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This paper offers a new biotic interaction hypothesis for the Cambrian ‘explosion’ of mineralized, benthic, metazoan
diversity. It proposes that organic-mineral composite structures (e.g. shells and muscle lever-arms) originated in Pro-
terozoic lineages of primary larva-like, but reproductively competent, pelagic bilaterians because mineralization was
both mechanically and energetically favourable, 

 

not

 

 because it provided armour against predation. Increased
strength and rigidity of composite structures permitted growth to sizes incompatible with a continued pelagic exist-
ence, while the increased density resulting from massive mineralization facilitated settlement into, and stability in,
a nutrient-rich, Proterozoic benthic zone that offered new ecological opportunities. Because evolutionary success is
recognized by the formation of recoverable fossils, which requires large, enduring populations, successful lineages
are those that responded to the new opportunities by achieving broad niche occupancy through the evolution of meta-
morphosis to larger, mineralized ‘adult’ body forms with more efficient food-collecting apparatus and higher fecun-
dity. Niche modification (e.g. reef and shell-bed formation) by early mineralized benthic settlers may have increased
the likelihood of further successful settlement, leading to the appearance of a period of ‘explosive’ increase in benthic,
mineralized, metazoan diversity. Predator-prey arms races may then have followed, causing early faunal turnover
and possible selection for 

 

improved

 

 armour. © 2005 The Linnean Society of London, 
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nean Society

 

, 2005, 
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, 483–490.

 

ADDITIONAL KEYWORDS:

 

 benthic settlement 

 

-

 

 Cambrian explosion – metamorphosis 

 

-

 

 organic-mineral

 

composite.

 

INTRODUCTION

 

The rapid growth of massively mineralized, benthic-
dwelling, metazoan diversity that appears in the
Early Cambrian fossil record presents a problem that
continues to excite interest and controversy (reviewed
in Budd & Jensen, 2000). This problem resembles a
jigsaw puzzle with pieces missing, shapes uncertain,
interlocks ill-defined, and no authentic picture on the
box. Accordingly, no definitive solution can exist. But
any proposed solution that unites many pieces with
little strain, while offering new perspectives (Kell &
Oliver, 2003), may be an advance. Here, I propose one
such solution.

 

F

 

AUNAL

 

 

 

BACKGROUND

 

The nature of the Proterozoic fauna is indicated by
palaeontological and other evidence which strongly
suggests that the earliest Proterozoic multicellular
metazoans were pelagic heterotrophs, comparable in
general form to extant primary larvae but reproduc-
tively competent (Jagersten, 1959; Nielsen, 1998) and
that, by the Cambrian, much diversification had taken
place in the pelagic realm, i.e. that a ‘slow fuse’ of
diversification (Cooper & Fortey, 1998) preceded the
onset of massive mineralization. This evidence
includes the following:

1. Photosynthetic plankton were abundant in Early
Proterozoic seas (e.g. Summons, Powell & Boreham,
1988; Brocks 

 

et al.

 

, 1999).
2. Molecules of eukaryotic origin occur in marine

deposits of 

 

c

 

. 2700 Mya (Brocks 

 

et al

 

., 1999) and are
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abundant in the Middle Mesoproterozoic (Sum-
mons 

 

et al

 

., 1988).
3. The first eukaryotes appeared before 2100 Mya

(Han & Runnegar, 1992), with unambiguous evi-
dence of plant multicellularity and sexual repro-
duction 

 

c

 

. 1200 Mya (Butterfield, 2000). The
commonality of sexual reproduction implies that
plant and animal multicellularity evolved roughly
in parallel, placing the origin of complex metazoans
before 

 

c

 

. 1200 Mya.
4. The Late Proterozoic to Early Cambrian fauna

comprised protostomes, deuterostomes and multi-
cellular animals of uncertain status (e.g. Cloud &
Glaessner, 1982; Conway Morris, 1986; Bengtson &
Zhao, 1997; Fedonkin & Waggoner, 1997; Cooper &
Fortey, 1998; Jensen, Gehling & Droser, 1998; Xiao,
Zhang & Knoll, 1998; Vannier & Chen, 2000;
Erwin, 2001; Shu 

 

et al.

 

, 2001; Zhang 

 

et al.

 

, 2001;
Lieberman, 2002; Xiao, 2002; Zhu, Zhao & Chen,
2002; Chen 

 

et al.

 

, 2003; Zhang, Hou & Emig, 2003).
5. In the Middle Cambrian Burgess Shale fauna, most

individuals were unmineralized and not benthic
(Conway Morris, 1986, 1992; Powell, Johnston &
Collom, 2003).

6. If microphagy of protists and other (by implication,
pelagic) metazoans was primitive (Vermeij & Lind-
berg, 2000), the size of some Early and Middle Cam-
brian pelagic heterotrophs, e.g. 

 

Isoxys

 

 (Vannier &
Chen, 2000), agnostid trilobites, and conodont
organisms, implies that pelagic, metazoan prey of
appreciable size had by then evolved.

7. Although all such analyses may be controversial
and some may be flawed (Graur & Martin, 2004),
at least some careful molecular clock reconstruc-
tions place bilaterian diversification well before the
time of the palaeontologically visible ‘explosion’
(e.g. Knoll, 2003; Levinton, Dubb & Wray, 2004).
Fossil evidence for bilaterian metazoans 

 

~

 

50 Myr
before the Cambrian has recently been presented
(Chen, 

 

et al.

 

, 2004).

While none of these facts individually is conclusive,
taken together they support, and nothing excludes,
the ‘slow fuse’ of Precambrian faunal diversification.

 

B

 

IOMECHANICS

 

, 

 

NOT

 

 

 

PREDATION

 

, 

 

ACCOUNTS

 

 

 

FOR

 

 

 

THE

 

 

 

ORIGIN

 

(

 

S

 

) 

 

OF

 

 

 

MINERALIZATION

 

It has been argued that the massive mineralization
of shells or other exoskeletal structures evolved as
armour in response to predation (e.g. Vermeij, 1990;
Bengtson & Conway Morris, 1992; Signor & Lipps,
1992; Bengtson, 1994; Marshall, 2003). But such a
response would require expressed genetic variation
that includes some predation-resistance due to shell,
to mineralization, or to both. Thus, epigenetic path-

ways to mineralized structures would necessarily
have preceded predation; at most, predation might
have selected for genetic assimilation (Waddington,
1953, 1957) of pre-existing, rarely expressed, traits
capable of leading to mineralized armour.

Moreover, it seems implausible that predation pres-
sure could select for the 

 

de novo

 

 formation of so com-
plex and integrated a set of traits as the expression of
mineralization pathways and the formation of devel-
opmentally organized armour. Because organisms are
functionally integrated wholes, the primary role of
mineralization should more plausibly have involved
some more basic, integrated physiological function(s).
Brachiopods, which were among the earliest mineral-
ized animals and are therefore highly relevant, pro-
vide evidence for what this may have been. In
ontogeny, the earliest reinforcement of the mantle epi-
thelium is by ectodermally secreted organic polymers
(Cusack, Williams & Buckman, 1999). Not only do
such unmineralized primary mantle ‘shells’ occur
today (Yatsu, 1902), but comparable structures are
revealed in Early Palaeozoic fossils by virtue of the
surrounding, ontogenetically later, mineralized shell
(Williams 

 

et al.

 

, 1992, 1994, 1998a, b; Williams, 2003).
That the ontogenetically earliest brachiopod shells

are and were unmineralized, coupled with the pres-
ence of muscle insertions (Williams 

 

et al.

 

, 1997), iden-
tifies two potentially powerful selective forces that
could favour 

 

ab initio

 

 mineralization. First, the plas-
ticity of organic mantle reinforcement implies limits to
the strength of inserted muscles and the lengths of
muscle lever-arms, thus potentially restricting growth
and functional morphology. Second, replacement of
organic load-bearing structures by organic-mineral
composites is both energetically (Palmer, 1992) and
mechanically favourable (Currey, 1999), and the more
massive the structure, the more important these prop-
erties: composite parts are cheaper, more rigid, and
more durable.

The advantageous properties of organic-mineral
composites can likewise account for the independent
origins of massive mineralization in other phyla, e.g.
stem-group arthropods, molluscs and echinoderms.
They may also underlie the initiation of mineraliza-
tion as support for extended feeding epithelia and
three-dimensional porosity in corals and Proterozoic
sponge-like organisms (Wood, Grotzinger & Dickson,
2002), respectively.

A further strong argument against massive miner-
alization as a protective response to predation applies
if, as argued above, most precursors of mineralized lin-
eages were pelagic. For such organisms, mineraliza-
tion would have been an inappropriate response
because other ways to deter or avoid predators (viz.
distastefulness, aposematic signals, camouflage, invis-
ibility, or active evasion) entail less radical life-history
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consequences than the acquisition of high-density
structures.

The long Phanerozoic record of drilling predation in
brachiopod and other shells (Kowalewski, Dulai &
Fürsich, 1998; Bengtson, 2002; Hua, Pratt & Zhang,
2003) is not evidence of selection pressure favouring

 

ab initio

 

 shell mineralization, because both chemical
and mechanical drilling mechanisms in predators
imply the pre-existence in prey either of hard struc-
tures to be drilled, or of soft-tissue drilling by the same
mechanisms (for which there is no evidence). Indeed,
the apparently high prevalence of successful drilling
in the early mineralized fossil, 

 

Cloudina

 

 (Hua 

 

et al

 

.,
2003), can be taken as evidence that mineralization
was 

 

not

 

 effective armour.
Together, these considerations indicate that mas-

sive mineralization originated in diverse lineages of
pelagic bilaterians as a way to build larger, cheaper,
and/or stronger body parts. Predation was not a pri-
mary driving-force for mineralization; armour can at
most have been a secondary consequence of it. Further
evidence for an early and fundamentally biomechani-
cal role for tissue reinforcement is provided by diverse
Lower Cambrian lobopodians (Hou 

 

et al.

 

, 2004:
figs 14.1–14.11), in which isolated sclerites are well
positioned to accept limb muscle insertions on the oth-
erwise soft body-wall.

 

M

 

INERALIZATION

 

, 

 

GROWTH

 

 

 

AND

 

 

 

SETTLEMENT

 

Unmineralized or lightly mineralized pelagic organ-
isms sink (slowly) unless they possess buoyancy aids
or swim upwards (Chia & Rice, 1978; McEdward,
1995; Herring, 2002; Huisman 

 

et al.

 

, 2002). Mineral-
ization increases sinking speed: a substantial increase
has been measured in one case (Pennington & Strath-
mann, 1990), and a smaller effect (

 

c

 

. 10%) has been
calculated for another (S. Humphries & C. Lüter, pers.
comm.). Although mineralization may not be essential
for benthic access, faster sinking may increase the
chance of successful settlement through deep, turbu-
lent, or heterogeneous water. Moreover, time to
benthic fixation may be critical given limited nutrient
stores or competence periods. Thus, a potentially
important side-effect of mineralization (especially
when so massive as to substantially change density) is
to facilitate access of pelagic organisms to the benthic
zone.

If strengthening of muscle lever-arms and other
functional elements in pelagic organisms permits
growth to larger size, it will result in either a trade-off
between the cost of density countermeasures and the
benefits of increased size, or the attainment of some
functional/mechanical limit to the pelagic habit. In
both cases continued size increase will be possible only
if the pelagic habit is replaced, either by more active

swimming (leading in a direction not relevant to this
discussion), or by settlement to the benthos. Once
in the benthos, increased density should also
provide some stability against turbulent resuspen-
sion, although calculations suggest that this effect
may be small (S. Humphries, pers. comm.). However,
in Late Proterozoic forms with no attachment mech-
anism, even a small benthic stabilization force could
have been critically important over evolutionary time,
and in forms that had some ability to adhere or attach
to a substrate, stabilization could have been important
temporarily to individuals, e.g. during a limited period
of attachment competence, or in regions exposed to
wave action. In larger, active swimmers (e.g. early
arthropod predators), stabilization due to increased
density could also have been energetically advanta-
geous if it reduced the effort required to hold position
against currents and/or reduced losses of feeding-time
caused by turbulent re-suspension.

 

E

 

COLOGICAL

 

 

 

OPPORTUNITIES

 

 

 

ARISING

 

 

 

FROM

 

 

 

BENTHIC

 

 

 

SETTLEMENT

 

In the Mid and Late Proterozoic, dissolved mineral
nutrients and the rain of detritus (‘marine snow’)
appear to have been plentiful (Tucker, 1992), the faecal
pellets of increasing numbers of pelagic metazoans
sped the descent of organic carbon (Rothman, Hayes &
Summons, 2003), and bioturbation was absent or min-
imal. Thus, the sea floor was nutrient-rich and stable,
consolidated by microbial mats and stromatolites
(Tucker, 1992; Walter, 1994; Bottjer, Hagadorn & Dorn-
bos, 2000; Noffke, Hazen & Nhelko, 2003). Benthic
trace fossils with a metazoan grade of complexity first
appeared in the Late Neoproterozoic, and their diver-
sity and complexity increased across the Precambrian–
Cambrian boundary, as did bioturbation (Brasier, Dor-
jnamjaa & Lindsay, 1996; Crimes, 1992a, b; Jensen,
2003). But the diversity and biomass of trace fossil-
makers cannot have been high enough to consume all
the available ‘snow’, much of which would have been
suspended in turbulent, epi-benthic water. Suspen-
sion- and particle-seizure feeders reaching the sea-floor
by settlement would therefore have found food-gath-
ering faster and more reliable than in the upper water
column. Moreover, currents bring cost-free food
resources to sessile, benthic suspension-feeders.

In these ways, benthic settlement would have been
nutritionally advantageous, allowing growth to con-
tinue beyond the size limits imposed by the pelagic
habit and favouring the development of the larger
structures permitted by mineral reinforcement, as
well as permitting the evolution of new feeding habits
and structures, e.g. the laminar-flow and inhalant/
exhalant currents of brachiopods, the tiered filtration
fans of pelmatozoans, and various sediment-mining



 

486

 

B. L. COHEN

 

© 2005 The Linnean Society of London, 

 

Biological Journal of the Linnean Society, 

 

2005, 

 

85

 

, 483–490

 

structures (Ubaghs, 1967; Baumiller, 1997). Evidently,
we know only of those lineages of settlers that did
encounter and respond to benthic ecological opportu-
nities with changes that led to palaeontologically vis-
ible lineages; we know little or nothing of those that
met no favourable opportunity or responded in unpre-
served ways.

 

E

 

VOLUTIONARY

 

 

 

SUCCESS

 

, 

 

THE

 

 

 

BIPHASIC

 

 

 

LIFE

 

 

 

CYCLE

 

 

 

AND

 

 

 

NICHE

 

-

 

BROADENING

 

 

 

AS

 

 

 

CONSEQUENCES

 

 

 

OF

 

 

 

BENTHIC

 

 

 

SETTLEMENT

 

Evolutionary success means the persistence of a lin-
eage over time and space in numbers sufficient for fos-
sils to be both formed and recovered. Both are
enhanced by broad niche occupancy (e.g. Kammer

 

,

 

Baumiller & Ausich, 1997), which itself reflects fecun-
dity, i.e. the number of zygotes formed by the gametes
of individual parents and the success of zygote matu-
ration and dispersal. Because floating or swimming
animals of relatively simple morphology must gener-
ally be size-limited, with concomitant limits on fecun-
dity, adoption of a benthic habit and increased body
size (both resulting from massive mineralization)
would have jointly promoted evolutionary success.
Increased fecundity would also have resulted in addi-
tional genetic diversification, further enhancing broad
niche occupation (Van Valen, 1965), buffering against
ecological fluctuation and facilitating long-term
survival.

The equation of high fecundity with evolutionary
success can also account for the origin of the biphasic
life-cycle, in which planktonic larvae settle and repro-
duce only after a metamorphosis in which they
develop a secondary body form that permits the for-
mation of more efficient or selective feeding struc-
tures, growth to much larger size, and high fecundity.
This sequence, in which novel, mineralized ‘adult’
characters are added to a ‘larval’ ontogenetic pro-
gramme, with delay of reproduction to the adult stage,
differs only slightly from Nielsen’s hypothesis for the
origin of metamorphosis (Nielsen, 1998, 2000), and
implies that the lack of evidence for indirect develop-
ment in the Proterozoic results from the small size and
fragile construction of unmineralized, premetamor-
phic forms (Budd, 2004).

A striking feature of the fossil record of mineralized
metazoan diversity is that its rapid expansion appears
to have been concentrated into a short time-period.
One possible prediction of the hypothesis being
advanced here is that this is a taphonomic artefact;
many sporadically mineralized lineages may have
arisen at earlier times but generally left no trace
because their census size never became high enough to
ensure bulk fossilization (i.e. the deposition of marl or
limestone) and recovery. If so, the appearance of a

short-lived Cambrian diversity explosion may be
explained by positive feedback between the number of
potential attachment-sites (e.g. in shell-beds or reefs)
created by the first numerically successful, mineral-
ized, benthic lineages and the probability of subse-
quent, successful benthic settlement and attachment.
The number and complexity of available benthic
niches (total niche breadth) may have grown (perhaps
for a time autocatalytically) as the number and types
of successful settlers increased (Odling-Snee, Laland
& Feldman, 2003).

 

P

 

HYLOGENETICS

 

 

 

OF

 

 

 

MASSIVE

 

 

 

MINERALIZATION

 

Various lines of evidence indicate that even if the bio-
chemical components of mineralization are plesiomor-
phies (of Metazoa or some higher clade), massively
mineralized skeletons and shells are polyphyletic. For
example, stem- and crown-group brachiopods (which
probably include phoronids) display at least seven dif-
ferent mineralization styles or fabrics (Conway Morris
& Peel, 1995; Williams, 1997, 2003; Williams 

 

et al

 

.,
1998b; Cohen, 2000; Williams, Lüter & Cusack, 2001;
Holmer, Skovsted & Williams, 2002; Williams &
Holmer, 2002; Cohen, Holmer & Lüter, 2003) most
of which can hardly be derived from one another.
Although all involve secretion by an ectodermal epi-
thelium, they presumably reflect the evolutionary
recruitment of different cellular and biochemical min-
eralization pathways in related stem-group lineages.
This was probably also true for other phyla: certain
lineages would independently and sporadically miner-
alize (e.g. Brasier, 1982: fig. 4) by initiating the expres-
sion of plesiomorphic biochemical mineralization
pathways (or less probably by acquiring them 

 

de
novo

 

), for example siliceous and calcareous sponges
before the Cambrian, ectoprocts not until the Ordovi-
cian, some phyla not yet. Among groups such as
arthropods, where mineral reinforcement of the chiti-
nous skeleton is widespread (strengthening muscle
insertions and hardening mouthparts, e.g. Fortey &
Owens, 1999), its biochemical and phyletic origin may
have been more unitary, with differentiation between
lineages being mainly in degree. However, Early
Palaeozoic arthropod mineralization was not entirely
unitary; lineages of trilobites are known with either
calcite or apatite secreted as a complete external layer
(Briggs, Fortey & Wills, 1992; Fortey, 2001). These and
many other examples of localized mineralization (e.g.
Lichtenegger, 2002; Warén 

 

et al.

 

, 2003), provide fur-
ther evidence for its independent origins.

 

A

 

RMOUR

 

 

 

AGAINST

 

 

 

BENTHIC

 

 

 

PREDATION

 

Given the sort of benthic radiation described above,
with concentration of macroscopic, mineralized biom-
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ass in the benthic zone, new predation opportunities
would follow, leading to possible arms races between
benthic predators and prey (Willmer, 1990; Bengtson,
1994). Increased predation in the benthos follows from
a simple quantitative argument: as long as predators
and prey inhabited the three-dimensional water col-
umn, encounters would have been relatively rare and
selection for predation-resistance, low. However, once
a substantial occupation of the benthic zone had been
established, prey–predator interactions would have
occurred in (nearly) two-dimensional space, with
increased predation pressure and stronger selection,
although under conditions where 

 

improved

 

 armour
could now confer greater protection 

 

without

 

 radical
new life-history consequences. Benthic predator

 

-

 

prey
co-evolution may therefore have accounted for early
benthic faunal turnover, e.g. the extinction of hyoliths
and of the scleritomorph halkieriid- and tommotid-
like brachiopod stem-groups. Similarly, it may have
promoted survival of sessile and infaunal, shelled
brachiopods, as well as the further evolution of the
various mineralized molluscan classes, and the echin-
oderm radiation. But for the reasons given above, 

 

ab
initio

 

 mineralization must generally have preceded
such predation.

 

DISCUSSION

 

In the hypothesis advanced here, a range of elements
is used to build a new reconstruction of biotic inter-
actions that may underlie the apparent increase of
mineralized, benthic metazoan diversity between the
Precambrian and Cambrian periods. In short, that
mineralization originated because it is mechanically
and energetically favourable and that, when massive,
it facilitated settlement of bilaterians from the water
column into the nutrient-rich, Proterozoic benthic
zone. Mineralization and settlement were joint nec-
essary preconditions for the evolution of greater
fecundity through the origin of biphasic life cycles,
and hence for palaeontologically recorded, evolution-
ary success. Some elements of this hypothesis have
been noted and discussed by previous authors (e.g.
Brasier, 1982; Tucker, 1992; Rieger, 1994; Fortey,
Briggs & Wills, 1997), but others, including the bio-
mechanical basis for mineralization, and the synthe-
sis, appear to be novel applications of established
knowledge.

Justification for advancing a new hypothesis lies in
the extensive arguments presented elsewhere (Budd
& Jensen, 2000) for rejecting existing explanations of
Precambrian-Cambrian metazoan evolution, and in
the new arguments given here for rejecting predation
pressure as an important factor. Several other pro-
posals can also be rejected. For example, that miner-
alization was prevented (until the Cambrian) by low

ion concentrations in seawater is inconsistent with:
(1) the essentially unlimited scope for the evolution of
protein–ion association constants (Bogarad & Deem,
1999), (2) the existence of inherited (between-taxon)
variation in the effect of carbonate ion concentration
on calcification rate (Marubini, Ferrier-Pages & Cuif,
2003), (3) the intracellular, membrane-bound, or peri-
plasmic and homeostatically controlled formation of
mineral skeletons (e.g. Al-Horani, Al-Moghrabi & de
Beer, 2003), and (4) the quasi-simultaneous origins of
apatite, aragonite, calcite and silica mineralization
(Brasier, 1982: fig. 4). Likewise, the suggestion that
metazoan body size was oxygen-limited ignores the
widespread existence of gas transport proteins,
circulatory systems, and adaptations to life under
anoxic conditions, all of which are components of the
ground-plan of metazoan lineages with Precambrian
origins (e.g. Kusche, Ruhberg & Burmester, 2002).
Explanations that invoke genomic reorganization
lack adequate supporting evidence; indeed, gene
diversification by duplication appears to have
occurred in two bursts, one long before and one after
the Cambrian explosion (Miyata & Suga, 2001). As
this discussion indicates, no process previously
proposed to explain the observed patterns appears
satisfactory.

By contrast, the combination and sequence of pro-
cesses described here (with a broad brush, to avoid
excessive lineage-, time- and place-specific detail)
appear to provide a biologically and ecologically coher-
ent and plausible explanation for most aspects of the
diversification of metazoan lineages with massively
mineralized body parts whose remains constitute the
conspicuous, early fossils. Other benthic metazoans,
such as the complex trace fossil fauna (Crimes, 1992a,
b), the Ediacaran fauna (Cloud & Glaessner, 1982;
Seilacher, 1989; Jensen 

 

et al

 

., 1998) and Cambrian
infauna such as sipunculids and priapulids can be
understood as descendants of (presumably once
pelagic) Proterozoic lineages that followed unmineral-
ized developmental and evolutionary routes to a
benthic habit and relatively large size.

By its nature, the puzzle of the Cambrian explosion
can never be completely solved. However, the picture
drawn here brings together, with little strain, more of
the pieces, and appears more completely integrated
than any that have been presented hitherto. It should
be pasted on the box until a better one is devised.

 

NOTE ADDED IN PROOF

 

The diversity of mid water predators in Early Cam-
brian times has been discussed by J. Vaunier & J.
Chen (2005). Early Cambrian food chains: new evi-
dence from fossil aggregates in the Maotian Shau
State Biota, SW China. 

 

Palaios
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This is an intriguing paper which flies in the face of conventional ideas that armour was

the trigger for the increase in metazoan diversity in the Cambrian. The paper is by its

nature speculative but this should not prevent publication. The message is deliberately

provocative and you may be afraid to publish it, but publish it you should. It is bound to

stir the waters and could well lead to new studies designed to test the basic idea.
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