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1.1  Introduction 

Deferred lighting is a relatively new rendering concept that performs lighting as a kind of 

post-processing step.  The immediate advantage of this is that lighting is decoupled from 

scene complexity.  Lighting is processed at the same speed whether one or 1,000,000 

polygons are onscreen. 

Whereas a forward renderer will usually draw to a color and depth buffer, deferred shading 

uses an additional screen space normal buffer.  The combination of normal and depth data 

is sufficient to calculate lighting in a post-processing step, which is then combined with the 

color buffer. 

 

Figure 1.0  Deferred lighting performance is independent from scene complexity. 

 

1.2  Forward Rendering in Leadwerks Engine 2.0 

Leadwerks Engine 2.0 utilized a forward renderer.  In order to optimize the engine to render 

only the visible lights onscreen, we implemented a concept we call “shader groups”.  

Instead of storing a single shader per material, the engine stores an array of versions of 

that shader, each auto-generated using GLSL defines to control the number of lights and 

other settings.  This approach suffered from several problems that became apparent once 

we started using the engine in a production environment: 

 Each shader group had over 100 potential versions.  The constant shader compiling 

during runtime when entering a new area caused unacceptable pauses.  Although 



only a few variations ever got compiled and used, it was impossible to guess which 

ones would be needed.  Because there were so many potential variations it was 

impossible to pre-compile all of these. 

 The length of the shaders became quite long, causing slower compiling times and 

risked exceeding the instruction limit on older hardware. 

 Because materials used shader groups and not single shaders, it was difficult or 

impossible for our end users to alter a shader uniform for material shaders. 

 It was difficult to control per-light settings.  A single global binary setting would 

double the number of potential shaders in a group.  A per-light binary setting would 

multiply the shader count by 16 (two settings times a maximum of eight lights). 

 The maximum number of lights visible at any given time was capped at eight due to 

hardware limitations and practicality. 

These issues  motivated us to research a deferred approach for version 2.1 of our engine.   

 

1.3  Deferred Rendering in Leadwerks Engine 2.1 

We set out to implement a deferred renderer with a few conditions in mind.  We wanted to 

create a minimal frame buffer format to minimize bandwidth costs, while supporting all the 

lighting features of our forward renderer.  Additionally, we chose to perform lighting 

calculations in screen space rather than the world space methods used by the forward 

renderer.  Although we did not know how performance would compare, it was certain from 

the beginning that deferred lighting would offer a simpler renderer that was easier to 

control.  Additionally, the following advantages applied: 

 Easy control of per-light settings.  Does this light cast shadows?  Does it create a 

specular reflection? 

 Smaller shader sources and faster compiling.  There are 32 potential light shaders 

that still get compiled on-the-fly, but the pauses this causes are much less frequent 

and barely perceptible. 

 No limit to the number of lights rendered. 

 Easy addition of new light types. 

Because deferred lighting only performs lighting on the final screen pixels, the same 

characteristic that makes deferred lighting so desirable creates a few new problems: 

 Alpha blending becomes difficult. 

 No MSAA hardware anti-aliasing. 

We found that a modulate (darken) blend can be used for most transparencies, without 

disrupting the lighting environment.  Alpha blended materials can be drawn in a second 

pass, as we already do for refractive surfaces.  A sort of pseudo anti-alias can be performed 

with a blur post-filter weighted with an edge detection filter. 

 

 



1.31  The Frame Buffer Format 

It is often suggested that a deferred renderer should use a 128-bit GL_RGBA32F float buffer 

for recording fragment positions.  We saw no need for transferring this extra data.  Instead, 

the light shaders reconstruct the fragment screen space position from the screen coordinate 

and depth value.  We found that a 24-bit depth buffer provided good precision for use with 

shadow map lookups. 

The fragment coordinate was used to calculate the screen space position.  Here, the 

buffersize uniform is used to pass the screen width and height to the shader: 

vec3 screencoord; 
screencoord = vec3(((gl_FragCoord.x/buffersize.x)-0.5) * 2.0,((-gl_FragCoord.y/buffersize.y)+0.5) * 2.0 / 
(buffersize.x/buffersize.y),DepthToZPosition( depth )); 
screencoord.x *= screencoord.z; 
screencoord.y *= -screencoord.z; 
 

The depth was converted to a screen space z position with the following function.  The 

camerarange uniform stores the camera near and far clipping distances: 

float DepthToZPosition(in float depth) { 
 return camerarange.x / (camerarange.y - depth * (camerarange.y - camerarange.x)) * 
camerarange.y; 

} 
 

This approach allowed us to save about half the bandwidth costs a frame buffer format with 

a 128-bit position buffer would have required. 

We found that for diffuse lighting, a 32-bit GL_RGBA8 normal buffer yielded good results.  

However, surfaces with a high specular factor exhibited banding caused by the limited 

resolution.  We tried the GL_RGB10_A2 format, which was precise enough for the normal, 

but lacked sufficient precision to store the specular value in the alpha channel.  We settled 

on using a 64-bit GL_RGBA16F buffer on supported hardware, with a fallback for a 32-bit 

GL_RGBA8 buffer. 

Specular intensity was packed into the unused alpha channel of the normal buffer.  Since 

graphics hardware prefers data in 32-bit packets, it is likely that the RGBA format is the 

same internally as the RGB format on most hardware, so this extra data transfer came at no 

cost.  The size of the frame buffer format displayed here is either 120 or 88 bits per pixel, 

depending on the normal buffer format. 

Figure 1.1  Frame buffer format: 

Buffer Format Bits Values    

color GL_RGBA8 32 red green blue alpha 

depth GL_DEPTH_COMPONENT24 24 depth    

normal GL_RGBA16F or 
GL_RGBA8 

64 or 32 x y z specular factor 

 



Since we were already using multiple render targets, we decided to add support for 

attaching additional color buffers.  This allowed the end user to create an additional buffer 

for rendering selective bloom or other effects, and allows for extended rendering features 

without altering the engine source code.  The light source for the orange point light pictured 

here is a good candidate for selective bloom, as our full-bright and lens flare effects did not 

translate well to the deferred renderer. 

 

 

Figure 1.2   Depth, normal, and specular factor are used to calculate diffuse lighting and specular reflection, 

which is then combined with the albedo color for the final image. 



 

Figure 1.3  Albedo 

 

Figure 1.4  Depth 



 

Figure 1.5  Normal 

 

Figure 1.6  Specular factor 



 

Figure 1.7  Diffuse lighting 

 

Figure 1.8  Specular reflection 



 

Figure 1.9  Final image 

 

1.32  Optimization 

Our engine performs hierarchal culling based on the scene graph, followed by per-object 

frustum culling.  Hardware occlusion queries are performed on the remaining objects.  This 

ensures that only visible lights are updated and drawn.  For the remaining visible lights, it is 

important to process only the fragments that are actually affected by the light source. 

The most efficient way to eliminate fragments is to discard them before they are run 

through the fragment program.  We copied the depth value from the depth buffer to the 

next render target during the first full-screen pass, which is either the ambient pass or the 

combined ambient and first directional light pass.  Point and spot light volumes were then 

rendered with depth testing enabled.  An intersection test detected whether the camera was 

inside or outside the light volume, and the polygon order and depth function were switched 

accordingly.  Although writing to the depth buffer may disable hierarchal depth culling, an 

overall performance improvement was observed with depth writing and testing enabled.  

Further research using the stencil buffer to discard fragments may prove beneficial. 

 

1.4  Results 

Our results disprove some common assumptions about deferred rendering.  It is often 

suggested that deferred rendering is only advantageous in scenes with a high degree of 



overdraw.  In every test run we found our deferred renderer to be at least 20% faster than 

forward lighting.  Due to our compact frame buffer format, the increased bandwidth cost 

was only about four frames per second lost on ATI Radeon HD 3870 and NVidia GEForce 

8800 graphics cards.  On average we saw a performance improvement of about 50% per 

light onscreen.  A scene with eight visible lights ran four times faster in our deferred 

renderer. 

The speed improvements of our deferred renderer were not limited to high-end hardware.  

We saw similar performance gains on ATI Radeon X1550 and NVidia GEForce 7200 graphics 

cards. 

Except for the aforementioned issues with MSAA and alpha blending, the appearance of our 

deferred renderer was identical to that of our forward renderer.  Our lens flare effect was 

abandoned, since it interfered with lighting and could be replaced with more advanced 

depth-based lighting effects. 

 

1.5  Conclusion 

It is inevitable that a fundamental shift in rendering paradigms will cause some 

incompatibility with previously utilized techniques.  However, the simplicity and speed of 

deferred rendering far outweigh the few disadvantages. Not only did deferred lighting 

simplify our renderer and eliminate the problems our forward renderer exhibited, but it also 

yielded a significant performance improvement, even in situations where it is usually 

suggested a forward renderer would be faster. 
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