
Doppler spectroscopy and
astrometry

Theory and practice of planetary orbit
measurements



Geometry of a binary orbit
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Orbital elements

A binary orbit is defined by 7 elements:

• Size:    a = a1 + a2  → semi-major axes of the orbits
• Shape:      e  →  eccentricity
• Orientation in space:  i, ω, Ω (longitude of periastron)
• “Location” in time:  T → time of periastron passage, P
→ orbital period

• In Doppler spectroscopy, five orbital elements  (a1, e,
ω, P, T) can be determined from radial velocity
measurements of one binary companion



Determination of radial velocities
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Radial velocity, Vr, is a time derivative of a component of
the radius vector along the z-axis: 

Time derivatives of r i Θ can be computed from the equation
of elliptical motion and from the 2nd Kepler Law:



Examples of radial velocity curves



Models of orbits from Vr measurements
• Observations are given in the form of a time series, Vr(i),
   at epochs t(i), i = 1,…,n

• A transition from t(i) to Θ(i) is accomplished in two steps:
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• From the fit (least squares, etc.), one determines parameters
  K, e, ω, T, P



Planetary mass determination
• From K = (Vmax - Vmin)/2 we get:
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• A planetary mass (times sin i) is found by assuming that 
  the mass of the star is known:
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Applicability and limitations of Doppler
spectroscopy

• The methods allows determination of 5 out of 7 parameters of the orbit
projected onto the sky plane. Without an independent measurement of
i, one gets only a lower limit to the mass of the planet

• Ability to measure very small changes of Vr are necessary (e.g. Jupiter
- 12,5 m s-1, Earth - 0,1 m s-1, a spectrometer with the resolution of
R=105 allows to measure Vr on the order of 10-5c ~ a few km s-1)

• Photon noise (uncertainty of flux estimate ~N-1/2/pixel) provides an
absolute limit of the precision of Vr measurement

• Measurements of large numbers of lines improves the signal-to-noise
ratio, (S/N)~ (# of lines)1/2, S/N depends on the spectral type of star

• For a G star with V=8, S/N ~ 200 can be achieved with a 3-m
telescope. This gives a theoretical Vr precision ~ 1-3 m s-1

• Another practical precision limitation results from stellar activity. This
problem can be controlled to some extent by modeling. Currently
attainable precision is ~3 m s-1 (Saturn mass for G-stars 10-20 masses
of Neptune for K,M dwarfs)



Calibration, analysis and examples of Vr curves
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• Modern observing hardware and
  techniques of spectral analysis
  allow Vr measurements at a ~10-3

  pixel precision
• Analysis is done by cross-correlating
  the spectra with high-S/N templates,
  the use of many spectral lines, and by
  accurate calibration with of I2 cells
  installed in the optical path of
  the telescope



Astrometry
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Astrometry: basic characteristics - I

• Astrometry measures stellar
positions and uses them to
determine a binary orbit projected
onto the plane of the sky

• Astrometry measures all 7
parameters of the orbit

• In analysis, one has to take the
proper motion and the stellar
parallax into account

• The measured amplitude of the
orbital motion is simply a1=
(m2/m1)a. Assuming m2<<m1 we
have:

Examples of measurements
and orbits
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Astrometry: basic characteristics - II
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A comparison of some
astrometry situations

Taking q=m2/m1,we can calibrate
the expression for Δθ:

• A unit for Δθ is one millisecond
   of arc - very small effect
• Amplitude of the effect depends
  directly on d
• Dependence of m2 on a is opposite 
  to that in Doppler spectroscopy 
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