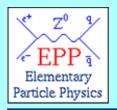


Quantum Numbers

In this section we will cover the following topics:

- Electric Charge
- Baryon Number
- Lepton Number
- Spin
- Parity
- Isospin
- Strangeness
- Charge Conjugation



Electric Charge Q

Quantum Numbers are quantised properties of particles that are subject to constraints. They are often related to symmetries.

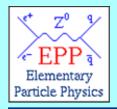
Electric Charge Q is conserved in all interactions.

$$\pi^{-} + p \rightarrow K^{0} + \Lambda^{0}$$
Q: -1 +1 0 0

Strong Interaction

$$K^{0} \rightarrow \pi^{+} + \pi^{-}$$
Q: 0 +1 -1

Weak Interaction



Baryon Number B

Baryons have B = +1Antibaryons have B = -1Everything else has B = 0

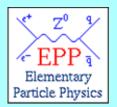
or

Quarks have B = $+\frac{1}{3}$ Antiquarks have B = $-\frac{1}{3}$ Everything else has B = 0

Baryons =
$$qqq = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$$
 Mesons = $q\bar{q} = \frac{1}{3} + -\frac{1}{3} = 0$

Baryon Number B is conserved in Strong, EM and Weak interactions.

Total (quarks - antiquarks) is constant.



Baryon Number

$$\pi^{-}$$
 + p \rightarrow K⁰ + Λ^{0}
B: 0 +1 0 +1

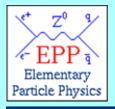
Strong Interaction

$$\Lambda^{0} \rightarrow p + \pi^{-}$$
B: +1 +1 0

Weak Interaction

Since the proton is the lightest baryon it cannot decay if B is conserved e.g:

$$p \not\to e^+ + \pi^0$$
B: +1 0 0



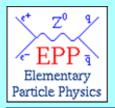
Lepton Number L

```
Leptons have L = +1
Antileptons have L = -1
Everything else has L = 0
```

Lepton Number L is conserved in Strong, EM and Weak interactions but is also separately conserved within lepton families:

```
e^{-} and v_{e} have L_{e}=1 e^{+} and \overline{v}_{e} have L_{e}=-1 \mu^{-} and v_{\mu} have L_{\mu}=1 \mu^{+} and \overline{v}_{\mu} have L_{\mu}=-1 \tau^{-} and v_{\tau} have L_{\tau}=1 \tau^{+} and \overline{v}_{\tau} have L_{\tau}=-1
```

 L_e , L_{μ} and L_{τ} are separately conserved.



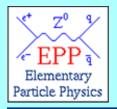
Lepton Number

$$\chi + N \rightarrow e^{+} + e^{-} + N$$
 L_{e} : 0 0 -1 +1 0

Pair Production

Pion Decay

Muon Decay

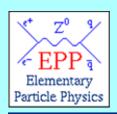


Lepton Number

Forbidden

L is conserved but neither L_e or L_{μ} separately.

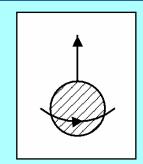
The decay $\mu^+ \rightarrow e^+ + \chi$ has not been observed and has a "Branching Ratio" < 10-9.



Spin S

Spin is an intrinsic property of all particles:

$$\frac{1}{2}\hbar$$
, $\frac{3}{2}\hbar$, $\frac{5}{2}\hbar$, $\frac{7}{2}\hbar$, ... Fermions



Spin is like angular momentum but a Quantum Mechanical effect.

For spin 5 there are 25+1 states of different S_z (like 2J+1 in

Angular Momentum) e.g.

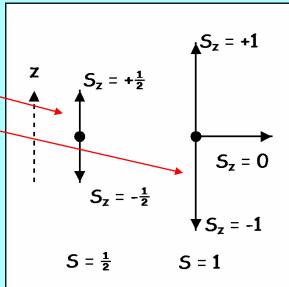
For Spin S = $\frac{1}{2}$, S_z can be $+\frac{1}{2}$ or $-\frac{1}{2}$ (2 states).

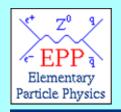
For Spin S = 1, S_z can be +1, 0, -1 (3 states).

For a process $a + b \rightarrow c + d$ the cross section

$$\sigma \sim (2Sc + 1)(2Sd + 1) \times Other Factors$$

This can be used to determine the spin of unknown particles.





Parity P

Parity is a Quantum Mechanical concept.

For a wavefunction $\Psi(r)$ and Parity operator P, the Parity Operator reverses the coordinates r to -r.

$$P \Psi(r) \rightarrow \Psi(-r) = \lambda \Psi(r)$$

But
$$P^2 \Psi(r) \rightarrow \Psi(r) = \lambda^2 \Psi(r)$$

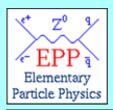
i.e.
$$\lambda^2 = 1$$
 so that $\lambda = \pm 1$

If an operator O acts on a wavefunction Ψ such that Ψ is unchanged

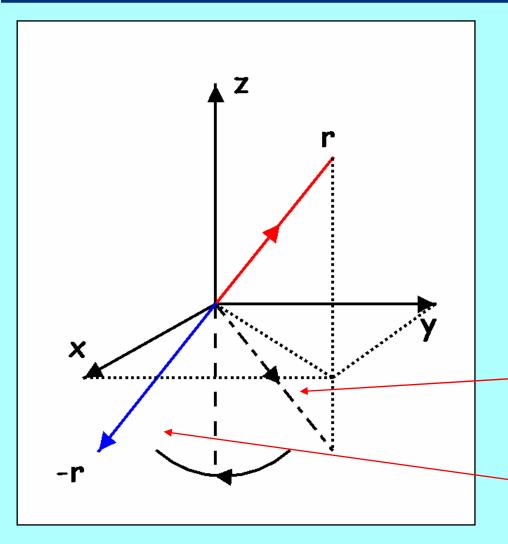
$$O \Psi = \lambda \Psi$$

Ψ is an Eigenfunction of O and λ is the Eigenvalue.

Hence the eigenvalues of Parity are +1 (even) and -1 (odd).



Parity

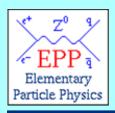


The Parity Operator reverses the coordinates r to -r.

Equivalent to a reflection in the x-y plane followed by a rotation about the z axis

Reflection in x-y plane

Rotation about z axis



Parity

Parity is a multiplicative quantum number. The parity of a composite system is equal to the product of the parities of the parts:

$$\Psi = \Phi_A \Phi_B \dots P_{\Psi} = P_A \times P_B$$

One can show that a state with angular momentum ℓ has parity

$$P = (-1)^{\ell}$$

For a system of particles:

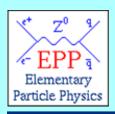
For Fermions P (antiparticle) = $(-1) \times P$ (particle)

For Bosons P (antiparticle) = P (particle)

Arbitrarily assign n, p \rightarrow P = +1 \bar{p} , $\bar{n} \rightarrow$ P = -1

Others determined from experiment (angular distributions)

Parity of
$$\pi^+$$
, π^- , $\pi^0 \rightarrow P = -1$



Parity

We label mesons by J^p - Spin^{Parity} corresponding to how their wavefunctions behave:

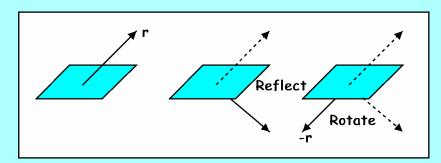
$$J^p = 0^-$$
 Pseudoscalar (Pressure...)

Scalar (Mass, time, wavelength...)

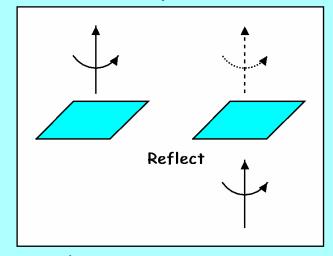
Vector (Momentum, position...)

Axial Vector (Spin, angular momentum...)

2⁺ Tensor



Vector
$$r \rightarrow -r$$
 $\therefore P = -1$



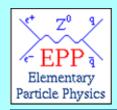
Examples of

things that have

these properties

Axial Vector $r \rightarrow r$: P = +1

Parity is conserved Strong and EM Interactions but NOT Weak.



Isospin I

Used mostly in Nuclear Physics from charge independence of nuclear force $p \leftrightarrow p = n \leftrightarrow n = p \leftrightarrow n$ sometimes called Isobaric Spin/Isotopic Spin T (or t!).

Isospin is represented by a 'spin' vector I with component I_3 along some axis.

$$I = \frac{1}{2}$$
: p has $I_3 = +\frac{1}{2} (\uparrow)$, n has $I_3 = -\frac{1}{2} (\downarrow)$

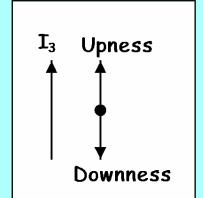
$$I = 1 : \pi^- \text{ has } I_3 = -1, \pi^0 \text{ has } I_3 = 0, \pi^+ \text{ has } I_3 = +1$$

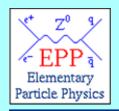
I₃ really only counts the number of u and d quarks

u has
$$I_3 = +\frac{1}{2} \bar{u}$$
 has $I_3 = -\frac{1}{2}$

d has
$$I_3 = -\frac{1}{2} \overline{d}$$
 has $I_3 = +\frac{1}{2}$

$$p = uud = \frac{1}{2} + \frac{1}{2} + -\frac{1}{2} = \frac{1}{2}$$
 $\pi^- = \bar{u}d = -\frac{1}{2} + -\frac{1}{2} = -1$





Isospin

 I_3 can be related to charge Q and baryon number B:

$$Q = B/2 + I_3$$

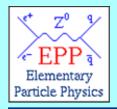
For a proton B = 1, $I_3 = +\frac{1}{2}$ and hence Q = 1

Since the Strong Interaction doesn't distinguish p from n or u from d, I and I_3 are conserved in Strong Interactions.

This is equivalent to saying that the number of $(u - \overline{u}) - (d - d) = constant$

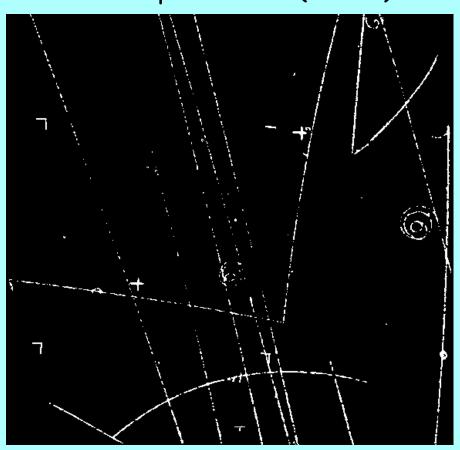
In Weak Interactions where $u \rightleftharpoons d$, I and I_3 are NOT conserved.

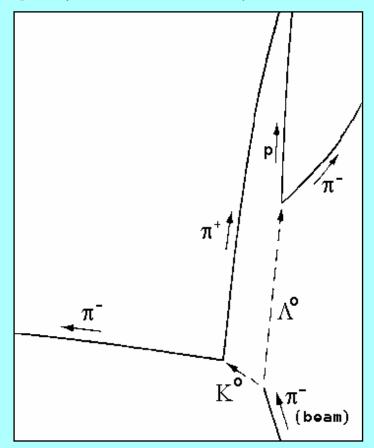
In EM Interactions u and d are not changed but because of the different charges u and d can be distinguished. Hence I_3 is conserved but I is NOT conserved.



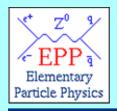
Strangeness S

Associated production (via SI) of 'strange' particles $\pi^- + p \rightarrow K^0 + \Lambda^0$



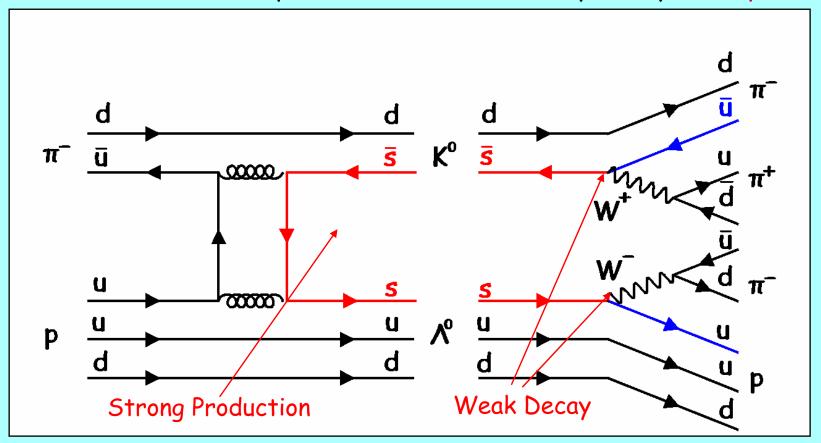


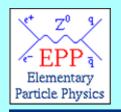
 K^0 and Λ^0 'Strange' - decay weakly not strongly.



Strangeness

Assume pair production of new quark s and antiquark s by Strong Interaction but once produced s and \bar{s} can only decay weakly.





Strangeness

Λ^{0} is uds	$\bar{\Lambda}^{\circ}$ is $\bar{u}\bar{d}\bar{s}$
K⁰ is d̄s	K̄⁰ is d̄s ←
K ⁺ is us	K is ūs

The K° has an antiparticle the \bar{K}^{o} although it is neutral, unlike the π^o which is its own antiparticle.

Strangeness can be combined with Isospin if

$$Q = I_3 + (B + 5)/2$$
 Gell Mann - Nishijima relation

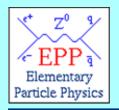
The s quark has strangeness S = -1

Strangeness is conserved in Strong and EM Interactions but NOT in Weak Interactions.

Likewise charm, bottom, top quantum numbers.

Strong and EM Interactions do not change quark flavours. Number of $(u - \overline{u})$, (d - d), $(s - \overline{s})$, $(c - \overline{c})$, $(b - \overline{b})$, $(t - \overline{t})$ constant.

Weak Interaction changes one quark type to another.



Charge Conjugation C

The Charge Conjugation operator reverses the sign of electric charge and magnetic moment (μ).

This implies particle \rightleftharpoons antiparticle.

proton
$$\rightleftharpoons$$
 antiproton
Q = +e C Q = -e
B = +1 B = -1
 μ - μ

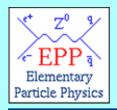
$$|X\rangle$$
 is (Dirac) bra/ket notation for Ψ_X i.e. $|\pi^+\rangle \equiv \Psi_{\pi^+}$

$$C | \pi^+ \rangle \rightarrow | \pi^- \rangle$$
 Hence π^{\pm} not eigenstates of C .

C only has definite eigenvalues for neutral systems such as the π^{o} .

$$C |\pi^{0}\rangle = \lambda |\pi^{0}\rangle \qquad C^{2} |\pi^{0}\rangle = \lambda^{2}|\pi^{0}\rangle = |\pi^{0}\rangle$$

$$\therefore \lambda = \pm 1$$



Charge Conjugation

EM fields come from moving charges which change sign under Charge Conjugation $\therefore C_{\chi} = -1$.

$$\therefore$$
 n photons have $C = (-1)^n$

Since $\pi^0 \to \chi \chi$ this implies $C_{\pi^0} = +1$ (assuming C invariance in EM decays).

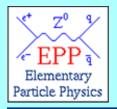
Note $\pi^{\circ} \rightarrow \chi \chi \chi$ is then forbidden.

The η (eta) meson (mass 550 MeV/c²)

$$\eta \rightarrow \chi \chi$$

i.e.
$$C_{\eta} = +1$$

C is conserved Strong and EM Interactions but NOT Weak.



Summary

Conserved Quantum Numbers

Quantity		Strong	EM	Weak
Charge	Q	✓	✓	✓
Baryon Number	В	✓	✓	✓
Lepton Number	L	✓	✓	✓
Isospin	I	✓	×	×
	I ₃	✓	✓	×
Strangeness	5	✓	✓	×
Parity	Р	✓	✓	×
Charge Conjugation	С	✓	✓	×