
Programming Education in the Era of the Internet: A Paradigm Shift

W. Scott Harrison, Nadine Hanebutte, Jim Alves-Foss
University of Idaho

Center for Secure and Dependable Systems
Moscow, ID, 84844-1008

{harrison,hane,jimaf}@cs.uidaho.edu

Abstract

Over the last several years, the Computer Science (CS)
community has put a great deal of effort in to the area of
security research, and have made great advances. Coun-
terintuitively, however, the number and severity of cyber
threats is not declining, and further, the overall security of
computer systems is not improving.

Because of the magnitude of this problem, computer se-
curity is an issue that concerns everyone who works with
computers. However, computer security training is only
given in designated classes to a small set of computer sys-
tems users.

This problem needs to be addressed at its core: in the ed-
ucational system. Insecure code is written by people who
do not know the implications of their coding techniques,
and current texts and instruction do little to rectify this sit-
uation.

Thus, the goal of this paper is to show the need to incor-
porate basic information assurance knowledge into general
CS classes.

1. Introduction

Computer Science (CS) has evolved a great deal since its
inception. And yet, while computer systems have, over
the last 15 years, become more connected, accessible, and
ubiquitous, the argument can be made using statistics such
as the number of reported vulnerabilities (Figure 1.), that
system security education has not kept up with this de-
velopment. As an example, a recent poll [1] showed that
from 2003-2004, 42% of a set of surveyed companies have
seen an increase, not a decrease1, in electronic crime. Fur-
ther, the total number of incidents have also been increasing
from 6 in 1988 to over 82,000 in 2003 (Table 1). Why is
this the case?

There are a multitude of reasons for the causes that may
have led to this development, such as the steady increase

1A decrease was seen by only 6.2%.

1995
1996

1997
1998

1999
2000 2002

20032001
2004

2005*

5000

4000

3000

2000

1000

Year

0

Re
po

rte
d

V
ul

ne
ra

bi
lit

ie
s

Estimate based on 1st quarter 2005*

Figure 1: CERT-Number of Reported Security Vulnerabili-
ties Since 1995 [2]

in the number of networked computers and services from
1,313,000 in 1993 to 317,646,084 in 2005 [3], which in-
creases the “attack surface,” that is the number of potential
targets for cyber attacks. In addition, information about
vulnerabilities and descriptions on how to exploit them are
readily available.

It should be the case that modern educators are teaching
students programming “in the era of the Internet,” incorpo-
rating the knowledge of the change in program execution
environment, yet we do not believe this is truly happen-
ing. Although it cannot be denied that security has gained
immense importance over the last several years, it is still
relegated to specific “security courses” and is not, well-
integrated into the general computer science curriculum.

The issue at hand is the notion that basic programming
classes are taught very much as they would have been
taught many years ago, without a recognition that the world
of computing has changed and that there is a basic aware-
ness that programmers need to have now that was not es-

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10-7695-2507-5/06/$20.00 (C) 2006 IEEE

Table 1: CERT-Number of Reported Security Incidents Since 1988

Year 1988 1989 1990 1991 1992 1993 1994 1995
Incidents 6 132 252 406 773 1,334 2,340 2,412
Year 1996 1997 1998 1999 2000 2001 2002 2003
Incidents 2,573 2,134 3,734 9,859 21,756 52,658 82,094 137,529

sential even a few years ago.
At the same time the argument can be made that “the ba-

sics have not changed,” and this, to some extent, the case.
C was written in 1973 and operating systems today are
still being written with it. If/then/else statements work as
they always have, and Boolean logic has not changed since
Boole created it in the early nineteenth century.

What has changed, however, is the magnitude of the law
of “unintended consequences.” While educators focus their
attention on making programs work correctly, very little fo-
cus is given to in-depth understanding of the ramifications
of the code that is being written.

Students tend to repeat what they have learned first and
done the most. What we are creating is a generation of
coders, who essentially code like their teachers, using inse-
cure code without necessarily even realizing that it is inse-
cure.

As educators, we fail to teach security research and im-
plementation techniques in a timely manner. This observa-
tion is borne out by the simple fact that up to 50% of all
code vulnerabilities are due to simple buffer overruns [4]
(not enforcing the boundary of an array). However, buffer
overrun vulnerabilities are known since 1988, when the
“Morris Worm” brought parts of the Internet to a grinding
halt [5]. It could be the case that not learning security-
aware coding from the beginning is a major cause of these
types of statistics.

Security is not a stand-alone problem. Building a sys-
tem, whether software or hardware, without well-defined
security goals will eventually lead to an intrusion or fail-
ure of such a system. However, the people who actually
implement such systems are generally not security experts.
Security, if considered at all, is generally thought of as an
afterthought, and often takes second place to other issues,
such as ship dates or efficiency. Further the implementors
of these system could easily have never taken any security
courses of any kind (as most universities do not require this
as part of a general curriculum). As such, even when the
best intentions exist, one cannot build what one does not
understand.

Future CS experts must have a basic knowledge of se-
curity issues to build secure and usable systems. Unfor-
tunately, the CS community has thus far failed to prop-
erly incorporate this field into the general CS curriculum.
By teaching reliability, performance, dependability, and so

forth, we teach our students that such attributes must be em-
ployed to build quality software. And, to this extent, these
topics are represented in both required specialized courses
as well as interspersed throughout the basic curriculum;
students are early on, generally in a basic programming
course, told that a shell sort is more efficient than a bub-
ble sort (as well as being taught why this is the case), that
you should not convert a set of ASCII characters to an in-
teger without checking the return value of the conversion
function, and so on. Unfortunately, we have not yet added
security to the set of base knowledge.

For example, the Accreditation Board for Engineering
and Technology (ABET) does not consider security educa-
tion as a required component of a computer science cur-
riculum in the Criteria for Accrediting Computing Pro-
grams [6]. The IEEE/ACM Computing Curricula 2001 for
Computer Science [7], does, acknowledge the necessity to
integrate security into the general curriculum. It suggests a
set of security classes in addition to the inclusion of secu-
rity topics as a component of existing classes, for example,
Operating Systems. However, a look at Operating Systems
Concepts [8], one of the standard textbooks used for this
course, shows that security is directly emphasized in 6 lines
of text only.

An informal poll taken among programming teachers
also showed that, unless their field of expertise is secu-
rity, no security related knowledge is presented in their pro-
gramming classes. If security is mentioned at all within a
non-security-oriented course, it is generally only in terms
of available tools and services, such as code scanners and
network auditing tools, or in terms of software to avoid us-
ing due to insecurities, e.g., wu-ftpd [9] and sendmail [10].
Specific issues and problems within code and systems, in-
cluding what code constructs are exploitable, are usually
not addressed.

Essentially, the results from security research lack distri-
bution among non-security researchers and educators. The
implementation and application of results from security or
trustworthy computing research should span all courses
within CS (as well as other areas that rely on computer-
based technology). In fact, a large number of computer
system vulnerabilities, which are often targets of computer
crime, were introduced into a system inadvertently [11];
often due to lack of security awareness of the system im-
plementer. While computer system architects and system

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

2

administrators are very knowledgeable about how to cre-
ate and maintain a running system, they often do not fully
comprehend the security implications of their choices.

The following section discusses different code-level se-
curity improvement activities and their importance to the
CS curriculum. Sections 3. and 4. discover reason why
security education is not part of the general CS education
and how teaching programming languages is currently ap-
proached. A set of examples from textbooks and related
code vulnerabilities are shown in section 5. in order to
demonstrate, which problematic issues exist. The paper is
concluded with a set of suggestions and finding that might
help to improve the CS curriculum and adjust to account
for the problems of coding in the Internet era.

2. Current Topics within Code Secu-
rity

Security issues during the development life cycle can be
roughly divided divided in three areas:

1. Security audits

2. Security features

3. Secure implementation

These areas have very distinctive goals within the soft-
ware development cycle. All three of these principles, ap-
plied to the development process in a proper manner will
ensure that the system developed is significantly more se-
cure than a system with the same functionality that was
built without security considerations.

Textbooks, [12], for example, and articles discuss these
issues in parallel. In order to emphasize the importance
of what can and should be taught in general programming
classes and what should be left to specialized classes, we
will discuss in detail each of these focus areas.

2.1. Security Audits

Security audits are performed to check a section of code
for the existence of code-level security problems. They can
be seen as code auditing with a narrow focus. Audits are
used to either verify the results of an implementation pro-
cess or check third party or legacy code for it compliance
to standards. Security audits can be performed in the same
manner as a manual audit. In addition, a variety of audit
tools, such as Splint [13], RATS [14], BooN [4], and so
forth, are available. These tools can detect instances of po-
tentially exploitable code. It is then up to the programmer
and his knowledge about security problems to annotate the
code, to decide, and to mitigate such instances of code.

Security audits are often added by development compa-
nies to address security issues. Audits, if done as an af-
terthought, are not a replacement for the inclusion of se-
curity awareness in the entire development process. Since,
security issues can be introduced in all stages of the soft-
ware development cycle, code audits alone are not suf-
ficient. As is common software engineering knowledge,
problems should always be dealt with at the stage of in-
troduction. This includes avoidance, testing, and analysis.
This also implies that there should not be a dedicated se-
curity audit stage in the development cycle, but rather that
security concerns must be addressed at all phases, and this
includes the coding stage.

2.2. Security Features

A software system can contain special features that were
added because the system use policy requires such features,
for example, the use of data encryption over plain text data
storage, or ensuring that positive authentication is enforced
before system access is granted. A security feature can also
be the availability of system setup options to allow enabling
or disabling certain functionality in order to adapt the sys-
tem for a specific usage environment.

From a software system design perspective this means
that the developer needs to understand which alternatives
are available, for example, which encryption algorithms
should be used. It also requires the implementer to under-
stand how a selected feature is to be properly implemented.
If, for example, an authentication mechanism can be by-
passed or fails on certain input, the mechanism is obsolete
or, even worse, it leaves the user in a false sense of security.

Students who are unfamiliar with security research tend
to mistake security features for secure development. Secu-
rity features, in terms of software engineering are features
just like an implemented sorting algorithm or the ability for
a program to display results in a color chart. Further, in
a similar way to other features, they can be implemented
correctly or not. If, for example, if no type checking is
performed when numerical input is read by a program, the
result of sorting this “numerical” data is undefined.

2.3. Secure Implementation

When a system is designed and implemented, there is al-
ways more than one way to implement the same function-
ality. For example, the code printf(cmd) will print the
content of the string cmd to the screen, as will the code
printf("%s", cmd). However, the first option, can
allow the code to be misused due to the fact that the ex-
plicit formatting directive has been omitted.

There are many security issues that are rooted in the
inappropriate use of code constructs. For example, some
common security faults are:

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

3

• Buffer Overflows are caused be insufficient input
length restrictions.

• Format String Attacks are possible if the formatting
directives do not match the formatted data in size and
type.

• Race Conditions are based on the violation of access
atomicity and task serialization.

• Access Validation Vulnerabilities may be avoided
when conditional clauses are designed deny by de-
fault.

• Domain and Input Validation Vulnerabilities are intro-
duced when the execution environment, such as the
trustworthiness of input, is not appropriately imple-
mented.

Each of these problems can come in many versions, with
many facets that can be illustrated by examining exam-
ples from programming textbooks. For example, in “Prob-
lem Solving, Abstraction and Design using C++” [15],
students learn how write data to external files. The sys-
tem call used to create and access the file is listed as:
fileName.open("SomeName"). However, what the
book does not mention, for example, is that the default pro-
tection settings on such a file are to allow at least group
or group and world read/write access to this file (in Unix,
the permissions would be 0660 or 0666, respectively). It is,
however, possible to set the file permissions directly in C++
upon file creation. While it is probably not necessary to ex-
plain all details of file permissions, simple knowledge about
the existence of default file permissions and their ramifica-
tions could probably have prevented many access violations
within commercial code.

2.4. Code Security Knowledge

Security audits and the design of security features require
an in-depth knowledge, such as available tools, how to set
them up, how to annotate code, or how encryption algo-
rithms work and the associated strength of a specific algo-
rithm. Such knowledge has to be presented in specialized
security classes for students attempting to become security
administrator or security researchers.

Secure coding is the proper use of a given programming
language in order to avoid code level security problems,
and it must be taught as part of the general curriculum since
coding is something that all CS students will do as part of
their career.

3. Why Secure Coding is Not Em-
phasized

Historically, it was perfectly acceptable and common prac-
tice to write code that simply implemented a set of specified
functionalities. Software was written for a well-defined au-
dience to run on a computer that are not connected to an
external network. Within the infrastructure that has been
developed over the last decade, this somewhat benevolent
environment has been replaced by an one in which where
essentially every computer is connected to the Internet and
the intent of people that have potential remote access to a
computer is largely unknown. In light of this, we must re-
consider our view on software development.

We have learned that code has to written to be reliable
and robust because our code will be presented with incor-
rect input and run on insufficient hardware by untrained
users. We don’t make the assumption that every user knows
exactly what he is doing and will always do everything in
a correct manner. The assumption made, however, is that
the input is non-malicious and to some extend reasonable.
From a software user perspective we are accustomed to
software failure due to some input or event. We, therefore,
tend to a void a flawed functionality; trying to figure out
“work-arounds” until a patch becomes available. Software
faults tend to be seen as a minor problem as long as most
of the software functions according to specification. In a
malicious environment, all it takes is one exploitable fault
for a hacker to potentially damage the entire system.

We need to understand that maliciousness has become a
significant part of the computing environment over the last
15 years. We know from experience (Whom’s system has
not been hacked yet?) and empirical evidence (e.g., CERT,
SecurityFocus and ISC) that there are criminal and mali-
cious users that will use software with criminal or other at
least questionable intents. It therefore is necessary to en-
sure that security is be built into every system, hence ev-
ery programmer needs to understand code security impli-
cations.

4. Changing the Current Focus

In [16] Piessens points out that:
“Software developers tend to spend a lot of time thinking
about how to make things possible. From a security point
of view, it is important to spend time thinking about how to
make certain things impossible.”

The focus of modern textbooks and classes that teach
students how to develop code is primarily on how to im-
plement the desired features. The students learn how to
identify the required features and then learn to decide upon
a way of implementing them, given a specific programming
language. The specification, design, and implementation of

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

4

features is one aspect of the software engineering process.
The aspect that is less often addressed is the analysis of
constraints, which is defining what software should not do.

Thus, constraints specify what should be impossible. In
terms of security engineering, a student needs to know
which additional “features” a specific algorithm or code se-
quence choice yields. As a result, the student has to under-
stand that some feature implementation solution cannot be
used because they will lead to a violation of constraints.

For example, one would expect a constraint on using the
printf() function (in standard C) not to alter program
behavior beyond printing data to an output device, and this
is the general knowledge of this function.

However, in order to satisfy this constraint, a student
must understand the difference between using (for exam-
ple): printf(cmd) and printf("%s,cmd"). Both
implement the same feature, specifically, printing the con-
tent of the string cmd. Both lines of code will compile
without an error. However, the first statement (due to the
way the stack interacts with printf()) allows exploita-
tion by giving control flow of the program to a user via a
format string attack.

The following quote, taken from the SysAdmin, Audit,
Network, Security (SANS) Institute’s list of the most ex-
ploited problems, illustrates the need for this type of knowl-
edge [17]:

“Most web servers support Common Gateway Interface
(CGI) programs to provide interactivity in web pages, such
as data collection and verification. Many web servers come
with sample CGI programs installed by default. Unfortu-
nately, many CGI programmers fail to consider ways in
which their programs may be misused or subverted to exe-
cute malicious commands.”

5. Programming Textbooks

In order to illustrate the problem we will show and discuss a
series of code examples taken from C++ programming text-
books as they are presented to our students together with
exploits that take advantage of such constructs. C++, is
alongside JAVA the most commonly first taught program-
ming language. We limit the following textbooks examples
to C++, but similar issues can be found for almost every
programming language. The presented problems are a sub-
set of existing issues and far exhaustive.

5.1. Buffer Overflows and String Termina-
tion

Buffer Overruns are the single most exploited code level
vulnerability [4]. To cite some examples, the “Blaster”
Worm [18] is due to a buffer overrun vulnerability within
Microsoft’s (MS) Distributed Component Object Model

Remote Procedure Call. The “Slammer” Worm enters a
system through a buffer overrun in MS-SQL [19]. “Wu-ftp”
(a common FTP server) was the subject of four CERT2 Ad-
visories due buffer overruns in the code (Advisories: 2001-
33,2000-13,1999-13,1999-03). The “Sasser” worm spreads
via a buffer overrun in the MS Local Security Author-
ity Subsystem Service (LSASS) [20]. Ironically, a buffer
overrun vulnerability can be very simply avoided through
proper array length enforcement.

For example, in [15, p.473], strings as arrays of charac-
ters are discussed. One of the suggested methods to read
the content of a character array is:
char flower[10];
cin >> flower;
These statements are presented without any indication

of the need for boundary control. In its form this code
construct can lead to a buffer overrun if the input string is
greater than 9 characters. Only when talking about C spe-
cific statements such as strcpy() do the authors demon-
strate the difference of this statement with strncpy(),
even though C++ provides means for adding boundary re-
striction to the above code. The authors do mention the the
possibility of memory overwrites with strcpy() but not
discuss the severity of such an event.

Additionally, it should be made clear to students that
the string class in C++ can only handle strings of lim-
ited length, otherwise the program behavior will be unde-
fined. The chance of overrun is not limited only to strings
handling functions. Even if a “secure” function, such as
strncpy(char *a,char *b,int n) is used over-
run can occur if the code to determine n contains an integer
overrun, as for example in [21].

“Programming in C++” by D’Orazio [22, p.593–605]
on the other hand, does a very good job of preparing stu-
dents for the pitfalls of character array handling. The author
points out the possibility of overwriting memory and sug-
gests methods to prevent this from happening. This book
also points out the different C and C++ statements that
should be used for proper string handling. The importance
of buffer termination for code level security, however, is not
mentioned.

Other textbooks discuss this topic with similar detail or
lack thereof.

The approach in [22] presented along with an indication
about how this may violate data integrity could prepare stu-
dents to understand how improper string storage might lead
to security violations. Without pronouncing the importance
of proper input validation, a student might think that if an
array is just “reasonably large”, there will be no problem
with the code. Students must understand that input to a
program that they write might not necessarily be made by
“reasonable” users.

2http://www.cert.org

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

5

5.2. Input Validation

Input validation faults occur when user input and the input
data type don’t match. The issue that has a great impact on
security is what happens when the input is incorrect? How
do we go about handling the different cases of invalid in-
put? When the student learns to write an input handling
function, one thing he needs to understand is the “deny by
default” principle. This problem is exemplified by Howard
in [12, p.65]. The idea is to check if the allow condition
is fulfilled and deny if not. Otherwise, if it is checked
if specific error conditions are present, some, not explic-
itly stated, error condition might have been omitted. Even
though an error occurred the program would continue in a
situation where functionality execution should have been
aborted.

Further, we need to move away from the notion that “in-
put comes from files and keyboards.” Input is not limited
to user input from the keyboard, but from many (possibly
uncontrolled) origins such as network traffic, files, calling
functions, shared memory, message passing, and so on. As
such, the importance of input verification cannot be over-
stated. The C++ textbooks usually introduce input using a
statement along the lines of [15, p.60]:
float miles;
cin >> miles;
What is going to happen if the input to miles is not a

number?
An input validation problem where the input is actu-

ally a packet from the network is motive for the teardrop
Denial-of-Service [23] attack, where an attacker sends in-
valid alignment data to be used for packet reassembly.
Since some reassembly routines do not perform a check if
this data is actually valid, the result is that a negative in-
teger that is copied into memory allocated for an unsigned
integer. This is then interpreted as a very large integer, and,
as this number is the size parameter to a memory allocation
routine, the allocation process fails and may result in the
service or even operating system to crash.

5.3. File Access Control

In [15, p.398] students learn how write data
to external files. The code example to cre-
ate and access the file are constructed similar to
fileName.open("SomeName"). What the book
does not mention is that the default protection settings
are world-readable and world-writable when a file is
opened this way (although this may differ from system to
system). In fact, this text does not even mention the notion
of default protection settings or how to set or check file
permissions. Other books (e.g, [22, p.138], [24, p.198])
omit the importance of this issue as well.

Microsoft Windows 2000 Insecure Default File Permis-
sions Vulnerability [25] exists because of insufficient de-

fault file permissions. Lax permissions on a screensaver
executable is the reason for the Microsoft Windows Logon
Screensaver Local Privilege Escalation Vulnerability [26],
which is run with SYSTEM privileges and can result in local
users gaining these privileges.

Further, when we teach students about handling file and
data streams, the issue of atomicity and serialization must
be discussed. Race conditions (in particular, Time-of-
check-time-of-use) are a result of algorithms that do not im-
plement proper checks of atomicity and/or serialization. A
race condition in Yahoo’s Messenger Server allows access
to personal information of other users [27]. A race con-
dition in McAfee’s Internet Security Suite allows attackers
to disable this security software [28]. Textbooks examples,
such as (shortened from [15, p.399]):
ofstream outs;
outs.open(inFile);
outs.fail() {
. . . }
copyLine(ins.outs);
leaves students with the impression that the .fail()

method will take care of everything that can go wrong, and
that it is not possible for the file to be deleted or linked
between creation, check, and access. However, we can-
not teach proper file handling without discussing race con-
ditions if we expect our students to not make the same
faux pas as the Yahoo and McAfee programmer (and many
more). As such when we discuss files and streams the pre-
and post condition of the file access step should be empha-
sized.

6. Conclusions

None of the textbooks we looked addresses security explic-
itly in conjuncture with the presented material. One book
provided some basic security terminology. Some authors
do a better job then others to emphasize potential problems
and constraint on code constructs. D’Orazio [22] discussed
several potential problems in detail that may lead to se-
curity problems, implicitly preparing students for potential
exploitable pitfalls.

Not all security, trustworthy computing, or information
assurance findings can and should be taught to all CS stu-
dents. Howard [12], for examples, gives plenty of examples
how little programmers actually know about code level se-
curity and that employers currently training their coders to
update their security knowledge.

Institution that provide formal training in coding, need
to follow this trend, since it is our goal to prepare students
properly for their professional career. We do not need to
teach them specific algorithm, auditing tools, or solutions.
The decision which to use is usually specific to the em-
ployer. What we need to teach them is the basic under-

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

6

standing for the environment that their code will execute
in.

Adding an emphasis on security awareness to formal CS
training could be done by requiring a secure coding class
as part of the curriculum or to add security topics to exist-
ing classes. The first approach yields the problem that we
essentially teach the same topic twice, once without once
with security emphasis. Besides redundancy, the issue here
is that the students will have to revise “wrong” or incom-
plete knowledge, which might lead to confusion. So why
not teaching it right the first time?

Adding attention to security issues to general program-
ming classes is necessary and in some textbook we can find
attempts to draw attention to common programming pit-
falls. These text passages, extended through integration
of lectures and examples from secure coding books, such
as [12] and [29] could be one way to go about improving
programming classes and associated textbooks.

In order to avoid that the next generation of program-
mers will make the same mistakes as the current genera-
tion and/or their teachers, a revision of how programming
classes are done is needed to prepare students for the 21st
century programming and code execution environment.

References

[1] CSO. 2004 e-crime watch survey. http:
//www.csoonline.com/releases/
052004129_release.html [June 2005].

[2] CERT/CC. CERT/CC Statistics 1988-2005.
http://www.cert.org/stats/cert_
stats.html [August 2005].

[3] ISC. Internet domain survey, jan 2005. http:
//www.isc.org/index.pl?/ops/ds/ [June
2005].

[4] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun
vulnerabilities. In Proceedings of Network and Dis-
tributed Systems Security Symposium (NDSS 2000),
2000.

[5] E. Spafford. Presentation: The internet worm
+ 10 years: Lessons learned and not learned.
http://www.cerias.purdue.edu/homes/
spaf/presents/Andersen.pdf [June 2005],
1998.

[6] ABET. Criteria for accrediting comput-
ing programs 2004–2005. http://www.
abet.org/LinkedDocuments-UPDATE/
CriteriaandPP/05-06-CACCriteria.pdf
[June 2005].

[7] IEEE/ACM. Computing curricula 2001.
http://www.computer.org/education/
cc2001/cc2001.pdf [June 2005].

[8] A. Silberschatz, G. Gagne, and P. Baer Galvin. Oper-
ating System Concepts. Wiley; 6th edition, 2002.

[9] CERT/CC. CERT advisory CA-2001-33-Multiple
Vulnerabilities in WU-FTPD. http://www.
cert.org/advisories/CA-2001-33.html
[June 2005].

[10] CERT/CC. CERT advisory CA-2003-07-Remote
Buffer Overflow in Sendmail. http://www.
cert.org/advisories/CA-2003-07.html
[June 2005].

[11] C. Landwehr, A. Bull, J. McDermott, and W. Choi. A
taxonomy of computer program security flaws. ACM
Computing Surveys, 3(26), 1994.

[12] M. Howard and D. LeBlanc. Writing Secure Code.
Microsoft Press: Redmond WA, 2003.

[13] D. Evans and D. Larochelle. Improving security using
extensible lightweight static analysis. IEEE Software,
19(1), 2002.

[14] SecureSoftware. RATS. http://www.
securesoftware.com/download_rats.
htm [June 2005].

[15] F. Friedman and E. Koffman. Problem Solving, Ab-
straction and Design Using C++. Pearson / Addison-
Wesley, (4th Edition), 2004.

[16] F. Piessens, B. De Decker, and B. De Win. Devel-
oping secure software - a survey and classification of
common software vulnerabilities. In Proceedings of
the Fourth Working Conference on Integrity, Internal
Control and Security in Information Systems (IICIS
2001), 2001.

[17] SANS. How to eliminate the ten most critical in-
ternet security threats. http://www.sans.org/
top20/top10.php [June 2005].

[18] SANS. Sans malware faq: What is w32/blaster
worm? http://www.sans.org/resources/
malwarefaq/w32_blasterworm.php [June
2005].

[19] SANS. MS-SQL Slammer. http://www.
sans.org/resources/malwarefaq/
ms-sql-exploit.php [June 2005].

[20] eEye Digital Security Advisory. Windows local
security authority service remote buffer overflow.
http://www.eeye.com/html/Research/
Advisories/AD20040413C.html [June 2005].

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

7

[21] Citadel. Citadel’s top hpux remedies nr: 6. multi-
ple vendor calloc() implementation integer overflow
vulnerability. https://hercules.citadel.
com/hpux.html [June 2005].

[22] T. D’Orazio. Programming in C++. McGraw Hill,
2004.

[23] David Hoggan. The internet book- section: Teardrop
fragmentation attack. http://www.camtp.
uni-mb.si/books/Internet-Book/IP_
TeardropAttack.html [June 2005].

[24] B. Overland. C++ Without Fear. Pearson / Prentice
Hall Professional Technical Reference, 2005.

[25] ISS. Windows 2000 weak system partition permis-
sions. http://xforce.iss.net/xforce/
xfdb/9779 [June 2005].

[26] SecurityFocus. Microsoft windows logon screen-
saver local privilege escalation vulnerability.
http://www.securityfocus.com/bid/
11711/info [June 2005].

[27] SecuriTeam. Yahoo! messenger server race condition
vulnerability. http://www.securiteam.com/
windowsntfocus/5IP0I20FPO.html [June
2005].

[28] SecuriTeam. McAfee internet security suite race con-
dition vulnerability. http://www.securiteam.
com/windowsntfocus/5TP0C2KFFG.html
[June 2005].

[29] J. Viega and G. McGraw. Building Secure Soft-
ware. Addison-Wesley (Proessional Computing Se-
ries), 2002.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

