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Abstract— Sensors typically use wireless transmitters to com-
municate with each other. However, sensors may be located in a
way that they cannot even form a connected network (e.g, due
to failures of some sensors, or loss of battery power). In this
paper we consider the problem of adding the smallest number
of additional (relay) nodes so that the induced communication
graph is 2-connected1. The problem is NP -hard. In this paper we
develop O(1)-approximation algorithms that find close to optimal
solutions in time O((kn)2) for achieving k-edge connectivity of
n nodes. The worst case approximation guarantee is 10, but
the algorithm produces solutions that are far better than this
bound suggests. We also consider extensions to higher dimensions,
and the scheme that we develop for points in the plane, yields
a bound of 2dMST where dMST is the maximum degree of
a minimum-degree Minimum Spanning Tree in d dimensions
using Euclidean metrics. In addition, our methods extend with
the same approximation guarantees to a generalization when the
locations of relays are required to avoid certain polygonal regions
(obstacles).

We also prove that if the sensors are uniformly and identically
distributed in a unit square, the expected number of relay nodes
required goes to zero as the number of sensors goes to infinity.

Keywords: Sensor networks, Fault-tolerant topology design, Ap-
proximation algorithms, Relay placement.

I. INTRODUCTION

Wireless communication is central to the area of sensor
networks. In a sensor network, sensor nodes collect data and
forward it to sink nodes. Energy consumption is the dominat-
ing constraint in sensor nodes, thus multi-hop data forwarding
through sensor nodes using long paths decreases the energy
levels of sensor nodes at a very fast rate. Thus, a scalable
solution is to cluster the sensor nodes and have a cluster-
head for each cluster [1], [2], [3]. This can be called a two-
tiered wireless sensor network [3]. We will call these cluster-
heads backbone nodes. All sensor nodes forward data to the
backbone node in their cluster. The backbone nodes form a
backbone network among themselves using a communication
channel different from the channel used by sensor nodes, and

1We consider both edge and vertex connectivity in this work.
*This research was partially supported by AFOSR under grant

F496200210217, NSF under grant CNS-0435206, NSF CCF-0430650, NSF
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Fig. 1. Example hierarchical network

forward the data to the sink nodes through the backbone
network. The backbone nodes typically have higher energy
levels than sensor nodes and also have recharging capabilities,
so energy constraints of backbone nodes are not a dominating
issue.

Figure 1 shows an example network with clusters of sensor
nodes enclosed in circles and backbone nodes shown as solid
nodes. The dotted lines between backbone nodes show the
backbone network links. As wireless backbone networks carry
aggregate traffic of the underlying network, the backbone
network becomes more critical than the underlying sensor
network. Failure of a backbone node or a link in the backbone
network can impact the performance of a network. Thus, the
backbone network topology needs to be fault-tolerant, i.e.,
it should have multiple internally vertex-disjoint (or edge-
disjoint) routes between each pair of backbone nodes. If k
vertex (edge) disjoint paths exist between each pair of nodes,
the network is said to be k-vertex (edge) connected.

There has been recent work in topology control of (sensor)
backbone networks. Hao et. al. [4] consider the problem of
placing the minimum number of backbone nodes among a set
of candidate locations such that each sensor node has paths to
at least two backbone nodes, and the backbone nodes have at
least two vertex-disjoint paths between them. They provide an
approximation algorithm having an O(D log n) approximation
ratio, where D depends on the diameter of the network and n
is the number of sensor nodes in the network. Liu et. al. [5]
consider the problem of placing backbone nodes in a network



of sensor nodes so that the network is 2-connected. They
provide a (6+ε)-approximation algorithm for connectivity and
two approximation algorithms for 2-connectivity with ratios
(24+ ε) and (6/T +12+ ε), where T is the ratio of backbone
nodes needed for connectivity and sensor nodes in the network.
Their problem is different from ours as they want the set
of backbone nodes to be a dominating set among the sensor
nodes, i.e., each sensor node should be directly connected to
at least one backbone node.

In a sensor network, the sensor nodes may be deployed in
clusters, with some clusters being far from each other. In this
scenario, the locations of cluster-heads are not controllable,
and we still need to construct a backbone network among the
backbone nodes. The backbone nodes can be quite far from
each other, thus power control cannot be used to connect them.
We assume a fixed transmission range for each backbone node.
We propose the use of additional relay nodes in the backbone
network, whose position we can control, to achieve the desired
level of connectivity among the backbone nodes. We do not
restrict the backbone network to have any particular type of
links; they can be omnidirectional/directional RF or free space
optical point-to-to-point links.

The problem of constructing a connected network on back-
bone nodes using minimum number of relay nodes has been
considered in [6], [7], [8]. Lin et. al. [6] prove the problem
to be NP -Hard and propose an approximation algorithm for
constructing a tree using relay nodes, and prove the algorithm
to be a 5-approximation. The algorithm restricts the placement
of relay nodes on lines joining pairs of backbone nodes. It
then assigns a weight function to each pair of backbone nodes
according to the number of relay nodes needed to connect
them directly. They find a minimum spanning tree (MST) on
this graph. Proofs of 4-approximation ratio for the algorithm
are provided in [7] and [8], and the bound is proved to be
tight. Chen et. al. [8] also provide a 3-approximation algorithm
for the problem. Cheng et. al. [9] provide a 2.5-approximation
randomized algorithm for placement of relay nodes to connect
a given set of sensor nodes. Our algorithms work on any set
of nodes distributed in a space, so they can be applied to flat
sensor networks as well.

There has been work on probabilistic analysis of number
of nodes required and their transmission range required for
achieving connectivity and k-connectivity among randomly
distributed nodes. Gupta and Kumar [10] consider the problem
of finding the critical power so that the network is connected
almost surely (with probability 1) as the number of nodes
approach infinity, the nodes being distributed uniformly and
independently in a unit disk. Bettstetter [11] studies the node
degree properties of nodes distributed randomly in a network,
and the connectivity and k-connectivity properties of the
network. The author gives probabilities of having isolated
nodes and approximates the probability of having a connected
network to be equal to the probability of having no isolated
node. Similar approximations are done for k-connectivity as
well. Li et. al. [12] prove that for sufficiently large number of
nodes in the network, there is a critical power level after which

the network is k-connected with a certain non-zero probability.
None of the frameworks seems to extend to the case of adding
additional nodes in the network for achieving connectivity, as
achieving connectivity by increasing power level of all nodes
is not similar in spirit to achieving connectivity by adding
relay nodes. Also, if backbone nodes are not located close to
each other, addition of relay nodes is a more practical solution
to achieving desired connectivity levels.

There has not been any work, other than [4] and [5],
that considers achieving higher levels of connectivity using
minimum number of relay nodes. We consider the problem
of providing k-connectivity (both edge and vertex) for k ≥
2 among backbone nodes using minimum number of relay
nodes. The contributions of this paper are as follows: (1)
we provide algorithms for using relays to achieve k-(edge,
vertex) connectivity among backbone nodes; (2) we prove
the algorithm to be an O(1)-approximation with respect to
the optimal for achieving 2-edge and 2-vertex connectivity;
(3) we consider extensions to spaces of higher dimensions,
and give O(1) bounds for higher dimension metric spaces;
(4) we do worst case analysis of the algorithm of [6] as a
function of number of backbone nodes in the network and
transmission range of the nodes: we show that the upper
bound on number of relays becomes a constant as number
of backbone nodes increase, and it decreases exponentially
with increasing transmission range; (5) we prove that the
number of relay nodes required for achieving (2d − 1)-vertex
(and edge) connectivity go to zero in the mean as number of
backbone nodes (distributed uniformly and independently in
d-dimensional Euclidian space) go to infinity; (6) we extend
our algorithms to the generalization where the relays cannot
be placed in certain polygonal regions (obstacles) and show
the same approximation ratios hold for this generalization as
well.

The paper is organized as follows: Section II gives the
network model and problem statement. Section III describes
the proposed algorithm for achieving k-edge connectivity.
Section IV gives the proof of approximation ratio for 2-edge
connectivity. Section V describes the k-vertex connectivity
approximation algorithm, and proves the approximation ratio
for k = 2. Section VI gives the approximation bounds
for the algorithms for nodes distributed in spaces of higher
dimensions. Section VII extends the algorithms to work with
the same approximation ratio for the generalization where
relays cannot be placed in certain polygonal regions of the
network. Section VIII discusses the worst case bounds on the
number of relays as a function of number of nodes and their
transmission range. It also gives the proof of expected value
of number of relays going to zero for uniform distribution of
backbone nodes. Section IX discusses the simulation results.
Section X concludes the paper and discusses the future work.

II. NETWORK MODEL AND PROBLEM STATEMENT

We model the network as a graph G = (V,E), where V
is the set of backbone nodes, which we call terminal nodes,
and E is the set of links between them. We assume each node



has a limited transmission range, which we normalize to one
by normalizing the length of the network. It is assumed that
a node can connect to all nodes within its transmission range.
The network can be in any d-dimensional Euclidian space,
i.e., the distance between two nodes is considered to be the
Euclidian distance between them. A link e = (x, y) belongs
to E if nodes x and y are within unit distance of each other.
The links can be either omnidirectional RF, directional RF or
Free Space Optical links (without obscuration).

We assume we have relay nodes, which are identical to the
terminal nodes in terms of their transmission range and type
of links. We assume we have control over the location of relay
nodes. Thus, we place the relay nodes in the network so that
the desired level of connectivity between terminal nodes is
achieved. The problem can be formally stated as follows:

Given a graph G = (V,E), find the minimum number of
relay nodes needed (and their locations) so that the set of
nodes V is k-edge (vertex) connected (k ≥ 2) in the resulting
graph G′ = (V ′, E′), V ⊆ V ′, E ⊆ E′. The objective is to
construct a graph s.t. λ(u, v) ≥ k ∀ u, v ∈ V where λ(u, v)
is the number of edge-disjoint (or internally vertex-disjoint)
paths between u and v in G′.

III. ALGORITHM FOR k-EDGE CONNECTIVITY

We follow the relay placement framework of the connec-
tivity algorithm of [6]. To connect two terminal nodes outside
each other’s transmission range, the relay nodes are placed
on the straight line connecting the two nodes. The algorithm
for achieving k-edge connectivity is described as follows.
The algorithm proceeds by forming a complete graph on the
terminal nodes. Equation 1 gives the weight function used
for the edges, where |e| is the length of an edge. The weight
represents the number of relay nodes required to form an edge.
We do not allow the relay nodes to have edges other than
the ones required to form the edge they are placed on. Then
it computes an approximate minimum cost spanning k-edge
connected subgraph of the complete graph.

ce = �|e|� − 1 (1)

The problem of finding the minimum cost spanning k-edge
connected subgraph of a graph is NP -Hard [13]. Thus, we
use an approximation algorithm for the problem, proposed
by Khuller and Vishkin in [14]. The algorithm achieves an
approximation ratio of 2 for the problem, and takes O((kn)2)
time for a graph with n nodes. The algorithm uses the matroid
intersection based algorithm of Gabow [15], which finds k
edge-disjoint spanning trees from a root vertex in a directed
graph. It is worth noting that the weight function of Equation 1
is not a metric as it does not satisfy triangle inequality. Thus,
the approximation algorithm of [14] is the best known for the
problem. In the resulting subgraph from the approximation
algorithm of [14], the relay nodes are placed to form the
links (of length greater than one) of the subgraph. In the next
section, we prove that this algorithm has an approximation
ratio of 10 for 2-edge connectivity. The solution is then

improved by removing some relays. The relays are allowed
to form edges with all nodes in their transmission range
and sequentially removed if k-edge connectivity is preserved.
We call this step the sequential removal step, and it takes
O(n′((n + n′)m)) time, where n′ is the number of relays
before the sequential removal step, and m is the number of
edges in the network formed by the terminals and relays. Thus,
the first part of the algorithm takes O((kn)2) time, while
the enhanced algorithm takes O((kn)2 + n′m(n+ n′)) time.
Algorithm 1 describes the algorithm.

Algorithm 1 Relay placement for k-edge connectivity

1: Make a complete graph Gc = (V,Ec) by adding edges
between all the vertices of graph G (if an edge already
exists, a new edge is not added between that pair of
vertices).

2: Weight the edges of the graph as follows. |e| represents
the length of edge e.

ce = �|e|� − 1

3: Compute an approximate minimum cost spanning k-edge
connected subgraph from this graph Gc using the approxi-
mation algorithm proposed in [14]. Let the resulting graph
be G′

c.
4: Place relay nodes (number equal to the weight of the edge)

on the edges in G′
c with link costs greater than zero.

5: For all pairs of nodes (including the relay nodes) in G′
c

within each other’s transmission range, form an edge.
6: For the relay nodes sorted arbitrarily, do the following

(starting at i = 1):

• Remove node i (and all adjacent edges).
• Check for k-edge connectivity between the terminals.
• If the graph is k-edge connected, repeat for i = i+1,

else put back the node i and corresponding edges, and
repeat for i = i+ 1.

• Stop when all relay nodes have been considered.

7: Output the resulting graph.

We briefly explain the algorithm for computing the approx-
imate minimum-weight (cost) 2-edge connected subgraph [14]
of a graph G: Create a directed graph D having anti-parallel
directed edges for each undirected edge in G, each having
the same weight as the corresponding undirected edge. Pick
any vertex as the root vertex. Run Gabow’s algorithm [15] to
get k edge-disjoint spanning trees. Construct a directed graph
G′

D = (V,E′) containing the edges of all trees. Construct an
undirected graph G′

c = (V,E′′), where an edge (u, v) ∈ E′′

if (u, v) ∈ E′ and/or (v, u) ∈ E′. The algorithm outputs
G′

c. For implementing Gabow’s matroid intersection ([16])
based algorithm, we use Frank’s weighted matroid intersec-
tion algorithm [17] and Roskind and Tarjan’s algorithm for
computing edge-disjoint spanning trees [18], which is based
on greedy matroid algorithm [16]. Due to the complexity of
the algorithms, we do not describe them here. Details of these
can be found in [15], [17] and [18].



IV. PROOF OF APPROXIMATION RATIO FOR 2-EDGE

CONNECTIVITY

In this section, we consider the case of achieving 2-edge
connectivity between terminal nodes distributed in a Euclidian
plane. We analyze the worst-case performance of our algo-
rithm and prove a performance bound of the algorithm with
respect to the optimal solution. We assume the existence of
an optimal solution, and use its properties to prove the worst
case bound of the solution given by our algorithm.

We start with some notations. Let T be the set of terminals,
and S be the set of optimally placed Steiner nodes (relay
nodes) needed to achieve 2-edge connectivity among the
terminal nodes. Let s be the number of Steiner nodes needed
when we place them optimally, i.e, s = |S|. In the proof,
we will call the relay nodes placed on straight lines between
terminals just to form the edge they are placed on (as in our
algorithm) as beads and the optimally placed relay nodes as
Steiner nodes.

As a recap of our algorithm, it forms a 2-edge connected
network among the terminal nodes by placing additional links
between them, and if two terminal nodes are more than unit
distance apart, it adds beads (relay nodes) to form that link.
When we add such a link of length l, it consists of �l� − 1
beads. Theorem 4.1 states the main result of this section.

Theorem 4.1: If the optimal network uses s Steiner nodes
so that terminals distributed in a Euclidian plane are 2-edge
connected, Algorithm 1 forms a network with maximum of
10s beads and zero Steiner nodes, in which the terminal nodes
are 2-edge connected.

To prove Theorem 4.1, we prove the following lemma, and
Theorem 4.1 follows directly.

Lemma 4.2: A 2-edge connected network on terminal nodes
using minimum number of beads contains at most 5s beads,
where s is the minimum number of Steiner nodes needed.

Proof: Let G0 = (V0, E0) be the optimal 2-edge connected
network, with the minimum number of Steiner nodes.

We follow the procedure of Algorithm 2 to construct a
2-edge connected network using only beads and no Steiner
nodes. We will prove that this network does not contain more
than 5s beads.

Algorithm 2 starts by finding the connected components
of Steiner nodes in the graph GS constructed on the Steiner
nodes. It constructs a minimum-degree minimum spanning
tree (MST) for each connected component. Let the trees be
ST1, .., STm. It then removes Steiner nodes of the jth con-
nected component of GS from Gj−1 and adds beads between
the terminals connected to those Steiner nodes to get Gj which
is also 2-edge connected between terminal nodes (Step 4). The
process is repeated for all connected components, until the
resulting graph has no Steiner nodes and is 2-edge connected
on the terminals. We first mention two useful properties that
hold for each of the trees ST1, .., STm, which will be used in
proving the approximation bound:

Property 4.3: The maximum degree of any Steiner node in
the trees is bounded by five [19]. This property comes from the

Algorithm 2 Construction of 2-edge connected network with
beads

1: Define a graph GS = (S,ES) on the Steiner nodes, where
an edge (u, v) is in ES if it is an edge between the Steiner
nodes u, v in G0.

2: Find all the connected components in GS .
3: Form a minimum-degree minimum spanning tree in each

connected component, and call the trees ST1, .., STm.
4: Repeat the following for j = 1 to m:

• Remove the Steiner nodes contained in STj from
Gj−1 and add beads between terminals to get the
graph Gj , which is also 2-edge connected on the ter-
minals. The procedure of adding beads and removing
Steiner nodes is explained later.

5: Output the resulting graph Gm.

fact that the maximum degree of a node in a minimum-degree
MST on nodes distributed in a Euclidian plane is bounded by
five, and is called the MST number of the Euclidian plane.

Property 4.4: The angle between any pair of neighbors of a
Steiner node in its tree STi is at least 60 degrees [8]. This can
be seen from the fact that if the angle between two neighbors
(x, y) at a Steiner node j were less than 60 degrees, the MST
could be shortened by deleting an edge (j − x or j − y) and
forming the edge x− y.

Let us now explain the procedure to construct Gj from Gj−1

by adding beads between the terminal nodes and removing
Steiner nodes. Consider a graph formed by the Steiner nodes
in STj and the terminal nodes within the transmission range of
these Steiner nodes. Call this graph Hj . We add a cycle using
beaded (and direct) links between the terminals contained in
Hj in Gj−1 and delete the Steiner nodes of STj to get Gj .
Thus, all the terminals in Hj are 2-edge connected to each
other. This procedure does not create a cut-edge and maintains
2-edge connectivity between the terminal nodes which were 2-
edge connected because of the Steiner nodes in STj . As we do
this for all trees ST1, .., STm, and do not create any cut-edge
in any step, the resulting network Gm is 2-edge connected
on the terminals2. Algorithm 3 describes the procedure of
constructing such a cycle, which is also explained below.

For constructing a cycle among the terminal nodes con-
nected to the Steiner nodes in STj , we start from a Steiner
node st1. We connect all the terminal nodes within its trans-
mission range to st1, and mark them. Let the set of marked
terminal nodes be {t1, .., tk}. We start a Depth First Search
(DFS) traversal of the tree (Tj) formed by STj ∪ {t1, .., tk},
rooted at st1, traversing the children of each node in an
anti-clockwise manner. We start the DFS traversal with any
terminal neighbor (say t1) of st1. Whenever a new Steiner
node stj is encountered in the traversal, connect all unmarked
terminal nodes in its transmission range to it in Tj , and add
them to the set of marked terminal nodes (thus k increases

2We will show in the next section that this procedure does not even create
a cut-vertex if the Steiner network is 2-vertex connected on terminals.
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Fig. 2. Example for removal of Steiner nodes and addition of beads

at this step). Then, remove the branches of Tj which do
not have any terminal nodes. Example in Figure 2(a) shows
such a tree at the end of the DFS traversal, with Steiner
nodes {A, .., F} and terminals {1, .., 11}. While doing the
DFS traversal, add required number of beads to form a link
between each terminal with the next terminal encountered in
the DFS traversal. Figure 2(b) shows the construction of the
cycle. The edges longer than unit length are added using the
required number of beads. Then, remove the Steiner nodes.
The resulting graph for the example is shown in Figure 2(c).

We now give a bound on the number of beads added while
constructing Gj from Gj−1. The condition in Equation 2 states
the bound, where bj is the number of beads added and sj is
the number of Steiner nodes in STj . Then, Equation 3 bounds
the total number of beads required, which proves Lemma 1.

bj ≤ 5sj (2)

b =
m∑

j=1

bj ≤
m∑

j=1

5sj = 5s (3)

We now prove the bound. We first define our charging
scheme, i.e., how we charge the beads to the Steiner nodes
in STj . We charge one bead to a Steiner node sti each time
one of the following ordered pair of edges is traversed:

• Type I: Steiner-sti-Steiner.
• Type II: Steiner-sti-Terminal, with the Euclidian distance

between the end-nodes being more than one.

Algorithm 3 Removal of Steiner nodes and addition of beads
1: Start at a Steiner node st1.
2: Connect to it all terminals within its transmission range,

and mark them.
3: Construct a tree Tj rooted at st1, with the vertex set as

the Steiner nodes in STj and a leaf vertex corresponding
to each marked terminal node. The edges are the edges
of STj and the edges between each Steiner node and its
terminal neighbors.

4: Do a Depth First Search (DFS) traversal of Tj , starting
from any terminal neighbor of st1. For each node, traverse
its children in an anticlockwise manner.

5: Each time a new Steiner node sti is encountered, connect
with it all unmarked terminal nodes in its range, and mark
them. Update Tj by adding these terminal nodes, and
continue DFS traversal by going anticlockwise around sti
from the edge between sti and its parent.

6: Remove the branches of Tj which do not have any
terminal nodes.

7: Connect all the terminal nodes in order of their DFS
traversal and complete the cycle between them.

8: Add beads to all added edges of length greater than one.
9: Add the newly added edges to Gj−1, and remove the

Steiner nodes of STj and all incident edges from Gj−1.
The resulting graph is Gj .

• Type III: Terminal-sti-Steiner, with the Euclidian dis-
tance between the end-nodes being more than one.

• Type IV: Terminal-sti-Terminal, with the Euclidian dis-
tance between the end-nodes being more than one.

In a DFS traversal, each ordered pair of neighboring edges
around a node is traversed once. Notice that for the beads
charged by the pair of edges of Type II,III,IV, the angle
between the edges at the Steiner node sti is greater than 60
degrees. For the pair of Type I, the angle is at least 60 degrees
(by Property 4.4). The pairs of Type I around a Steiner node is
bounded by five (by Property 4.4). Also, as the traversal is anti-
clockwise always, the angles subtended by all these pairs of
edges at sti are non-overlapping. Thus, it can be easily shown
that the total pairs of such edges around the Steiner node sti
in the tree Tj is within five as the total angle traversed by
these edges is bounded by 360 degrees.

Every time we add an edge to connect two terminal nodes
in Tj , we claim that the number of beads required (given by
Equation 1) can be charged to the Steiner nodes encountered
in the DFS traversal between the two terminal nodes using our
charging scheme. Let the two terminal nodes to be connected
be tx and ty , and let there be l > 0 Steiner nodes on the
DFS path between them. Renumber the Steiner nodes on the
DFS path as st1, .., stl. We consider the following cases and
prove that the charging scheme charges the required number
of beads to the Steiner nodes:

• Case 1: l = 1: This case is depicted in Figure 3(a). If
both the terminals are connected to the same Steiner node



TABLE I

BEAD CHARGING FOR EXAMPLE OF FIGURE 2

Edge (1,3) (3,5) (5,7) (7,8) (8,9) (9,6) (6,4) (4,10) (10,11) (11,2) (2,1)
Charged To A,B B,C C,D D D,C,E E,C C,B B,F F F,B,A A

No. of Beads 1 1 1 1 2 1 1 1 0 2 1

st1, a bead is needed only if they are more than distance
one apart. In that case, the pair of edges tx − st1 − ty is
of Type IV and thus the Steiner node st1 can be charged
for the bead required.

• Case 2: l = 2: This case is depicted in Figure 3(b). Let
the two Steiner nodes in the DFS path be st1 and st2,
with st1 being the parent of st2 in the tree, i.e., the first
encounter of st1 in the DFS traversal is before st2. Let tx
be connected to st1 and ty to st2. Since st1 is the parent
of st2, we connected all unmarked neighboring terminal
nodes to st1 first. Thus, ty is more than distance one
apart from st1. If two beads are needed between tx and
ty, the distance between tx and st2 is more than one and
between st1 and ty is more than one. Thus the pairs of
edges tx − st1 − st2 and st1 − st2 − ty are Type III and
II for Steiner nodes st1 and st2 respectively. Thus, one
bead can be charged to each Steiner node. If we need
one bead between tx and ty , that can be charged to st2
as the pair of edges st1 − st2 − ty is always Type II for
st2. The explanation for the case where st2 is the parent
of st1 is similar.

• Case 3: l > 2: This case is depicted in Figure 3(c).
The total number of beads required is upper bounded
by the number of Steiner nodes on any path between tx
and ty . One bead can be charged to each of the nodes
st2, .., stl−1 as the pair of edges involving them in the
path are of Type I. If the distance between tx and st2 is
less than one, the path can be modified by connecting tx
directly to st2, and there is a path with l−1 Steiner nodes,
and thus st1 can be removed. If it is greater than one,
then a bead can be charged to st1 as the pair of edges
tx − st1 − st2 is of Type III. Similarly, stl can either
be removed from the path between tx and ty , or it can
be charged because of the pair of edges stl−1 − stl − ty
being Type II. Thus, there is a path of l − 2, l − 1 or
l Steiner nodes between tx and ty (which is the upper
bound for the number of beads required), and there are
enough Steiner nodes that can be charged once.

We have shown that the charging scheme charges the
required number of beads to the Steiner nodes, and each
Steiner node is charged maximum of five times. Adding over
all connected components of Steiner nodes in the network, the
total number of beads required is within five times the number
of Steiner nodes. Thus, the relation of Equation 3 holds for
the beaded network we constructed. Hence, the relation holds
for the optimal 2-edge connected beaded network as well. �

For the example of Figure 2, Table I gives the Steiner nodes
that can be charged for each added edge according to the

t x

t y

st 1

(a) One Steiner node,
l = 1

t y
t x

st 1
st 2

(b) Two Steiner nodes, l = 2

t y

st 1

st 2
st lt x

(c) More than two Steiner nodes, l > 2

Fig. 3. DFS paths of different lengths

(a) Optimal Steiner node
network

(b) Optimal beaded network

Fig. 4. Approximation ratio tightness example

charging scheme.
Now, we give an example to prove the bound of Equation 3

is tight. Consider the network in Figure 4(a). The circular
nodes are terminal nodes, which are 2-edge connected using a
single Steiner node in the middle of the circle in the optimal
Steiner node solution. If we remove the Steiner node, the
optimal network with beads will have a beaded link between
every alternate pair of terminal nodes to have a cycle, and that
would require five beads. The resulting network is shown in
Figure 4(b).

Proof of Theorem 4.1: The algorithm by Khuller and
Vishkin [14] is a 2-approximation for finding the minimum
cost (cost of each edge being number of beads required to
form it) k-edge connected subgraph. Thus, the number of
beads required is at most 2 ∗ 5s = 10s. The last step of
Algorithm 1 (sequential removal step) removes some relays
from the network by allowing the relays to connect to all nodes
within the transmission range, so the resulting network after
sequential removal also has maximum of 10s relay nodes. �

V. ALGORITHM FOR k-VERTEX CONNECTIVITY

We propose an algorithm for achieving k-vertex connectiv-
ity among terminal nodes using relays. We follow the same
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Fig. 5. Example cut-vertex generated while adding beads and removing
Steiner nodes

framework as for edge-connectivity, i.e., add relays only on the
line joining two terminal nodes. We follow the same algorithm
as Algorithm 1, with some components changed. To find a
minimum cost k-vertex connected spanning subgraph of a
complete graph on terminal nodes, we use the 2-approximation
algorithm by Khuller and Raghavachari [20] for k = 2, and
the k-approximation algorithm by Kortsarz and Nutov [21] for
k > 2. Also, in the sequential relay removal step (last step of
the algorithm), we check for k-vertex connectivity rather than
k-edge connectivity.

We briefly explain the algorithm for computing the approx-
imate minimum-weight 2-vertex connected subgraph [20] of
a graph G: Create a directed graph D having anti-parallel
directed edges for each undirected edge in G, each having the
same weight as the corresponding undirected edge. Pick any
two vertices x, y in D. Augment D by adding a new vertex
r and adding two new directed edges of weight 0 from r to
x and y. Use the algorithm of Frank and Tardos [22] on this
graph with r as the root to find a minimum weight subgraph H
with two openly disjoint paths between r and every vertex of
D. The algorithm of Frank and Tardos is based on submodular
flows. Let S ⊆ E be the set of edges in G such that at least
one of the copies of each edge is in H . Since S was obtained
from H , for any vertex v in G, there are two openly disjoint
paths between v and x, y in S. The algorithm returns S ∪ e
as the solution, where e is the edge (x, y). If repeated on all
possible pairs (x, y), the algorithm is a 2-approximation of the
optimal.

A. Proof of Approximation Ratio for 2-Vertex Connectivity

In this section, we prove that the vertex-connectivity algo-
rithm is an O(1)-approximation for k = 2. Theorem 5.1 states
the desired result. We follow the same terminology as the last
section.

Theorem 5.1: If the optimal network uses s Steiner nodes
so that terminals are 2-vertex connected, our algorithm forms a
network with maximum of 10s beads and zero Steiner nodes,
in which the terminal nodes are 2-vertex connected.

To prove Theorem 5.1, we prove the following lemma, and
Theorem 5.1 follows directly as we use a 2-approximation for
finding the minimum-cost (beads) beaded network.

Lemma 5.2: A network 2-vertex connected on terminal
nodes using minimum number of beads contains at most 5s
beads, where s is the minimum number of Steiner nodes
needed.

A

B C

(a) Path through terminals and Steiner nodes

A

B C

(b) Path through terminals and beaded cycles

Fig. 6. Existence of alternate path

Proof: We follow exactly the same constructions and proof
as the proof for 2-edge connectivity, so the maximum number
of beads required is 5s. Thus, we only need to prove that
the beaded graph constructed by Algorithm 2 is 2-vertex
connected on terminals. Thus, we need to prove that we
do not create any cut-vertex while removing the connected
components of Steiner nodes ST1, .., STm and adding beads
between terminal nodes at each step using Algorithm 3. As the
optimal network using Steiner nodes is 2-vertex connected on
terminals, if we do not create any cut-vertex while removing
Steiner nodes and adding beads, the resulting network will be
2-vertex connected.

We prove the 2-vertex connectivity of the beaded network
by contradiction. Assume the procedure of Algorithm 2 cre-
ates a cut-vertex while using Algorithm 3 for adding beads.
Figure 5 shows such a cut-vertex, and two cycles it belongs
to. Dotted lines indicate the path through multiple terminal
nodes (with beaded or non-beaded links). The cut-vertex A
is a part of two cycles created by removing two connected
components of Steiner nodes. As A is a cut-vertex, all paths
between B and C are through A, as else A would not be
a cut-vertex. If the network was 2-vertex connected on the
terminal nodes when all the Steiner nodes were present, then
B and C had two vertex-disjoint paths between them. Let the
connected component of Steiner nodes corresponding to left
cycle containing B be STi and for the right cycle containing
C be STj , i 
= j. Of the two vertex disjoint paths between
B and C before the removal of these Steiner nodes, one must
have been through A. As the two components did not have
any direct edge between them, so the second path between
B and C must have been through some Steiner nodes not
belonging to STi or STj and terminal nodes other than A, as
shown in Figure 6(a) (square nodes are Steiner nodes). If those
Steiner nodes have not been removed yet, the path still exists.



If they have been removed, all the terminal nodes connected to
them have been connected through a cycle, and thus internally
vertex-disjoint (disjoint from first path) path between B and C
not passing through A still exists, as shown by the example in
Figure 6(b). Thus, B and C still have two vertex disjoint paths
after removal of STi and STj , and thus A is not a cut-vertex.
So, the procedure of adding beads and removing Steiner nodes
(Algorithm 3) does not create any cut-vertex, and the beaded
network constructed by Algorithm 2 is 2-vertex connected on
terminals. �

VI. EXTENSION TO HIGHER DIMENSIONS

We consider the extension to other metric spaces in this
section. Let the terminal nodes be placed in any metric space
with MST number dMST [23]. MST number is defined as
the maximum possible degree of a minimum-degree minimum
spanning tree (MST) spanning points from the space. The
approximation ratio for the MST based algorithm of [6] for
connecting terminals using minimum relays has been shown to
be dMST −1 in [7]. The MST number for a Euclidian plane is
5, a three-dimensional Euclidian space is 13, and a rectilinear
plane is 4.

We can prove that the algorithms for 2-edge connectivity
and 2-vertex connectivity are 2dMST -approximation. We omit
the proof here due to lack of space.

VII. GENERALIZATION TO RESTRICTED RELAY

PLACEMENT

We extend our results for terminals distributed on a Eu-
clidian plane to the scenario where relays cannot be placed
in certain polygonal regions of the network . We call these
regions as forbidden regions. We assume that two nodes can
communicate if they are within each other’s transmission range
even when there is a forbidden region between them. We mod-
ify the edge and vertex connectivity algorithms to work with
the same approximation guarantees for this generalization.

We follow the same algorithms as before for both edge
connectivity and vertex connectivity. It may not be possible
to connect two terminals by placing relay nodes on the
straight line between them due to the forbidden regions. Thus,
Equation 1, which represents the number of relays needed to
connect two terminals by placing relays on the line between
them, cannot be used to weight the edges of the network
formed on terminal nodes in our algorithms. Recently, a
polynomial time algorithm has been proposed for placing
the minimum number of relay nodes needed to form a link
between two nodes with the presence of polygonal forbidden
regions between them [24] . The problem is called the puddle-
jumper problem. We modify our edge weights by running
the algorithm given in [24] on each pair of terminals in the
network to find the minimum number of relay nodes needed
for each link, and using that as the weight of each edge.
We then run our edge connectivity and vertex connectivity
algorithms on a network with these edge weights. Then, for the
selected links, we place the relays according to the algorithm
given in [24].

A. Proof of approximation ratio

We now prove that the approximation ratio for the 2-
edge and 2-vertex connectivity algorithms is 10. We follow
the same construction as before, the only change being that
beads (relay nodes) are not placed on straight lines between
terminal nodes now; instead they are placed optimally taking
forbidden regions into account. The only part of the proof that
needs reconsideration to take forbidden regions into account
is when Steiner nodes on a tree (STj) are removed from
the optimal Steiner solution and beads are placed to make
the cycle between terminal nodes connected to tree STj (see
Algorithm 3). We argue that the number of relays needed
to form a beaded link between two terminals is still upper
bounded by the number of Steiner nodes encountered in the
depth first traversal between the two terminals: Take any two
terminals being connected using beads, and let a be the number
of Steiner nodes on the DFS path between them. Thus, there
is a placement of Steiner nodes to connect the two terminal
nodes using a Steiner nodes. As even Steiner nodes could not
be placed in forbidden regions, and we connect the terminals
using beads placed according to the optimal algorithm of [24],
the number of beads required is upper bounded by a. Thus,
each bead can still be charged to a different Steiner node on
the DFS path between the terminals. We showed in Section IV
that each Steiner node is charged at most 5 times, so the total
number of beads required for replacing the Steiner node tree
STj is still 5sj , sj being the number of Steiner nodes in the
STj . Thus the total number of beads required in the network
is at most 5s for the beaded network using minimum number
of beads, s being the number of optimal Steiner nodes. As
our algorithms use 2-approximations for finding the optimal
beaded network, the algorithms are 10-approximations.

VIII. WORST CASE AND EXPECTED VALUE BOUNDS

In this section, we provide some bounds on the number of
relays required to connect a set of terminals. We provide the
bounds for the algorithm of [6]. The algorithm weights each
edge among the terminal nodes by the number of relay nodes
needed to form the edge, and finds a minimum spanning tree
(MST) on the terminal nodes. The weight function is given in
Equation 1, where |e| is the edge length. We first provide a set
of worst case bounds as a function of the transmission range
of the nodes and independent of the number of terminal nodes.
We then use another approach to show that the upper bound on
number of relays required increases and then becomes constant
as the number of nodes in the network increases. We then show
that the expected number of relays required for achieving (2d−
1)-vertex connectivity among terminal nodes distributed in a
d-dimensional space goes to zero as the number of terminals
goes to infinity.

We work with terminal nodes distributed in a unit-length
cuboid in a d-dimensional space. Let the transmission range
of each node be ∆ (= 1/l, where l is the length of the network
when transmission range is assumed to be 1). We denote the
terminal nodes by points {x1, x2, .., xn} ⊂ [0, 1]d, and take
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Fig. 7. Relationship between upper bound on number of relays and
transmission range in MST-based algorithm

the weight of each edge to be ψ(e) = |e|, i.e., the Euclidean
length of the edge.

A. Worst case bound as function of transmission range

We give bounds on the number of relays required in the
MST with respect to the transmission range of the nodes,
and independent of the number of terminals. Let T0 denote a
minimum weight spanning tree on the terminals, according to
the weight function ψ(e) = |e|. Let νd(x) denote the number
of edges in T0 having length greater than x. We start with the
following Lemma from [25].

Lemma 8.1: There is a constant βd depending only on the
dimension d ≥ 1 such that

νd(x) ≤ βdx
−d (4)

We use the result to bound the number of relays we require
for forming a tree between the terminal nodes using the
algorithm of [6]. We need a relay node for every ∆ length
of a link. We group the edges of the MST into p groups
according to their lengths. Let the group Ci contain edges
with length between i∆ and (i+1)∆. The number of groups,
p, is �√d/∆�, where

√
d is the maximum edge length in the

network.

Ci = {e|i∆ < |e| ≤ min{(i+1)∆,
√
d}}, i = 0, .., p−1 (5)

The number of relays needed to form an edge in group Ci is
i. Let b(∆) denote the total number of relays needed to form
all edges in the MST. We use Lemma 8.1 and sum over the
groups Ci to find the upper bound for the number of relays
required. The number of elements in group Cp−1 is bounded
as |Cp−1| ≤ βd((p − 1)∆)−d. Equation 6 gives the bound
for other sets. The total number of beads required is given by∑p−1

i=1 i|Ci|, which is the sum of left hand side of the equations
in Equation 6. By adding the equations from j = 1 to p− 1,
we get the bound on the total number of beads in Equation 7,
which we call B(∆). Here, Hd

p−1 is harmonic number of order
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Fig. 8. Upper bound on number of relays for varying number of terminals
in MST-based algorithm

(p− 1) of power d. Figure 7 plots the variation of B(∆)/βd

for d = 2. As can be seen, the upper bound on the number
of relays required decreases exponentially with the increase in
transmission range of the nodes.

j∑
i=1

|Cp−i| ≤ βd((p − j)∆)−d, j = 1, .., p − 1 (6)

b(∆) ≤
p−1∑
i=1

i|Ci|≤
p−1∑
i=1

βd(i∆)−d

= βd∆−d

p−1∑
i=1

i−d = βd∆−dHd
p−1 (7)

B. Worst case bound as function of number of nodes

We now provide the bounds with respect to the number of
nodes in the network. We use some observations from [25] to
provide the bounds. Let T0 denote a minimum weight spanning
tree on the terminals, and E denote the set of edges in T0. We
follow Kruskal’s algorithm [26] for constructing an MST: Join
two nearest points, then iteratively join two nearest connected
components. Then, let ei, 1 ≤ i < n, denote the edges in the
order in which they are added to T0. We have the upper bound
of Equation 8 on the edge lengths, where ei is the edge added
in ith step of Kruskal’s algorithm.

|ei| ≤ αd(n− i+ 1)−1/d (8)

To prove this, the following result is used: If there is a set
of m points {x1, x2, .., xm} in [0, 1]d, then one can select a
pair of points xi and xj with |xi − xj | ≤ αdm

−1/d, where
αd is a constant. A direct application of pigeonhole principle
leads to this result. Also, αd = 2

√
d suffices. At ith iteration

of Prim’s algorithm, there are n − i + 1 components in the
network, and the result of Equation 8 follows.

The number of relays required (B) can then be upper
bounded as in Equation 9. Here, ∆ is the transmission range of



the nodes when network length is one. As the equation shows,
the bound on number of relays required becomes a constant
as the number of terminals (n) increases beyond a threshold.
The expected behavior would be to have the number of relays
increase with number of terminals, and then start decreasing
as n increases beyond a threshold. That is true for the average
case, but in the worst case, it does not decrease as one can put
new terminal nodes at the same positions as the existing nodes,
and thus the number of relays required does not decrease.

B ≤
n−1∑
i=1

(�αd(n− i+ 1)−1/d

∆
� − 1)

=
n∑

i=2

(�αdi
−1/d

∆
� − 1)

=

{ ∑n
i=2(�αd(i)−1/d

∆ � − 1) if n ≤ �(αd/∆)d�∑�(αd/∆)d�
i=2 (�αd(i)−1/d

∆ � − 1) otherwise
(9)

For d = 2 and α2 = 2
√

2, we plot the bound in Figure 8.
The transmission range is fixed at 0.1 and n is varied. As we
can see, the bound on the number of relays required increases
in a piecewise linear manner and becomes constant after a
certain threshold (which depends on the transmission range of
the nodes). Using the same analysis the bound on the length
of the MST has been shown to increase as O(n(d−1)/d) [25].

C. Asymptotic bound on number of relays

In this section, we show that the mean number of relays
required goes to zero as the number of terminals goes to
infinity. The terminals are assumed to be uniformly and
independently distributed in [0, 1]d. The analysis holds for
number of relays required to achieve up to (2d − 1)-vertex
connectivity between terminals (which implies up to (2d−1)-
edge connectivity as well). The result is stated in Lemma 8.2.

Lemma 8.2: If n terminal nodes are i.i.d. uniformly dis-
tributed in [0, 1]d, the number of relays required to achieve
(2d−1)-vertex ((2d−1)-edge) connectivity between terminals
goes to zero in the mean value as n goes to infinity, i.e.,

lim
n→∞E[Relays] → 0 (10)

Proof: Let the transmission range of each node be ∆ < 1.
We divide the network volume into d-cuboids of edge-length
∆/(2

√
d), such that the distance between the farthest points

in two neighboring cuboids is ∆. Thus, if we have a terminal
node in each cuboid, the network will be a grid, and in the
case of a single terminal in a corner cuboid, that terminal will
have minimum (2d−1) neighbors, and all non-corner cuboids
have number of neighbors greater than (2d−1). Thus, the grid
network is (2d−1)-vertex (and edge) connected. Let ni denote
the random variable for the number of terminals in cuboid i.
The number of cuboids in the network is (2

√
d/∆)d, which

we denote by N(∆, d). Equation 11 gives the probability that
a cuboid i has zero terminal nodes when n terminal nodes are
i.i.d. uniformly distributed in [0, 1]d. The number of relays
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Fig. 9. Mean number of relays for 2-edge connectivity, ∆ = 0.2, d = 2

required to form a grid network is equal to the number of
empty cuboids in the network. Thus, the expected number of
relays required can be written as in Equation 12.

P{ni = 0} = (1 − 1/N(∆, d))n .
= p, i = 1, .., N(∆, d) (11)

E[Relays] = N(∆, d)p = N(∆, d)(1 − 1/N(∆, d))n (12)

As n approaches infinity, (1−1/N(∆, d))n approaches zero,
and thus the relation of Equation 10 holds. �

IX. SIMULATION RESULTS AND DISCUSSION

We generate a random network in a unit length square in a
two dimensional space. The nodes are located uniformly and
randomly in the network. We simulate the algorithm for k-edge
connectivity for k = 2, 3. We note the results for number of
relays required both at the output of Khuller and Vishkin’s
approximation algorithm [14], and after sequential removal of
relays ensuring k-edge connectivity (see Algorithm 1). For
2-edge connectivity, we propose another algorithm that for-
mulates the problem as traveling salesperson problem (TSP),
and compare the results with that. The algorithm constructs a
complete graph with edge weights defined as in Equation 1,
and find a TSP tour on the graph. The total weight of
the tour represents the number of relays required. We use
Concorde [27] to compute the optimal TSP tour.

We first fix the transmission range of the nodes at 0.2
and vary the number of backbone nodes in the network.
We randomly generate backbone node locations 10 times.
Figures 9 and 10 show the average and maximum number of
relays required (over 10 simulations) for 2-edge connectivity
for varying number of backbone nodes. The average number of
relays required increases with the number of backbone nodes,
and then decreases as the number of backbone nodes goes
beyond a threshold. The output of Algorithm 1 is nearly the
same as the TSP output. The performance of Algorithm 1
gets slightly better than the TSP performance as the number
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of terminals is increased. Although the TSP algorithm works
almost as well as our algorithm, it can be shown that it has
an approximation ratio of infinity. The reason is that while 2-
edge connected components of terminals in the network may
not need any relays, forming a TSP tour among them may
need relays. Thus, the worst case performance of TSP may
be very bad on certain networks. The other advantage of our
algorithm is that it can be used to construct networks with
connectivity levels higher than two as well, while the TSP
based algorithm works only for 2-connectivity.

Figures 11 and 12 show the average and maximum number
of relays required (over 10 simulations) for 3-edge connec-
tivity for varying number of backbone nodes. The number of
relays required follows the same pattern as for 2-edge con-
nectivity, and the gains achieved by sequential relay removal
step are more than in the 2-edge connectivity case. This is
because there are many more relays in the vicinity of each
other in the output before sequential removal in the case of
3-edge connectivity. Thus, when allowed to form links in the
neighborhood, the fraction of redundant relays (which can be
removed) is much more for k = 3 than k = 2.

We now fix the number of backbone nodes at 30, and
vary the transmission range from 0.02 to 0.4. The set of
locations of the backbone nodes is generated randomly 10
times, and simulations for each transmission range are run on
each of those networks. Figures 13 and 14 show the mean and
maximum number of relays required over the simulations for
2- and 3-edge connectivity. The number of relays required
decreases exponentially with the transmission range of the
nodes. Also, the performance of our algorithm is similar to the
TSP output. It was shown in Section VIII that the maximum
relays required for connectivity decreases exponentially with
the transmission range of the nodes. The simulations show a
similar behavior for 2-edge and 3-edge connectivity.

It is worthwhile to note that the results show similar
behavior if we increase/decrease the network area or increase
the number of backbone nodes. The number of backbone
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nodes in the simulations represent actual sizes of backbone
networks, and so the results represent the expected behavior
of the algorithms.

X. CONCLUSION AND FUTURE WORK

We consider the problem of constructing a fault-tolerant
backbone network using additional relay nodes. We give O(1)-
approximation algorithms for 2-edge and 2-vertex connectivity
in terms of the number of relay nodes required. The bound
for 2-edge connectivity is proved to be tight. The algorithms
also work for achieving k-connectivity for higher values of
k. We analyze previously proposed algorithms for achieving
connectivity in a network, both for deterministic worst case
bounds and probabilistic expected value bounds. Simulations
show our 2-edge connectivity algorithm gives results similar
to an algorithm based on traveling salesperson problem, which
may perform infinitely worse relative to the optimal and
cannot be extended to work for connectivity higher than two.
Simulations also show the behavior of the proposed algorithms
for k-edge connectivity is same as the bounds shown for
connectivity algorithms. We extend our algorithms to work
with the same approximation guarantees for the generalization
where the relay nodes cannot be placed in certain polygonal
regions of the network.

There are some open problems to be considered in future
work. The first problem is the derivation of an approximation
ratio for the proposed algorithms for k > 2. An O(1)
approximation ratio may exist for k > 2. Another extension
of the work is to place the relay nodes more intelligently, and
be able to bound the performance of the algorithm relative
to the optimal, i.e., provide an approximation ratio for the
corresponding algorithm.
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