LIOUVILLE'S FORMULA

for the geodesic curvature of a curve in an orthogonal coordinate system.

Orthogonal coordinates. Let $\sigma: \mathcal{U}$ be a surface patch, and assume that the metric for σ is given by

$$
(d s)^{2}=E(u, v)(d u)^{2}+G(u, v)(d v)^{2}
$$

so that $F(u, v)=0$, i.e. $\sigma_{u} \perp \sigma_{v}$.

Figure 1. A curve in an orthogonal coordinate patch

Liouville's formula. If γ is a curve on the surface, and θ denotes the angle of intersection of γ with the curves $\{v=$ constant $\}$, then its geodesic curvature is given by

$$
\kappa_{g}=\frac{d \theta}{d s}-\frac{(\sqrt{ } E)_{v}}{\sqrt{E G}} \cos \theta++\frac{(\sqrt{ } G)_{u}}{\sqrt{E G}} \sin \theta
$$

This can be written as

$$
\kappa_{g}=\frac{d \theta}{d s}+\kappa_{u} \cos \theta+\kappa_{v} \sin \theta
$$

where

$$
\kappa_{u}=-\frac{(\sqrt{ } E)_{v}}{\sqrt{E G}} \quad \kappa_{v}=\frac{(\sqrt{ } G)_{u}}{\sqrt{E G}}
$$

i.e. κ_{u} and κ_{v} are the geodesic curvatures of the curves $\{v=$ const $\}$, and the curves $\{u=$ const $\}$, respectively.

PROBLEMS

(1) Consider a surface of rotation,

$$
\sigma(x, \theta)=x \mathbf{i}+R(x) \cos \theta \mathbf{j}+R(x) \sin \theta \mathbf{k}
$$

(this is the surface obtained by rotating the graph of $y=R(x)$ around the x-axis.)
(a) Compute the metric of σ.
(b) Compute κ_{x} and κ_{θ}. (You can do this in two ways: (i) κ_{x} is the curvature of the curves $\{\theta=$ const $\}$, so use Liouville's formula above; (ii) use the formula $\kappa_{x}=\mathbf{n} \cdot\left(\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)\right) /\left\|\gamma^{\prime}(t)\right\|^{3}$, where $\gamma(t)=\sigma(t, \theta)$, with θ constant.)
(c) Consider the curve $\gamma(t)=\sigma(t, t)$. Draw the curve. Compute its geodesic curvature.
(2) Consider a surface $\sigma: \mathcal{U} \rightarrow \mathbb{R}^{3}$, where \mathcal{U} is an open subset of the upper half plane, with metric

$$
\mathbf{I}=\frac{(d x)^{2}+(d y)^{2}}{y^{2}}
$$

Compute the geodesic curvature of the two curves from the second midterm, i.e. of the curve $\alpha(t)=\sigma(t, 1)$, and of the curve $\beta(t)=\sigma(\sqrt{ } 2 \cos t, \sqrt{ } 2 \sin t)$.

