Doppler spectroscopy and astrometry

Theory and practice of planetary orbit measurements

Geometry of a binary orbit

Orbital elements

A binary orbit is defined by 7 elements:

- Size: $a=a_{1}+a_{2} \rightarrow$ semi-major axes of the orbits
- Shape: $e \rightarrow$ eccentricity
- Orientation in space: i, ω, Ω (longitude of periastron)
- "Location" in time: $T \rightarrow$ time of periastron passage, P \rightarrow orbital period
- In Doppler spectroscopy, five orbital elements (a_{1}, e, ω, P, T) can be determined from radial velocity measurements of one binary companion

Determination of radial velocities

Radial velocity, V_{r}, is a time derivative of a component of the radius vector along the z-axis:

$$
V_{r}=\dot{z}=\sin i[\dot{r} \sin (\theta+\omega)+r \dot{\theta} \cos (\theta+\omega)]
$$

Time derivatives of $r i \Theta$ can be computed from the equation of elliptical motion and from the $2^{\text {nd }}$ Kepler Law:

$$
\begin{aligned}
\dot{r} & =\frac{e \sin \theta r \dot{\theta}}{1+e \cos \theta} \quad r^{2} \dot{\theta}=\frac{2 \pi a^{2}\left(1-e^{2}\right)^{1 / 2}}{P} \\
V_{r} & =\frac{2 \pi a \sin i}{P \sqrt{1-e^{2}}}[\cos (\theta+\omega)+e \cos (\omega)]
\end{aligned}
$$

Examples of radial velocity curves

$$
e=0.1, w=45^{\circ}
$$

- $e=0.6, w=90^{\circ}$

Less time near periastron

$e=0.3, w=0^{\circ}$

- $e=0.9, w=270^{\circ}$

Models of orbits from V_{r} measurements

- Observations are given in the form of a time series, $\mathrm{V}_{\mathrm{r}}(\mathrm{i})$, at epochs $t(\mathrm{i}), \mathrm{i}=1, \ldots, \mathrm{n}$
- A transition from $\mathrm{t}(\mathrm{i})$ to $\Theta(\mathrm{i})$ is accomplished in two steps:

$$
\begin{array}{ll}
E-e \sin E=\frac{2 \pi}{P}(t-T) & \leftarrow \\
\begin{array}{ll}
\text { Equation for } \\
\text { mean anomaly, } E
\end{array} \\
\left(\frac{\theta}{2}\right)=\left(\frac{1+e}{1-e}\right)^{1 / 2} \tan \left(\frac{E}{2}\right) & K=\frac{2 \pi a_{1} \sin i}{P \sqrt{1-e^{2}}}
\end{array}
$$

- From the fit (least squares, etc.), one determines parameters K, e, ω, T, P

Planetary mass determination

- From $K=\left(\mathrm{V}_{\max }-\mathrm{V}_{\min }\right) / 2$ we get:

$$
a_{1} \sin i=\frac{\sqrt{1-e^{2}}}{2 \pi} K P
$$

- A planetary mass (times sin i) is found by assuming that the mass of the star is known:

$$
f\left(m_{2}\right)=\frac{m_{2}^{3} \sin ^{3} i}{M^{2}}=\frac{\left(1-e^{2}\right)^{3 / 2} K^{3} P}{2 \pi G}
$$

For a fixed amplitude $\mathrm{V} r$ $m_{2} \sin i \sim a^{1 / 2}$

Applicability and limitations of Doppler spectroscopy

- The methods allows determination of 5 out of 7 parameters of the orbit projected onto the sky plane. Without an independent measurement of i, one gets only a lower limit to the mass of the planet
- Ability to measure very small changes of V_{r} are necessary (e.g. Jupiter $-12,5 \mathrm{~m} \mathrm{~s}^{-1}$, Earth $-0,1 \mathrm{~m} \mathrm{~s}^{-1}$, a spectrometer with the resolution of $\mathrm{R}=10^{5}$ allows to measure V_{r} on the order of $10^{-5} \mathrm{c} \sim$ a few $\mathrm{km} \mathrm{s}^{-1}$)
- Photon noise (uncertainty of flux estimate $\sim N^{-1 / 2 / p i x e l) ~ p r o v i d e s ~ a n ~}$ absolute limit of the precision of V_{r} measurement
- Measurements of large numbers of lines improves the signal-to-noise ratio, (S / N)~ (\# of lines) $)^{1 / 2}$, S / N depends on the spectral type of star
- For a G star with $\mathrm{V}=8, \mathrm{~S} / \mathrm{N} \sim 200$ can be achieved with a 3 -m telescope. This gives a theoretical V_{r} precision $\sim 1-3 \mathrm{~m} \mathrm{~s}^{-1}$
- Another practical precision limitation results from stellar activity. This problem can be controlled to some extent by modeling. Currently attainable precision is $\sim 3 \mathrm{~m} \mathrm{~s}^{-1}$ (Saturn mass for G-stars 10-20 masses of Neptune for K,M dwarfs)

Calibration, analysis and examples of V_{r} curves

- Modern observing hardware and techniques of spectral analysis allow V_{r} measurements at $\mathrm{a} \sim 10^{-3}$ pixel precision
- Analysis is done by cross-correlating the spectra with high-S/N templates, the use of many spectral lines, and by accurate calibration with of I_{2} cells installed in the optical path of the telescope

Cross-correlate with
template spectra

Astrometry

Astrometry: basic characteristics - I

- Astrometry measures stellar positions and uses them to determine a binary orbit projected onto the plane of the sky
- Astrometry measures all 7 parameters of the orbit
- In analysis, one has to take the proper motion and the stellar parallax into account
- The measured amplitude of the orbital motion is simply $a_{1}=$ $\left(m_{2} / m_{1}\right)$ a. Assuming $m_{2} \ll m_{1}$ we have:

$$
\Delta \theta=\left[\frac{m_{2}}{m_{1}}\right]\left[\frac{a}{d}\right]
$$

Astrometry: basic characteristics - II

Taking $q=m_{2} / m_{1}$, we can calibrate the expression for $\Delta \theta$:
A comparison of some astrometry situations

$$
\Delta \theta=0.5\left(\frac{q}{10^{-3}}\right)\left(\frac{a}{5 A U}\right)\left(\frac{d}{10 p c}\right)^{-1}
$$

HST- WFPIC2
${ }^{\text {Lull }}$ W $W_{\text {itht }} \mathrm{H}_{\text {aff }} \mathrm{M}_{\mathrm{ax}}$ ($53 \underset{\text { fw mill }}{\text { miliarcsec }}$

- SIM Error Circle (4 microarcsec)

Hipparcos Error Circle (0.64 milliarcsec)

- A unit for $\Delta \theta$ is one millisecond of arc - very small effect
- Amplitude of the effect depends directly on d
- Dependence of m_{2} on a is opposite to that in Doppler spectroscopy
$\log \mathrm{m}_{2}$

