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Functional genomics strategies are of increasing importance in char-
acterizing proteins newly discovered by genome sequencing pro-
jects. In one approach, large sets of mutants created systematically1

or randomly2 are analyzed by physiological tests. In a second
approach, DNA arrays are interrogated in order to cluster genes the
transcripts of which are co-regulated with genes of known func-
tions3–5. A third approach uses computational strategies to assign
functions based on the coevolution of sets of proteins6 or on the
existence of a fusion protein in one organism corresponding to two
separate proteins in another organism7,8. As a fourth approach, we
use protein–protein interaction data (for example, ref. 9) to classify
proteins based on the properties of their interacting partners.

The identification of protein interactions has escalated in scale
from the analysis of small numbers of proteins10–12 to more compre-
hensive analyses covering more than 1,000 proteins13. In particular,
the ∼ 6,000 predicted proteins of the yeast S. cerevisiae have been
used extensively in two-hybrid searches to detect interacting part-
ners14,15. When the data from these studies are combined with previ-
ously published interactions from the entire community of yeast
researchers, they total over 2,709 putative interactions encompass-
ing 2,039 different proteins16,17.

Here we analyze all of these S. cerevisiae interactions in an effort
to diagram the set of links within a large protein network. This net-
work and the accompanying computational approaches can be used
to view interactions among proteins within any defined functional
category or cellular localization. The interaction data can be used to
predict function for those uncharacterized yeast proteins that have
partners of known function. Such approaches will find additional
utility when applied to other organisms with increasing numbers of
interactions, and as uncharacterized yeast proteins placed on the
interaction map are used to predict possible functions for their
orthologs in other species.

Results
1,548 proteins can be linked by protein interactions. We analyzed
2,709 published interactions involving 2,039 yeast proteins, available
from public databases16,17 and from two recent large-scale studies14,15

(see Experimental Protocol). Our analysis includes only direct inter-
actions identified by biochemical experiments or two-hybrid stud-
ies, but not protein complexes for which specific protein contacts are
unknown. We sought to determine whether comprehensive interac-
tion maps could be assembled from these data, and if so, whether
such maps afforded insight into functional relationships among
characterized and uncharacterized proteins. To visualize interac-
tions, we developed a software program based on the graph-drawing
library “AGD” (http://www.mpi-sb.mpg.de/AGD). Surprisingly,
only a single large network of protein interactions was obtained,
containing 2,358 links among 1,548 individual proteins (Fig. 1A).
The next largest network contained only 19 proteins; 9 networks
contained between 5 and 11 proteins; and the remaining 193 net-
works contained 4 or fewer proteins (data not shown), for a total of
204 independent networks (each interaction appears in only a single
network).

Proteins have been assigned to 42 “cellular role” categories in the
Yeast Protein Database (YPD)16. The term “function” is used here as
in YPD to mean the cellular role a protein is engaged in and not its
precise biochemical activity. The YPD categories are broad, and 39%
of the 1,485 characterized proteins in the networks are assigned
more than one cellular role. Most proteins within one of these func-
tional classes cluster in a specific region of the large network, if a
“cluster” includes any three or more proteins of the same function
separated by no more than two other proteins. For example, in
Figure 1, proteins involved in chromatin structure are highlighted in
gray (89% of all such annotated proteins within clusters); in red,
cytokinesis proteins (75% in clusters); in blue, membrane fusion
proteins (94% in clusters); in green, cell structure proteins (90% in
clusters); and in yellow, lipid metabolism proteins (58% in clusters).

A major concern in the delineation of these 204 networks is the
quality of both the data and the database annotations. For example,
interactions derived from genomic two-hybrid approaches are gen-
erally uncorroborated by additional experiments, and false positives
are commonplace with this technique. Annotations of “cellular role”
sometimes do not match experimentally determined properties, and
other annotation information often has been transferred from
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homologous proteins without experimental confirmation. To assess
the reliability of these networks, we determined how well they could
be used to predict function for characterized proteins. For each such
protein, we counted how many times, if at all, each of the 42 func-
tions occurs as annotation in the direct interaction partners of the
protein. If the protein has at least one characterized interaction part-
ner, this leads to a list of functions for the partner(s) that can be sort-
ed by frequency. We took the most frequent functions (at most three,
if the list was longer) of the partners as indicators of the function of
each characterized protein, and, if the known function occurred
among these indicators, counted the protein as a case of a correct
prediction. By this method, the networks allowed a correct predic-
tion for 72% of the 1,393 characterized proteins with at least one
characterized partner. (We also performed 100 trials with the same
set of proteins and annotations but
scrambled links between proteins; this
randomization yielded on average only
12% correct predictions.) The approxi-
mately one-quarter of links between
characterized proteins that do not have
matching functions are likely due to false
positives, incomplete annotations, or
unknown biological connections.
Although this considerable minority of
possibly suspect links in the networks
necessitates caution in the interpretation
of new inferences from these data, never-
theless the overall validity of the net-
works analysis seems substantiated.

Crosstalk between and within func-
tional groups. In addition to connec-
tions within a broad functional group,
relationships between groups can be
plotted to reveal connections that may
be biologically meaningful. Figure 2
shows the number of interactions (if 
15 or greater) of proteins from each
functional group with proteins of their
own and other groups. As expected,
65% of the interactions in the complete
set of networks occur among proteins

with at least one common functional assignment. However,
numerous cross-connections are observed. For example, proteins
involved in protein folding had 16 connections to proteins
involved in protein translocation. Note that the graph-drawing
algorithm that generated Figure 2 tends to place related functional
groups next to each other. Cell cycle control proteins, which show
the most interactions with other classes, are thereby placed near
the center of the map, a positioning that reflects their central role
in regulating other cellular processes.

Although many cross-connections are known, some revealed by
Figure 2 seem surprising. For instance, proteins assigned a role in
RNA processing not only show many connections to RNA splicing,
RNA turnover, and RNA polymerase II transcription, but also to
unexpected groups such as mitosis, chromatin, and protein synthe-
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Figure 1. (A) An interaction map of the yeast proteome assembled
from published interactions. The map contains 1,548 proteins and
2,358 interactions. Proteins are colored according to their
functional role as defined by the Yeast Protein Database16; proteins
involved in membrane fusion (blue), chromatin structure (gray), cell
structure (green), lipid metabolism (yellow), and cytokinesis (red).
For other maps with different functional groups highlighted, see
http://depts.washington.edu/sfields/. On-line maps can also be
zoomed and searched for protein names. (B) Section of part A
showing the clustering of proteins involved in membrane fusion
(blue), lipid metabolism (yellow), and cell structure (green).

Figure 2. Interactions between functional groups. Numbers in parentheses indicate, first, the
number of interactions within a group, and second, the number of proteins in a group. Numbers
near connecting lines indicate the number of interactions between proteins of the two connected
groups. For example, there are 77 interactions between the 21 proteins involved in membrane fusion
and the 141 proteins involved in vesicular transport (upper left corner); 23 protein interactions
connect the 21 proteins involved in membrane fusion. Only connections with 15 or more
interactions are included here. Note that only proteins with known function are shown (many of
these have several functions). The sum of all interactions in this diagram is therefore smaller than
the number of all interactions.
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sis. Such data are derived from studies, for example, showing that
RNA processing factors interact with proteins of the ribosome14,18.

Crosstalk between and within subcellular compartments. The
logic of depicting interactions based on functional roles can also be
applied to protein localizations. The localization of 1,203 of the pro-
teins in the complete data set of interactions is known16,19, and these
localization data can be used to visualize potential crosstalk between
cellular compartments (Fig. 3). In ∼ 78% of the 1,432 interactions
between proteins of known localization, the proteins share one or
more annotated compartments. Interactions of membrane proteins
are likely to be underrepresented in Figure 3 because of technical dif-
ficulties; most interactions described here were found by the two-
hybrid assay, which requires nuclear localization. Interestingly, 31 of
the 109 interactions (28%) of membrane proteins involved proteins
of unknown function, which constitute targets for additional study.

The large number of interactions between nuclear and cytoplas-
mic proteins is expected, with many reports of proteins moving
between these compartments through the nuclear pore20. Interactions
between proteins located in less clearly connected compartments, like
the nucleus and mitochondrion, are more difficult to explain. Some
may represent nonphysiological interactions that occur in the two-
hybrid or other assays, and others may be false positives.

Prediction of functions. Of the 2,039 proteins in the data set, 
554 have no annotation in YPD for “cellular role.” An obvious
approach to functional prediction is to identify the most common
function among the partners of an uncharacterized protein and to
assume that the protein in question shares the same or a related func-
tion. However, only 364 proteins of unknown function have at least
one partner of known function, and only 69 have two or more part-
ners of known function (see Supplementary Table 2 in the Web

Extras page of Nature
Biotechnology online). Further-
more, only 29 of these 69 have
two or more interacting proteins
with at least one function in
common (Table 1), which
strengthens the predictive
assignments.

One example to illustrate these
functional predictions (other
cases in Table 1 and
Supplementary Table 2) is
YNR053C, which interacts with
five proteins implicated in splic-
ing. Whereas these interactions
allow an obvious prediction,
this protein has also been impli-
cated in nuclear-cytoplasmic
transport because it is associated
with the nuclear pore complex21.
However, because there is no
experimental evidence implicat-
ing the protein in one or the
other of these functions, the
protein has not been assigned a
function.

One benefit of the network
view of interactions is the ability
to discern local patterns that are
more informative than those in
simpler datasets. For example,
experiments on an uncharacter-
ized protein “B” may detect
links to proteins “A” and “C,”
and experiments on the unchar-
acterized protein “C” may detect
a link to protein “D,” to yield the
simple network A–B–C–D. The
validity of the functional assign-
ments for B and C is consider-
ably strengthened in those cases
in which A and D have been
annotated to be in the same
functional class. An example is
YHR105W, which interacts with
one protein involved in vesicular
transport, Akr2, and with
YGL161C, an uncharacterized
protein that interacts with two
transport proteins, Yip1 and
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Table 1. Prediction of protein function from protein–protein interactions compared to predictions by a com-
bined algorithm.22

Protein Prediction from protein interactionsa,b Prediction after Marcotte et al.b,c

YNR053C RNA-processing/modification (5/5); Transcription; Cell organization; nuclear 
RNA-splicing (5/5) organization; mRNA transcription; 

mRNA splicing (e: 3, p: 1)
BIR1 Cell-cycle control (2/4) –
CNS1 Cell stress (2/3); Protein folding (2/3) Cell organization; nuclear organization 

(p: 33)
YGL161C Vesicular transport (2/3); membrane fusion (2/3) –
YIP3 Vesicular-transport (3/3) –
YMR322C Cell stress (3/3) –
YPR105C Vesicular transport (2/3) –
AIP2 Cell polarity (2/2) Cell organization; carbohydrate utilization; 

carbohydrate metabolism; metabolism; 
fermentation; energy (e: 2, p: 4)

DUO1 Mitosis (2/4) –
EBS1 Carbohydrate metabolism (2/5) –
FPR4 Protein synthesis (2/3) Cell organization; transcription; nuclear 

organization (e: 1, two: 2)
GIP2 Meiosis (2/2) -
ISA1 Protein synthesis (2/2) Nitrogen and sulfur utilization; metabolism; 

nitrogen and sulfur metabolism (p: 2)
RDI1 Cell polarity (2/3) G-protein (e: 1)
SMY2 RNA splicing (2/2) Transcription; cell organization;  

mRNA splicing; nuclear organization;
mRNA transcription (e: 1)

YBR270C Protein synthesis (2/4) –
YDR100W Vesicular transport (2/2); membrane fusion (2/2) –
YEL015W RNA processing/modification (2/6) Transcription; cell organization;  

mRNA splicing; nuclear organization;
mRNA transcription (e: 1)

YER079W Signal transduction (2/2) –
YGL096W RNA processing/modification (2/2); Transcription; cell organization; 

RNA splicing (2/2) mRNA splicing; nuclear organization;
mRNA transcription (e: 1)

YJL019W Chromatin/chromosome structure (2/2) –
YKR030W Vesicular transport (2/2) –
YLR128W Cell polarity (2/4) –
YLR269C RNA processing/modification (2/2);RNA splicing (2/2) –
YLR368W Protein degradation (2/5); amino acid  –

metabolism (2/5); Cell cycle control (2/5)
YLR435W Protein synthesis (2/2) –
YLR456W RNA processing/modification (2/4) Transcription; mRNA transcription; 

mRNA processing (e: 1)
YNL311C Amino acid metabolism (2/2) –
YPL105C RNA splicing (2/2) –

aPrediction from protein interaction lists only proteins with two or more interaction partners of known function. Numbers in
parentheses denote number of neighbors with the given function/number of interaction partners with known functions.
Predictions from protein interactions are classified according to YPD.
bFor complete data set, see Supplementary Table 2.
cPrediction after Marcotte et al. include only “high-quality predictions,” with the method used for the prediction indicated in
parentheses (e, experimental evidence; p, phylogenetic profile; two, two or more methods; the number is the number of
links, see Marcotte et al.22 for details). Identical or similar predictions are highlighted in bold typeface. Marcotte’s predictions
use terminology of MIPS.
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Pep12 (Fig. 4). YHR105W also interacts with YPL246C, another
uncharacterized protein that interacts with Ypt1 and Vam7, proteins
implicated in vesicular transport and membrane fusion, respective-
ly. Thus, interaction data can allow clear predictions even if the part-
ners of a protein are largely of unknown function, as long as these
partners interact with proteins of known function. Overall, we
found 22 cases in which such indirect interactions strengthen func-
tional predictions.

Discussion
Our analysis of protein–protein interactions in S. cerevisiae allows us
to place fully one-quarter of the proteins predicted from the genome
sequence within a single large network. This network reveals global
patterns of interactions of proteins within functional classes or
localization assignments, as well as many possible cross-
connections. The interaction data can be used to make functional
predictions for uncharacterized proteins, with the validity of this
methodology established by an analysis showing that 72% of the
characterized proteins with characterized partners could be assigned
a correct functional category. Although the large network is not, of
course, a wholly accurate view of cellular connections, it retains its
utility for analyzing protein function even when local regions of the
network are examined.

Marcotte et al.22 predicted the functions of yeast proteins based on
RNA expression, coevolution, protein fusions, and keyword searches
of protein databases. They provided “high-quality” predictions for 90
of the 364 uncharacterized proteins with partners of known function.
However, 27 of these predictions included the use of experimental
evidence such as protein interactions. “Low-quality” predictions
were made for 236 of the 364 proteins, based mainly on RNA expres-
sion patterns and protein fusions. We compared predictions for the
29 uncharacterized proteins with two or more known partners hav-
ing at least one function in common (Table 1; Supplementary Table
2). Of the 10 Marcotte et al.22 predictions for this set, 5 agree with
those made from protein interactions (YNR053C, Smy2, YEL015W,
YGL096W, YLR456W), although the combined algorithm includes
experimental evidence in all these cases, usually interaction data.
Three other predictions from Marcotte et al.22 are based on experi-
mental evidence (Aip2, Fpr4, Rdi1) and the other two on phylogenet-
ic profiles (Cns1, Isa1). For the 63 proteins (out of 364 uncharacter-
ized proteins with characterized partners) for which Marcotte et al.22

make “high-quality” predictions without experimental evidence, the
comparison with interaction data indicates that only 9 (15%) agree
(see Supplementary Table 2). These comparisons indicate that

whereas both purely computational methods and genome-wide
interaction approaches can predict functions for unknown pro-
teins, uncertainties remain that will require additional experimen-
tation to resolve.

Annotations of proteins in databases are incomplete and therefore
introduce additional uncertainties. A number of proteins with 
well-characterized function or at least well-supported functional pre-
diction are annotated as “unknown function.” For example, Tra1, a
component of the transcriptional SAGA complex, is said to be of
“unknown cellular role” in YPD (as of April 2000). This annotation
problem can limit the usefulness of computational predictions that are
heavily dependent on the accuracy and completeness of databases.

The protein network presented here demonstrates the complexi-
ty of cellular processes, particularly in light of the fact that only a
fraction of all protein interactions are known. In addition to the
identification of the remaining interactions, much remains to be
done in terms of modeling and visualization. Continued develop-
ment of bioinformatics tools is needed in order to cope with the
emerging data sets and manually prepared wiring diagrams (as in
ref. 23). Yeast gives us just a glimpse of what challenges lie ahead for
the analysis of more complex, multicellular organisms.

Experimental protocol
Data sources. Of the 2,709 interactions analyzed, 1,183 are available from the
MIPS site (http://www.mips.biochem.mpg.de/proj/yeast/tables/interac-
tion/physical_interact.html); however, this site continues to be updated and
contains additional interactions not available at the time of our analysis.
Another 808 interactions are from Uetz et al.14, 134 are from Ito et al.15, 37 are
from the Database of Interacting Proteins9 (http://dip.doe-mbi.ucla.edu/),
and 76 are newly generated as part of our continuing two-hybrid analyses. We
obtained an additional 471 interactions from YPD as part of a larger compila-
tion; this list of interactions can be requested from Proteome, Inc., Beverly,
MA. Our complete data set, excluding those from YPD, together with
sources, can be found in Supplementary List of Interactions in the Web
Extras page of Nature Biotechnology online. Note that protein names, func-
tional assignments, localizations, and interaction lists in other databases are
subject to change and may not be identical to the names and lists used here.
Cellular roles for proteins in this study are available at http://www.pro-
teome.com/databases/YPD/YPDcategories/Cellular_Role.html. Subcellular
localizations are available at http://www.proteome.com/databases/YPD/
YPDcategories/Subcellular_Localization.html.

Generation of graphic representations. Graphs were generated using the
AGD software library (http://www.mpi-sb.mpg.de/AGD). For Figure 1 we
used the algorithm by Sugiyama et al.24 to generate an initial layout and then
applied a spring embedder algorithm25 for the final placement of the proteins.
In Figure 2, an interaction between two functional groups A and B was
counted whenever our data set contained an interaction between a protein
with an annotated function A and another protein with an annotated func-
tion B. Notice that an interaction between a protein with x annotated func-
tions and a protein with y annotated functions was counted (x)(y) times in
Figure 2. This calculation led to each interaction being counted an average of
2.74 times. Interactions between compartments in Figure 3 were counted
analogously whenever the sets of annotated compartments for A and B were
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Figure 3. Interactions between proteins of different compartments.
Numbers in parentheses indicate, first, the number of interactions
among the proteins of this compartment, and second, the number of
proteins that occur in this compartment. Numbers near connecting
lines indicate the number of interactions between proteins of the
two connected locations. For example, there are 9 interactions
between the 31 Golgi proteins and the 342 cytoplasmic proteins.
Note that only intercompartmental interactions that involve 5 or
more interactions are shown. ER, endoplasmic reticulum.
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nonoverlapping. However, when the sets of compartments intersected, only
one internal interaction was counted for each of the compartments occur-
ring in the intersection. This procedure led to each interaction in Figure 3
being counted an average of 1.07 times.

Prediction of function. We predicted the function of a protein P as fol-
lows. The annotated functions of all neighbors of P are ordered in a list, from
the most frequent to the least frequent. Functions that occur the same num-
ber of times are ordered arbitrarily. Everything after the third entry in the list
is discarded, and the remaining three or fewer functions are declared as pre-
dictions for the function of P.

Reliability of the generated networks. We were able to evaluate the quality
of the networks on those 1,393 of the 2,039 proteins that were annotated with
some function and had at least one neighbor annotated with a function, so
that the prediction could be compared to the actual annotation. In 1,005 of
the 1,393 cases (72.1%), at least one annotated function was predicted cor-
rectly by the above method. To evaluate the significance of this success rate,
we performed the same prediction algorithm 100 times on the basis of ran-
domly generated interactions. Each time, a set of 2,709 interactions among
the 2,039 proteins was drawn uniformly at random from all possible such
sets. On the average, only 12.2% of the predictions yielded a prediction that
agreed with the known annotation.

Note: Supplementary information can be found on the Nature Biotechnology web-
site in Web Extras (http://www.biotech.nature.com/web_extras).
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