
264

Centromeres, checkpoints and chromatid cohesion
Robin C Allshire

An emerging view is that the formation of active centromeres
is modulated in an epigenetic manner reflecting the
association of centromeres with heterochromatin. Support
for this comes from studies on fission yeast centromeres,
the properties of human neocentromeres and dicentric
chromosomes, and analyses of Drosophila minichromosome
deletion derivatives. A link has been established between
tension across kinetochores and the phosphorylation status
of kinetochore components. Vertebrate homologues of
yeast MAD2 have recently been isolated and localized to
kinetochores, indicating that components of the spindle
integrity checkpoint are conserved. The linkage between sister
chromatids is only dissolved at anaphase during mitotic and
meiotic divisions. Phenotypic and localization data combined
with their pattern of rapid degradation at anaphase have
implicated several yeast and Drosophila proteins in aspects
of sister chromatid cohesion.
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Introduction
Aneuploidy in the form of trisomies is extraordinarily
common in human embryos, occurring in a quarter of
spontaneously aborted foetuses and 0.3% of newborns.
Consequently, abnormal chromosome segregation plays a
major role in human health problems [1•]. The process of
chromosome segregation on mitotic and meiotic spindles
occurs in all eukaryotes. Understanding how various com-
ponents contribute to accurate chromosome segregation in
other organisms should facilitate the analysis of defects
which lead to aneuploidy in humans. This review focuses
on three aspects of chromosome segregation: the role of
heterochromatin in the formation and function of active
centromeres; components of checkpoints which act at
kinetochores; and the proteins which contribute to sister
chromatid cohesion and its regulation.

Centromeres and their associated kinetochores are respon-
sible for the bipolar attachment of chromosomes to the
developing mitotic spindle, congression of chromosomes
to the metaphase plate, the simultaneous release of

sister chromatids and their movement to opposite spindle
poles during anaphase [2•]. During meiosis, there is the
added complication of having to cope with paired sets
of homologous sister chromatids (bivalents) which must
remain attached at their centromeres during the first
meiotic division and only separate in the second meiotic
division (Fig. 1).
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The configuration of chromosomes on (a) mitotic and (b) meiosis I
metaphase spindles. In mitosis, homologous chromosomes act
independently with their sister kinetochores attaching and segregating
to opposite spindle poles. The pairing of homologous chromosomes
to form bivalents (four chromatids) during the early stages of meiosis
is required to allow homologues to attach to opposite poles of the
meiosis I spindle via one of their sister kinetochores. In many systems,
pairing results in recombination between the homologues which
develop into visible chiasmata (cross-overs). It is these chiasmata
that hold the bivalents in place with their kinetochores oriented to
opposite poles [1•]. The fourth chromosome in Drosophila females
segregates without exchange. Pairing of achiasmatic X and fourth
chromosomes is mediated by centric heterochromatin [54••,55••].
No recombination occurs in Drosophila male meiosis, instead,
homologues are held together by pairing mediated by specific
euchromatic sequences, not heterochromatin [65].

DNA sequences that act in cis to nucleate kinetochore
assembly and provide full centromere function in multicel-
lular eukaryotes have been extremely difficult to identify.
Recent developments in mammalian, fruitfly and fission
yeast systems have revealed that centromere activity
is associated with centromeric heterochromatin formed
on arrays of repetitive DNA sequences. Several new
centromere/kinetochore components have been identified
in mammals, flies and yeasts, and some of these proteins
are evolutionarily conserved.
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The kinetochore is subject to a surveillance system
that monitors the presence of monopolar attached or
unattached kinetochores and halts sister chromatid sep-
aration until proper attachment has been attained. The
surveillance system appears to sense tension across
bilaterally attached kinetochores and is regulated by
phosphorylation. Several proteins have been implicated
as components of this checkpoint system. Exciting
developments have taken place towards understand-
ing the regulation of sister chromatid cohesion and
identifying the ‘molecular glue’ that is regulated at
the metaphase/anaphase transition by the cyclosome or
anaphase-promoting complex (APC).

Heterochromatin and the epigenetic
regulation of centromere formation
The centromeric domain is cytologically discernible as
the primary constriction in the body of a metaphase
chromosome in many species [2•,3•]. Large arrays of
monotonous tandemly repeated satellite sequences are
found in this region of mouse and human chromosomes
where the kinetochore has been shown to assemble [2•].
In vivo fragmentation of human chromosomes suggests
that centromere function may be associated with arrays
of alphoid repeats [4,5]. When short arrays of naked
alphoid DNA in the form of a purified yeast artificial
chromosome (YAC) containing ∼70 kb of human chromo-
some 21-I alphoid (H Cooke, H Matsumoto, personal
communication) or in vitro tandemly oligomerized alphoid
repeats cloned in bacterial artificial chromosomes (BACs;
H Willard, personal communication) are reintroduced
into human cells, they are assembled de novo into
structures which contain an active kinetochore in some
transformants. Thus, although more detailed analyses of
these structures is required, it is possible that alphoid
satellite arrays may be sufficient for providing a nucleation
site for kinetochore assembly.

In the fruitfly Drosophila melanogaster, an elegant series
of experiments based on radiation-induced minichro-
mosome derivatives of the X chromosome show that
the active centromere is confined to a specific 420 kb
region of centric heterochromatin, which contains two
different simple repetitive sequences interspersed at
intervals with various transposable elements ([6••,7•];
X Sun, J Wahlstrom, G Karpen, personal communication).
Complete centromere function in the budding yeast
Saccharomyces cerevisiae is specified by only 125 bp of
DNA [2•,8]. In contrast, centromeres of the fission
yeast, Schizosaccharomyces pombe, occupy 40–100 kbp and,
like their counterparts in larger eukaryotes, they are
associated with arrays of repetitive DNA [2•,8]. S. pombe
centromeres are also heterochromatic as genes placed
within them display variegated expression (reversible
transcriptional silencing) [9,10•]. The clr4, rik1 and swi6
mutations alleviate silencing within the centromere [10•].
These strains are also cold-sensitive, hypersensitive to
microtubule destabilizing drugs, and display reduced

mitotic chromosome stability and disrupted movement of
centromeres to the poles of the spindle during anaphase.
Interestingly, the Swi6 and Clr4 proteins share domains of
similarity with some Drosophila heterochromatin proteins.
Thus, mutations that inhibit heterochromatin formation
also disturb centromere function [10•,11••,12•]. The ability
to assemble a functional S. pombe centromere on minimal
constructs is also subject to epigenetic regulation; a
mitotically stable minichromosome is formed in only a
proportion of primary transformants. Once assembled,
however, this functional centromere is stably propagated
over many generations [13]. This phenomenon may
reflect the probability of assembling the DNA into
heterochromatin to provide the correct template for
nucleating a functional kinetochore. The fact that alphoid
repeats only form active centromeres in a proportion of
human cell transformants is also suggestive of epigenetic
events influencing kinetochore assembly (see above).

Other observations also suggest epigenetic regulation
of active centromere formation. In humans, several
instances of neocentromere formation have been reported
in which an active kinetochore is assembled on derivative
chromosomes in a region where no alphoid repeats or
centromeres are found normally [14,15]. Certain dicentric
human chromosomes may be stable because they are
functionally monocentric. This is supported by the
observation that a constriction is formed at just one
centromere and that just one centromere binds known
centromere proteins such as CENP-C and -E [3•]. Clearly,
centromere activity must be modulated by epigenetic
factors. It is possible that a particular chromatin structure
needs to be adopted to favour kinetochore assembly.
Histone H3 variants such as CENP-A and Cse4p, which
are associated with centromere function in mammals and
yeast, may be required [16,17•]. In addition, epigenetic
modifications of DNA by methylation [18] or chromatin by
acetylation (K Ekwall, R Allshire, unpublished data) might
regulate centromere activity. Exploring how centromere
inactivation occurs and how such centromeres can be
reactivated will be a fruitful avenue of research.

Epigenetic regulation of centromere formation is also
apparent on certain minichromosome deletion derivatives
of the Drosophila X chromosome. Deletion derivatives
of the original X Dp1187 minichromosome, which lack
all heterochromatic DNA normally associated with the
centromere, are transmitted relatively efficiently through
male meiosis [6••]. Subtelomeric regions — that do not
normally reside close to the centromere — have taken
on characteristics of the centromere such as binding the
ZW10 protein (see below), allowing the formation of a
neocentromere on these Dp1187 derivatives (B Williams,
T Murphy, M Goldberg, G Karpen, personal communi-
cation). The proximity of these normally subtelomeric
sequences to centromeric heterochromatin on the original
Dp1187 may have allowed them to develop centromeric
properties. Therefore, not only can centromeric hete-
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rochromatin repress expression of juxtaposed genes by
‘spreading’ but it may also impose centromeric properties
on adjacent sequences (K Maggert, G Karpen, personal
communication). Once ‘tainted’ by association with the
centromere, the structure formed may be maintained by
self-propagation over many generations. It is apparent that
epigenetic phenomena are not only a hallmark of hete-
rochromatin but also of active centromere assembly itself.
Clearly, in S. pombe, Drosophila and mammals there is an
association between repetitive DNA, heterochromatin and
centromere functions. It is my opinion that the enigmatic
phenomena associated with centromeric heterochromatin
reflect the assembly and functions of a normal centromere.

Sensing the tension
Cells can respond to the presence of chromosomes which
have only managed to capture microtubules from one pole
or where the chromosome remains unattached to either
pole of a mitotic spindle. The upshot is to delay anaphase
onset, providing additional time to achieve bilateral
spindle attachment of all chromosomes before proceeding
into anaphase [19]. How are unattached or mono-oriented
chromosomes recognized by the cell? In mammalian
cell lines, a phosphoepitope recognized by a monoclonal
antibody (3F3/2) is only present at kinetochores which
are not under tension, such as during the early stages
of mitosis or the kinetochores of lagging or unattached
chromosomes. Once all chromosomes have congressed at
the metaphase plate, staining is lost until the next mitosis
[20]. Thus, this phosphoepitope could be the basis of a
checkpoint resulting in anaphase inhibition in response
to misaligned chromosomes. More recent observations
bolster this idea. Microinjection of cells with the 3F3/2
antibody in early mitosis protects the phosphoepitope
from dephosphorylation and delays anaphase onset until,
eventually, the epitope disappears [21•].

Combining staining of the 3F3/2 antibody with manipula-
tion of chromosomes in insect spermatocytes has proven
to be very informative. Anaphase I of meiosis in these
insects (mantids) is delayed by a single mono-oriented
bivalent lurking close to one pole of the spindle.
However, applying tension artificially across the bivalent
with a microneedle allows anaphase to proceed [22•].
Prior to creating tension on a mono-oriented grasshopper
bivalent, both kinetochores stain intensely with 3F3/2
but the application of tension via a microneedle on one
homologue results in reduced staining. It appears that
tension across kinetochores in mitosis and male meiosis
erases a signal — the 3F3/2 phosphoepitope — that acts
to inhibit anaphase onset [23••]. The identification of
the kinetochore protein(s) recognized by 3F3/2 and the
tension-sensing protein that results in dephosphorylation
of the 3F3/2 phosphoepitope will be fundamental for
dissecting this tension-dependent checkpoint.

The MAD and BUB genes of S. cerevisiae monitor spindle
integrity and were identified as being required to halt

cell cycle progression in the presence of microtubule-
destabilizing drugs [24,25]. One of their counterparts also
appears to be a component of the kinetochore tension
checkpoint in vertebrates. The Xenopus (XMAD2) and
human (hsMAD2) homologs of the S. cerevisiae MAD2 gene
have been isolated recently [26••,27••]. Antibodies raised
against XMAD2 inhibit a spindle assembly checkpoint in
frog egg extracts [26••]. Electroporation of human cells
with anti-hsMAD2 antibodies renders them insensitive
to the normal nocodazole-induced mitotic arrest [27••].
Staining of human cells with either antibody in interphase
detects protein associated with the nucleus but during
prometaphase or in nocodazole-arrested cells, paired dots
of fluorescence appear at the sister-kinetochores. In cells
progressing normally through metaphase and anaphase,
staining with anti-XMAD2 is no longer detected at
kinetochores. However, the unattached kinetochores of
mono-oriented chromosomes in newt lung cells still stain
with anti-XMAD2 when all other kinetochores lack the
antigen [26••]. This suggests that vertebrate MAD2p also
plays a role in tension sensing at kinetochores; however,
as MAD2p is unmodified by phosphorylation, it cannot
contain the 3F3/2 epitope and therefore must act in
concert with the 3F3/2 protein. It is likely that other
MAD/BUB proteins will be conserved and play a role in
this checkpoint.

Monitoring chromosome behaviour in yeast
In budding yeast, centromere misbehaviour is also moni-
tored by the products of the MAD/BUB genes [28•–30•].
Short linear minichromosomes containing a centromere
mis-segregate frequently in mitosis compared to similarly
sized circular forms. Pedigree analyses show that these
short linear minichromosomes induce mitotic delays but
that these delays are abolished in strains with mutations in
the MAD genes [28•]. Defective kinetochore components
or centromeric DNA have been shown to elicit a
mitotic delay which is dependent upon some of the
products of the MAD/BUB genes [29•,30•]. Active dicentric
chromosomes in S. cerevisiae also induce a delay in progress
through mitosis. Time-lapse analyses of live cells has
shown that cells harboring these dicentrics pause for
a considerable period in mid-anaphase and that this
delay is dependent upon the RAD9 checkpoint [31•]. In
mammalian cells, functional dicentrics lag but do not form
bridges on mid-anaphase spindles; further analyses are
required to determine if they delay progression through
anaphase (B Sullivan, personal communication).

Studies of chromosome segregation in yeast are hampered
by the small size of chromosomes and consequently the
inability to visualize key events. An ingenious in vivo
assay has been developed for monitoring sister chromatid
separation in live yeast cells [32••]. Insertion of a tandem
array of 256 copies of the lac operator near the centromere
of S. cerevisiae chromosome III and simultaneous expres-
sion of the lac-encoded repressor protein fused to green
fluorescent protein (GFP) results in the accumulation of
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GFP at this point on the chromosome, which can be
visualized by fluorescence microscopy. The separation of
one spot into two allows the timing of sister chromatid
separation to be monitored accurately with respect to other
cellular events. This assay confirms, in live cells, that sister
chromatid separation is arrested in response to spindle
damage but that it proceeds regardless in mad mutants
[32••]. This approach of monitoring chromosomal events in
live cells will be very useful for assessing the contribution
of various components to chromosome segregation. The
fusion of GFP to centromere proteins themselves will also
provide a useful means for charting centromere dynamics
in yeast cells, as similar analyses in live human cells
expressing GFP fused to the alphoid satellite binding
protein CENP-B have demonstrated [33•].

Regulating sister chromatid separation and
anaphase onset
During mitosis, the sister centromeres appear — under
some conditions — to be the last region of sister chro-
matids to remain joined and are released only when all
sister kinetochores have captured microtubules from oppo-
site poles. It is intriguing that strands of alphoid satellite
can be clearly visualized running between sister kineto-
chores of extracted human chromosomes at metaphase
when the arms of the sister chromatids have separated
completely [34•]. This region of the chromosome has been
observed to undergo microtubule-dependent stretching
during metaphase [33•]. At this stage, it is also known
that a pool of topoisomerase II α (TopoII) remains
specifically associated with the centromere [35,36]. It
is possible that the final act which allows anaphase
onset is to release these tethers of alphoid DNA by
activating this centromere-associated TopoII pool. It is
known that the release of sister chromatids is mediated
by APC, which also regulates the ubiquitin-dependent
degradation of cyclin B, allowing exit from mitosis [37–42].
Degradation of some other factor, but not cyclins, by
APC allows sister chromatid separation to proceed, thereby
initiating anaphase [37–40]. This factor is referred to as the
chromatid ‘glue’. The action of APC on the glue could be
indirect such that an inhibitor of anaphase onset maintains
the glue and when this inhibitor is degraded by APC, sister
chromatids separate and anaphase ensues. Recently, two
good candidates, Cut2p and Pds1p — which may either
be the glue or an inhibitory regulator of the glue — have
been identified in S. pombe and S. cerevisiae respectively
[43••,44,45,46••]. The Cut2 protein is associated with the
short metaphase spindle but is degraded at anaphase
onset whereas Pds1p is associated with the nucleus. The
degradation of both proteins at anaphase is dependent on
the presence of a specific region which has similarity to
cyclin degradation boxes; this degradation is dependent
on components of APC. Expression of non-degradable
versions of both Cut2p and Pds1p inhibits sister chromatid
separation. Thus, degradation of these proteins by APC
is required to promote anaphase. The roles of Cut2p and
pds1p appear to be very similar but there are no extensive

regions of sequence similarity and, unlike PDS1, the cut2+

gene is essential.

Surprisingly, the spindle integrity checkpoint remains
partly intact in pds1 mutants as, unlike mad and bub
mutants, they do not exit mitosis in the presence of
spindle damage [44,45,46••]. The MAD and BUB products
may prevent anaphase by a Pds1p-independent pathway,
or they may act via pds1p to inhibit anaphase, but play
an additional role in preventing later cell cycle events in
response to spindle or chromosome segregation defects.
Presumably, the kinetochore tension/spindle integrity
checkpoint mediated by the MAD and BUB products
must arrest anaphase by inhibiting the APC-dependent
degradation of proteins such as Cut2p or Pds1p at some
level, thus preventing sister chromatid separation; how this
is achieved is presently unknown.

In Drosophila, four genes involved in sister chromatid
cohesion have been characterized. The products of the
pimples and three rows genes are required for the separation
of sister centromeres during mitosis in embryos [47•].
The Pimples protein is degraded rapidly upon anaphase
onset. Neither mutant registers a defective mitotic spindle
assembly checkpoint. The MEI-S332 protein is associated
with centromeres from late prometaphase of the first
meiotic division until anaphase II when sister chromatids
normally separate [48••]. In its absence, sister chromatids
separate prematurely during anaphase I, suggesting that
the MEI-S332 protein is required for tethering sister
centromeres during meiosis. The MEI-S332 protein seems
to disappear abruptly from chromosomes at the metaphase
II/anaphase II transition. The ORD protein plays a
complementary role and holds sister chromatids together
along their length during the first meiotic division [49].
Lack of ORD results in precocious sister chromatid
separation during prophase I. Both MEI-S332 and ORD
proteins contain PEST motifs, suggesting that they may
be regulated by proteolysis. The ord and mei-S332 mutants
display no defects in the separation of sister chromatids
during mitosis. From the analysis of these Drosophila
mutants, it is clear that there are different proteins
required to hold sister chromatids together along their
length or specifically at the centromere and that these may
act exclusively in meiosis or mitosis.

Creating tension in meiosis
In many organisms, bivalents are held together by
chiasmata which result from recombination between
homologues (Fig. 1) [1•]. As discussed above, in mantid
and grasshopper male meiosis I, tension across all bivalents
acts as a signal to indicate that all chromosomes have
recombined and anaphase can proceed [22•,23••]. In
contrast, in Drosophila females, the signal of tension across
any single bivalent is utilized to halt oocyte development
at metaphase I until fertilization [50,51•]. It is of interest
to note that, in humans, most trisomies arise from defects
in maternal meiosis and many of these are associated with
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During the early stages of mitosis, sister kinetochores capture microtubules emanating from both poles of the spindle, resulting in the
congression of all chromosomes at the centre. Only when all chromosomes have gathered at the spindle equator can anaphase be triggered
by dissolving the tethers between sister chromatids. Proteins, such as Cut2p in S. pombe and Pds1p in S. cerevisiae, negatively regulate the
separation of chromatids [43••,44,45,46••]. These proteins contain destruction boxes and are degraded precisely at anaphase onset, thus
allowing chromatid separation. The machinery responsible for the ubiquitination and, consequently, the degradation of proteins such as Cut2p
and Pds1p must be negatively regulated by defects in spindle assembly, kinetochore structure, or the presence of an unattached or lagging
chromosome. The products of the MAD and BUB genes are required to monitor spindle integrity and kinetochore structure [26••,27••,28•–30•].
Proteins such as Mad2p and the species recognized by the 3F3/2 antibody signal bilateral attachment of sister kinetochores by sensing the
tension that develops across the opposing kinetochores [20,21•,22•,23••,26••]. Mono-oriented chromosomes are not under tension, their
kinetochores carry the phosphorylated form of the 3F3/2 protein(s) and the Mad2p, which must signal so as to delay the degradation of proteins
that trigger anaphase. Degradation of the Cut2p and Pds1p proteins is mediated by ubiquitination via the APC/cyclosome and proteolysis by the
proteasome [43••,46••].

aberrant frequencies and distribution of recombination
events on that chromosome [1•]. The importance of
recombination in meiosis is emphasized by the finding
in male mice that a lack of chiasmata leads to the
inhibition of anaphase I [52,53]. Further investigations are
required to determine what triggers the coordinate release
of chiasmata to induce the onset of anaphase I and whether
this is also regulated by APC.

Recombination is not always required to ensure normal
segregation of chromosomes in meiosis I. During the first
meiotic division in female Drosophila, it is known that
achiasmatic fourth and X chromosome pairs are segregated
normally. Apparently, the centric heterochromatin on each
chromosome itself acts as a sorting device, allowing the
association of achiasmatic homologous chromosomes in
the absence of recombination [54••,55••]; this suggests
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that heterochromatin itself is ‘sticky’ and that each
chromosome has a unique heterochromatin structure
allowing homologues to find each other in the nuclear
milieu. The evidence that pericentric heterochromatin
is inherently sticky has been demonstrated persuasively
in somatic cells with respect to the behaviour of the
brownDominant mutation, bwD, in Drosophila ([56••,57••]; see
Marshall et al., this issue, [pp 259–263]). This type of
association of heterochromatic regions in somatic cells is
perhaps used in female meiosis for mediating the pairing
of achiasmatic homologues.

Novel centromeric proteins
Several other new proteins, in addition to those discussed
above, have been found to associate with centromeres.
The localization of the Swi6p chromodomain protein
at S. pombe centromeres is dependent upon the pres-
ence of the clr4+ and rik1+ products [11••,12•]. The
Drosophila ZW10 protein localizes with spermatocyte
kinetochores in late prometaphase I, stretches along
kinetochore microtubules at metaphase I, and reassociates
with the kinetochore at anaphase; similar localizations
are observed through meiosis II [58•]. Association of
ZW10 with kinetochore microtubules correlates with the
application of tension across kinetochores at metaphase.
Mutations in zw10 result in a high incidence of lagging
chromosomes during mitotic anaphase and nondisjunction
of chromosomes during both meiotic divisions. Proteins
homologous to ZW10 have been identified in C. elegans,
Arabidopsis and humans. The human ZW10 protein also
associates with kinetochores in a cell-cycle regulated
manner (M Goldberg, personal communication). Thus,
ZW10 represents a conserved centromere/kinetochore
component and perhaps plays a role in the recognition
of tension across kinetochores. The newly identified
CENP-F protein is also dynamic in its association with
human kinetochores [59]. It accumulates at kinetochores
in late G2 but remains there only until early anaphase after
which it is found at the midzone between the separating
chromosome masses and is rapidly degraded. The role of
CENP-F at the kinetochore is, as yet, undetermined.

In S. cerevisiae, a new kinetochore protein (also known
as Cbf3d) was identified by genetic [60••] and physical
[61•] interactions with the Ctf13/p58 component of the
CBF3 centromere complex and homologs have been
identified in S. pombe (K Kitagawa, P Hieter, personal
communication), Drosophila (T Murphy, G Karpen, per-
sonal communication), C. elegans, Arabidopsis and humans
[60••,61•]. Skp1p is required for the in vitro assembly
of the CEN–DNA-bound CBF3 complex [61•]. Specific
conditional skp1 alleles display elevated rates of chromo-
some loss and arrest in mitosis with a similar phenotype
to mutations in other components of the centromere
complex (NDC10/CBF2/CTF14, CTF13 and CEP3/CBF3b)
and of APC (CDC16, CDC23 and CDC27) [60••]. Human
SKP1 was identified as a component of CyclinA/CDK2

complexes and, interestingly, several other S. cerevisiae skp1
alleles are defective in the G1/S transition but do not
affect mitosis [60••,62••]. Other evidence indicates that
the S. cerevisiae Skp1 protein is required to direct the
ubiquitin-dependent degradation of several key cell cycle
regulatory proteins [62••]. It is possible that Skp1p acts to
dissolve sister chromatid cohesion at the centromere or to
mediate the regulatory ubiquitination of some kinetochore
component. It is therefore of interest that the CDC34
ubiquitin-conjugating enzyme — which acts in concert
with SKP1, CDC4 and CDC53 [62••,63•] — ubiquitinates
the p110 (NDC10/CBF2/CTF14) component of the cen-
tromere complex [64]. It will be extremely interesting if
the Skp1p homologs present in humans and other organ-
isms are associated with the kinetochore and influence
chromosome segregation.

Conclusions
The assembly of active kinetochores is associated with
repetitive structures that are heterochromatic in many
organisms. The epigenetic phenomena, such as transcrip-
tional repression, associated with heterochromatin may
just reflect a complex form of steric hindrance caused
by kinetochore assembly. Advances have been made in
the identification of proteins that regulate sister chromatid
cohesion. How these proteins act in regulating this
process is unknown. Several components of the spindle
integrity checkpoint are associated with kinetochores and
are probably involved in responding to the tension that
develops across kinetochores upon bilateral attachment
of a chromosome or bivalent. Elucidating the tension-
detection mechanism and understanding how this feeds
into anaphase onset will be particularly interesting.
Identifying the functions of other kinetochore proteins,
new and old, and their contribution to chromosome
segregation will continue to be a very active and exciting
area of research. The development of reagents allowing
the dynamics of proteins and chromosomal regions to be
tracked in live cells during all stages of mitotic and meiotic
cell cycles will provide insights into the mechanism of
chromosome segregation.

Note added in proof
Shelby et al. [66] have recently described further studies
with CENPA. Intriguingly, CENPA must be expressed in
late S/G2 to allow incorporation at centromeres; this again
impinges on epigenetic regulation of kinetochore assem-
bly. The work cited as H Willard, personal communication,
has now been accepted for publication [67].
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