LIOUVILLE'S FORMULA

for the geodesic curvature of a curve in an orthogonal coordinate system.

Orthogonal coordinates. Let σ : \mathcal{U} be a surface patch, and assume that the metric for σ is given by

$$(ds)^{2} = E(u,v)(du)^{2} + G(u,v)(dv)^{2},$$

so that F(u, v) = 0, i.e. $\sigma_u \perp \sigma_v$.

FIGURE 1. A curve in an orthogonal coordinate patch

Liouville's formula. If γ is a curve on the surface, and θ denotes the angle of intersection of γ with the curves $\{v = constant\}$, then its geodesic curvature is given by

$$\kappa_g = \frac{d\theta}{ds} - \frac{(\sqrt{E})_v}{\sqrt{EG}}\cos\theta + \frac{(\sqrt{G})_u}{\sqrt{EG}}\sin\theta$$

This can be written as

$$\kappa_g = \frac{d\theta}{ds} + \kappa_u \cos \theta + \kappa_v \sin \theta$$

where

$$\kappa_u = -\frac{(\sqrt{E})_v}{\sqrt{EG}}$$
 $\kappa_v = \frac{(\sqrt{G})_u}{\sqrt{EG}}$

i.e. κ_u and κ_v are the geodesic curvatures of the curves {v = const}, and the curves {u = const}, respectively.

PROBLEMS

(1) Consider a surface of rotation,

$$\sigma(x,\theta) = x\mathbf{i} + R(x)\cos\theta\mathbf{j} + R(x)\sin\theta\mathbf{k}$$

- (this is the surface obtained by rotating the graph of y = R(x) around the x-axis.)
- (a) Compute the metric of σ .

- (b) Compute κ_x and κ_{θ} . (You can do this in two ways: (i) κ_x is the curvature of the curves { $\theta = \text{const}$ }, so use Liouville's formula above; (ii) use the formula $\kappa_x = \mathbf{n} \cdot (\gamma'(t) \times \gamma''(t)) / \|\gamma'(t)\|^3$, where $\gamma(t) = \sigma(t, \theta)$, with θ constant.)
- (c) Consider the curve $\gamma(t) = \sigma(t, t)$. Draw the curve. Compute its geodesic curvature.
- (2) Consider a surface $\sigma : \mathcal{U} \to \mathbb{R}^3$, where \mathcal{U} is an open subset of the upper half plane, with metric

$$\mathbf{I} = \frac{(dx)^2 + (dy)^2}{y^2}.$$

Compute the geodesic curvature of the two curves from the second midterm, i.e. of the curve $\alpha(t) = \sigma(t, 1)$, and of the curve $\beta(t) = \sigma(\sqrt{2}\cos t, \sqrt{2}\sin t)$.