 
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Many attempts have been made to make up for these weaknesses of the classical 
methods. First, tables and/or formulae giving the optimal PID parameters have been 
made for more detailed process models such as (16) and (17). Second, many theoretical 
considerations have been used to develop sophisticated methods that use, as the basis of 
tuning, the shape of the frequency response of the return ratio, poles (and zeros) of the 

closed-loop transfer function G , time-domain performance indices such as (9) and 
(10), or frequency-domain performance indices. In the following, the method referred to 
as the “modulus optimum” method will be introduced. This offers a solution for the case 
when the pure delay is practically zero and the process can be modeled by a rational 
transfer function. A representative example of such processes is the electrical drive. 
whose simplest model is: 

)(syr

)( sT1sT
K

EDED

ED

+
=

)(syr

10yr =)(

)(sPED

 (18) 

The principle of the modulus optimum method is to tune the parameters of the controller 

so that the closed-loop transfer function G  from the setpoint value r to the process 
variable y satisfies the next conditions: 

(a) G  

0
d

jGd
m

yr
m

=
ω

ω)(
0=(b)  at ω  for as many positive integers m (starting from 1) as 

possible. 

The transfer functions satisfying the above conditions are called “modulus optimal.” 
The second order and the third order modulus optimum transfer functions are given by: 

22
MOMO

MO sTsT21
1sG
++

=)(
 (19) 

))( 22
MOMOMO sTsT1sT

1
++

MOT

)(sC f

)(sGMO )(syr

(
)(MO 1

sG
+

=
 (20) 

where  is the time constant of the feedback control system designed by this tuning 
method. 

In the practice of the modulus optimum method, the structure of the controller and the 

form of the compensator(s) C(s) (and  in the case of the two-degree-of-freedom 
controller) are chosen first. Then the order of the modulus optimum transfer function 

 is determined so that it matches with the closed-loop transfer function G  
derived from the given process and the chosen controller. Lastly the parameters of the 
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controller and the parameters of  are determined from the equation obtained by 

equating G  to : 

)(sGMO

(syr )(sGMO

)(sGMO

)(sG yr

)(sG 1yr

)(s1yr

)(sGMO

PK MO

)

)(sGyr =  (21) 

In the case of the one-degree-of-freedom control system (Figure 1),  on the left-

hand side of (21) must be equated to  given by (13), and in the case of the two-

degree-of-freedom control system (Figure 8) to  given by (14). It sometimes 
happens that (21) has no solution for a fixed type of controller. In such a case, change of 
the type of controller must be considered. The situation will be explained in the 
following within the framework of PID controllers, using the example of the electrical 
drive given by (18). 

)(sG 2yr

First, let us study the case where the one-degree-of-freedom PID controller is chosen 

and C(s) is set in the P-mode. For this choice, the order of G  becomes two, so 

 of (19) must be used as the right-hand side of (21). In this case, the unknowns 

of the equation are  of C(s) and T  of . (21) has the solution )(sGMO

ED
P K2

1K =
 , EDMO T2=

)(sG 1yr )(sMO

)(sG 1yr 1s +
)(sMO

)(sf

0

T  (22) 

The feedback control system designed as above exhibits the zero steady-state error to 
the step set-point input, but non-zero steady-state errors to the step disturbance input 
and to the ramp set-point input. If the aim is to make the latter two zero too, the PID 
controller must be set in the PI- or PID-mode. The case of the PI-mode is studied in the 
following. 

First, let us see if (21) has a solution for the one-degree-of-freedom PID control system. 

When C(s) is set in the PI-mode, the order of  becomes three and G  of 
(20) must be used as the right-hand side of (21). Then, by simple calculation, it is 

obtained that  always has a finite zero (i.e. the factor T  appears in its 

numerator), so it cannot be equal to  which does not have a finite zero. In other 
words, (21) does not have a solution for this choice. This means that a change in the 
class of controller must be considered. Since the use of the PI action is the requirement 
from the design purpose, it is natural to try the two-degree-of-freedom controller. The 

transfer function C(s) and of the two-degree-of-freedom PID controller in the PI 

action mode are, respectively, given by (1) with T

I

G

C

D =  and (15) with 0=β . For this 

controller, the order of  becomes three too, and G  of (20) is to be used as )(sG 2yr )(sMO
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the right-hand side of (21). The unknowns of (21) in this case are α , ,  and T . 
Calculation tells that (21) is satisfied for 

PK IT MO

EDMOED T2T1
=,I

ED
p T4T

K2
K1 === ,,α

 (23) 

For the above values, the return ratio has the symmetrical Bode diagram, and for that 
reason, the above tuning is called “symmetrical optimum.” 

Glossary 

Action 
mode: 

The combination of the three (proportional, integral, and derivative) 
elements that are kept in action when the PID controller is applied. 

Anti-
windup: 

A mechanism to prevent windup of the integral element. 

PID: Proportional, integral, and derivative. 
PID control: The feedback control method that uses the PID controller as its main 

tool. 
PID 
controller: 

A controller consisting of the proportional, integral and derivative 
elements. 

Process: A system that produces certain product(s) in their widest sense. 
Process 
model: 

A mathematical description that expresses the characteristics of a 
process. 

Two – 
degree – of - 
freedom 
PID 
controller: 

The modern type of PID controller, which can adjust two closed-loop 
transfer functions separately. 

Tuning: The engineering work to adjust the parameters of a PID controller so 
that the control system exhibits a desired property. 

Windup: The phenomenon that the output of the integral element becomes 
excessively large because of saturation of the manipulated variable. 
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