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Summary

One of the strongest paleontological arguments in favor of
the origin of bilaterally symmetrical animals (Bilateria) prior

to their obvious and explosive appearance in the fossil

record in the early Cambrian, 542 million years ago, is the
occurrence of trace fossils shaped like elongated sinuous

grooves or furrows in the Precambrian [1–5]. Being
restricted to the seafloor surface, these traces are relatively

rare and of limited diversity, and they do not show any
evidence of the use of hard appendages [2, 6]. They are com-

monly attributed to the activity of the early nonskeletonized
bilaterians or, alternatively, large cnidarians such as sea

anemones or sea pens. Here we describe macroscopic
groove-like traces produced by a living giant protist and

show that these traces bear a remarkable resemblance to
the Precambrian trace fossils, including those as old as

1.8 billion years. This is the first evidence that organisms
other than multicellular animals can produce such traces,

and it prompts re-evaluation of the significance of Precam-
brian trace fossils as evidence of the early diversification

of Bilateria. Our observations also render indirect support
to the highly controversial interpretation of the enigmatic Ed-

iacaran biota of the late Precambrian as giant protists [7, 8].

Results

On four research dives at 750–780 m near Little San Salvador
Island (Bahamas) in the Johnson-Sea-Link submersible,
we observed a multitude of grape-like objects associated
with tracks up to 50 cm long (Figure 1A; also Movie S1 in the
Supplemental Data) on the seafloor. On sloped regions of the
*Correspondence: matz@mail.utexas.edu
seafloor, tracks were often aligned as if the objects were mov-
ing uphill (Figure 1B). However, we found tracks in all orienta-
tions, including tracks running in opposite directions in the
same region (Figure 1 A). The tracks were commonly sinuous
grooves bordered by two low lateral ridges with a central ridge
that was especially well defined near the objects themselves
(Figures 1C–1F).

Examination of the collected specimens identified them as
testate amoebas of the genus Gromia, which is a sister group
of Foraminifera within the supergroup Rhizaria [9, 10]. We
sequenced a fragment of the small-subunit ribosomal RNA
from one of the specimens. Phylogenetic analysis comprising
previously reported sequences from a variety of deep-sea
gromiids [11] indicated that our organisms should be classified
as Gromia sphaerica, a species previously known only from
the Arabian Sea [12] (Figure 2).

Bahamian Gromia looks very much like a small dark-green
grape or ball (Figures 1 and 3) up to 30 mm in diameter. A
thin layer of protoplasm containing fine greenish grains of
sediment underlies its membranous transparent wall (test),
whereas its fluid-filled center appears to be devoid of living
or sediment matter. This bubble-like organization of Bahamian
G. sphaerica represents a sharp contrast to other known mac-
roscopic deep-sea protists (Xenophyophores, Allogromiids,
and Komokiaceans [13, 14]), all of which are filled with agglu-
tinated sediment feces (stercomata). Our Bahamian speci-
mens demonstrate an important diagnostic feature of the
Arabian G. sphaerica: Unlike all other gromiids, their tests
have numerous evenly scattered apertures rather than just
one or a few terminal apertures [11, 12] (Figure 3A). Projections
with poorly defined shapes associated with some of the
apertures can sometimes be seen in freshly collected speci-
mens (Figure 3B), ostensibly representing collapsed pseudo-
podia. However, Bahamian and Arabian G. sphaerica are nota-
bly different in body shape and lifestyle. Arabian G. sphaerica
is nearly perfectly round (as the species name implies) and
sedentary: these organisms were observed in situ with only
a narrow area of lighter sediment all around the naked tests
as evidence of their activity [12]. In contrast, Bahamian
G. sphaerica is usually grape shaped rather than round
(although almost round individuals can also be found: Figures
3A and 3B), is commonly fully covered in situ by a thin layer of
sediment (Figures 1A–1F and 3C), and is associated with
tracks that suggest motility (Figure 1). Interestingly, despite
the overall morphological similarity, Arabian G. sphaerica
was reported to have a stercomata-filled rather than a bub-
ble-like body [12], which may reflect the difference between
the sedentary and motile lifestyles of the Arabian and Baha-
mian ecomorphs. Still, there is a possibility that the original de-
scription of the Arabian G. sphaerica was not entirely accurate
in this respect, and it might have a bubble-like organization af-
ter all (A.J. Gooday, personal communication).

Although we did not see the protists’ movement directly,
there are several observations that virtually exclude the possi-
bility that the tracks are due to currents or sediment slides
moving the organisms around rather than the organisms’
own activity. The bubble-like body organization makes the
Bahamian Gromia nearly neutrally buoyant. A current dragging

mailto:matz@mail.utexas.edu


Figure 1. Tracks of the Bahamian Gromia sphaerica

(A) Gently sloping seafloor with numerous G. sphaerica visible. White arrowheads indicate notably curved tracks; black arrowheads indicate adjacent tracks

running in opposite directions.

(B) Alignment of the tracks on a steeper slope.

(C–F) Details of the tracks, demonstrating the characteristic bilobed profile with the central ridge that is especially prominent near the organism. In panel (E),

note that the track proceeds through a dip in the terrain, suggesting active locomotion. In panel (F), a group of three large cup corals growing on a half-buried

sea urchin test indicate a remarkable sediment stability that may facilitate track persistence.
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such an object across the seafloor would not produce a groove
similar to the typical track; in fact, we frequently observed
these organisms being carried by currents produced by the
submersible without leaving any imprint on the sediment
(Movie S2). Shifting sediment would carry the organisms along
with it rather than generate tracks because the organisms
don’t seem to be anchored in the deeper (unmoving) sediment
layers. The obvious uphill movement observed on the slopes
(Figure 1B) excludes the possibility of passive rolling down
the slope. The tracks successfully negotiate dips (Figure 1E),
which can be another indication of active locomotion. The
variability seen between tracks of different individuals further
supports the conclusion that these tracks were left by these
organisms: The tracks often curve and run in different
directions (Figure 1A). Such patterns would be difficult to
explain if the tracks were due to external causes because
such causes should affect all the organisms in a given locality
in the same way.

On the basis of the observations that in situ, the grape-
shaped Bahamian G. sphaerica were oriented with their axes
perpendicular to the tracks (Figures 1C–1F), were completely
covered with a thin layer of sediment, and had pseudopodia
that could issue from any part of the body, we believe that
they move by rolling, unlike smaller gromiids that crawl by pull-
ing themselves along with pseudopodia issuing from a terminal
aperture [15]. The rolling mode of locomotion is not uncommon
in smaller protists with thin pseudopodia (filopodia) emanating
from all around the body [16]. We further hypothesize that the
Bahamian Gromia feeds as it rolls by picking up the top layer of
sediment in front of the test and discharging the processed
sediment behind. The central ridge of the trace (Figures 1C–
1E) might represent the discharged sediment and, if so, might
be viewed as a fecal trail. The extensive perturbation of the
sediment associated with such a feeding process is likely to
be the primary cause of the track production because pure lo-
comotion (irrespective of its mode) by such a nearly neutrally
buoyant organism would hardly disturb the sediment at all. It
is important to note that the significance of Gromia tracks for
a re-evaluation of the trace fossil record does not depend on
any particular mode of locomotion, as long as there is no doubt
concerning causal association of the protists with the tracks.

In the future, it will be important to document the movement
of these protists. However, this might turn out to be problem-
atic because at this particular site, the movement might be ex-
tremely slow and still leave prominent tracks. The near-bottom
current was commonly 0.1 knot and never exceeded 0.2 knots
on any of the dives over 3 days. These low-current conditions,
combined with a fine, soft, but nonflowing consistency of the
sediment, seem to facilitate the retention of a great number
of tracks of various deep-sea organisms (Movie S1). A good in-
dication of sediment stability is the presence of three solitary
corals that were up to 45 mm tall and were growing on a dete-
riorated sea urchin test that was half-buried in the sediment
(Figure 1F). Growth of these corals would have taken several
years [17], during which the test must have remained in the
same position without ever getting turned over or buried. It is
therefore possible that the observed Gromia tracks may
have been produced over a course of weeks if not months.

Discussion

Molecular clock estimates unanimously place the origin of Bi-
lateria before the appearance of their body fossils 542 million
years ago in the Cambrian; these estimates have sometimes
been as early as a billion years ago [18] but have recently
converged on 50 million to 80 million years before the
Cambrian explosion [19, 20]. However, the fossil evidence of
bilaterian animals in the Precambrian is scarce. There is only



Figure 2. Phylogenetic Position of the Bahamian Gromia with Respect to

Other Characterized Gromiids, According to the Partial Sequence of the

Small-Subunit Ribosomal RNA

Six as-yet-unnamed deep-sea species are represented (sp.1 to sp.6 [11]),

along with several isolates of shallow-water Gromia oviformis [41] and

Gromia sphaerica from the Arabian sea [11]. The G. sphaerica clade, to

which the Bahamian specimen belongs with high posterior probability

(0.97), is highlighted. The edges with posterior probability less than

0.9 are collapsed, with the exception of the one rendering additional support

to the placement of the Bahamian isolate within the G. sphaerica clade.
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one common Precambrian body fossil—that of Kimberella
quadrata—whose interpretation as a primitive mollusk has
stood up to scrutiny thus far [21]. Some microscopic fossils
[22] from the Doushantuo formation in China, dating back to
580 million years ago, have been described as bilaterians,
but this interpretation is considered highly controversial
[23, 24]. The discovery of what appear to be fossilized bilater-
ian embryos in the Doushantuo [25, 26] generated a lot of
excitement [27] but was later contested by the reinterpretation
of these structures as giant sulfur bacteria [28]. In the absence
of unequivocal body fossils, arguably the most convincing
evidence of the earliest bilaterians is traces shaped like elon-
gated sinuous grooves or furrows [1–5]. It is puzzling, however,
that some such traces date back to 1.5 billion to 1.8 billion
years ago [29–31], which outdates even the boldest claims
of the time of origin of animal multicellularity and forces
researchers to contemplate the possibility of an inorganic or
bacterial origin [32, 33].

The apparent need for two planes of asymmetry for trace-
generating directional locomotion over the water-sediment
interface is precisely why it was consistently viewed as
a prerogative of bilaterally symmetrical animals. Some benthic
protozoans such as foraminiferans are able to displace sedi-
ment as they move [34, 35], but because of the submillimeter
size of most of these motile forms and their tendency to
move within the sediment rather than on top of it, this activity
is unlikely to produce fossilizable traces. Some small epiphytic
Foraminifera grazing on seagrass leaves embankment-like or-
ganic trails [36], but these are even less likely to be preserved
as fossils. The possibility of extended surface rolling by larger
protists, or any other extinct organisms, has thus far not been
considered as a possible mechanism for the production of
fossilized traces; a few exceptions include large fusiform fora-
miniferans and some bryozoans. Our observations make it
plausible that certain Precambrian protists, similar to Baha-
mian Gromia sphaerica, could have reached macroscopic
size while retaining the inherently protist-like rolling locomo-
tion [16] and thus may have been responsible for at least
some of the groove-like trace fossils currently attributed to bi-
laterians. The fact that the Precambrian traces are restricted to
the sediment surface [2, 6, 30] corroborates the possibility of
their production by rolling protozoans. The feeding activity as-
sociated with locomotion might explain how such traces could
have been produced across the dense bacterial mats that cov-
ered the seafloor in the late Precambrian [37, 38], and it opens
the possibility that the protists might have fed directly on the
mats. There is good evidence for the existence of diverse
amoeboid protists in the Precambrian. A variety of fossils of
testate amoebas are known from at least as early as 742 million
years ago [39, 40]. Molecular phylogenies suggest that
gromiids in particular represent one of the ancient lineages
of amoeboid eukaryotes with filopodia (i.e., long and thin pseu-
dopodia) [10, 41]. This group of organisms underwent a major
radiation around one billion years ago, resulting in the rise of
Foraminifera from a putative Gromia-like ancestor [42], which
implies that Gromia-like protists existed before that event.
Among the Precambrian trace fossils that resemble the
Bahamian G. sphaerica tracks are bilobed traces such as
those of Aulichnites, Nereites, Bilinichnus, and Archaeonassa
[6, 43–45] (Figure 4). Most remarkable, however, is the similar-
ity to the enigmatic Myxomitodes traces from the Stirling
formation [30, 31, 46], the origins of which are controversial
[2, 33] primarily because of their extreme age of 1.8 billion
years (Figure 4E). Notably, the Stirling formation also contains
discoidal imprints 3–12 mm in diameter [47] that were inter-
preted as remains of ‘‘globular or bulbous collapsible bodies’’
[31], a description that fits Gromia quite well.

Our observations of the Bahamian Gromia sphaerica make it
tempting to revisit the controversy surrounding the enigmatic
Ediacaran biota that dominated the shallow-water marine
megafauna of the late Precambrian, 580 million to 543 million
years ago [48]. Although most researchers consider Ediacar-
ans to be multicellular, Seilacher and coworkers proposed
that they be interpreted as giant rhizopods with flexible or-
ganic walls, subdivided into hydrostatically supported cham-
bers [7, 8]. Most paleontologists were unwilling to accept the
possibility of giant turgid protist bodies with flexible walls, so
much so that they deemed the affinity of the Ediacarans with
fungi or lichens more plausible [49]. In our view, the multilay-
ered flexible organic test of Gromia sphaerica [12], which is
typical of all gromiids [50], fits the expectations of Seilacher’s
hypothesis very well. The test of G. sphaerica is compatible
with substantial growth along with maintenance of the function
of hydrostatic support, and it also seems to have sufficient
strength to support the bodies of even the largest Ediacarans,



Figure 3. External Appearance of the Bahamian

G. sphaerica

(A) Collected specimen demonstrating transpar-

ent membranous test, multiple evenly scattered

apertures, and dark-green sediment contained

in the protoplasm under the test’s surface.

(B) Freshly collected specimen with collapsed

pseudopodia still visible (white projections).

(C) Typical grape-shaped specimen in situ, fully

covered with sediment. The track of this one is

toward the top right corner of the picture.
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although properly addressing this issue will require a dedi-
cated study. The only Ediacaran-like body characteristic that
Figure 4. Precambrian Bilobed Trace Fossils Resembling Tracks of the

Bahamian G. sphaerica

(A) Aulichnites [5].

(B) Nereites [45]; arrow indicates a lateral ridge.

(C) Bilinichnus [61].

(D) Archaeonassa [6].

(E) Myxomitodes [31], the trace fossil from 1.8 billion years ago.
G. sphaerica lacks is the chambered
organization [51]. It seems plausible,
however, that many of the small non-
chambered discoidal Ediacaran fossils
[52] represent organisms similar to
G. sphaerica. Another major argument
that has been put forward against the
protozoan nature of the Ediacarans is
the evidence of motility in some large
forms [4, 53, 54], which has never seen in protists of compara-
ble size. Our observations clearly demonstrate that an amoe-
boid protozoan can combine a large hydrostatically supported
body and a motile lifestyle, lending indirect support to the
interpretation of Ediacarans as giant protists.

In conclusion, our observations of the giant deep-sea
amoeboid protist of the genus Gromia and its peculiar roving
behavior provide fresh fuel for the debate on the history of
both multicellular and unicellular animals. The example of
G. sphaerica demonstrates that protists can be large, motile,
and capable of producing macroscopic traces. This adds an
important general option for interpretation of the trace fossil
record and, in particular, makes it plausible to suggest that
many trace fossils currently attributed to early bilaterian
animals are in fact tracks of giant motile protozoans. It is
also tempting to speculate that extant gromiids might be close
relatives of the Ediacaran organisms, or even their direct
descendants still roaming the deep ocean floor. Finally, there
is a tantalizing possibility that Gromia-like protists might
have been responsible for the tracks and fossils of the Stirling
formation, and hence their extant representatives may be
the ultimate macroscopic ‘‘living fossils,’’ morphologically
unchanged since 1.8 billion years ago. Further research into
the ecology, biomechanics, and phylogeny of these bizarre
mega-protists might bring substantial insight into the earliest
chapters of evolution of macroscopic life on Earth.

Experimental Procedures

In Situ Observations and Specimen Collections

We made our observations from the Johnson-Sea-Link submersible at

720–780 m depth off Little San Salvador island, Bahamas (24� 34.5 N;

076� 00.1 W), JSL dive numbers 3614, 3615, 3619, and 3620. The specimens

for on-board study and molecular analysis were collected with the suction

sampler mounted on the front of the submersible, as well as with the benthic

grab tool. The images were obtained with a digital video camera (Panasonic

AW-E600 with a Canon J8xKRS lens) mounted on the movable arm in front

of the submersible.

Obtaining the Sequence of the Small-Subunit RNA

One collected specimen was collapsed (so that excess water was removed),

immersed in approximately 10 volumes of RNAlater solution (Ambion),

stored overnight at 4�C, and transferred for longer-term storage at 220�C.

The total RNA from approximately 1/10 of the specimen was isolated with
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the RNAqueous kit (Ambion), and cDNA was amplified as described earlier

[55]. The amplification product was ligated into pGEM-T vector (Promega)

and transformed into E. coli Top10 strain (Invitrogen) according to the

manufacturer’s protocols. The sequence of the small-subunit ribosomal

RNA was obtained upon the sequencing of 96 randomly picked clones.

Phylogenetic Analysis

The sequence was added to the previously published alignment [11] with

ClustalW software (v 1.83.1) [56]. The alignment was then manually edited

in the GeneDoc program [57]. The phylogeny was reconstructed

with MrBayes v. 3.1 [58] under the GTR model of evolution [59] and with

the assumptions of two different gamma-distributions of rate variation

and proportions of invariable sites for the variable V7 region [60] and the

rest of the alignment. We ran the MCMCMC chain for 2.5 million steps

and collected 25,000 trees, of which we discarded (‘‘burned’’) the first

24,000 to give statistical support to the nodes. We ran the analysis three

times to ensure convergence.
Supplemental Data

Supplemental Data include two movies and are available with this

article online at http://www.current-biology.com/supplemental/S0960-

9822(08)01397-3.
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