W4 VESA

Video Electronics Standards Association VB EIAF Standard

Video Electronics Standards Association

860 Hillview Court, Suite 150 Phone: (408) 957-9270
Milpitas, CA 95035 FAX: (408) 957-9277

VESA BIOS Extension/Accelerator Functions
(VBE/AF)

Version: 1.0
Revision: 0.7
Adoption Date: August 18, 1996

Purpose
To define a standard method for software and drivers to access the accelerator features present in
most graphics hardware.

Summary

This document defines the interface for a new operating system portable, loadable device driver
architecture that will provide access to accelerated graphics hardware. Some of the accelerator
functions supported include hardware cursors, multi buffering, solid and transparent off-screen
bitmaps, rectangle filling, line drawing and polygon filling. This specification is not just targeted
at supporting graphics accelerator hardware, but can also be used to support existing dumb
framebuffer devices with maximum performance.

VBE/AF is essentially a hardware-independent device interface at the very lowest level. It is not
meant to replace higher-level APIs, but it will allow those APIs and applications that want direct
hardware support to access the hardware in a standardized way.

VBE/AF STANDARD VERSION 1.0
Document Revision 0.7

Intellectual Property
Copyright © 1996 - Video Electronics Standards Association. Duplication of this document
within VESA member companies for review purposes is permitted. All other rights reserved.

While every precaution has been taken in the preparation of this standard, the Video Electronics
Standards Association and its contributors assume no responsibility for errors or omissions, and
make no warranties, expressed or implied, of functionality or suitability for any purpose.

The sample code contained within this standard may be used without restriction.

Trademarks
All trademarks used in this document are property of their respective owners.

Patents

VESA proposal and standards documents are adopted by the Video Electronics Standards
Association without regard to whether their adoption may involve patents on articles, materials,
or processes. Such adoption does not assume any liability to any patent owner, nor does it
assume any obligation whatever to parties adopting the proposal or standards document.

Clarifications and application notes to support this standard will be published as the need arises.
To obtain the latest standard and support documentation, contact VESA.

If you have a product which incorporates VBE, you should ask the company that manufactured
your product for assistance. If you are a display or controller manufacturer, VESA can assist
you with any clarification you may require. All questions must be writing to VESA, in order of
preference at:

Internet: support@vesa.org
FAX: (408) 957-9277
MAIL: VESA

860 Hillview Court, Suite 150
Milpitas, CA 95035

Page ii VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

SSC VBE/AF Workgroup Members

Any industry standard requires input from many sources.

The people listed below were members of the VBE/AF Workgroup of the Software Standards
Committee (SSC) which was responsible for combining all of the industry input into this
standard are listed below.

The workgroup members would also like to express a special gratitude to Kendall Bennett for his
significant contributions to making VBE/AF a reality.

VBE/AF Workgroup

David Penley, Cirrus Logic, Inc. - Workgroup Chairman

Kendall Bennett, SciTech Software
Kevin Gillett, S-MOS Systems, Inc.,
Brad Haakenson, Cirrus Logic, Inc.
Jake Richter, Panacea Inc.

Tom Ryan, SciTech Software

Revision History:

0.1: Initial revision put forward for proposal

0.2: Formatting and editing changes for distribution

0.3: More formatting and editing changes for distribution. Rewrite some of the Introduction

0.4: Still more formatting and editing changes. Added cross-references to many parts.

0.5: Added missing BIOS call interface. Fixed up some missing items in header structures.
Updated with latest source code..

0.6: Added support for multi-buffering for games requiring triple and higher buffering.

0.7: Removed support for BIOS call interface, to be moved into an alternative BIOS specification.

VBE/AF STANDARD VERSION 1.0 Page iii
DOCUMENT REVISION 0.7

Table of Contents

DOCUMENT REVISION 0.7

INTRODUCTION 1
VBE/AF FEATURES......ueeittetieteetiesttesteetestesetesttesttasseassesssesssesseesseessesssesssesssaseanssanssasseassessaenseensesnsesnsesnsesseenseensenns 1
SCOPE OF VBE/AF ...ttt ettt ettt e et e et e e bt e e bt e e s baeaaseeesbaaenseesasaaasseessseesnseesnsaeanseeenssaanseean 1
BACKGROUNDooutiiiiieeiie ettt etteeetteestteetteetteastaeeseesssseesseeassaeasseeassseesseeassseanseesnssessessnsseenssesssseenssesnsseenseeensssenseennes 3

PROGRAMMING WITH VBE/AF 4
INITIALIZING THE DEVICE CONTEXT INTERFACEeuvutuuuuuuuuuueueeeeeeeeeeeseseseeesesasssssssesesssnnssesesesssssnsssssssnssnsnssnsssnssssssnnns 4
INITIALIZING A DESTRED VIDEO MODBEcoiiutiiiitiiieiiteeite ettt eite ettt esitesbteeteesbtesaeesbaeesatesbteeseeenbaeenseesbaeanseesnne 6
DETERMINING SPECIFIC HARDWARE SUPPORTcccutieuteeitieesteeateeesseesseeessseesseeassseassesessssessssassssesssssssssessessssssesssssns 6
2D COORDINATE SYSTEM.....utiecttteitteestteasteeenseeassseenseeassssesseesssssasssssssssessesassssessesssssesssessssssesssssssssesssssssssessessssssenssesnns 7

UL BUSFEFIT ...ttt ettt et ettt ae e be e e e e ess e et s e sbeesbeesbessbesneeeneeseenseenns 7
AcceSSING OffSCren MEMOTYc.ccuooieiiiiiiiiiit ettt ettt ettt sttt enae e 8
Virtual Buffer SCPOIIINGcccooiiieiieeee ettt ettt ettt ettt et e e en e eeeenneens 9
Palette Programming During Double BUffering...............cccouviieiiiiiioi ittt 10
COLOT VALIUES...........oooeeeeeeeeeeeeee e ettt e e 10
INEEZEE COOFAINALES ...ttt ettt ettt 10
Fixed Point COOVAINALESccc..ooceeeeeeeeeeeeeeeeeeeee et 10
2D POLYGON RENDERINGceectttitieetieeteeeteesteeeseesseeasseesseeassessssesassesssessssessssesssessssessssessseesssessnsesessessnsessssess 11
VIEWDOTE TEANSTOTIGQLIONS.coooveeeieiieiieiie et ettt ettt ettt et ettt e taesbe e b e esseesaesaeeeseesseesseessenssenseen 11
DIRECT FRAMEBUTFFER ACCESS ... utteeutteitteetteettesteesttesteesstesateesabeesuseesabeessseesnseesnseesnsaesnseesnseesnseesaseessseesnseesnsees 11

DRIVER FUNCTION REFERENCE 14
STRUCTURE OF THE DEVICE DRIVERcccotiiiitiiiitieeitieeiteeeteeesteeeseesssaeeseesseesssesssseesssesssessssesssssesssessssessssessssessnses 14
DEVICE CALLBACK FUNCTIONSuttitititieetieeteeettesteeeteesteeeteesseeesseesssaeasseesssesassesssseesssesssseessseesnsessssessnsessssees 18

TIEBG ...ttt an 18
CAIIRCAIMOUEeeeeeeeeeeeeeee et et 18
CONFIGURATION FUNCTIONScccutiiiieeiitieiieestiesteestteesteestbeessseessseessseesssaessseessssessseasssessseesseessseessseessssessseessseees 19
TREEDFIVEF ... e e e n 19
GEVIACOMOECINSO ...ttt b e et ae bbb esb e e taeebaesbeesbeesseenseaneas 19
SCUVIACOMOUE ... e ettt 22
RESIOFCTEXIMOUE.cc.eeeeeeeeeeeeeeeeee e 23
DIRECT FRAMEBUFFER ACCESS FUNCTIONSciiiiiiiiiiiiee e e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeaeeeeeeeeeaeeeeeas 23
SCIBANKI2 ... ettt ettt e e 23
SCUBANK. ... e 24
WAIITIILIALCoooeeeeeeeeeeeeeeeeeeee et 24
ENADICDIFECIACCESS ... et 24
DIESADICDITECEACCESS ...ttt ettt e e et e e s 24
VIRTUAL SCROLLING FUNCTIONSccouttiittiiiititieette et eitestteeieesbt e st e sabeesateesabeesateesabeesateesabeesabeesabaesaseesnbeesaseess 24
N 207 DRy 2 2 Y 7 USSP 24
JLY 162 50 1 210) 3333 21 N 1\ (€3 2101 (08 1 (0) N 1SR 25
SCLACHVEBULTCE ..ottt ettt e e ae e et e e s e ete e be e b e e b e enbeenbesneesaeesseense e 25
SUVISIDICBUITET ...ttt ettt 25
PALETTE FUNCTIONSoiieiiiie ettt ettt e e et e et e e ettt e e e sttt eeesateeeasseeeaansseeeannsaaesnssaeeansseeeansaeesansseesansseeeanssseesannsees 25
SCIPAICHICIDIALA. ...t e e e 25
SetGaAMMACOFVTECUONDIALA. ... e e e e e e e e eaee e 26
HARDWARE CURSOR FUNCTIONSccoutiiiiiiiiieiiieeite ettt ettt st e et e st e st e sabeesateesabeesabeesabeesaseesabaesaneesnbeesaseens 26
SCUCUFSOT ..o e 26
SCUCUFSOTPOS. ... e et e e 26
Page iv VBE/AF STANDARD VERSION 1.0

SCUCUFSOTCOLOF ... e et 27

STOWECUFSOT ..o e ettt e et e et e e e e e e e eeae e e 27

2D ACCELERATOR DRAWING CONTEXT FUNCTIONS 27
SOIMEIX......ooii e ettt e et e e e e e et aeaeee s 27
SCUEXEMONOPAIIE ...ttt e ettt e e e e e e e e e e e e reeeae e 27
SCIEXECOIOFPAIICITL...........c.oeeeee e et 28
SOILINESTIPPIC ...ttt ettt 28

N2 0117 1 =Tl SRS 28
2D ACCELERATOR DRAWING FUNCTIONS 29
DFQWSCAN ...ttt 29
DFQWPAESCAN ...ttt ettt e e e e 29
DFAWCOIOTPAILSCAN ...ttt ettt e e 29
DFQWSCANLIST ... ettt ettt e ettt e e e e e ettt e e e e e e aaaee s 29
DFQWRECE..........oooooooiii et 30
DFQWPAIIRECE ...ttt e e e et et e e e et e e e e e e 30
DFQWECOLOFPAIIRECE ..o e ettt et e e e 31
DFAWLING. ... 31
DFQWSHPPDIELINE ...ttt ettt ettt ettt 31
DIFQWTTAP ..ottt e et e et e et e et e e st e e e ate e e bt e en bt e enteeeateeesbeetaeeenbeetteennbaennreas 31
DFAWTFE ..o 32
DFAWQUAA. ... ettt ettt ettt ettt ettt ettt et eneas 33
PUIMONOIMAGE ...ttt ettt ettt ettt ettt e ettt eeeneenneen 33
BUEBIE ..ot n 34
BIIBIILIR ... 34
THARSBIL ... e e ettt et 34
TFARSBITLITI ... ettt ettt e e e et e e e et e e e e e e 35
QUESTIONS & ANSWERS 37
IS THIS SPECIFICATION ONLY USEFUL FOR DOS APPLICATIONS?iiiiiiiiieiiiieeeciteeeeeireeeeeiveeeesivaeeessereeeeeanaeeessneeans 37
IS THIS JUST ANOTHER SOFTWARE LAYER TO SLOW THINGS DOWN?cccttiiiiiiieeiireeeesireeeeenreeessreeesssraeeessssesssnssees 37
WHY HAVE YOU IMPLEMENTED ONLY A SMALL SET OF FUNCTIONS?uviiiiiiiieeeieeeeeeeee et 37
WILL ANY ADDITIONAL HARDWARE BE NECESSARY TO SUPPORT VBE/AF?coiiiiiiiiiieeeeeeee e 37
APPENDIX A - SAMPLE C API 38
VBEAF H ..ottt et ettt et e et e e taeete e e etbe e te e e taeeete e e taeeteeeteeebeeeetaeeteeeteeenreean 38
VBEAF.C....oo ettt ettt ettt e et e e ta e e bt e e ta e e ae e e tbeeteeeabaeaateeeataeeseeesseeabeeenbeeeabeeebaeeabeeeraeenreean 44
VBEAF.INC ... ettt e e e e e e e et e e e et e e e eeaee e e e e aaeeeeeaeeeeeaeeeeesaeeeeenteeeeenneas 49
CVBEAF . ASM .ttt ettt h e bttt et e e e e et e bt e eh e e bt e bt e bt e et sateebeenbee bt enteens 55
VBE/AF STANDARD VERSION 1.0 Page v

DOCUMENT REVISION 0.7

Introduction

Introduction

This document contains the Graphics Accelerator Driver Architecture specification (hereafter
VBE/AF) for standard software access to high performance accelerated graphics display
controllers that support resolutions, color depths, and frame buffer organizations beyond the
original VGA hardware standard.

To understand the VBE/AF specification, some knowledge of 80386 assembly language and
Accelerated SuperVGA hardware may be required.

VBE/AF Features

e Standard application interface to graphical user interface (GUI) accelerator devices.
e Operating system (OS) neutral high performance 32 bit loadable device driver.

e Support for common GUI accelerator functions.

e Support for pixel depths from 8 bit to 32 bits per pixel.

e Support for basic mix operations (REPLACE, OR, AND, XOR).

e Support for offscreen memory management for bitmap storage.

e Support for multi buffering for flicker free animation.

e Support for virtual scrolling for large desktops and arcade style games.

Scope of VBE/AF

The primary purpose of the VBE/AF is to provide standard software support for the many unique
implementations of high performance Accelerated SuperVGA (SVGA) graphics controllers on
the PC platform. VBE/AF is intended to provide computer game and interactive graphics
software developers on the PC standardized access to accelerated display hardware without
requiring any OEM specific display drivers.

On the other side, manufacturers can reduce their burden of software support by implementing a
single VBE/AF driver for their graphics products. With this one driver, support for games and
low volume operating systems can be realized with a minimal effort.

The VBE/AF device driver is defined as an operating system portable, 32 bit protected mode
device driver, which can be loaded under any 32 bit operating system. The same VBE/AF driver
can be used for high performance full screen graphics under any operating system, provided a
few operating system specific functions are provided. Currently VBE/AF is targeted towards
supporting MSDOS, Windows 3.1, Windows 95, OS/2 and UNIX.

VBE/AF is similar in functionality to the VESA VBE Core Functions 2.0 specification, but
because new and future accelerated device’s are so vastly different to the generic VGA and

VBE/AF STANDARD VERSION 1.0 Page 1
DOCUMENT REVISION 0.7

Introduction

SuperVGA devices originally supported by VBE 2.0, VBE/AF provides a completely new
device driver interface.

VBE/AF provides access to a standard set of accelerator functions provided by the display
controller, and reports the availability and details of all supported functions to the application as
necessary. VBE/AF also provides information on how to set up and maintain the state that the
VBE/AF device driver needs for correct operation (such as accessing I/O and memory mapped
hardware registers). If a hardware device does not support a particular accelerator function, such
as line drawing, support for this function will be mapped out and the application will need to
implement it in software. Although there is generally a 1:1 mapping between VBE/AF functions
and accelerator hardware functions, some VBE/AF functions (such as polygon filling) will need
to be supported with a software rasterizer if not supported directly in hardware. This is done
specifically for the sake of efficiency, and the fact that many hardware devices support varying
levels of polygon rendering support.

VBE/AF only provides support for 8 bit and higher packed pixel video modes. Although
VBE/AF is intended to support accelerated hardware, it also provides support for dumb
framebuffer video modes without any hardware acceleration. This is provided for backwards
compatibility with older non-accelerated hardware, and to support video modes that cannot be
accelerated by the underlying hardware.

VBE/AF is also designed to correctly arbitrate between accelerated device access and dumb
framebuffer access for the installed display device. This allows application code to take
advantage of accelerator functions in certain areas, or perform direct software rendering into
banked or linear framebuffer video memory. VBE/AF compatible devices must support at least
either a banked framebuffer direct access mode, or a linear framebuffer access mode.

In order for the VBE/AF specification to be acceptable and used by application developers, it
must be fast and flexible. Application developers must be able to use the functions to implement
high performance, complex accelerated graphics primitives by building upon the accelerated
building blocks provided by the VBE/AF. For this reason, the VBE/AF functions have been
boiled down into the smallest possible set of accelerator functions that are generally
implemented directly in hardware. When an application calls the VBE/AF device driver routines,
it will already have performed any necessary application specific special casing. This means that
the VBE/AF device driver routines will be short and will simply program the hardware and
return without doing any parameter checking, clipping etc.

Page 2 VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

Introduction

Background

Since the introduction of Microsoft Windows 3.0, PC based graphics hardware has quickly
developed from the original IBM VGA standard to incredibly high performance hardware that
supports pixel resolutions and depths way beyond the original IBM VGA standard. In order to
be able to handle the massive bandwidth that Graphical User Interface (or GUI) operating
systems like Windows require in these extended resolutions, these devices have also
incorporated a number of extensions for off-loading the burden of graphics rendering from the
CPU to the graphics hardware device. This advanced hardware acceleration (or GUI
acceleration) has now become the defacto industry standard, and any new PC based graphics
devices developed today at least contain some sort of GUI hardware acceleration.

However, several serious problems face a software developer who intends to take advantage of
these “GUI Accelerator” devices. Because there is no standard hardware implementation, the
developer is faced with widely disparate hardware accelerator architectures. Lacking a common
software interface, designing applications for these environments is costly and technically
difficult. Except for applications or Operating Systems supported by OEM-specific display
drivers, very few software packages can take advantage of the power and capabilities of GUI
hardware accelerator products.

VBE/AF is intended to bridge that gap, allowing computer games and other interactive graphics
software to have a standardized, fast and flexible interface to high performance GUI hardware
accelerator functions. This allows application developers to spend more time developing the
core of the application, than writing hardware specific device drivers.

VBE/AF STANDARD VERSION 1.0 Page 3
DOCUMENT REVISION 0.7

Programming with VBE/AF

Programming with VBE/AF

This chapter describes in detail the issues application and system software developers will face
when developing code to use VBE/AF.

Initializing the Device Context Interface

In order to be able to use the VBE/AF device driver, it must be dynamically loaded and
initialized by the application or operating system driver. The first step is to locate the VBE/AF
device driver file in the operating system’s normal file space, or to read the VBE/AF device
driver file from non-volatile memory from the graphics card (please contact VESA for more
information on the forthcoming VESA standard to cover this). The location of this file is
operating system dependent, and will be found in the following standard locations:

Operating System Default Location
MSDOS C:\VBEAF.DRV
Windows '95 C:\VBEAF.DRV
Windows NT C:\VBEAF.DRV
0S/2 C:\VBEAF.DRV
UNIX /VBEAF.DRV

Note however that the user may also set the VBEAF PATH environment variable and the loader
library should also check in this location if the driver file cannot be found in the default location.

VESA is currently defining an alternative function to read the VBE/AF device driver block
directly from non-volatile storage from the graphics controller. This function is optional and may
not be present, so you must first check the availability of this function before you can use it
(refer to the forthcoming VESA spec for more info). Note also that this function should be used
as a last resort. If a valid driver file is found in the operating systems normal file space, this
driver file must be used instead to ensure that the VBE/AF driver file can be upgraded in the
field.

Once the device driver file has been located, it will need to be loaded into the 32 bit linear
address space of the application or operating system driver. The application should allocate
enough space to hold the entire device driver file with a standard operating system memory
allocation request, and then load the device driver file into this memory block using standard
operating system file services.

Once the device driver file is loaded, the initialization function must be called. When the device
driver is first loaded from disk, the /nitDriver entry in the device driver function table will

contain an offset from the start of the driver to the initialization function. The application must
then make a near call to the address where the initialization function is located using this offset.

Page 4 VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

Programming with VBE/AF

Before the InitDriver function can be called however, the application must map the necessary
physical memory location into the applications linear address space and store the mapped
locations in the device context buffer, allocate the special selectors to physical memory locations
in the first 1Mb of system memory and provide the necessary 10 permissions required by the
device driver (the easiest is simply to provide IOPL for the code). The application must also fill
in the /nt86 and CallRealMode device callback functions to point to operating system specific
functions to provide these services. These callbacks are necessary for the VBE/AF driver to be
able to communicate with the real mode Video BIOS stored on the graphics card in order to
initialize video modes and get video card information.

When the VBE/AF device driver functions are called, the current I/O permission bit map must
allow access to the I/O ports that the VBE/AF functions may need to access (or the process must
be running with full I/O privileges). The VBE/AF device driver may also need to directly access
memory mapped registers located in physical extended memory, and directly access the banked
and linear framebuffer memory locations. Access to these physical memory locations is
provided by the application by mapping the memory locations that the device may need into the
near address space used when the VBE/AF functions are called (such as using DPMI function
0x800). The actual linear address of the mapping is stored in the accelerator device context
buffers /IOMemMaps, BankedMem and LinearMem variables, and will be used as necessary by
the device driver. Note that the base address of these locations is specified as a physical memory
address, and may be located anywhere in physical memory (including well above the IMb
memory mark), so an operating specific service will need to be used to map this memory
location into the processes linear address space. As well a providing near pointer access to
memory locations, the application must also allocate a number of special selectors to access
common areas of real mode memory (in the same task that is used to implement the /nt86 and
CallRealMode callbacks), such as the BIOS data area at 0x40:0 and the Video BIOS segment at
0xC000:0. These selectors are provided for the convenience of the developer of the VBE/AF
implementation, and allows a single source to be used to build both 16 bit BIOS initialization
code and 32 bit VBE/AF initialization code.

Note that in order to be able to call the device driver code that has been loaded on the heap, the
application must have a code selector that points to the same linear address space as the default
DS selector. Under most Intel 386 flat model architectures the default process CS and DS
selectors point to the same linear address space, so you simply need to make a near call within
the current CS selector (providing the pages that the driver has been loaded into have executable
access). If this is not the case (perhaps in an OS device driver) the appropriate selectors or
memory mappings will need to be created and loaded as necessary.

When the application calls the InitDriver function, it will perform the following functions, and
will return the appropriate status code in the EAX register (see InitDriver function description on
page 19 for more details):

e Verify the presence of the supported graphics adapter
e [.oad the near addresses of initialization functions in device context

Note that because the device driver will have been pre-configured by the external configuration
program before the application loads it, all of the device driver configuration information such as

VBE/AF STANDARD VERSION 1.0 Page 5
DOCUMENT REVISION 0.7

Programming with VBE/AF

the list of available video modes, available memory etc. will be correctly set. The initialization
function will however verify the presence of the expected graphics controller, and will fail to
initialization if the graphics controller has been changed.

After initializing the device driver, the application can then simply make near calls to the
initialization functions located in the device driver to obtain information about available video
modes and to initialize a desired video mode. Note that none of the addresses for the
acceleration functions will be valid until after a video mode has been initialized. The VBE/AF
driver will determine which functions are available in each video mode, and will load the
addresses of the functions appropriate for the selected video mode into the device context
function address table. Once the mode has been initialized, the application can simply call any
of the supported functions directly.

When calling the functions directly, the stack should also be a valid 32 bit protected mode stack,
and should be large enough to allow the accelerator functions to use up to 1024 bytes of
temporary stack space if necessary. The values of EAX, EBX, ECX, EDX, ESI and EDI are
determined by the appropriate device context function being called, and the value of all other
registers will be preserved across all calls to the VBE/AF device driver.

Also all VBE/AF device driver functions expect the address of the loaded device driver context
to be passed in the DS:EBX registers. Since in 32 bit protected mode code, the DS register is
always set to the applications default data segment, the application simply needs to load the
address of the device context buffer into EBX before calling the VBE/AF device driver functions
and will never need to load/restore any selectors.

Initializing a Desired Video Mode

Before any of the accelerator functions can be called, one of the supported video modes must be
initialized by the application program by calling the SetVideoMode function. In order to find a
valid video mode number to be passed to SetVideoMode, the GetVideoModelnfo function is used
to obtain specific information about all of the available video modes supported by the loaded
driver.

VBE/AF does not define any standard video mode numbers to be used for identifying available
video modes, but relies on the application to search through the list of available video modes for
one that has the desired resolution and pixel depth. Once the desired video mode has been
identified, this video mode number can be used in the call to SetVideoMode.

Determining Specific Hardware Support

Once a particular video mode has been initialized, the application can make calls to all the
available hardware acceleration functions to perform drawing operations. However not all
functions may be supported in hardware, and the application will need to determine which
functions are supported. The VBE/AF driver will load a NULL (0) into the device driver
functions address table locations for all functions that are not supported. For all unsupported
functions, the application will need to provide support with it’s own software rendering routines

Page 6 VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

Programming with VBE/AF

(which may call other supported acceleration functions). The VBE/AF driver will never simulate
an optional hardware function in software if it is not available.

Hence on a device that does not support hardware line drawing, after setting the desired video
mode, the DrawLine function in the VBE/AF device driver address table will have a value of 0
stored in it. It is then up to the software application to perform line drawing in software directly
to the framebuffer.

2D Coordinate System

All the VBE/AF accelerator functions take coordinates in a global framebuffer coordinate
system. This coordinate system starts with (0,0) at the start of framebuffer memory and
increments the X coordinate for every pixel and Y coordinate for every scanline. For instance, if
the logical scanline width is set to 1024 bytes, then the coordinate (0,1) will be rendering into the
byte at location 1024 from the start of framebuffer memory.

It is up to the application to impose any other logical coordinate system on top of the VBE/AF
device driver routines, such as handling viewport mapping etc.

Multi Buffering

Multi buffering is selected by setting the multi buffer bit when initializing the desired video
mode (check that multi buffering is supported by the video mode first!). When multi buffering is
active, VBE/AF will divide the framebuffer memory into multiple buffers (either logically or in
hardware). You can also enable both multi buffering and virtual scrolling at the same time (this
may fail on some controllers however), in which case you would have enabled a virtual buffer
size during the mode set, and must have enough video memory to accommodate the number of
buffers of the specified virtual size (see Virtual Buffer Scrolling on page 9 for more information
on this). Access to the currently active buffer is transparent to the calling application when it
calls the VBE/AF accelerator functions (all rendering functions automatically offset drawing into
the currently active buffer). However if the application is rendering directly to the framebuffer,
the application program must use the value of OriginOffset to find the starting location of the
currently active framebuffer. The value in OriginOffset is the linear offset of the active
framebuffer from the start of video memory, and is always correctly maintained by VBE/AF.

In the examples below we examine the case of multi buffering using two buffers, which is
usually called double buffering. If the offscreen memory resources are available, multi buffing
can be more useful because it allows applications to draw continuously without waiting for the
vertical retrace when swapping the currently active visible buffer. Because the VBE/AF driver
must allocate offscreen video memory for the multiple display buffers, you must specify the
number of display buffers that you want when you set a multi buffered video mode. The
VBE/AF driver will then allocate the remainder of the video memory as the offscreen buffer for
storing bitmaps.

VBE/AF STANDARD VERSION 1.0 Page 7
DOCUMENT REVISION 0.7

Programming with VBE/AF

Figure 1: Layout of display memory after
SetActiveBuffer(0) and SetVisibleBuffer(1)

All graphics output is sent to the currently active buffer, and all video data is displayed from the
currently visible buffer. The value of BufferEndX and BufferEndY specify the maximum
coordinates for the two buffers, and normally will be equal to Xresolution-1 and Yresolution-1.
However if virtual scrolling is enabled, these values will be equal to the specified virtual buffer
size that was initialized during the mode set, and will be larger than the physical video mode
resolution. Double buffering is achieved by calling SetActiveBuffer and SetVisibleBuffer to set
the active and visual buffers to different values, which will cause primitives to be drawn to the
hidden buffer, while the CRT controller displays data from a static image in the visible buffer.
In the example above, the active buffer is set to buffer 0, while the visible buffer is set to buffer
1. Note however that this is only a conceptual view; the actual hardware may implement double
buffering using totally separate framebuffers, in which case the OffscreenBuffer areas will be
different for buffers 0 and 1 (the afHaveDualBuffers flag will be set for the video mode in the
mode attributes field in this case). The visible image can then be instantly updated by swapping
the new visible buffer to the buffer that was currently being rendered into.

Figure 2: Layout of display memory after
SetActiveBuffer(1) and SetVisibleBuffer(0)

Accessing Offscreen Memory

Offscreen video memory on the controller can be used for caching bitmap information to be used
for fast BitBlt and transparent BitBlt operations for building up the frames in an animation. To
let the application know where the current offscreen memory buffer is located, VBE/AF
maintains the OffscreenOffset, OffscreenStartY and OffScreenEndY state variables, which will
always point to the current active offscreen memory areas that the application can use. If the
offscreen memory buffer is not available to the application, such as would be the case for lack of
video memory, the OffscreenOffset state variable will be set to 0.

Note that the values in these variables may change when a call is made to update the currently
active rendering buffer when performing multi buffered animation, so the application must
always use the current values to determine the location of the offscreen buffer. The actual buffer
will still be located in the same physical location in video memory, however it’s logical
coordinate location may possibly change depending on how the VBE/AF driver implements

Page 8 VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

Programming with VBE/AF

multi buffering in hardware (see Figure 1 and Figure 2 to see how this is implemented for most
controllers).

Figure 3: Layout of display memory
without multi buffering

Note also that on some devices where double buffering is implemented in hardware as two
distinct framebuffer areas, the offscreen memory accessible when the first buffer is active will be
different to the offscreen memory accessible when the second buffer is active. Essentially the
two hardware framebuffers will be divided up the same as in Figure 3, with one for each
hardware framebuffer.

If the VBE/AF application wishes to render into the offscreen memory area directly, the
OffscreenOlffset state variable will always point to the current linear offset of the offscreen
memory area from the start of the framebuffer. Note also that VBE/AF provides support for
non-conforming BitBIt operations from offscreen video memory, allowing sprites to be stored
contiguously in video memory for controllers that support this (as opposed to dividing up the
offscreen memory into rectangular regions). The length of the offscreen memory buffer in bytes
can be determined by multiplying the number of scan lines in the offscreen buffer
(OffscreenEndY - OffscreenStartY + 1) by the logical scanline width for the current video mode.
Memory past the end of the offscreen buffer must not be used by the application, and is reserved
for use by the controller for storing hardware cursors or other internal functions.

Virtual Buffer Scrolling

Virtual scrolling functionality is selected by setting the virtual scroll bit when initializing the
desired video mode (check that virtual scrolling is supported by the video mode first!), and
specifying a desired virtual framebuffer resolution to be enabled. If there is not enough video
memory for the mode (you need twice as much if you enable double buffering as well) then the
mode set will fail. Once the video mode is initialized, the application can scroll around within
the virtual buffer using the SetDisplayStart function to place the display start address at the
desired pixel location.

Note that you can enable both virtual scrolling and double buffering at the same time, but on
some controllers this may fail (generally if the mode attributes have both the double buffering
and virtual scrolling flags enabled, then this should be available. However this is not guaranteed
so the application should check that the mode did set correctly). If you enable multi buffering
and virtual scrolling at the same time, the coordinates passed for the display start address are
logical coordinates within the currently visible buffer. If you call SetVisibleBuffer, this will
change the logical offset of the first visible pixel in the buffer. If you wish to change the display
start address and swap buffers at the same time, then you should call the SetDisplayStart
function with the waitVRT flag set to -1, and then call the SetVisibleBuffer routine to re-program

VBE/AF STANDARD VERSION 1.0 Page 9
DOCUMENT REVISION 0.7

Programming with VBE/AF

the CRT controller starting address. The call to SetDisplayStart will not actually update the CRT
controller start address, but will simply update the internal state to reflect the new display
starting pixel coordinates that will be used by the subsequent SetVisibleBuffer function.

Palette Programming During Double Buffering

If you wish to re-program the palette at the same time as performing double buffering (if the
palette changes between frames during double buffering) then you should call the
SetVisibleBuffer function first with the wait for retrace flag set, then immediately following you
should program as many palette values as you can before the end of the retrace period. Note that
on many RAMDAC devices, you cannot program an entire set of 256 color table entries during
the retrace period before the onset of snow, so you will need to stagger the palette change over 2
or more frames. Generally most devices can handle about 100-120 palette entries to be
programmed per retrace (many new RAMDAC’s don’t produce snow at all, so you can program
all 256 at once).

Color Values

All color values passed to the accelerated rendering functions are packed pixel values, that will
need to be pre-packed into the proper format required by the current framebuffer mode. In 8 bit
color index modes, this is simply a color index between 0 and 255. In the 15 bits per pixel and
above video modes, you will need to pack the color values according to the RGB pixel format
information stored in the mode information block for the current video mode. The RGB pixel
format information specifies the mask size and bit positions for all red, green, blue and reserved
components. These mask should be used by the application to pack the appropriate RGB color
values into a 32 bit integer to be passed to the appropriate rendering routines.

Currently the reserved component in 15 bit and 32 bits per pixel modes is unused, and should
always be set to 0, as on some controllers these bits may be significant.

Integer Coordinates

Integer coordinates are passed as 32 bit signed integers to the accelerated rendering functions.
Although the hardware may provide hardware clipping of coordinates outside the normal
framebuffer region, the application should ensure that all coordinates passed to the accelerated
rendering functions are within the range (0, 0) to (BufferEndX, OffscreenEndY). VBE/AF will
always ensure that these values fall within the valid range of values that the hardware is capable
of handling.

Fixed Point Coordinates

Fixed point coordinates are passed as 32 bit signed integers in 16.16 fixed point format, where
the top 16 bits represent the signed integer portion of the number, and the bottom 16 bits
represent the fraction portion of the number. Once again all coordinates passed to rendering
functions must be restricted to the range (0, 0) to (BufferEndX, OffscreenEndY).

Fixed point coordinates are used to represent coordinate information for the line drawing,
triangle filling and quadrilateral filling routines. This allows the application to specify

Page 10 VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

Programming with VBE/AF

coordinates with sub-pixel accuracy, which allows software clipped primitives to rasterize the
same set of points that the unclipped primitive would also have rendered.

2D Polygon Rendering

VBE/AF provides routines for high performance polygon rendering functions, which includes
flat topped/bottomed trapezoid filling, triangle filling and quadrilateral filling routines. In the
cases where the hardware has proper triangle/quad filling support, the triangle and quad
functions must be implemented directly. Otherwise the VBE/AF driver will leave these entries
marked as not available, but must implement the DrawTrap function. The trapezoid drawing
function will rasterize flat topped and bottomed trapezoids as fast as possible in software using
the hardware scanline filling or rectangle filling (or whatever is fastest) routine. The DrawTrap
function should not be implemented on devices that have hardware triangle or quad functions.

Note that hardware polygon filling does nof include devices that rasterize polygons into an
offscreen memory area and then perform a BitBlt operation (like 8514/A compatible devices), as
the offscreen memory region will not be available for general use by the driver (the application
will probably be caching bitmaps in the offscreen memory). These devices should only
implement the DrawTrap function as fast as possible.

Viewport Transformations

In order to support high performance rendering, but also to allow for fast viewport
transformations, the triangle and quad filling functions take both x and y coordinate offset values
that are added to all vertices before being processed by the hardware. This allows the hardware
rendering functions to implement the translation of coordinates as efficiently as possible (either
in hardware or software), and does not require the application passed vertices to be modified in
any manner. This is important to ensure that no vertex re-packing is required between sending
coordinates from the application program to the hardware for maximum performance. Note also
that the DrawTrap function does not take x and y coordinate offsets, because it is intended to be
used as the back end for a high performance software polygon rasterizing engine.

Direct Framebuffer Access

In order to allow both direct framebuffer access and hardware accelerator access, contention for
video memory between the application program and the hardware accelerator must be handled
properly for some devices. This is provided by the EnableDirectAccess and
DisableDirectAccess functions. If the EnableDirectAccess entry is not NULL in the device
context block, then you must call these functions prior to performing any direct access to the
framebuffer via either the banked memory area or the linear framebuffer memory area, and then
call DisableDirectAccess before calling any other hardware accelerator functions again.

If the EnableDirectAccess tfunction is NULL, you can simply call the WaitTillldle function to
ensure the hardware has completed rendering the last command before accessing the framebuffer
directly. You need not call any other functions to return to accelerated rendering again.

VBE/AF STANDARD VERSION 1.0 Page 11
DOCUMENT REVISION 0.7

Programming with VBE/AF

When the video mode is first initialized, the hardware is automatically set up for hardware
accelerated rendering, as though EnableDirectAccess was called immediately after setting the
video mode.

Page 12 VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

Programming with VBE/AF

VBE/AF STANDARD VERSION 1.0 Page 13
DOCUMENT REVISION 0.7

Driver Function Reference

Driver Function Reference

Structure of the Device Driver

When the device driver is loaded, it can be accessed using the following C structure. Note that
after the device driver has been loaded and the InitDriver function has been called, all pointers in
the device context structure will have been ‘fixed up’ by the device driver to be real near
pointers to the code and data structures within the device driver.

typedef struct {

2 N ——————————, */
/* Device driver header block */
K */
char Signature[12]; /* 'WBEAF.DRV\O' 12 byte signature */
AF uint32 Version; /* Driver Interface Version (1.0) */
AF uint32 DriverRev; /* Driver revision number */
char OemVendorName [80]; /* Vendor Name string */
char OemCopyright[80]; /* Vendor Copyright string */
AF intlé6 *AvailableModes; /* Offset to supported mode table */
AF uint32 TotalMemory; /* Amount of memory in Kb detected */
AF uint32 Attributes; /* Driver attributes */
AF uint32 BankSize; /* Bank size in Kb (4Kb or 64Kb) */
AF uint32 BankedBasePtr; /* Physical addr of banked buffer */
AF uint32 LinearSize; /* Linear buffer size in Kb */
AF uint32 LinearBasePtr; /* Physical addr of linear buffer */
AF uint32 LinearGranularity; /* Linear blt granularity in bytes */
AF _uintl6 *IOPortsTable; /* Offset of I/O ports table */
AF uint32 IOMemoryBase[4]; /* Base address of I/O memory maps */
AF uint32 IOMemoryLen([4]; /* Length of I/O memory maps */
AF uint32 resl[10]; /* Reserved for future expansion */
K m */
/* Near pointers mapped by application for driver */
2 N ———————————, */
void *IOMemMaps [4] ; /* Pointers to mapped I/0 memory */
void *BankedMem; /* Ptr to mapped banked video mem */
void *LinearMem; /* Ptr to mapped linear video mem */
K */
/* Important selectors allocated by application for driver */
2 N E——————————., * /
AF uint32 Sel0000h; /* 1Mb selector to entire first Mb */
AF uint32 Sel0040h; /* Selector to segment at 0x0040:0 */
AF uint32 SelA000h; /* Selector to segment at 0xA000:0 */
AF uint32 SelB000h; /* Selector to segment at 0xB000:0 */
AF uint32 SelC000h; /* Selector to segment at 0xC000:0 */
2 N EE———————————. * /
/* Device driver state variables */
K */
AF uint32 BufferEndX; /* Last X coord of each buffer */
AF_uint32 BufferEndY; /* Last Y coord of each buffer */
AF uint32 OriginOffset; /* Current start of active page */
AF uint32 OffscreenOffset; /* Start of offscreen memory area */
AF uint32 OffscreenStartY; /* First Y coord of offscreen mem */
AF uint32 OffscreenEndY; /* Last Y coord of offscreen mem */
AF uint32 res2[10]; /* Reserved for future expansion */
2 N E——————————., x/

/* Relocateable 32 bit bank switch routine, needed for framebuffer */

Page 14 VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

/* virtualisation under Windows with DVA.386/VFLATD.386.

This

/* function *MUST* program the bank with IO mapped registers, as

/* when the function is called there is no way to provide access to

/* the devices memory mapped registers
/* for it to gain access to a copy of this AF devCtx block). For

/* devices that only have memory mapped registers,

(because there is no way to

this vector

/* *MUST* be NULL indicating that this is not supported. However
/* all these devices all have a real linear framebuffer anyway,
/* so the virtualisation services will not be needed.

AF uint32
void

void
void

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
} AF _devCtx;

SetBank32Len;
*SetBank32;

*Int86;

*InitDriver;
*GetVideoModeInfo;
*SetVideoMode;
*RestoreTextMode;
*SetBank;
*SetDisplayStart;
*SetActiveBuffer;
*SetVisibleBuffer;
*SetPaletteData;
*SetGammaCorrectData;
*WaitTillIdle;
*EnableDirectAccess;
*DisableDirectAccess;
*SetCursor;
*SetCursorPos;
*SetCursorColor;
*ShowCursor;
*SetMix;
*Set8x8MonoPattern;
*Set8x8ColorPattern;
*SetLineStipple;
*SetClipRect;
*DrawScan;
*DrawPattScan;
*DrawColorPattScan;
*DrawScanList;
*DrawRect;
*DrawPattRect;
*DrawColorPattRect;
*DrawlLine;
*DrawStippleLine;
*DrawTrap;

*DrawTri;

*DrawQuad;
*PutMonoImage;
*BitBlt;

*BitBltLin;
*TransBlt;
*TransBltLin;

/* Length of 32 bit code
/* 32 bit relocateable code

/* Issue real mode interrupt

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Call

a real mode function

Initialise driver

Get video mode information
Set a video mode

Restore text mode operation
Set framebuffer bank

Set virtual display start
Set active output buffer
Set Visible display buffer
Program palette data

Program gamma correct'n data

Wait

till engine is idle

Enable direct mem access
Disable direct mem access
Download hardware cursor
Set cursor position

Set cursor color
Show/hide cursor

Set

Set

Set

Set

Set

Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw

ALU mix operations

8x8 mono bitmap pattern
8x8 color bitmap pattern
16 bit line stipple
clipping rectangle

a solid scanline
a patterned scanline
color pattern scanline

list of solid scanlines

a solid rectangle
a patterned rectangle

color pattern rectangle

a solid line

a stippled line

a solid trapezoid
a solid triangle
a solid quad

Display a monochrome bitmap

Blt screen to screen
Linear source BitBlt

Blt scr/scr w/ transparency

Linear source TransBlt

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/

*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Driver Function Reference

The Signature field is filled with the null terminated string “VBEAF.DRV’ by the VBE/AF
implementation. This can be used to verify that the file loaded really is an VBE/AF device

driver.

VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

Page 15

Driver Function Reference

The Version field is a BCD value which specifies what revision level of the VBE/AF
specification is implemented in the software. The high byte specifies the major version number
and the low byte specifies the minor version number. For example, the BCD value for VBE/AF
1.0 is 0x100 and the BCD value for VBE/AF 1.2 would be 0x102.

The DriverRev field specifies the driver revision level, and is used by the driver configuration
software to determine which version was used to generate the driver file.

The OemVendorName field contains the name of the vendor that developed the device driver
implementation, and can be up to 80 characters in length.

The OemCopyright field contains a copyright string for the vendor that developed the device
driver implementation.

The AvailableModes is an offset within the loaded driver to a list of mode numbers for all
display modes supported by the VBE/AF driver. Each mode number occupies one word (16
bits), and is terminated by a -1 (OFFFFh). Any modes found in this list are guaranteed to be
available for the current configuration.

The TotalMemory field indicates the maximum amount of memory physically installed and
available to the frame buffer in 1Kb units. Note that not all video modes will be able to address
all of this memory.

The Attributes field contains a number of flags that describes certain important characteristics of
the graphics controller. The fields are exactly the same as those provided in the AF" modelnfo
block for each video mode, but the meaning is slightly different. For each flag defined below, it
represents the whether the controller can support these modes in any available video modes.
Please see the GetVideoModelnfo function on page 19 for a detailed description of each flag’s
meaning.

#define afHaveMultiBuffer 0x0001
#define afHaveVirtualScroll 0x0002
#define afHaveBankedBuffer 0x0004
#define afHavelLinearBuffer 0x0008

#define afHaveAccel2D 0x0010
#define afHaveDualBuffers 0x0020
#define afHaveHWCursor 0x0040
#define afHave8BitDAC 0x0080

The BankSize field contains the size of the banked memory buffer in 1Kb units. It can be either
4Kb or 64Kb in length.

The BankedBasePtr field is a 32 bit physical memory address where the banked framebuffer
memory window is located in the CPU address space. If the banked framebuffer mode is not
available, then this field will be zero.

The LinearSize is a 32 bit length of the linear frame buffer memory in 1Kb units. In can be any
length up to the size of the available video memory.

The LinearBasePtr is a 32 bit physical address of the start of frame buffer memory when the
controller is in linear frame buffer memory mode. If the linear framebuffer is not available, then
this field will be zero.

Page 16 VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

Driver Function Reference

The LinearGranularity field specifies the granularity of the source linear offset to be used for the
BitBltLin and TransBltLin functions. Generally the hardware requires that all linear bitmaps
stored in offscreen memory start on an 8 byte or higher boundary, and this value lets the
application know how to align the source data.

The IOPortsTable field is an offset to a list of all Non-VGA I/O ports that the VBE/AF driver
will need access to in order to function correctly. The VBE/AF specifications assumes that the
loader/application will provide full I/O access to all the standard VGA 1/O ports. The format of
the table is:

Port, Port, ..., Port, Terminate Port List with FFFFh.
For example, for the Port/Index combination 1CE/Fh and 13CE/F the table would look like this:

01CEh, 01CFh, 013CEh, 013CFh, FFFFh

The IOMemoryBase field contains the 32 bit physical base addresses pointing to the start of up to
4 separate memory mapped register areas required by the controller. The /IOMemoryLen field
contains the lengths of each of these memory mapped 10 areas in bytes. When the application
maps the memory mapped IO regions for the driver, the linear address of the mapped memory
areas will then be stored in the corresponding entries in the IOMemMaps array, and will be used
by the driver for accessing the memory mapped registers on the controller. If any of these
regions are not required, the /OMemoryBase entries will be NULL and do not need to be mapped
by the application.

The BankedMem field contains the mapped linear address of the banked memory framebuffer,
and will be filled in by the application when it has loaded the device driver. This provides the
device driver with direct access to the video memory on the controller when in the banked
framebuffer modes.

The LinearMem field contains the mapped linear address of the linear memory framebuffer, and
will be filled in by the application when it has loaded the device driver. This provides the device
driver with direct access to the video memory on the controller when in the linear framebuffer
modes.

The Sel0000h field contains a 32 bit read/write data selector to the entire 1Mb of real mode
memory so that the application can directly access important real mode memory locations. This
must be provided by the application when it first loads the device driver.

The Sel0040h field contains a 32 bit read/write data selector to the 64Kb segment located at
segment 40h in real mode memory. This is provided so that code ported from 16 bit directly can
directly access locations in the real mode BIOS data area through a standard selector and offset.

The Sel4000h, SelB0O00h and SelC000h provide 32 bit read/write data selectors to the 64Kb
segments located at AOOOh, BOOOh and C000h in real mode memory. This gives the application
direct access to the standard VGA banked framebuffer memory and the video BIOS ROM
segments, so that these locations can be accessed through a selector offset combination.

The device driver state variables maintain information needed for correct operation when multi
buffering and for accessing the offscreen memory regions. See Multi Buffering on page 7 and
Accessing Offscreen Memory on page 8 for more information.

VBE/AF STANDARD VERSION 1.0 Page 17
DOCUMENT REVISION 0.7

Driver Function Reference

The remainder of the device driver structure contains the 32 bit near callable device driver
functions, and each is documented in detail below.

Device Callback Functions

This section describes in detail each of the device callback functions required by the device
driver. These callbacks must be provided by the application program prior to calling any of the
device driver functions directly. The callback functions will need to be implemented using
operating system specific services, and provide the ability for the device driver to communicate
with the low level Video BIOS on the video card.

Int86

This device callback function simulates a real mode interrupt, and is usually used for calling the
standard VGA Int 10h graphics interrupt handler to initialize video modes etc. This function is
defined similarly to the equivalent DPMI function, so in DPMI environments you can simply
transfer the call directly to the appropriate DPMI routine. The DPMI register structure is as
follows:

typedef struct ({
long edi;

long esi;
long ebp;
long reserved;

long ebx;
long edx;

long ecx;

long eax;

short flags;

short es,ds, fs,gs,ip,cs, sp, ss;

} AF_DPMI_regs;

Input: AX = 0x300

BL = Interrupt number

BH = 0 (reserved)

CX = 0 (always)

DS:EDI = Pointer to DPMI register structure
Output: DS:EDI = Pointer to modified register structure
CallRealMode

This device callback function simulates a function call to a real mode procedure, and is usually
used for making direct calls to the graphics accelerator BIOS. This function is defined the same
as the equivalent DPMI function, so in DPMI environments you can simply transfer the call
directly to the appropriate DPMI routine. The DPMI register structure is the same as above.

Note that the actual address of the real mode procedure to be called is the stored in the CS:IP
fields in the DPMI register structure.

Input: AX = 0x301

BH = 0 (reserved)

CX = 0 (always)

DS:EDI = Pointer to DPMI register structure
Page 18 VBE/AF STANDARD VERSION 1.0

DOCUMENT REVISION 0.7

Driver Function Reference

Output: DS:EDI = Pointer to modified register structure

Configuration Functions

This section describes in detail each of the device driver configuration functions defined by
VBE/AF. Access to these function is provided by simply performing a near call to the address of
the desired function stored within the device driver function address table. However before any
of the configuration functions can be called, the InitDriver function must be called immediately
after loading the driver to initialize it for correct operation.

InitDriver

This function initializes the VBE/AF device driver context once it has been loaded onto the heap.
This initialization function first verifies the presence of the supported display adapter (returning
an error if not found). If the appropriate device has been found, it will then build the table of
entry points to all the initialization functions in the device driver, so that the application can then
call these functions directly. Note that this initialization function does not build the table of
entry points to the accelerator functions. These entry points will be created when an appropriate
video mode is initialized.

See the device context structure in VBEAF.INC on page 49 for more information on the format.

Input: DS:EBX = Address of loaded device context

Output: EAX 0 - Initialization successful

-1 - Device not detected

GetVideoModelnfo

This function returns extended information about a specific VBE/AF display mode from the
mode list pointed to by the AvailableModes pointer in the device context structure. This function
fills the AF modelnfo structure with technical details about the requested mode.

Input: EAX = Mode number
DS:EBX = Address of loaded device context
ES:EDI = Address of ModeInfoBlock to fill
Output: EAX = 0 - Successful

-1 - Invalid video mode

The format of the AF_modelnfo block is as follows:

typedef struct {

AF uintl6 Attributes; /* Mode attributes */
AF uintl6 XResolution; /* Horizontal resolution in pixels */
AF uintlé YResolution; /* Vertical resolution in pixels */
AF uintlé BytesPerScanLine; /* Bytes per horizontal scan line */
AF uintlé BitsPerPixel; /* Bits per pixel */
AF_uintlé6 MaxBuffers; /* Maximum num. of display buffers */

/* RGB pixel format info */
AF uints8 RedMaskSize; /* Size of direct color red mask */

VBE/AF STANDARD VERSION 1.0 Page 19
DOCUMENT REVISION 0.7

Driver Function Reference

AF uint8 RedFieldPosition; /* Bit posn of lsb of red mask */
AF uint8 GreenMaskSize; /* Size of direct color green mask */
AF uint8 GreenFieldPosition; /* Bit posn of 1lsb of green mask */
AF uint8 BlueMaskSize; /* Size of direct color blue mask */
AF uint8 BlueFieldPosition; /* Bit posn of lsb of blue mask */
AF uint8 RsvdMaskSize; /* Size of direct color res mask */
AF uint8 RsvdFieldPosition; /* Bit posn of 1lsb of res mask */

/* Virtual buffer dimensions */

AF uintlé MaxBytesPerScanLine;/* Maximum bytes per scan line */
AF uintlé MaxScanLineWidth; /* Maximum pixels per scan line */
AF_uint8 reserved[118]; /* Pad to 128 byte block size */

} AF _modeInfo;

The Attributes field contains a number of flags that describes certain important characteristics of
the graphics mode:

#define afHaveMultiBuffer 0x0001
#define afHaveVirtualScroll 0x0002
#define afHaveBankedBuffer 0x0004
#define afHaveLinearBuffer 0x0008

#define afHaveAccel2D 0x0010
#define afHaveDualBuffers 0x0020
#define afHaveHWCursor 0x0040
#define afHave8BitDAC 0x0080
#define afNonVGAMode 0x0100

The afHaveMultiBuffer flag is used to determine whether the video mode can support hardware
multi buffering used for flicker free animation. If this bit is 0, then the application cannot start a

multi buffered video mode (usually because there is not enough display memory for two or more
video buffers).

The afHaveVirtualScroll flag is used to determine if the video mode supports virtual scrolling
functions. If this bit is 0, then the application cannot perform virtual scrolling (multi buffering
and virtual scrolling are separate, since some controllers may support one but not the other; most
support both).

The afHaveBankedBuffer flag is used to determine if the video mode supports the banked
framebuffer access modes. If this bit is 0, then the application cannot use the banked framebuffer
style access. Some controllers may not support a banked framebuffer mode in some modes. In
this case a linear framebuffer mode will be provided (either a banked buffer or linear buffer must
be available for the mode to be valid).

The afHaveLinearBuffer flag is used to determine if the video mode supports the linear
framebuffer access modes. If this bit is 0, then the application cannot start the linear framebuffer
video mode.

The afHaveAccel2D flag is used to determine if the video mode supports 2D accelerator
functions. If this bit is 0, then the application can only use direct framebuffer access in this video
mode, and the 2D acceleration functions are not available. The cases where this might crop up
are more prevalent than you might think. This bit may be 0 for very low resolution video modes
on some controllers, and on older controllers for the 24 bit and above video modes.

The afHaveDualBuffers flag is used to determine if double buffering is implemented as two
distinct framebuffers, or using a single framebuffer and varying the starting display address. If
this flag is set, the offscreen memory areas for the video modes will be physical different
memory for the two active display buffers, and bitmaps will need to be duplicated in both

Page 20 VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

Driver Function Reference

buffers. If this flag is not set, the offscreen buffer will be the same physical memory regardless
of which buffer is currently active.

The afHaveHW CCursor flag is used to determine if the controller supports a hardware cursor for
the specified video mode. You must check this flag for each video mode before attempting to use
the hardware cursor functions as some video modes will not be able to support the hardware
cursor (but may still support 2D acceleration).

The afHave8BitDAC flag is used to determine if the controller will be using the 8 bit wide
palette DAC modes when running in 256 color index modes. The 8 bit DAC modes allow the
palette to be selected from a range of 16.7 million colors rather than the usual 256k colors
available in 6 bit DAC mode. The 8 bit DAC mode allows the 256 color modes to display a full
range of 256 grayscales, while the 6 bit mode only allows a selection of 64 grayscales. Note that
unlike VBE 2.0 the 8 bit DAC mode is not selectable. If the hardware supports an 8 bit DAC, it
will always be used.

The afNonVGAMode flag is used to determine if the mode is a VGA compatible mode or a
NonVGA mode. If this flag is set, the application software must ensure that no attempts are made
to directly program any of the standard VGA compatible registers such as the RAMDAC control
registers and input status registers while the NonVGA graphics mode is used. Attempting to use
these registers in NonVGA modes generally results in the application program hanging the
system.

The XResolution and YResolution specify the width and height in pixel elements for this display
mode, while the BytesPerScanLine field specifies how many full bytes are in each logical
scanline. The logical scanline could be equal to or larger than the displayed scanline, and can be
changed when the video mode is first initialized.

The MaxBuffers field holds the total number of display buffers available in that graphics mode.
When initializing multi buffered video modes, the number of buffers requested cannot exceed
this value.

The RedMaskSize, GreenMaskSize, BlueMaskSize, and RsvdMaskSize fields define the size, in
bits, of the red, green, and blue components of an RGB pixel. A bit mask can be constructed
from the MaskSize fields using simple shift arithmetic. For example, the MaskSize values for an
RGB 5:6:5 mode would be 5, 6, 5, and 0, for the red, green, blue, and reserved fields,
respectively.

The RedFieldPosition, GreenFieldPosition, BlueFieldPosition, and RsvdFieldPosition fields
define the bit position within the RGB pixel of the least significant bit of the respective color
component. A color value can be aligned with its pixel field by shifting the value left by the
FieldPosition. For example, the FieldPosition values for an RGB 5:6:5 mode would be 11, 5, 0,
and 0, for the red, green, blue, and reserved fields, respectively.

The MaxBytesPerScanLine and MaxScanLineWidth fields define the maximum virtual
framebuffer coordinates that can be initialized for the mode, in both bytes and pixels. If an

attempt is made to initialize a graphics mode with values larger than these values, the mode set
will fail.

VBE/AF STANDARD VERSION 1.0 Page 21
DOCUMENT REVISION 0.7

Driver Function Reference

SetVideoMode

This function is used to initialize a specified video mode. The mode number passed to this
function should be one stored in the AvailableModes tables stored in the device context buffer, or
the mode set will fail.

Input: EAX = Mode number

DS :EBX = Address of loaded device driver

ECX = Scanline width in bytes (-1 for default)

EDX = Virtual X resolution (if afVirtualScroll set)

EST = Virtual Y resolution (if afVirtualScroll set)

EDI = Total num. of display buffers (if afMultiBuffer set)
Output: EAX = 0 - Mode set successfully

-1 - Mode set failed
ECX = Actual scanline width for mode

When the video mode is initialized, you can pass in a specific scanline width that should be used
in the ECX register. If you pass in a value of -1, the default scanline width for that video mode
will be used, and this value will be returned in the ECX register. If you pass in a value other than
-1, the driver will attempt to satisfy your request with the next largest value that the controller
can actually handle, and the actual value programmed will be returned in the ECX register. It is
possible that the video mode cannot have the scanline width changed, or that the scanline width
requested was too large for the video mode. In this case the mode set function will fail. This is
most useful for initializing the 24 bit video modes with even 1Kb multiples that divide 64Kb
evenly when in the banked framebuffer modes, to ensure that bank boundaries do not occur in
the middle of a normal pixel.

After the video mode has been initialized, any left over video memory will be enabled for use as
offscreen video memory. If there is not enough offscreen memory available, the OffscreenOffset
variable of the device context block will be set to 0. Note that not all left over video memory can
be used by the application as offscreen memory, as the driver may need to maintain a number of
small buffers at the end of video memory for storing the hardware cursor definition and pattern
fill images.

This function also accepts the following flags logically OR’ed in with the passed video mode
number, to change the way that the selected video mode is initialized:

#define afDontClear 0x8000
#define afLinearBuffer 0x4000
#define afMultiBuffer 0x2000
#define afVirtualScroll 0x1000

The afDontClear flag is used to specify that the video memory should not be cleared when the
video mode is initialized. By default the video memory will be cleared to all 0’s by the device
driver.

The afLinearBuffer flag is used to specify that the application wishes to enable the linear
framebuffer version of the video mode. On many controllers, the banked and linear framebuffers
cannot be accessed at the same time. Also note that on many new PCI controllers, PCI burst
mode is only enabled in the linear framebuffer modes, so these modes should be used whenever
possible for maximum performance. Make sure that you check the afHaveLinearBuffer flag in
the mode attributes field to determine if this is supported in the selected video mode.

Page 22 VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

Driver Function Reference

The afMultiBuffer flag must be set if the application intends to use multi buffering in the video
mode, and the total number of display buffers to be allocated is passed in the EDI register. When
the video mode is initialized however, the active and visible buffers will both be set to 0. Multi
buffering can be enabled by setting the active and visual buffers to different values. Make sure
that you check the afHaveMultiBuffer flag in the mode attributes field to determine if the
selected video mode supports multi buffering. If there is not enough video memory available for
all display buffers or the number of buffers requested is larger than the maximum available for
the requested mode, the mode set will fail.

The afVirtualScroll flag can be set to enable a virtual scrolling mode. The application will also
need to pass in a valid virtual screen resolution to be used for the video mode. If there is not
enough memory for the virtual mode, the mode set function will fail. The function will also fail
if the video mode does not support virtual scrolling. For virtual scrolling modes, if you pass a
value of -1 for the scanline width to be used, the next largest scanline width that supports the
desired X resolution for the virtual video mode will be programmed and this value will be
returned in ECX. You can override the scanline width if you desire to obtain a value other than
the default (such as even 1Kb scanline widths in 24 bit modes).

RestoreTextMode

This function restores the hardware device to the standard 80x25 text mode. This function must
be called after using an accelerated video mode to return the system back to the default state. It is
not sufficient to call the standard BIOS text mode function, as some accelerator systems have
different hardware devices for the standard text mode and accelerated graphics mode operations.
It can be assumed that after this function has been executed, the system will be back in the
standard VGA text mode.

Input: DS:EBX = Address of loaded device context

Direct Framebuffer Access Functions

This section describes the set of VBE/AF device driver functions related to directly accessing the
framebuffer memory, through either a banked or linear framebuffer.

SetBank32

This is a special fully relocateable, 32 bit function that changes the currently active read/write
bank for banked framebuffer modes, and can be copied and called from any function. Only a
single read/write bank is supported by VBE/AF devices, and it may be either 4Kb or 64Kb in
length. The primary purpose of this function is to provide a 32 bit relocateable routine that can
be used to virtualize the framebuffer under Windows using the DVA.386 or VFLATD.386
virtual framebuffer device drivers. The SetBank32Len variable contains the length of this
function, including the near return statement at the end. Note that this function can only be
supported if the controller uses memory mapped registers for programming the bank value, and
for devices that use memory mapped 10 exclusively, this function will be a NULL. However
these devices all support a real hardware linear framebuffer mode anyway, so the buffer will
never need to be virtualized in software.

Input: EDX = New bank number

VBE/AF STANDARD VERSION 1.0 Page 23
DOCUMENT REVISION 0.7

Driver Function Reference

SetBank

This function changes the currently active read/write bank for banked framebuffer modes. This
allows an application to directly access the video framebuffer through a small memory aperture
window. Only a single read/write bank is supported by VBE/AF devices, and it may be either
4KDb or 64Kb in length.

Input: EDX
DS:EBX

New bank number
Address of loaded device driver

WaitTillldle

This function pauses execution until the hardware accelerator has completed all currently queued
rendering operations. The primary purpose of this function is to provide the application with the
ability to ensure all rendering is complete, before swapping display pages when doing double
buffering, or before directly accessing the framebuffer memory.

Input: DS :EBX = Address of loaded device driver

EnableDirectAccess

This function disables the accelerator and turns on direct framebuffer access. The primary
purpose of this function is to correctly arbitrate video memory access between the accelerator
and the application. You must call this function before you perform any direct rendering to the
video memory if the entry in the device context is not NULL. If the entry is NULL, then the
controller does not need to arbitrate access and this function should not be called.

Input: DS :EBX = Address of loaded device driver

DisableDirectAccess

This function disables direct framebuffer access and turns on the hardware accelerator again. The
primary purpose of this function is to correctly arbitrate video memory access between the
accelerator and the application. You must call this function before you perform any accelerated
rendering again if the EnableDirectAccess function was not NULL.

Input: DS:EBX = Address of loaded device driver

Virtual Scrolling Functions

SetDisplayStart

This function sets the start of the currently visible area of video memory to a specified starting
pixel coordinate in video memory. This is useful for games that provide virtual scrolling or for
large virtual desktops for GUI applications. If both virtual scrolling and double buffering are
enabled at the same time, the display starting address is the logical pixel coordinate within the
visible framebuffer. If you wish to change the display start and then change the visible buffer,
you should call this function with EAX set to -1 then call the SetVisibleBuffer function as per
normal.

Input: EAX = 1 - Wait for vertical retrace

Page 24 VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

Driver Function Reference

0 - Don’t wait for vertical retrace
-1 - Just set the coordinates, don’t update CRT start

DS:EBX = Device Context Buffer
ECX = Display start X coordinate
EDX = Display start Y coordinate

Multi Buffering Functions

SetActiveBuffer

This function sets the currently active output buffer in multi buffered modes. The active buffer
and visible may be the same, which essentially is the same as running in single buffer mode.
Changing the active buffer automatically updates the OriginOffset, OffscreenStartY and
OffscreenEndY device driver state variables. See Multi Buffering on page 7 for more
information.

Input: EAX = Buffer index (0 to MaxBuffers)
DS:EBX = Device Context Buffer
SetVisibleBuffer

This function sets the currently visible buffer in multi buffered modes. The active and visible
buffers may be the same, which is essentially the same as running in single buffer mode. The
vertical retrace flag can be used to enable or disable waiting for a vertical retrace when the
visible buffer is swapped. Generally you need to wait for a vertical retrace to obtain flicker free
animation in double buffered modes, but sometimes it is useful to disable it to be able to measure
the real throughput of certain rendering commands during optimization work.

Input: EAX = Buffer index (0 to MaxBuffers)
DS :EBX = Device Context Buffer
EDX = 1 - Wait for vertical retrace

0 - Don’t wait for vertical retrace

Palette Functions

SetPaletteData

This function programs the color palette information for the current video mode, and is only
valid in 8 bit color index modes. Color palette information is passed to the function in the an
array of AF palette structures, which is in a format similar to the Windows RGBQUAD
structure, with 8 bits per color channel. Note that this is different to the standard VGA palette
programming routines, which normally take values with 6 bits per color channel. Internally the
VBE/AF driver will convert the 8 bit palette values to 6 bits per primary if this is what the
underlying hardware supports. The AF palette structure is defined as follows:

typedef struct {

AF uint8 blue; /* Blue component of color */
AF uint8 green; /* Green component of color */
AF uints8 red; /* Blue component of color */
AF_uint8 alpha; /* Alpha or alignment byte *x/
} AF _palette;
VBE/AF STANDARD VERSION 1.0 Page 25

DOCUMENT REVISION 0.7

Driver Function Reference

The wait for vertical retrace flag is used to synchronize the palette update with the start of the
vertical retrace. However if you are changing palette values at the same time as swapping display
pages, you may want to disable vertical retrace synching and program the palette entries directly
after swapping display pages. Generally you need to synchronize with the vertical retrace while
programming the palette to avoid the onset of snow.

Input: EAX = 1 - Wait for vertical retrace
0 - Don’t wait for vertical retrace
DS:EBX = Device Context Buffer
ECX = Number of entries to program
EDX = Starting index to program
DS:ESI = Pointer to palette data to program

SetGammaCorrectionData

This function programs the gamma correction tables for 15 bit and above video modes. The
gamma correction tables are used in these video modes to adjust the response curves of each of
the three color guns for color matching purposes. The gamma correction tables are assumed to be
256 entries deep with three independent channels for each of red, green and blue, with 8 bits of
intensity for each color channel ramp. Gamma correction data is passed to the function in an
array of AF palette structures, similar to the palette setting routine above. See SetPaletteData
above for the format of the AF palette structure.

Input: DS:EBX = Device Context Buffer
ECX = Number of entries to program
EDX = Starting index to program
DS:ESI = Pointer to color correction data to program

Hardware Cursor Functions

SetCursor

This function downloads the specified cursor definition from the application into the hardware
cursor. The cursor data is passed by the application in the following AF cursor format, which is
similar to the Windows 3.1 cursor file format:

typedef struct {

AF uint32 xorMask[32]; /* Cursor XOR mask */
AF uint32 andMask[32]; /* Cursor AND mask */
AF uint32 hotx; /* Cursor X coordinate hot spot */
AF _uint32 hoty; /* Cursor Y coordinate hot spot *x/

} AF_cursor;

Input: DS:EBX = Device Context Buffer
DS:ESI Pointer to 32x32 Cursor Data

SetCursorPos

This function sets the location of the hardware cursor in display coordinates. This function takes
the X and Y coordinates of the new cursor location. This function will place the cursor so that
the hotspot of the cursor image is located at the specified (X,Y) location, and will correctly
handle special cases where the cursor definition needs to be located off the edges of the display
screen (such as when X=0, Y=0 and HotX,HotY > 0).

Input: EAX = X coordinate of cursor

Page 26 VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

Driver Function Reference

DS:EBX = Device Context Buffer
ECX = Y coordinate of cursor
SetCursorColor

This function sets the current hardware cursor color. In 8 bit color index modes, the color index
to use for the cursor color is passed in the AL register. However in all other DirectColor modes
(15/16/24 and 32 bits per pixel modes) the color values are passed in as individual 8 bit Red,
Green and Blue components.

Input: AL = 8 bit index, or RGB red component
AH = RGB green component
DS:EBX = Device Context Buffer
CL = RGB blue component
ShowCursor
This function unconditionally either show or hides the hardware cursor.
Input: EAX = 1 - Show cursor
0 - Hide cursor
DS:EBX = Device Context Buffer

2D Accelerator Drawing Context Functions

SetMix

This function sets the current foreground and background mix operation for subsequent
accelerated rendering primitives. The mix does not change that often, so it is only set once for a
range of rendering primitives. The following mix modes are currently supported by VBE/AF:

00h AF_REPLACE_MIX Source replaces dest

0lh AF_XOR_MIX Source XOR dest

02h AF OR MIX Source OR dest

03h AF_AND MIX Source AND dest

04h AF_NOP_MIX Destination unchanged

The foreground mix is normally the mix that is used for all the solid filling functions. However
for patterned fill functions, the foreground mix is used for all pixels where the pattern is a 1, and
the background mix is used for all pixels where the pattern is a 0. Setting the foreground or
background mix to AF_ NOP_MIX allows you to render primitives with a transparent pattern.

Input: EAX = New foreground mix
DS:EBX = Device Context Buffer
ECX = New background mix
Set8x8MonoPattern

This function sets up an 8x8 monochrome pattern for all subsequent pattern filled functions. This
function downloads the specified 8x8 bitmap fill pattern for rectangle and scanline filling, where
the pattern is X and Y coordinate aligned with the left edge and top edge of the display. Thus the
bit in the stipple pattern that applies to a specific pixel in the scanline is determine by AND’ing
the pixel’s X coordinate with 8. Hence pixel 0 corresponds to bit 0 in byte 0, pixel 1 =bit 1 in
byte 0, ... pixel 8 = bit 0 in byte 1 etc. Where a bit is 1 in the bitmap pattern, the pixel is drawn
and where it is 0, the pixel remains untouched. It is the responsibility of the calling application
to rotate the pattern before calling this routine if it is desired that the pattern be aligned to a

VBE/AF STANDARD VERSION 1.0 Page 27
DOCUMENT REVISION 0.7

Driver Function Reference

different starting coordinate (such as with Windows Bitmaps and setting the bitmap origin). The
bitmap pattern is passed as a packed array of 8 bytes.

Input: DS:EBX = Device Context Buffer
DS:ESI = Pointer to 8 bytes for pattern
Set8x8ColorPattern

This function sets up an 8x8 color pattern for all subsequent color pattern filled functions. This
function downloads the specified 8x8 color fill pattern for rectangle and scanline filling, where
the pattern is X and Y coordinate aligned with the left edge and top edge of the display. Thus the
colors in the pattern that applies to a specific pixel in the scanline is determine by the pixel’s X
starting at the left. Hence pixel 0 corresponds to color 0, pixel 1 = color 1 etc. It is the
responsibility of the calling application to rotate the pattern before calling this routine if it is
desired that the pattern be aligned to a different starting coordinate (such as with Windows
Bitmaps and setting the bitmap origin). The color pattern is passed as an 8x8 array of DWORDS,
one for each pixel in the pattern. Each pixel color value is packed for the appropriate display
mode and will always take up an entire DWORD (i.e.: in 8 bit modes only the bottom 8 bits are
used). The VBE/AF driver will convert the pattern to the format that it requires internally when
it is downloaded to the hardware.

Input: DS:EBX = Device Context Buffer
DS:ESI = Pointer to 8x8 color pattern (64 DWORDS)
SetLineStipple

This function sets up a 16 bit line stipple for all subsequent stippled line drawing functions.
Where a bit is 1 in the stipple pattern, the pixel is drawn and where it is 0, the pixel remains
untouched. It is the responsibility of the calling application to rotate the pattern before calling
this routine if it is desired that the pattern be aligned to a different starting coordinate.

16 bit stipple pattern
Device Context Buffer

Input: AX
DS:EBX

SetClipRect

This function sets the current hardware clipping rectangle for subsequent accelerated rendering
primitives. All subsequent accelerated output will then be clipped to this clipping rectangle. The
parameters for the clip rectangle to be set are passed in the following structure:

typedef struct {
AF int32 minX;
AF int32 minY;
AF _int32 maxX;
AF int32 maxy;
} AF clipRect;

Note that the maximum coordinates are inclusive, so that for an unclipped 640x480 framebuffer
you would set maxX to 639 and maxY to 479.

Input: DS:EBX = Device Context Buffer
DS:ESI = Pointer to AF clipRect structure
Page 28 VBE/AF STANDARD VERSION 1.0

DOCUMENT REVISION 0.7

Driver Function Reference

2D Accelerator Drawing Functions

DrawScan

This function renders a solid scanline at the specified location in the specified color and
currently active foreground mix. This routine will render a scanline from X1 to X2 (exclusive) at
the specified Y coordinate. For scan lines where X2 < X1, the X1 and X2 coordinates will be
swapped, and for scan lines where X1 = X2, the scanline will be skipped and nothing will be
drawn. Note that the pixel at the X2 coordinate passed will not be drawn. This function will
always be provided by accelerated VBE/AF drivers, and will be implemented with whatever
hardware rendering function provides the fastest possible method of rendering scan lines with
the installed hardware.

Input: EAX = Y coordinate of scan
DS :EBX = Device Context Buffer
ECX = X1 coordinate of scan
EDX = X2 coordinate of scan
ESI = Color to draw in
DrawPattScan

This function renders a patterned scanline at the specified location in the specified color and
currently active foreground and background mixes. This routine will render a scanline from X1
to X2 (exclusive) at the specified Y coordinate. For scan lines where X2 < X1, the X1 and X2
coordinates will be swapped, and for scan lines where X1 = X2, the scanline will be skipped and
nothing will be drawn. Note that the pixel at the X2 coordinate passed will not be drawn. The
scanline is filled in with the currently active pattern set by calling the Set8x8MonoPattern
routine.

Input: EAX = Y coordinate of scan
DS:EBX = Device Context Buffer
ECX = X1 coordinate of scan
EDX = X2 coordinate of scan
EST = Foreground color to draw in
EDI = Background color to draw in
DrawColorPattScan

This function renders a color patterned scanline at the specified location in the currently active
foreground mix. This routine will render a scanline from X1 to X2 (exclusive) at the specified Y
coordinate. For scan lines where X2 < X1, the X1 and X2 coordinates will be swapped, and for
scan lines where X1 = X2, the scanline will be skipped and nothing will be drawn. Note that the
pixel at the X2 coordinate passed will not be drawn. The scanline is filled in with the currently
active color pattern set by calling the Set8x8ColorPattern routine.

Input: EAX = Y coordinate of scan
DS:EBX = Device Context Buffer
ECX = X1 coordinate of scan
EDX = X2 coordinate of scan
DrawScanList

This function renders a list of solid scan lines starting at the specified location in the specified
color and currently active foreground mix. The scanline coordinates are passed as an array of 16

VBE/AF STANDARD VERSION 1.0 Page 29
DOCUMENT REVISION 0.7

Driver Function Reference

bit integer coordinates, packed with the X1 coordinate followed by the X2 coordinate and so on.
For each scanline in the list, this routine will render a scanline from X1 to X2 (exclusive) at
increasing Y coordinates. For scan lines where X2 < X1, the X1 and X2 coordinates will be
swapped, and for scan lines where X1 = X2, the scanline will be skipped and nothing will be
drawn. This function will always be provided by accelerated VBE/AF drivers, and will be
implemented with whatever hardware rendering function provides the fastest possible method of
rendering scan lines with the installed hardware. It is also one of the workhorse functions that
will be used by high level rendering code for drawing non-polygonal solid shapes (ellipses,
wedges, regions etc.).

Input: EAX = Y coordinate of first scanline

DS:EBX = Device Context Buffer

ECX = Length of scanline list

EDX = Color to draw in

DS:ESI = Pointer to list of 16 bit integer scanline
coordinates
DrawRect

This function renders a solid rectangle at the specified location and color in the currently active
foreground mix. This routine will render a rectangle from (Left, Top) to (Left+Width-1,
Height+Bottom-1) inclusive. This function will always be provided by accelerated VBE/AF
drivers, and will be implemented with whatever hardware rendering function provides the fastest
possible method of rendering rectangles with the installed hardware. The parameters for the
rectangle to be rendered are passed in the following structure:

typedef struct {

AF _int32 left;
AF int32 top;
AF int32 width;
AF int32 height;
} AF rect;
Input: EAX = Color to draw in
DS:EBX = Device Context Buffer
DS:EST = Pointer to AF rect structure
DrawPattRect

This function renders a patterned rectangle at the specified location and color in the currently
active foreground and background mixes. This routine will render a rectangle from (Left, Top) to
(Left+Width-1, Height+Bottom-1) inclusive. The rectangle is filled in with the currently active
pattern set by calling the Set8x8MonoPattern routine. If the hardware supports pattern fills (even
if just scanline fills) this function will always be provided by VBE/AF and will provide the
fastest way to render pattern filled rectangles. The parameters for the rectangle to be rendered are
passed in the following structure:

typedef struct {

AF int32 left;
AF int32 top;
AF int32 width;
AF _int32 height;
} AF rect;
Input: EAX = Foreground color to draw in
DS :EBX = Device Context Buffer
ECX = Background color to draw in
DS:ESI = Pointer to AF rect structure
Page 30 VBE/AF STANDARD VERSION 1.0

DOCUMENT REVISION 0.7

Driver Function Reference

DrawColorPattRect

This function renders a color patterned rectangle at the specified location in the currently active
foreground mix. This routine will render a rectangle from (Left, Top) to (Left+Width-1,
Height+Bottom-1) inclusive. The rectangle is filled in with the currently active color pattern set
by calling the Set8x8ColorPattern routine. If the hardware supports pattern fills (even if just
scanline fills) this function will always be provided by VBE/AF and will provide the fastest way
to render color pattern filled rectangles. The parameters for the rectangle to be rendered are
passed in the following structure:

typedef struct {

AF int32 left;

AF int32 top;

AF int32 width;

AF int32 height;

} AF rect;
Input: DS:EBX = Device Context Buffer

DS:ESI = Pointer to AF rect structure

DrawLine

This function renders a solid line at the specified location and color in the currently active
foreground mix. This routine will render a line from (x1,y1) to (x2,y2) inclusive. Note that the
coordinates passed to this routine are in 16.16 fixed point format. The parameters for the
rectangle to be rendered are passed in the following structure:

typedef struct {

AF fix32 x1;
AF fix32 vl;
AF fix32 x2;
AF fix32 y2
} AF line
Input: EAX = Color to draw in
DS:EBX = Device Context Buffer
DS:ESI = Pointer to AF line structure
DrawsStippleLine

This function renders a stippled line at the specified location and color in the currently active
foreground mix. This routine will render a line from (x1,y1) to (x2,y2) inclusive. Note that the
coordinates passed to this routine are in 16.16 fixed point format. The parameters for the
rectangle to be rendered are passed in the following structure:

typedef struct {

AF fix32 x1;
AF fix32 vl;
AF fix32 X2;
AF fix32 v2;
} AF line;
Input: EAX = Foreground color to draw in
DS:EBX = Device Context Buffer
ECX = Background color to draw in
DS:ESI = Pointer to AF line structure
DrawTrap

This function renders a solid, flat topped and bottomed trapezoid in the specified color. The
parameters for the trapezoid to be rendered are passed in the following structure (note that all
coordinates are in 16.16 fixed point format):

VBE/AF STANDARD VERSION 1.0 Page 31
DOCUMENT REVISION 0.7

Driver Function Reference

typedef struct {

AF int32 yi

AF int32 count;
AF fix32 x1;

AF fix32 x2;

AF fix32 slopel;
AF fix32 slope2;
} AF_trap;

Note that this function will always be provided, and will be the fallback polygon rendering
function for devices that do not have hardware triangle or quad filling, and will draw the
trapezoid by rendering each of the individual scan lines. After this function has been called, the
VBE/AF driver will have updated the y, x/ and x2 variables in the AF trap structure to reflect
the final values after scan converting the trapezoid. This ensures that the high level code can
properly join up connected trapezoids to complete the rendering of a larger more complex
polygon. The standard algorithm for implementing this is C is as follows (note that it handles
edges that can cross within the trapezoid properly):

while (count--) {
ixl = FIXROUND (x1);
ix2 = FIXROUND (x2);
if (ix2 < 1ix1)
SWAP (ix1,ix2) ;
if (ixl < 1ix2)
scanLine (y,ix1,1ix2);
x1 += slopel;
x2 += slope2;

y++;
}
Input: EAX = Color to draw in
DS:EBX = Device Context Buffer
DS:ESI = Pointer to AF trap structure
DrawTri

This function renders a 2D flat shaded triangle in the specified color given three fixed point
coordinates. The parameters for the triangle to be rendered are passed in the following structure:

typedef struct {

AF fxpoint *vl1;
AF fxpoint *v2;
AF fxpoint *v3;
AF fix32 xOffset;
AF fix32 yOffset;

} AF triangle;

The structure contains pointers to the three vertices in the triangle in the AF fxpoint structure,
which represent each vertex in 16.16 fixed point format. The format of the AF fxpoint structure
is as follows:

typedef struct {

AF fix32 X;
AF fix32 v
} AF fxpoint;

The x and y coordinate offsets are added to every vertex in the triangle before being sent to the
hardware for performing viewport transformations. Refer to the section above on the 2D
coordinate system for more information.

Input: EAX = Color to draw in

DS:EBX = Device Context Buffer

DS:ESI = Pointer to AF triangle structure
Page 32 VBE/AF STANDARD VERSION 1.0

DOCUMENT REVISION 0.7

DrawQuad

Driver Function Reference

This function renders a 2D flat shaded quadrilateral in the specified color given four fixed point
coordinates. The parameters for the quadrilateral to be rendered are passed in the following

structure:

typedef struct {

AF fxpoint
AF fxpoint
AF fxpoint
AF fxpoint
AF fix32

AF fix32

} AF_quad;

*vl;
*v2;
*v3;
*vd;
xOffset;
yOffset;

The structure contains pointers to the four vertices in the triangle in the AF fxpoint structure,
which represent each vertex in 16.16 fixed point format. The format of the AF _fxpoint structure

1s as follows:

typedef struct {
AF fix32
AF fix32

} AF_ fxpoint;

Xy
Y

The x and y coordinate offsets are added to every vertex in the triangle before being sent to the
hardware for performing viewport transformations. Refer to the section above on the 2D

coordinate system for more information.

Input: EAX Color to draw in

DS:EBX = Device Context Buffer

DS:ESI = Pointer to AF guad structure
PutMonolmage

This function copies a monochrome bitmap image from a system memory buffer to video
memory using the hardware accelerator, which is used for fast bitmap masking and font
rendering operations. The bitmap is rendered in the specified color using the currently active
foreground and background mixes. The parameters for the image to be transferred are passed in
the following structure:

typedef struct {

AF int32 X;

AF int32 v

AF int32 byteWidth;
AF _int32 height;
void *image;

} AF_putMonoImage;

The x and y parameters define the destination coordinate for the image, and the byteWidth and
height parameters define the dimensions of the monochrome image to be transferred. The image
pointer points to the start of the monochrome image in system memory and is byte packed and
need not contain any padding for each scanline (Windows monochrome BMP’s are padded to a
DWORD boundary for each scanline).

Input: EAX = Foreground color to draw in
DS:EBX = Device Context Buffer
ECX = Background color to draw in
DS:ESI = Pointer to AF putMonoImage structure

VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

Page 33

Driver Function Reference

BitBlt
This function copies a rectangular region of video memory from one location to another. The
parameters for the block to be copied are passed in the following structure:

typedef struct {

AF _int32 left;

AF int32 top;

AF int32 width;
AF int32 height;
AF _int32 dstLeft;
AF int32 dstTop;
AF int32 op;

} AF bitBlt;

This routine will copy a rectangular region of video memory from (left, top, left+width-1,
top+height-1) to (dstLeft, dstTop) within video memory with the specified mix mode, and will
also correctly handle cases of overlapping regions in video memory.

DS:EBX = Device Context Buffer
DS:ESI = Pointer to AF bitBIt structure

Input:

BitBltLin

This function copies a linear region of video memory from the offscreen buffer to a rectangular
region in the active buffer. This version is different to the above version in that the source region
to be copied is non-conforming, and can have a different logical scanline width to the destination
region. This allows the bitmaps to be stored contiguously in offscreen memory, rather than
requiring the offscreen memory to be divided up into rectangular regions. The parameters for the
block to be copied are passed in the following structure:

typedef struct {

AF _int32 srcOfs;
AF int32 dstLeft;
AF int32 dstTop;
AF int32 width;
AF _int32 height;
AF int32 op;

} AF bitBltLin;

This routine will copy a linear region of video memory from srcOfs from the start of video
memory with a byte width of srcByteWidth bytes to the destination rectangle (dstLeft, dstTop,
dstLeft+width-1, dstTop+height-1) with the specified mix mode. Note that the value of srcOfs
must be aligned to the boundary specified in the LinearGranularity field of the device context
buffer. The results of this routine are undefined if the video memory regions overlap.

DS :EBX Device Context Buffer
DS:ESI = Pointer to AF bitBItLin structure

Input:

TransBIt

This function copies a rectangular region of video memory from one location to another with
source transparency. The parameters for the block to be copied are passed in the following
structure:

typedef struct {

AF _int32 left;
AF int32 top;
AF int32 width;
AF int32 height;
AF _int32 dstLeft;
AF int32 dstTop;
Page 34 VBE/AF STANDARD VERSION 1.0

DOCUMENT REVISION 0.7

Driver Function Reference

AF int32 op;
AF _color transparent;
} AF transBlt;

This routine will copy a rectangular region of video memory from (left, top, left+width-1,
top+height-1) to (dstLeft, dstTop) within video memory with the specified mix mode and with
source transparency. The transparent color passed will be used to mask out pixels in the source
image from being written to the destination area. This results of this routine are undefined if the
source and destination rectangles overlap.

Input: DS:EBX =Device Context Buffer
DS:ESI =Pointer to AF transBlt structure

TransBItLin

This function copies a linear region of video memory from the offscreen buffer to a rectangular
region in the active buffer with source transparency. This version is different to the above
version in that the source region to be copied is non-conforming, and can have a different logical
scanline width to the destination region. This allows the bitmaps to be stored contiguously in
offscreen memory, rather than requiring the offscreen memory to be divided up into rectangular
regions. The parameters for the block to be copied are passed in the following structure:

typedef struct {

AF int32 srcOfs;

AF int32 dstLeft;

AF _int32 dstTop;
AF_int32 width;

AF int32 height;

AF int32 op;

AF_color transparent;

} AF_transBltLin;

This routine will copy a linear region of video memory from sr7cOfs from the start of video
memory with a byte width of srcByteWidth bytes to the destination rectangle (dstLeft, dstTop,
dstLeft+width-1, dstTop+height-1) with the specified mix mode and with source transparency.
Note that the value of srcOfs must be aligned to the boundary specified in the LinearGranularity
field of the device context buffer. The transparent color passed will be used to mask out pixels in
the source image from being written to the destination area. The results of this routine are
undefined if the video memory regions overlap.

Input: DS:EBX = Device Context Buffer
DS:ESI = Pointer to AF transBIltLin structure
VBE/AF STANDARD VERSION 1.0 Page 35

DOCUMENT REVISION 0.7

Driver Function Reference

Page 36 VBE/AF STANDARD VERSION 1.0
DOCUMENT REVISION 0.7

Questions & Answers

Questions & Answers

Is this specification only useful for DOS applications?

No. This specification defines how to access acceleration features at the very lowest level of
abstraction. As such, any software that runs on the x86 platform can conceivably use this
information. This includes DOS applications, games and “plug and play” operating system
drivers for environments such as Windows, OS/2, UNIX and others. This specification can be
used by any application or operating system that needs access to high performance accelerator
features. It will be especially useful for entertainment, virtual reality and other applications that
exert high demands on the graphics subsystem and thus need direct access to accelerator
functions.

Is this just another software layer to slow things down?

No. VBE/AF was designed to do three things: 1.) Let the application software or operating
system know what features are available in hardware. 2.) Provide the code to enable those
features and 3.) Get out of the way and let the software write directly to the hardware. This is in
contrast with a higher level API that does many complex functions in software. With VBE/AF, a
programmer could choose to use one of those higher level APIs that would in turn call VBE/AF
for device support, or they can write directly to the VBE/AF specification using their own
proprietary routines and libraries.

Why have you implemented only a small set of functions?

The VBE/AF functions have been boiled down into the smallest possible set of accelerator
functions that can be implemented as efficiently as possible and are the most commonly needed
by application software. When an application calls the VBE/AF device driver routines, it will
already have performed any kind of application specific special casing necessary.

Will any additional hardware be necessary to support VBE/AF?

No. Actually VBE/AF can be implemented on most graphics cards shipped in the last 3-4 years.
If a particular VBE/AF function is not supported in hardware, the VBE/AF implementation will
just return back that that function is not supported; all other functions can be accessed normally.

VBE/AF STANDARD VERSION 1.0 Page 37
DOCUMENT REVISION 0.7

Appendix A - Sample C API

Appendix A - Sample C API

This appendix contains sample source code for a simple C based API for loading the VBE/AF
driver file and calling the accelerated rendering functions from C. Note that for efficiency, a high
performance graphics library would call performance sensitive primitive rendering functions
directly from assembler for speed, rather than using the C based functions.

Some of the sample code provided in this Appendix depends on some freely available software
tools developed by SciTech Software, such as the PM/Pro library for interfacing with DOS
extender and operating system specific functions. All functions preceded with PM are part of
this package. For more information and the source code to the PM/Pro functions, you can
download the library from SciTech Software’s fip site, ftp.scitechsoft.com under the devel
directory.

VBEAF.H

ER R IR IR R I I b b b b I I b I I I I I I b I I I I b I I I I I I I I I I I I I I I b I

VESA BIOS Extensions/Accelerator Functions
Version 1.0

Copyright (C) 1996 SciTech Software.
All rights reserved.

Filename: SWorkfile: vbeaf.h $
Developed by: SciTech Software

Language: ANSI C
Environment: IBM PC 32 bit Protected Mode.

Description: Header file for the VBE/AF Graphics Acclerator Driver API.

When this code is used to load the VBEAF.DRV driver file,
it will look for it in the following standard locations
in the following order:

1. C:\VBEAF.DRV for DOS, Windows, 0S/2
/VBEAF.DRV for Unix

2. VBEAF PATH environment variable

3. Path passed to AF loadDriver

The last location searched is to allow specific versions
of a driver file to be stored with a applications in case
an application needs a specific version for some obscure

reason.
SDate: 21 Feb 1996 18:35:46 $ S$SAuthor: KendallB $

/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

***/

#ifndef _ VBEAF_H
#define _ VBEAF_H

#ifndef DEBUG_H
#include "debug.h"
#endif

[Macros and type definitions --------------------—- */

/* Define the calling conventions for the code in this module */

38 VBE/AF Version 1.0

*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/

Appendix A - Sample C API

#define AFAPI = ASMAPI /* 'C' calling conventions always
#pragma pack (1)
/* Type definitions for fundamental types */
typedef char AF int8; /* 8 bit signed value
typedef short AF _intlé6; /* 16 bit signed value
typedef long AF int32; /* 32 bit signed value
typedef unsigned char AF uint8; /* 8 bit unsigned value
typedef unsigned short AF uintl6; /* 16 bit unsigned value
typedef unsigned long AF uint32; /* 32 bit unsigned value
typedef long AF fix32; /* 16.16 signed fixed point format
typedef AF uint8 AF pattern; /* Pattern array elements
typedef AF uintl6 AF stipple; /* 16 bit line stipple pattern
typedef AF uint32 AF color; /* Packed color values
/* VBE/AF Graphics Accelerator Driver structure.
*
* Internally in the structure there are members represented as pointers.
* However when the driver file is first loaded, these values will actually
* be offsets from the start of the loaded driver file, but the intial
* call to InitDriver will 'fix-up' the pointers and turn them into
* real pointers.
*/
typedef struct {
/* __
/* Device driver header block
2
char Signature[12]; /* '"VBEAF.DRV\QO' 12 byte signature
AF uint32 Version; /* Driver Interface Version (1.0)
AF uint32 DriverRev; /* Driver revision number
char OemVendorName [80] ; /* Vendor Name string
char OemCopyright[80]; /* Vendor Copyright string
AF intlé *AvailableModes; /* Offset to supported mode table
AF uint32 TotalMemory; /* Amount of memory in Kb detected
AF uint32 Attributes; /* Driver attributes
AF uint32 BankSize; /* Bank size in Kb (4Kb or 64Kb)
AF uint32 BankedBasePtr; /* Physical addr of banked buffer
AF uint32 LinearSize; /* Linear buffer size in Kb
AF uint32 LinearBasePtr; /* Physical addr of linear buffer
AF uint32 LinearGranularity; /* Linear blt granularity in bytes
AF uintlé6 *IOPortsTable; /* Offset of I/O ports table
AF uint32 IOMemoryBase[4]; /* Base address of I/0 memory maps
AF uint32 IOMemoryLen[4]; /* Length of I/0 memory maps
AF uint32 resl[10]; /* Reserved for future expansion
2
/* Near pointers mapped by application for driver
/* __
void *TOMemMaps [4] ; /* Pointers to mapped I/0 memory
void *BankedMem; /* Ptr to mapped banked video mem
void *LinearMem; /* Ptr to mapped linear video mem
2
/* Important selectors allocated by application for driver
/* __
AF uint32 Sel0000h; /* 1Mb selector to entire first Mb
AF uint32 Sel0040h; /* Selector to segment at 0x0040:0
AF uint32 SelA000h; /* Selector to segment at 0xA000:0
AF uint32 SelB000h; /* Selector to segment at 0xB000:0
AF uint32 SelC000h; /* Selector to segment at 0xC000:0
/* __
/* Device driver state variables
2
AF uint32 BufferEndX; /* Last X coord of each buffer
AF uint32 BufferEndY; /* Last Y coord of each buffer

VBE/AF Version 1.0

*/

39

Appendix A - Sample C API

AF uint32
AF uint32
AF uint32
AF uint32
AF uint32

OriginOffset; /*
OffscreenOffset; /*
OffscreenStartY; /*
OffscreenEndY; /*
res2[10]; /*

Current start of active page
Start of offscreen memory area
First Y coord of offscreen mem
Last Y coord of offscreen mem
Reserved for future expansion

/* Relocateable 32 bit bank switch routine, needed for framebuffer
/* virtualisation under Windows with DVA.386/VFLATD.386. This

/* function *MUST* program the bank with IO mapped registers, as

/* when the function is called there is no way to provide access to
/* the devices memory mapped registers (because there is no way to
/* for it to gain access to a copy of this AF devCtx block). For

/* devices that only have memory mapped registers, this vector

/* *MUST* be NULL indicating that this is not supported. However

/* all these devices all have a real linear framebuffer anyway,

/* so the virtualisation services will not be needed.

AF uint32
void

void
void

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
} AF devCtx;

40

SetBank32Len;
*SetBank32;

*Int86;

*InitDriver;
*GetVideoModeInfo;
*SetVideoMode;
*RestoreTextMode;
*SetBank;
*SetDisplayStart;
*SetActiveBuffer;
*SetVisibleBuffer;
*SetPaletteData;
*SetGammaCorrectData;
*WaitTillIdle;
*EnableDirectAccess;
*DisableDirectAccess;
*SetCursor;
*SetCursorPos;
*SetCursorColor;
*ShowCursor;
*SetMix;
*Set8x8MonoPattern;
*Set8x8ColorPattern;
*SetLineStipple;
*SetClipRect;
*DrawScan;
*DrawPattScan;
*DrawColorPattScan;
*DrawScanList;
*DrawRect;
*DrawPattRect;
*DrawColorPattRect;
*DrawlLine;
*DrawStippleLine;
*DrawTrap;
*DrawTri;
*DrawQuad;
*PutMonoImage;
*BitBlt;
*BitBltLin;
*SrcTransBlt;
*SrcTransBltLin;
*DstTransBlt;
*DstTransBltLin;

/* Length of 32 bit code
/* 32 bit relocateable code

/* Issue real mode interrupt
/* Call a real mode function

/* Initialise driver

/* Get video mode information
/* Set a video mode

/* Restore text mode operation
/* Set framebuffer bank

/* Set virtual display start
/* Set active output buffer

/* Set Visible display buffer
/* Program palette data

/* Program gamma correct'n data
/* Wait till engine is idle

/* Enable direct mem access

/* Disable direct mem access
/* Download hardware cursor

/* Set cursor position

/* Set cursor color

/* Show/hide cursor

/* Set ALU mix operations

/* Set 8x8 mono bitmap pattern
/* Set 8x8 color bitmap pattern
/* Set 16 bit line stipple

/* Set clipping rectangle

/* Draw a solid scanline

/* Draw a patterned scanline
/* Draw color pattern scanline
/* Draw list of solid scanlines
/* Draw a solid rectangle

/* Draw a patterned rectangle
/* Draw color pattern rectangle
/* Draw a solid line

/* Draw a stippled line

/* Draw a solid trapezoid

/* Draw a solid triangle

/* Draw a solid quad

/* Display a monochrome bitmap
/* Blt screen to screen

/* Linear source BitBlt

/* Source transparent BitBlt
/* Linear source SrcTransBlt
/* Dest. transparent BitBlt

/* Linear source DstTransBlt

VBE/AF Version 1.0

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/

*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* Video mode information block */

typedef struct ({

AF uintl6 Attributes; /*
AF uintlé6 XResolution; /*
AF uintlé6 YResolution; /*
AF_uintl6 BytesPerScanLine; /*
AF uintl6 BitsPerPixel; /*
AF uintlé MaxBuffers; /*
/* RGB pixel format info */
AF uint8 RedMaskSize; /*
AF uint8 RedFieldPosition; /*
AF uint8 GreenMaskSize; /*
AF uint8 GreenFieldPosition; /*
AF uint8 BlueMaskSize; /*
AF uint8 BlueFieldPosition; /*
AF uint8 RsvdMaskSize; /*
AF_uint8 RsvdFieldPosition; /*
/* Virtual buffer dimensions */
AF uintl6 MaxBytesPerScanLine;/*
AF uintl6é MaxScanLineWidth; /*
AF uint8 reserved[118]; /*
} AF_modeInfo;

#define VBEAF DRV "VBEAF.DRV" /*

#define VBEAF PATH "VBEAF_PATH"/*

#define VBEAF VERSION 0x100 /*

Mode attributes

Horizontal resolution in pixels
Vertical resolution in pixels
Bytes per horizontal scan line
Bits per pixel

Maximum num.

of display buffers

Size of direct color red mask
Bit posn of 1lsb of red mask
Size of direct color green mask
Bit posn of 1lsb of green mask
Size of direct color blue mask
Bit posn of 1lsb of blue mask
Size of direct color res mask
Bit posn of 1lsb of res mask

Maximum bytes per scan line
Maximum pixels per scan line
Pad to 128 byte block size

Name of driver file on disk
Name of environment variable
Lowest version we can work with

/* Flags for combining with video modes during mode set */

#define
#define
#define
#define

afDontClear 0x8000
afLinearBuffer 0x4000
afMultiBuffer 0x2000
afVirtualScroll 0x1000

/*
/*
/*
/*

Dont clear display memory
Enable linear framebuffer mode
Enable multi buffered mode
Enable virtual scrolling

/* Flags for the mode attributes returned by GetModeInfo */

#define
#define
#define
#define
#define
#define
#define
#define
#define

afHaveMultiBuffer
afHaveVirtualScroll
afHaveBankedBuffer
afHavelLinearBuffer
afHaveAccel2D
afHaveDualBuffers
afHaveHWCursor
afHave8BitDAC
afNonVGAMode

/* Types of mix operations

typedef

enum {

AF_REPLACE_MIX,
AF AND MIX,
AF OR MIX,
AF XOR MIX,
AF_NOP_MIX,
} AF _mixModes;

/* Palette entry structure,
typedef struct {

AF _uint8 blue;

AF uint8 green;

AF uint8 red;

AF uint8 alpha;

} AF palette;

0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x0040
0x0080
0x0100

always

/* Hardware cursor structure */

typedef struct {
AF uint32 xorMask[32];
AF uint32 andMask[32];
AF uint32 hotx;

/*
/*
/*
/*
/*
/*
/*
/*
/*

supported */

/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*

Mode
Mode
Mode
Mode
Mode
Mode
Mode
Mode
Mode

supports
supports
supports
supports
supports

multi buffering
virtual scrolling
banked framebuffer
linear framebuffer
2D acceleration

uses dual buffers

supports
uses an

a hardware cursor
8 bit palette DAC

is a NonVGA mode

Write mode operators
Replace mode
AND mode
OR mode
XOR mode
Destination pixel unchanged

in 8 bits per primary format */

Blue component of color
Green component of color
Blue component of color
Alpha or alignment byte

Cursor XOR mask
Cursor AND mask
Cursor X coordinate hot spot

VBE/AF Version 1.0

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

Appendix A - Sample C API

41

Appendix A - Sample C API

AF uint32 hoty; /* Cursor Y coordinate hot spot *x/
} AF_cursor;

/* Integer coordinates passed to DrawLineList */
typedef struct {
int x;
int y;
} AF _point;
/* 16.16 fixed point coordinates passed for triangle and quad fills */

typedef struct {

AF fix32 X;
AF fix32 yi:
} AF fxpoint;

/* Macros to convert between integer and 32 bit fixed point format */

#define AF FIX 1 0x10000L

#define AF_FIX 2 0x20000L

#define AF_FIX HALF 0x08000L

#define AF TOFIX (1) ((long) (1) << 16)

#define AF FIXTOINT (f) ((int) ((£) >> 16)

#define AF_ FIXROUND (f) ((int) (((f) + MGL FIX HALF) >> 16)

/* DPMI register structure used in calls to Int86 and CallRealMode */

typedef struct {
long edi;

long esi;
long ebp;
long reserved;
long ebx;
long edx;
long ecx;
long eax;

short flags;
short es,ds, fs,gs,ip,cs, sp, ss;
} AF DPMI regs;
/* Flags returned by AF status to indicate driver load status */

typedef enum {

afOK, /* No error */
afNotDetected, /* Graphics hardware not detected */
afDriverNotFound, /* Driver file not found */
afCorruptDriver, /* File loaded not a driver file */
afLoadMen, /* Not enough memory to load driver */
afOldversion, /* Driver file is an older version */
afMemMapError, /* Could not map physical memory areas */
afMaxError,

} AF _errorType;
/* Default locations to find the driver for different operating systems */

#define AF DRIVERDIR DOS "o \\" /* DOS, Windows and 0S/2 *x/
#define AF DRIVERDIR UNIX "/" /* Unix */

#pragma pack()

[K Function Prototypes ----------———————————————-
#ifdef cplusplus

extern "C" { /* Use "C" linkage when in C++ mode */
#endif

/* Function to load the VBEAF.DRV driver file and initialise it */
AF devCtx * AFAPI AF loadDriver (const char *driverDir);

void AFAPI AF unloadDriver (AF devCtx *drv);

AF int32 AFAPI AF status(void);

const char * AFAPI AF errorMsg(int status);

/* The following provides a high level C based API to the accelerated

42 VBE/AF Version 1.0

Appendix A - Sample C API

* rendering functions. For maximum performance, you should make direct
* calls to the accelerated rendering functions in assembler from your own
* rendering routines.

*/
AF int32 AFAPI AF getVideoModeInfo (AF devCtx *dc,AF intl6 mode,AF modeInfo *modelnfo);
AF int32 AFAPI AF setVideoMode (AF devCtx *dc,AF int16 mode, AF int32 *bytesPerLine, int
numBuffers) ;
AF int32 AFAPI AF setVirtualVideoMode (AF_devCtx *dc,AF intl6 mode,AF int32 virtualX,AF int32
virtualY,AF int32 *bytesPerLine,int numBuffers);
void AFAPI AF restoreTextMode (AF_devCtx *dc);
void AFAPI AF setDisplayStart (AF devCtx *dc,AF int32 x,AF int32 y,AF int32 waitVRT);
void AFAPI AF setActiveBuffer (AF devCtx *dc,AF int32 index);
void AFAPI AF setVisibleBuffer (AF devCtx *dc,AF int32 index,AF int32 waitVRT);
void AFAPI AF setPaletteData (AF devCtx *dc,AF palette *pal,AF int32 num,AF int32
index,AF int32 waitVRT);
void AFAPI AF setGammaCorrectData (AF _devCtx *dc,AF palette *pal,AF int32 num,AF int32
index) ;
void AFAPI AF setBank (AF devCtx *dc,AF int32 bank);
void AFAPI AF waitTillIdle (AF devCtx *dc) ;
void AFAPI AF enableDirectAccess (AF devCtx *dc);
void AFAPI AF disableDirectAccess (AF_devCtx *dc);
void AFAPI AF setCursor (AF devCtx *dc,AF cursor *cursor);
void AFAPI AF setCursorPos (AF devCtx *dc,AF int32 x,AF int32 y);
void AFAPI AF setCursorColor (AF _devCtx *dc,AF uint8 red,AF uint8 green,AF uint8 blue);
void AFAPI AF showCursor (AF devCtx *dc, AF int32 visible);
void AFAPI AF setMix (AF devCtx *dc,AF int32 foreMix,AF int32 backMix) ;
void AFAPI AF set8x8MonoPattern (AF devCtx *dc,AF pattern *pattern);
void AFAPI AF setLineStipple (AF devCtx *dc,AF stipple stipple);
void AFAPI AF setClipRect (AF devCtx *dc,AF_int32 minx,AF int32 miny,AF int32 maxx,AF int32
maxy) ;
void AFAPI AF drawScan (AF devCtx *dc,AF int32 color,AF int32 y,AF int32 x1,AF int32 x2);
void AFAPI AF drawPattScan (AF devCtx *dc AF int32 foreColor AF int32 backColor AF int32
y,AF_int32 xl,AF_lnt32 x2) ;
void AFAPI AF drawScanList (AF devCtx *dc,AF color color,AF int32 y,AF int32
length,AF intl6é *scans);
void AFAPI AF drawRect (AF devCtx *dc,AF _color color,AF int32 left,AF int32 top,AF _int32
width,AF int32 height);
void AFAPI AF drawPattRect (AF devCtx *dc,AF color foreColor,AF color backColor,AF int32
left,AF _int32 top,AF_int32 width,AF int32 height);
void AFAPI AF drawlLine (AF devCtx *dc,AF _color color,AF fix32 x1,AF fix32 yl,AF fix32
x2,AF fix32 y2);
void AFAPI AF drawStipplelLine (AF devCtx *dc,AF color foreColor,AF color backColor,AF fix32
x1,AF fix32 yl,AF fix32 x2,AF fix32 y2);
void AFAPI AF drawTrap (AF_devCtx *dc,AF color color,AF int32 y,AF_int32 count,AF fix32
x1,AF fix32 x2,AF fix32 slopel,AF fix32 slope2);
void AFAPI AF drawTri (AF devCtx *dc,AF color color,AF fxpoint *vl,AF fxpoint
*v2,AF fxpoint *v3,AF fix32 xOffset,AF fix32 yOffset);
void AFAPI AF drawQuad(AF devCtx *dc,AF _color color,AF fxpoint *vl,AF fxpoint
*v2,AF fxpoint *v3,AF fxpoint *v4,AF fix32 xOffset,AF fix32 yOffset);
void AFAPI AF putMonolImage (AF devCtx *dc,AF int32 foreColor,AF int32 backColor,AF int32
x,AF int32 y,AF int32 byteWidth,AF int32 height,AF uint8 *image);
void AFAPI AF bitBlt (AF devCtx *dc,AF int32 left, AF int32 top, AF int32 width, AF int32
height,AF int32 dstLeft,AF int32 dstTop, AF int32 op) ;
void AFAPI AF bltBltLln(AF devCtx *dc AF int32 srcOfs,AF int32 dstLeft,AF int32
dstTop,AF int32 width,AF int32 height,AF int32 op)
void AFAPI AF srcTransBlt(AF devCtx *dc,AF_int32 left,AF int32 top,AF int32 width,AF int32
height,AF int32 dstLeft, AF int32 dstTop, AF int32 op,AF color transparent) ;
void AFAPI AF srcTransBltLin(AF devCtx *dc,AF int32 srcOfs,AF int32 dstLeft,AF int32
dstTop,AF int32 width,AF int32 height,AF int32 op,AF color transparent);
void AFAPI AF dstTransBlt (AF devCtx *dc,AF _int32 left,AF int32 top,AF int32 width,AF int32
height,AF int32 dstLeft,AF int32 dstTop,AF int32 op,AF color transparent);
void AFAPI AF dstTransBltLin(AF devCtx *dc,AF int32 srcOfs,AF int32 dstLeft,AF int32

dstTop,AF int32 width,AF int32 height,AF int32 op,AF color transparent);
#ifdef _ cplusplus

} /* End of "C" linkage for C++ */
#endif

#endif /* _ VBEAF H */

VBE/AF Version 1.0 43

Appendix A - Sample C API

VBEAF.C

/**

* VESA BIOS Extensions/Accelerator Functions

* Version 1.0

*

* Copyright (C) 1996 SciTech Software.

* All rights reserved.

*

* Filename: SWorkfile: vbeaf.c $

* Developed by: SciTech Software

*

* Language: ANSI C

* Environment: IBM PC 32 bit Protected Mode.

*

* Description: C module for the Graphics Acclerator Driver API. Uses
* the SciTech PM/Pro library for interfacing with DOS
* extender specific functions.

*

* $Date: 17 Feb 1996 19:34:46 $ SAuthor: KendallB $

*

*

***/

#ifdef MGLWIN
#include "mgl.h"
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "vbeaf.h"
#include "pmode.h"

#if !defined(16BIT_) || defined(TESTING)

[Global Variables =——=—-=——=—=——————————————— */
#define AF DRIVERDIR AF _DRIVERDIR_DOS

static int status = afOK;

static void *IOMemMaps[4] = {NULL,NULL,NULL,NULL};

static void *BankedMem = NULL;

static void *LinearMem = NULL;

static AF int32 5e10000h = 0;

static AF int32 Sel0040h = 0;

static AF int32 SelA000h = 0;

static AF int32 SelB000h = 0;

static AF int32 S5elC000h = 0;

[F e Implementation -—-—-——————————————————————————— *x/

/* Internal assembler functions */

AF int32 _cdecl AF initDriver (AF _devCtx *dc);
void _cdecl AF int86(void);
void ~cdecl AF callRealMode (void);

static void backslash (char *s)
/**

*

* Function: backslash

* Parameters: s - String to add backslash to

*

* Description: Appends a trailing '\' pathname separator if the string

* currently does not have one appended.
*

**/

{

uint pos = strlen(s);

if (s[pos-1] != "\\") {
s[pos] = "\\';
s[pos+l] = '"\0';

}

44 VBE/AF Version 1.0

Appendix A - Sample C API

static long fileSize (FILE *f)

/**
*

Function: fileSize
Parameters: £ - Open file to determine the size of
Returns: Length of the file in bytes.

Description: Determines the length of the file, without altering the
current position in the file.

***/

Lo R I

long size,oldpos = ftell (f);

fseek (f, 0, SEEK END) ; /* Seek to end of file */
size = ftell (f); /* Determine the size of the file */
fseek (f,oldpos, SEEK_SET) ; /* Seek to old position in file */
return size; /* Return the size of the file */

}

void cdecl AF callRealMode C(AF DPMI_ regs *dregs)

/**
*

Function: _AF callRealMode C

Parameters: dregs - Pointer to DPMI register structure

Description: Calls a real mode procedure. This does not need to be
speedy, so we simply convert the registers to the format
expected by the PM/Pro library and let it handle it.

***/

[N I R

RMREGS regs;
RMSREGS sregs;

regs.x.ax = (short)dregs->eax;
regs.x.bx = (short)dregs->ebx;
regs.x.cx = (short)dregs->ecx;
regs.x.dx = (short)dregs->edx;
regs.x.si = (short)dregs->esi;
regs.x.di = (short)dregs->edi;
sregs.es = dregs->es;

sregs.ds = dregs->ds;

PM callRealMode (dregs->cs,dregs->ip, ®s, &sregs) ;

dregs->eax = regs.x.ax;
dregs->ebx = regs.x.bx;
dregs->ecx = regs.x.CX;
dregs->edx = regs.x.dx;
dregs->esi = regs.x.si;
dregs->edi = regs.x.di;
dregs->es = sregs.es;

dregs->ds = sregs.ds;
}
void _cdecl AF int86 C(AF_int32 intno,AF DPMI_ regs *dregs)
/**
*

Function: _AF int86_C
Parameters: intno - Interrupt number to issue

dregs - Pointer to DPMI register structure
Description: Issues a real mode interrupt. This does not need to be

speedy, so we simply convert the registers to the format
expected by the PM/Pro library and let it handle it.

***/

Eon R S e e S

RMREGS regs;
RMSREGS sregs;

regs.x.ax = (short)dregs->eax;
regs.x.bx = (short)dregs->ebx;

VBE/AF Version 1.0

45

Appendix A - Sample C API

}

regs.x.cx = (short)dregs->ecx;

()
regs.x.dx = (short)dregs->edx;
regs.x.si = (short)dregs->esi;
regs.x.di = (short)dregs->edi;
sregs.es = dregs->es;
sregs.ds = dregs->ds;

PM int86x (intno, ®s, ®s, &sregs) ;

dregs->eax = regs.x.ax;
dregs->ebx = regs.x.bx;
dregs->ecx = regs.x.CX;
dregs->edx = regs.x.dx;
dregs->esi = regs.x.si;
dregs->edi = regs.x.di;

dregs->es = sregs.es;
dregs->ds = sregs.ds;

AF _int32 _AF_initInternal (AF_devCtx *dc)

/~k~k~k~k~k~k~k*;*~k************************

*

Eon TR R S I

46

Function: _AF initInternal

Parameters: dc - Pointer to device context

Returns: Error code.

Description: Performs internal initialisation on the AF devCtx driver

block, assuming that it has been loaded correctly.

***/

/* Verify that the file is the driver file we are expecting */
if (strcmp(dc->Signature,VBEAF DRV) != 0)

return status = afCorruptDriver;
if (dc->Version < VBEAF VERSION)

return status = afOldVersion;

/* Map the memory mapped register locations for the driver. We need to
* map up to four different locations that may possibly be needed. If
* the base address is zero then the memory does not need to be mapped.

*/

if (IOMemMaps[0] == NULL) {
if (dc->IOMemoryBase[0]) {
IOMemMaps[0] = PM mapPhysicalAddr (dc->IOMemoryBase[0],dc->IOMemoryLen[0]-1) ;
if (IOMemMaps[0] == NULL)
return status = afMemMapError;

}
if (dc->IOMemoryBase[l]) {

IOMemMaps[1] = PM mapPhysicalAddr (dc->IOMemoryBase[l],dc->IOMemoryLen[1]-1);
if (IOMemMaps[l] == NULL)
return status = afMemMapError;

}
if (dc->IOMemoryBase[2]) {
IOMemMaps [2] = PM mapPhysicalAddr (dc->IOMemoryBase[2],dc->IOMemoryLen[2]-1);
if (IOMemMaps([2] == NULL)
return status = afMemMapError;
}
if (dc->IOMemoryBase[3]) {

IOMemMaps[3] = PM mapPhysicalAddr (dc->IOMemoryBase[3],dc->I0OMemoryLen[3]-1);
if (IOMemMaps|[3] == NULL)
return status = afMemMapError;
}
}
dc->I0OMemMaps [0] = IOMemMaps[0];
dc->IOMemMaps[1l] = IOMemMaps|[1l];
dc->IOMemMaps[2] = IOMemMaps|[2];
dc->IOMemMaps [3] = IOMemMapsI[3];
/* Map the banked video memory area for the driver */
if (BankedMem == NULL && dc->BankedBasePtr) {
BankedMem = PM mapPhysicalAddr (dc->BankedBasePtr, OxFFFF) ;
if (BankedMem == NULL)
return status = afMemMapError;

}
dc->BankedMem = BankedMem;

VBE/AF Version 1.0

Appendix A - Sample C API

/* Map the linear video memory area for the driver */

if (LinearMem == NULL && dc->LinearBasePtr) {
LinearMem = PM mapPhysicalAddr (dc->LinearBasePtr,dc->LinearSize*1024L - 1);
if (LinearMem == NULL)
return status = afMemMapError;

}

dc->LinearMem = LinearMem;

/* Provide selectors to important real mode segment areas */
if (Sel0000h == 0) {
5e10000h = PM createSelector (0x00000L, OXFFFFFL) ;
5e10040h = PM createSelector (0x00400L, OXFFFF) ;
SelA000h = PM createSelector (0xA0000L, OXFFFF) ;
SelB000h = PM createSelector (0xBOOOOL, OxFFFF) ;
SelC000h = PM createSelector (0xCO000L, OXFFFF)

’

}
dc->Sel0000h = Sel0000h;
dc->Sel0040h = Sel0040h;
dc->SelA000h = SelA000h;
dc->SelB000h = SelB000Oh;
dc->SelC000h = SelC000h;

/* Install the device callback functions */
dc->Int86 = AF int86;

dc->CallRealMode = _AF callRealMode;

return afOK;

}

AF devCtx * AFAPI AF loadDriver (const char *driverDir)

/*?**

***/

*

* Function: AF loadDriver

* Parameters: driverDir - Directory to load the driver file from

* Returns: Pointer to the loaded driver file.

*

* Description: Loads the driver file and intialises the device context
* ready for use. If the driver file cannot be found, or the
* driver does not detect the installed hardware, we return
* NULL and the application can get the status code with

* AF status() .

*

*

{

char filename[MAX PATH];
FILE *f;
int size;

AF devCtx *dc;

/* Reset status flag */
status = afOK;

/* Try if the default operating system location first */
strcpy (filename, AF_DRIVERDIR) ;
strcat (filename, VBEAF DRV) ;
if ((f = fopen(filename,"rb")) == NULL) {
/* Now try to find the driver in the VBEAF PATH directory */
if (getenv (VBEAF PATH)) {
strcpy (filename, getenv (VBEAF PATH)) ;
backslash (filename) ;
strcat (filename, VBEAF DRV) ;
if ((f = fopen(filename,"rb")) != NULL)
goto FoundDriver;

}

/* Else try in the specified path */
if (driverDir) {
strcpy(filename, driverDir);
backslash (filename) ;
strcat (filename, VBEAF DRV) ;
if ((f = fopen(filename,"rb")) != NULL)
goto FoundDriver;

}

/* Driver file was not found */

VBE/AF Version 1.0 47

Appendix A - Sample C API

status = afDriverNotFound;
return NULL;
}

/* Allocate memory for driver file and load it */
FoundDriver:
size = fileSize(f);
if ((dc = malloc(size+l6)) == NULL) {
status = afLoadMem;
fclose (f);
return NULL;
}
fread(dc,1,size, f);
fclose (f);

/* Perform internal initialisation */
if (_AF initInternal(dc) != afOK)
goto Error;

/* Now call the driver to detect the installed hardware and initialise
* the driver.
*/
if (_AF initDriver(dc) != 0) {
status = afNotDetected;
goto Error;
}

return dc;

Error:
free(dc);
return NULL;
}

void AFAPI AF unloadDriver (AF_devCtx *dc)

/**
*

* Function: AF unloadDriver

* Parameters: dc - Pointer to device context

*

* Description: Unloads the loaded device driver.
*

**/

{

free (dc) ;

}

AF int32 AFAPI AF status(void)
{ return status; }

const char * AFAPI AF errorMsg(int status)
/**

*

* Function: AF errorMsg

* Returns: String describing error condition.
*

**/

{

const char *msg[] = {
"No error",
"Graphics hardware not detected",
"Driver file not found",
"File loaded was not a driver file",
"Not enough memory to load driver",
"Driver file is an older version",
"Could not map physical memory areas",
bi

if (status >= afOK && status < afMaxError)
return msg([status];

return "Unknown error!";

}

#endif /* !defined(16BIT) */

48 VBE/AF Version 1.0

Appendix A - Sample C API

VBEAF.INC

ek kk kA Ak Ak Ak Ak A Ak Ak Ak kA A kA kA Ak hhk kA kkkk kA kkhkkk kA kkkhkhkkkhkhkkhkhkhkhkhkkk kA Ak kA Ak Ak kkk ok ok k%
’

’
’

VESA BIOS Extensions/Accelerator Functions
Version 1.0

’
’

’

Copyright (C) 1996 SciTech Software.
All rights reserved.

’
’
’

Filename: SWorkfile: vbeaf.inc $
Developed by: SciTech Software

*
*
*
*
*
*
*
,*
;*
*
*
*
*
*
*
*
*

Language: 80386 Assembler (TASM ideal mode)
Environment: IBM PC 32 bit Protected Mode.

’

’

’

’

Description: Macros and type definitions for VBE/AF

S$Date: 21 Feb 1996 18:35:42 $ S$SAuthor: KendallB $

’
R R IR Ik Ik I I Ik b b b b b E h b b b Ih E E h 2h IE b b h Ik E 2 I 2 Ik I I I I I I I Ik I E I I 2 2 Ik I I I Ik I I I 2 I I I Ik 2k I I I I I Ik I I i i

’

typedef AF int8 byte
typedef AF intlé6 word
typedef AF int32 dword
typedef AF uint8 byte

typedef AF uintlé word
typedef AF uint32 dword
typedef AF fix32 dword

typedef AF pattern AF uint$8
typedef AF stipple AF uintlé6

typedef AF color AF uint32
true = 1
false = 0

afDontClear = 8000h
afLinearBuffer = 4000h
afMultiBuffer = 2000h
afVirtualScroll = 1000h
afHaveMultiBuffer = 0001h
afHaveVirtualScroll = 0002h
afHaveBankedBuffer = 0004h
afHavelLinearBuffer = 0008h
afHaveAccel2D = 0010h
afHaveDualBuffers = 0020h
afHaveHWCursor = 0040h
afHave8BitDAC = 0080h
afNonVGAMode = 0100h

enum AF mixmodes {
AF REPLACE MIX
AF_AND_MIX
AF OR MIX
AF_XOR MIX
AF NOP MIX

struc AF_devCtx_s
Signature uchar 12 dup (?)

VBE/AF Version 1.0

49

Appendix A - Sample C API

AFVersion
DriverRev
OemVendorName
OemCopyright
AvailableModes
TotalMemory
Attributes
BankSize
BankedBasePtr
LinearSize
LinearBasePtr
LinearGranularity
IOPortsTable
IOMemoryBase
IOMemoryLen

resl

IOMemMaps
BankedMem
LinearMem
Sel0000h

padl

Sel0040h

pad2

SelA000h

pad3

SelB000Oh

pad4

SelC000h

pad>b

BufferEndX
BufferEndY
OriginOffset
OffscreenOffset
OffscreenStartyY
OffscreenEndY
res2

SetBank32Len
SetBank32

Int86
CallRealMode
InitDriver
GetVideoModeInfo
SetVideoMode
RestoreTextMode
SetBank
SetDisplayStart
SetActiveBuffer
SetVisibleBuffer
SetPaletteData
SetGammaCorrectData
WaitTillIdle
EnableDirectAccess
DisableDirectAccess
SetCursor
SetCursorPos
SetCursorColor
ShowCursor

SetMix
Set8x8MonoPattern
Set8x8ColorPattern
SetLineStipple
SetClipRect
DrawScan
DrawPattScan
DrawColorPattScan
DrawScanList
DrawRect
DrawPattRect
DrawColorPattRect
DrawLine
DrawStippleLine
DrawTrap

DrawTri

DrawQuad
PutMonoImage

50

AF uint32 ?
AF uint32 ?
uchar 80 dup (?)
uchar 80 dup (?)
dptr

AF uint32
AF uint32
AF uint32
AF uint32
AF uint32
AF uint32
AF uint32
dptr ?

AF uint32 4 dup (?)
AF uint32 4 dup (?)
AF _uint32 10 dup (?
dptr 4 dup (?)

dptr

dptr

AF uintle
AF uintlé
AF uintlé
AF uintlé
AF uintle
AF uintlé
AF uintlé
AF uintlé
AF uintle
AF uintlé
AF uint32
AF uint32
AF uint32
AF uint32
AF uint32
AF uint32 ?
AF uint32 10 dup (?)
AF uint32
cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

cptr

R S B S R S A AR

)

)

RS R R N e B S S A I S BEAC IV IRV R LV)

B S N S B S I R R I B B B B R S AR AN

VBE/AF Version 1.0

Appendix A - Sample C API

BitBlt cptr ?
BitBltLin cptr ?
SrcTransBlt cptr ?
SrcTransBltLin cptr ?
DstTransBlt cptr ?
DstTransBltLin cptr ?
ends AF_devCtx_s

FIRST AF VEC EQU InitDriver

LAST AF_VEC EQU DstTransBltLin
AF devCtx = (AF devCtx s PTR DS:EBX)
; Mode information block structure
struc AF _modeInfo_s

Attributes AF uintlé ?
XResolution AF uintlé ?
YResolution AF uintlé ?
BytesPerScanLine AF uintlé ?
BitsPerPixel AF uintlé ?
MaxBuffers AF uintlé ?
RedMaskSize AF uint8 ?
RedFieldPosition AF uint8 ?
GreenMaskSize AF uint8 ?
GreenFieldPosition AF uints8 ?
BlueMaskSize AF uint8 ?
BlueFieldPosition AF uint8 ?
RsvdMaskSize AF uints8 ?
RsvdFieldPosition AF uint8 ?
MaxBytesPerScanLine AF uintlé ?
MaxScanLineWidth AF uintlé ?
reserved uchar 118 dup (?)
ends AF _modeInfo_s

AF _modeInfo = (AF _modeInfo s PTR DS:EDI)

struc AF_DPMI regs_s

edi AF uint32 ?
esi AF uint32 ?
ebp AF uint32 N
reserved AF uint32 ?
ebx AF uint32 ?
edx AF uint32 ?
ecx AF uint32 ?
eax AF uint32 ?
flags AF uintlé ?
es AF uintlé ?
ds AF uintlé A
fs AF uintlé ?
gs AF uintlé ?
ip AF uintlé ?
cs AF uintlé A
sp AF uintlé ?
ss AF uintlé ?
ends AF _DPMI_regs_s

; Palette entry structure

struc AF palette s

blue AF uint8 ?
green AF uint8 ?
red AF uints8 ?
alpha AF _uint8 ?
ends AF palette_s

AF palette = (AF palette s PTR DS:ESI)

VBE/AF Version 1.0

51

Appendix A - Sample C API

struc AF _cursor_s

xorMask AF int32 32 dup (?)
andMask AF int32 32 dup (?)
hotx AF int32 ?

hoty AF int32 ?

ends AF_cursor_s

AF cursor = (AF_cursor_ s PTR DS:ESI)

struc AF clipRect s

minX AF int32 ?
minY AF int32 ?
maxX AF int32 ?
maxy AF int32 ?
ends AF clipRect s

AF clipRect = (AF _clipRect s PTR DS:ESI)

struc AF rect s

left AF int32 ?
top AF int32 ?
width AF int32 ?
height AF int32 ?
ends AF rect_s

AF rect = (AF rect s PTR DS:ESI)

struc AF line_ s

x1 AF fix32 ?
yl AF fix32 N
x2 AF fix32 ?
y2 AF fix32 ?
ends AF line_ s

AF line = (AF_line_s PTR DS:ESI)

; 2D fixed point vertex structure
struc AF fxpoint

x AF fix32 A
y AF fix32 ?
ends AF fxpoint

; Parameter block for DrawTrap

struc AF trap s

y AF uint32 ?
count AF uint32 ?
x1 AF fix32 ?
x2 AF fix32 2
slopel AF fix32 ?
slope2 AF fix32 ?
ends AF _trap_ s

52 VBE/AF Version 1.0

AF trap = (AF _trap s PTR DS:ESI)

Appendix A - Sample C API

struc AF tri s

vl dptr

v2 dptr

v3 dptr
xOffset AF fix32
yOffset AF fix32
ends AF tri s

AF tri = (AF tri s PTR DS:ESI)

EACEEIVERIVIEIV IR

struc AF quad_s

vl dptr

v2 dptr

v3 dptr

v4 dptr
xOffset AF fix32
yOffset AF fix32
ends AF quad s

AF _quad = (AF_gquad_s PTR DS:ESI)

EEC IV IS B)

x AF_int32
v AF int32
byteWidth AF int32
height AF int32
image dptr
ends AF_monoImage_s

AF_monoImage = (AF_monoImage_s PTR DS:EST)

LRSI N R A AR

struc AF bitBlt_ s

left AF int32
top AF int32
width AF_int32
height AF int32
dstLeft AF int32
dstTop AF _int32
op AF int32
ends AF bitBlt s

AF bitBlt = (AF bitBlt s PTR DS:ESI)

B R R S IV

struc AF bitBltLin s

srcOfs AF int32
dstLeft AF _int32
dstTop AF int32
width AF int32
height AF int32
op AF _int32
ends AF bitBltLin_s

AF bitBltLin = (AF bitBltLin s PTR DS:ESI)

EACEEIV IS BN B AR

VBE/AF Version 1.0

53

Appendix A - Sample C API

struc AF_transBlt_s

left AF int32 ?
top AF _int32 ?
width AF_int32 ?
height AF int32 ?
dstLeft AF int32 ?
dstTop AF int32 ?
op AF int32 ?
transparent AF int32 ?
ends AF_transBlt_s

AF transBlt = (AF transBlt s PTR DS:ESI)
; Parameter block for TransBltLin
struc AF transBltLin_s

srcOfs AF _int32 ?
dstLeft AF int32 ?
dstTop AF int32 ?
width AF int32 ?
height AF int32 ?
op AF int32 ?
transparent AF int32 ?
ends AF transBltLin_ s

AF transBltLin = (AF transBltLin s PTR DS:ESI)

54 VBE/AF Version 1.0

_VBEAF.ASM

Appendix A - Sample C API

Filename:
Developed by:

*
*
*
*
*
*
*
*
*
*
*
* Language:
* Environment:
*
*
*
*
*
*
*
*
*
*
*
*

Description:

KA KKK KA AR A A A Ak Ak hkhkhkkhkkkkkkkkhkkkhkkkkkk

VESA BIOS Extensions/Accelerator Functions
Version 1.0

Copyright (C) 1996 SciTech Software.
All rights reserved.

$Workfile: _vbeaf.asm $
SciTech Software

80386 Assembler (TASM ideal mode)
IBM PC 32 bit Protected Mode.

Assembly language support routines for the Graphics
Accelerator API. This module provides a small, sample

C API showing how to call the device context functions
from assembler. For time critical code the device context
functions should be called directly from assembly language
rather than via these C callable functions. However for
many operations these C function will suffice.

$Dhate: 21 Feb 1996 18:35:42 $ S$SAuthor: KendallB $

KA KA KA AR A A A Ak Ak Ak hkkkkkkhkkhkkhkkhkkhkkkkk

IDEAL
include "model.mac" ; Memory model macros
include "vbeaf.inc" ; Structure definitions etc

if flatmodel
header vbeaf

EXTRN
EXTRN

__AF int86_C:FPTR
__AF callRealMode C:FPTR

begcodeseg vbeaf

; Macros to setup and call a generic function that takes a parameter block
; in DS:ESI given the parameters passed on the stack

MACRO CallGeneric name

ARG

push
mov

push
push

mov
lea
call

pop
pop
pop
ret

ENDM

dc:DPTR, firstParm:UINT

ebp
ebp, esp
ebx
esi
ebx, [dc]

esi, [firstParm]
[AF devCtx.name]

esi
ebx
ebp

MACRO CallGenericlColor name

ARG

push
mov

push
push

dc:DPTR, color:UINT, firstParm:UINT

ebp
ebp, esp
ebx
esi

VBE/AF Version 1.0

55

Appendix A - Sample C API

mov eax, [color]

mov ebx, [dc]

lea esi, [firstParm]
call [AF devCtx.name]
pop esi

pop ebx

pop ebp

ret

ENDM
MACRO CallGeneric2Color name
ARG dc:DPTR, color:UINT, backColor:UINT, firstParm:UINT

push ebp

mov ebp, esp
push ebx
push esi
mov eax, [color]
mov ebx, [dc]
mov ecx, [backColor]
lea esi, [firstParm]
call [AF_devCtx.name]
pop esi
pop ebx
pop ebp
ret
ENDM
; _AF int86 Issue a real mode interrupt
; Entry: BL - Interrupt number
; DS:EDI - Pointer to DPMI register structure
; Exit: DS:EDI - Pointer to modifed DPMI register structure
procstart ~_AF int86
movzx ebx,bl
push edi
push ebx
call __AF _int86_C ; Call C version to handle it
add esp, 8
ret
procend __AF int86

; Entry: BL - Interrupt number
; DS:EDI - Pointer to DPMI register structure
; Exit: DS:EDI - Pointer to modifed DPMI register structure
procstart __AF callRealMode
push edi
call __AF callRealMode C ; Call C version to handle it
add esp, 4
ret
procend __AF callRealMode

procstartdll __AF initDriver

56 VBE/AF Version 1.0

ARG

push
mov
push

mov
mov
add
call

pop
pop
ret

procend

dc:DPTR

ebp

ebp, esp

ebx

ebx, [dc]

eax, [AF devCtx.initDriver]
eax, ebx

eax

ebx

ebp

__AF initDriver

Appendix A - Sample C API

; AF _int32 AF getVideoModeInfo (AF devCtx *dc,AF intl6 mode,

; AF_modeInfo *modeInfo)

procstartdll
ARG

push
mov

push
push

movzx
mov
mov
call

pop
pop
pop
ret

procend

_AF getVideoModeInfo
dc:DPTR, mode:S USHORT, modeInfo:DPTR

ebp
ebp, esp
ebx
edi

eax, [mode]

ebx, [dc]

edi, [modeInfo]
[AF_devCtx.GetVideoModeInfo]

edi

ebx
ebp

_AF getVideoModeInfo

; AF_int32 AF setVideoMode (AF_devCtx *dc,AF_intl6 mode,
; AF int32 *bytesPerLine,int numBuffers)

procstartdll
ARG

push
mov
push

movzx
mov
mov
mov
mov
call
mov
mov

pop
pop
ret

procend

_AF setVideoMode

dc:DPTR, mode:S USHORT, bytesPerLine:DPTR,
ebp

ebp, esp

ebx

eax, [mode]

ebx, [dc]
ecx, [bytesPerLine]
ecx, [ecx]

edi, [numBuffers]
[AF_devCtx.SetVideoMode]
edx, [bytesPerLine]
[edx],ecx

ebx
ebp

_AF setVideoMode

numBuffers:UINT

; AF int32 AF setVirtualVideoMode (AF devCtx *dc,AF intl6 mode,
; AF int32 virtualX,AF int32 virtualY,AF int32 *bytesPerLine,int numBuffers)

procstartdll

_AF setVirtualVideoMode

VBE/AF Version 1.0

57

Appendix A - Sample C API

ARG dc:DPTR, mode:S_USHORT, virtualX:UINT, virtualY:UINT, \
bytesPerLine:DPTR, numBuffers:UINT

push ebp

mov ebp, esp
push ebx
push esi
movzx eax, [mode]
mov ebx, [dc]
mov ecx, [bytesPerLine]
mov ecx, [ecx]
mov edx, [virtualX]
mov esi, [virtualY]
mov edi, [numBuffers]
call [AF_devCtx.SetVideoMode]
mov edx, [bytesPerLine]
mov [edx],ecx
pop esi
pop ebx
pop ebp
ret
procend _AF setVirtualVideoMode

procstartdll _AF restoreTextMode
ARG dc:DPTR

push ebp

mov ebp, esp
push ebx
mov ebx, [dc]
call [AF_devCtx.RestoreTextMode]
pop ebx
pop ebp
ret
procend _AF restoreTextMode

procstartdll _AF setBank
ARG dc:DPTR, bank:UINT

push ebp

mov ebp, esp
push ebx
mov ebx, [dc]
mov edx, [bank]
call [AF devCtx.SetBank]
pop ebx
pop ebp
ret
procend _AF setBank

procstartdll _AF waitTillIdle
ARG dc:DPTR

push ebp

58 VBE/AF Version 1.0

mov
push

mov
call

pop
pop

ret

procend

ebp, esp
ebx
ebx, [dc]

[AF devCtx.WaitTillIdle]

ebx
ebp

_AF waitTillIdle

Appendix A - Sample C API

_AF enableDirectAccess

procstartdll
ARG
push
mov

push

mov
call

pop
pop

ret

procend

dc:DPTR
ebp
ebp, esp

ebx

ebx, [dc]

[AF _devCtx.EnableDirectAccess]

ebx
ebp

_AF enableDirectAccess

_AF disableDirectAccess

procstartdll
ARG
push
mov

push

mov
call

pop
pop

ret

procend

dc:DPTR
ebp
ebp, esp

ebx

ebx, [dc]

[AF _devCtx.DisableDirectAccess]

ebx
ebp

_AF disableDirectAccess

; AF int32 waitVRT)

procstartdll
ARG

push
mov
push

mov
mov
mov
mov
call

pop
pop

ret

procend

_AF setDisplayStart

dc:DPTR, x:UINT,

ebp
ebp, esp
ebx

eax, [waitVRT]

ebx, [dc]
ecx, [x]
edx, [y]

y:UINT,

waitVRT:UINT

[AF _devCtx.SetDisplayStart]

ebx
ebp

_AF setDisplayStart

VBE/AF Version 1.0

; void AF setDisplayStart (AF_devCtx *dc,AF int32 x,AF int32 vy,

59

Appendix A - Sample C API

procstartdll _AF setActiveBuffer
ARG dc:DPTR, index:UINT

push ebp

mov ebp, esp
push ebx
mov eax, [index]
mov ebx, [dc]
call [AF devCtx.SetActiveBuffer]
pop ebx
pop ebp
ret
procend _AF setActiveBuffer

procstartdll _AF setVisibleBuffer
ARG dc:DPTR, index:UINT, waitVRT:UINT

push ebp

mov ebp, esp
push ebx
mov eax, [index]
mov ebx, [dc]
mov edx, [waitVRT]
call [AF _devCtx.SetVisibleBuffer]
pop ebx
pop ebp
ret
procend _AF setVisibleBuffer

; void AF setPaletteData (AF_devCtx *dc,AF palette *pal,AF int32 num,
; AF int32 index,AF int32 waitVRT)

procstartdll _AF setPaletteData
ARG dc:DPTR, pal:DPTR, num:UINT, index:UINT, waitVRT:UINT
push ebp
mov ebp, esp
push ebx
push esi
mov eax, [waitVRT]
mov ebx, [dc]
mov ecx, [num]
mov edx, [index]
mov edi, [pal]
call [AF devCtx.SetPaletteData]
pop esi
pop ebx
pop ebp
ret
procend _AF setPaletteData

; void AF setGammaCorrectData (AF devCtx *dc,AF palette *pal,AF int32 num,
; AF int32 index)

60 VBE/AF Version 1.0

procstartdll
ARG

push
mov

push
push

mov
mov
mov
mov
call

pop
pop
pop
ret

procend

_AF setGammaCorrectData

dc:DPTR, pal:DPTR, num:UINT, index:UINT

ebp
ebp, esp
ebx
esi

eax, [index]

ebx, [dc]
ecx, [num]
esi, [pall

[AF_devCtx.SetGammaCorrectData]

esi
ebx
ebp

_AF setGammaCorrectData

Appendix A - Sample C API

procstartdll
ARG

push
mov

push
push

mov
mov
call

pop
pop
pop
ret

procend

_AF setCursor
dc:DPTR, cursor:DPTR

ebp
ebp, esp
ebx
esi

ebx, [dc]
esi, [cursor]
[AF _devCtx.SetCursor]

esi

ebx
ebp

_AF setCursor

procstartdll
ARG

push
mov
push

mov
mov
mov
call

pop
pop
ret

procend

_AF setCursorPos

dc:DPTR, x:UINT, y:UINT

ebp
ebp, esp
ebx
eax, [x]
ebx, [dc]
ecx, [y]

[AF_devCtx.SetCursorPos]

ebx
ebp

_AF setCursorPos

; AF uint8 blue)

; void AF setCursorColor (AF devCtx *dc,AF uint8 red,AF uint8 green,

procstartdll

ARG

_AF_setCursorColor

dc:DPTR, red:S_UCHAR, green:S UCHAR, blue:S_UCHAR

VBE/AF Version 1.0

61

Appendix A - Sample C API

push ebp

mov ebp, esp
push ebx
mov al, [red]
mov ah, [green]
mov ebx, [dc]
mov cl, [blue]
call [AF _devCtx.SetCursorColor]
pop ebx
pop ebp
ret
procend _AF setCursorColor

procstartdll _AF_showCursor
ARG dc:DPTR, visible:UINT
push ebp

mov ebp, esp
push ebx

mov eax, [visible]
mov ebx, [dc]
call [AF_devCtx.ShowCursor]
pop ebx
pop ebp
ret
procend _AF showCursor

procstartdll _AF setMix
ARG dc:DPTR, foreMix:UINT, backMix:UINT

push ebp

mov ebp, esp
push ebx
mov eax, [foreMix]
mov ebx, [dc]
mov ecx, [backMix]
call [AF devCtx.SetMix]
pop ebx
pop ebp
ret
procend _AF setMix

procstartdll _AF set8x8MonoPattern
ARG dc:DPTR, pattern:DPTR

push ebp

mov ebp, esp

push ebx

push esi

mov ebx, [dc]

mov esi, [pattern]

call [AF_devCtx.Set8x8MonoPattern]

62 VBE/AF Version 1.0

Appendix A - Sample C API

pop esi
pop ebx
pop ebp
ret
procend _AF set8x8MonoPattern

procstartdll _AF setLineStipple
ARG dc:DPTR, stipple:S USHORT
push ebp

mov ebp, esp
push ebx

mov ax, [stipple]
mov ebx, [dc]
call [AF _devCtx.SetLineStipple]
pop ebx
pop ebp
ret
procend _AF setLineStipple

; void AF setClipRect (AF devCtx *dc,AF int32 minx,AF int32 miny,
; AF int32 maxx,AF int32 maxy)

procstartdll _AF setClipRect
CallGeneric SetClipRect

procend _AF setClipRect

; void AF_drawScan (AF_devCtx *dc,AF_int32 color,AF_int32 y,AF_int32 x1,
; AF int32 x2)

procstartdll _AF drawScan

ARG dc:DPTR, color:UINT, y:UINT, x1:UINT, x2:UINT

push ebp

mov ebp, esp
push ebx
push esi
mov eax, [vy]
mov ebx, [dc]
mov ecx, [x1]
mov edx, [x2]
mov esi, [color]
call [AF_devCtx.DrawScan]
pop esi
pop ebx
pop ebp
ret
procend _AF drawScan

; void AF drawPattScan(AF devCtx *dc,AF int32 foreColor,AF int32 backColor,
; AF int32 y,AF int32 x1,AF int32 x2)

procstartdll _AF drawPattScan
ARG dc:DPTR, color:UINT, backColor:UINT, y:UINT, x1:UINT, x2:UINT

push ebp
mov ebp, esp

VBE/AF Version 1.0 63

Appendix A - Sample C API

push ebx

push esi
push edi
mov eax, [y]
mov ebx, [dc]
mov ecx, [x1]
mov edx, [x2]
mov esi, [color]
mov edi, [backColor]
call [AF_devCtx.DrawPattScan]
pop edi
pop esi
pop ebx
pop ebp
ret
procend _AF drawPattScan

void AF drawScanList (AF devCtx *dc,AF color color,AF int32 y,AF int32 len,
AF intl6é *scans)

procstartdll _AF drawScanList

ARG dc:DPTR, color:UINT, y:UINT, len:UINT, scans:DPTR

push ebp

mov ebp, esp
push ebx
mov eax, [v]
mov ebx, [dc]
mov ecx, [len]
mov esi, [scans]
mov edx, [color]
call [AF_devCtx.DrawScanList]
pop ebx
pop ebp
ret
procend _AF drawScanList

void AF drawRect (AF devCtx *dc,AF color color,AF int32 left,AF int32 top,
AF _int32 width,AF int32 height)

procstartdll _AF drawRect

CallGenericlColor DrawRect

procend _AF drawRect

void AF drawPattRect (AF devCtx *dc,AF color foreColor,AF color backColor,
AF int32 left,AF int32 top,AF int32 width,AF int32 height)

procstartdll _AF drawPattRect

CallGeneric2Color DrawPattRect

procend _AF drawPattRect

void AF drawLine (AF devCtx *dc,AF color color,AF fix32 x1,AF fix32 yl,
AF fix32 x2,AF fix32 y2)

procstartdll _AF drawLine

CallGenericlColor DrawLine

procend _AF drawLine

64 VBE/AF Version 1.0

Appendix A - Sample C API

; void AF drawStippleLine (AF_devCtx *dc,AF color foreColor,AF color backColor,
; AF fix32 x1,AF fix32 yl1,AF fix32 x2,AF fix32 y2)

procstartdll _AF drawStippleLine
CallGeneric2Color DrawStippleLine

procend _AF drawStippleLine

; void AF_drawTrap (AF_devCtx *dc,AF_color color,AF int32 y,AF _int32 count,
; AF_fix32 x1,AF_fix32 x2,AF fix32 slopel,AF_fix32 slope2)

procstartdll _AF drawTrap
CallGenericlColor DrawTrap

procend _AF drawTrap

; void AF drawTri (AF _devCtx *dc,AF _color color,AF fxpoint *vl,AF fxpoint *v2,
; AF fxpoint *v3,AF fix32 xOffset,AF fix32 yOffset)

procstartdll _AF drawTri
CallGenericlColor DrawTri

procend _AF drawTri

; void AF_drawQuad (AF_devCtx *dc,AF_color color,AF_ fxpoint *vl,AF fxpoint *v2,
; AF fxpoint *v3,AF fix32 xOffset,AF fix32 yOffset)

procstartdll _AF drawQuad
CallGenericlColor DrawQuad

procend _AF drawQuad

; void AF putMonolImage (AF devCtx *dc,AF int32 foreColor,AF int32 backColor,
; AF int32 x,AF int32 y,AF int32 byteWidth,AF int32 height,AF uint8 *image)

procstartdll _AF putMonoImage
CallGeneric2Color PutMonoImage

procend _AF putMonolmage

; void AF bitBlt (AF devCtx *dc,AF int32 left,AF int32 top,AF int32 width,
; AF _int32 height,AF int32 dstLeft,AF int32 dstTop,AF int32 op)

procstartdll _AF bitBlt
CallGeneric BitBlt

procend _AF bitBlt

; void AF bitBltLin(AF_devCtx *dc,AF int32 srcOfs,
; AF int32 left,AF int32 top,AF int32 width,AF int32 height,
; AF int32 dstLeft,AF int32 dstTop,AF int32 op)

procstartdll _AF bitBltLin

CallGeneric BitBltLin

procend _AF bitBltLin

; void AF srcTransBlt (AF devCtx *dc,AF int32 left,AF int32 top,AF int32 width,
; AF int32 height,AF _int32 dstLeft,AF int32 dstTop,AF _color transparent)

VBE/AF Version 1.0 65

Appendix A - Sample C API

procstartdll _AF srcTransBlt
CallGeneric SrcTransBlt

procend _AF srcTransBlt

; void AF_dstTransBlt (AF_devCtx *dc,AF int32 left,AF int32 top,AF _int32 width,
; AF int32 height,AF int32 dstLeft,AF int32 dstTop,AF color transparent)

procstartdll _AF _dstTransBlt
CallGeneric DstTransBlt

procend _AF _dstTransBlt

; void AF srcTransBltLin (AF devCtx *dc,AF_int32 srcOfs,
; AF int32 left,AF int32 top,AF int32 width,AF int32 height,
; AF int32 dstLeft,AF int32 dstTop,AF color transparent)
procstartdll _AF srcTransBltLin

CallGeneric SrcTransBltLin

procend _AF srcTransBltLin

; void AF dstTransBltLin (AF devCtx *dc,AF int32 srcOfs,
; AF int32 left,AF int32 top,AF int32 width,AF int32 height,
; AF int32 dstLeft,AF int32 dstTop,AF color transparent)
procstartdll _AF dstTransBltLin

CallGeneric DstTransBltLin
procend _AF dstTransBltLin
endcodeseg vbeaf

endif

END

66 VBE/AF Version 1.0

