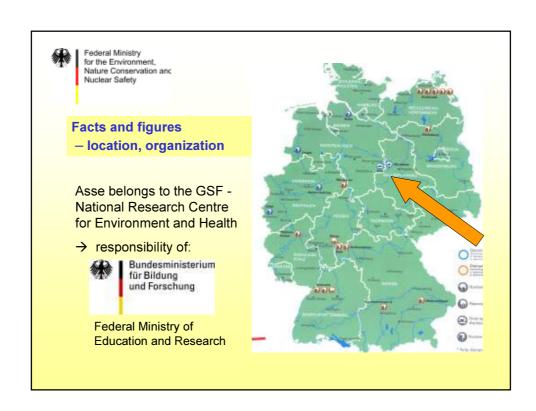
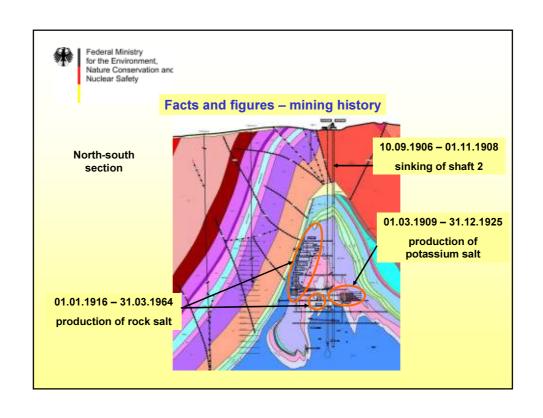


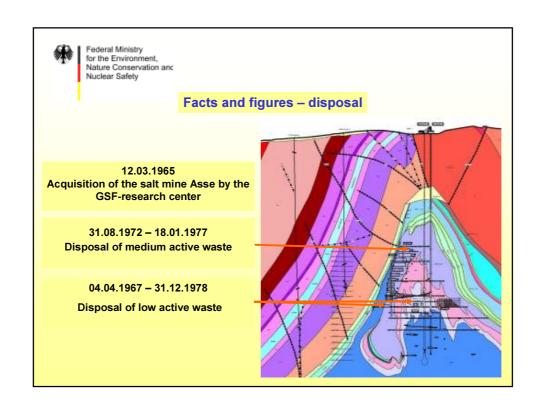
The Closure of the Asse Research Mine


Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management
Second Review Meeting
May 17th 2006

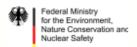
Dr. Helmut BossyFederal Ministry of Education and Research
Bonn

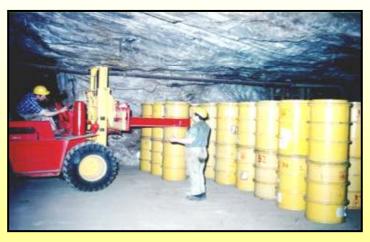
Content


Facts and Figures
Legal Basis
R+D in the Asse Mine
Inventory
Status of Closing

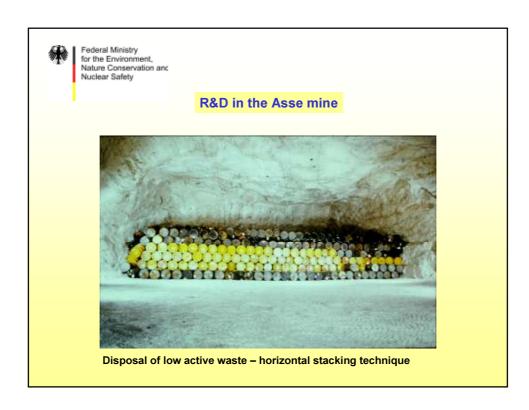


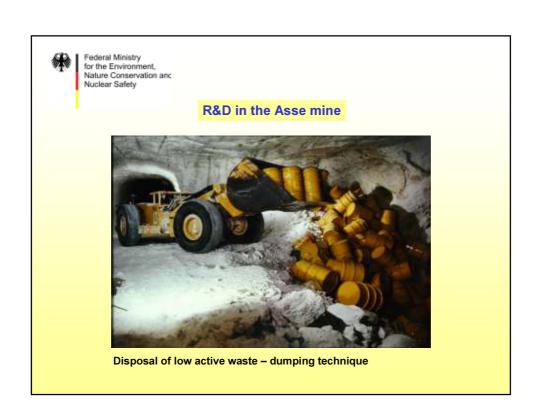
Facts and figures – house for the winding machine and shaft tower

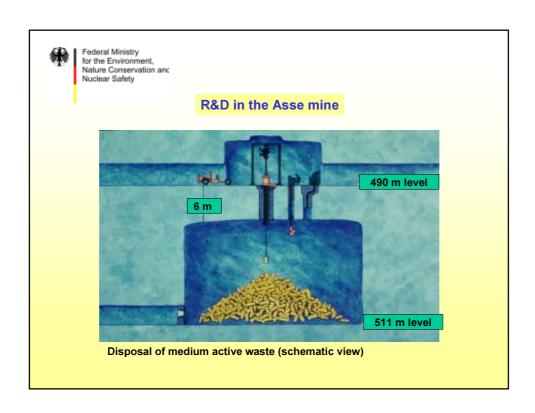




Legal basis for disposal (1967 – 1978)


- Disposal took place in 6 phases, for each phase licences were granted by the mining authority
- ➤ The licences were based on the first Radiation Protection Ordinance and the Atomic Energy Act of 23 Dec. 1959; the authorizations also covered the final disposal of the radioactive waste
- The 4th amendment of the Atomic Energy Act from 1976 set the legal framework for final repositories; existing licenses (as for the Asse) remained unaffected by the 4th amendment
- ➤ Last licenses of the Asse mine for disposal expired 31 Dec. 1978
- Asse mine has always been under supervision of the mining law; the closure of the Asse mine will also take place according to the regulations of the Federal Mining Act




R&D in the Asse mine

Disposal of low active waste - vertical stacking technique

Inventory

Delivering party (waste origin)	Waste packages (%)	Total activity (%)
Karlsruhe research center	50	90
Jülich research center	10	2
Nuclear power plants	20	3
Other delivering parties	20	5
Total	100	100

Inventory

Determination of inventory

By analysis of documentation, questioning of waste producers, calculations, etc. **radiological and chemo-toxic** inventory was determined.

Results

1.9 E15 Bq (60% of total activity)
1,293 packages of MAW
1.9 E15 Bq (40% of total activity)
3.1 E15 Bq total activity (01.01.2002)
47,000 m³ volume

Inventory

102 Mg uranium 87 Mg thorium 11.6 kg plutonium

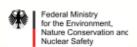
Radionuclide	Half-life	Activity [Bq]		
	[a]	LAW	MAW	total
H-3	1,2E+01	9,2E+11	3,5E+11	1,3E+12
C-14	5,7E+03	3,6E+12	2,2E+11	3,9E+12
Co-60	5,3E+00	1,6E+13	1,3E+14	1,5E+14
Ni-63	1,0E+02	8,2E+13	6,8E+14	7,6E+14
Sr-90	2,9E+01	1,9E+14	1,4E+14	3,3E+14
I-129	1,6E+07	2,0E+08	1,2E+08	3,2E+08
Cs-137	3,0E+01	3,6E+14	2,1E+14	5,7E+14
Ra-226	1,6E+03	2,0E+11	1,8E+02	2,0E+11
Th-232	1,4E+10	3,5E+11	1,2E+07	3,5E+11
U-235	7,0E+08	5,2E+10	1,9E+08	5,2E+10
U-236	2,3E+07	1,2E+10	7,7E+08	1,3E+10
U-238	4,5E+09	1,3E+12	1,9E+09	1,3E+12
Pu-238	8,8E+01	3,6E+13	1,3E+12	3,7E+13
Pu-239	2,4E+04	1,8E+13	1,0E+12	1,9E+13
Pu-240	6,6E+03	2,1E+13	1,0E+12	2,2E+13
Pu-241	1,4E+01	1,1E+15	4,5E+13	1,1E+15
Am-241	4,3E+02	8,8E+13	7,2E12	9,4E+13
Total alpha	-	1,7E+14	1,2E+13	1,8E+14
Total beta/gamma	1	1,7E+15	1,2E+15	2,9E+15

Status of closing - goals

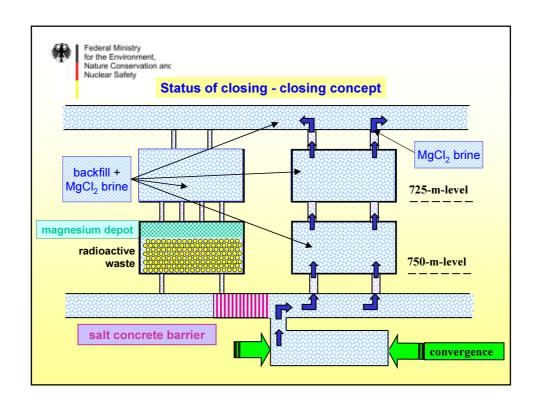
Goals

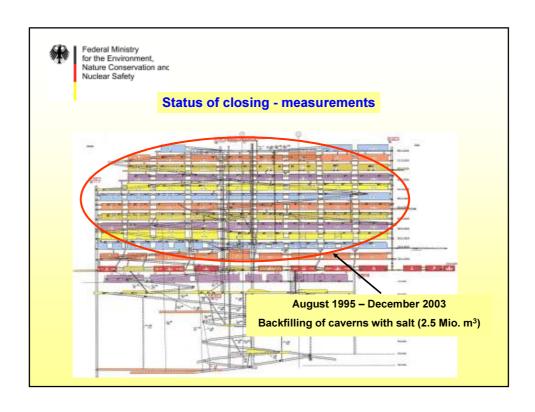
- ✓ Obtain final operational plan (i.e. license to close mine) from mining authority on the basis of the long-term safety assessment for the radioactive waste
- ✓ close mine on the basis of final operational plan

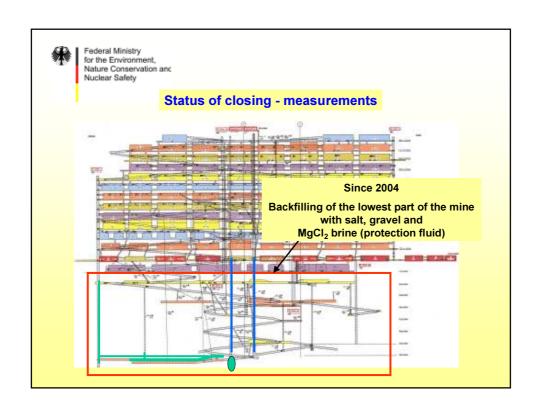
The legal requirements to be taken into account are in particular


- ➤ Radiation Protection Ordinance (Strahlenschutzverordnung)
- Federal Water Act (Wasserhaushaltsgesetz)

Requirements concerning safety and the protection of the environment are the same in the two statutes mining law and atomic law!


Status of closing – boundary conditions


- > Long opening of the mine (> 50 years)
 - → reduced mechanical stability
- ➤ Inflow of NaCl brine (12 m³ per day)
 - → flooding can not be excluded
- > Open chambers in the carnallite formation
 - → dissolution of structures by the NaCl brine



Status of closing – conclusions and concept

- → Closure of the mine is to be performed without delay
- → Asse has its own concept
 - > MgCl₂ brine as protection fluid
 - > System of salt concrete barriers (MgO concrete)
 - > Magnesium depots
- → Closure measurements are not to anticipate the final operational plan
- → Closing of mine concluded around ~ 2013

