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Health promotion’s promise is enormous, but its
potential is, as yet, unmatched by accomplishment. Life
expectancy increases track more closely with eco-
nomic prosperity and sanitary engineering than with
strictly medical advances. Notable achievements in the
past century—the decreased incidences of epidemic
infections, dental caries, and stomach cancer—are
owed to virologists, dentists, and (probably) refrigera-
tion more than to physicians. Prevention speaks
against tobacco abuse with a single voice, but in many
other areas contradictory research findings have gen-
erated skepticism and even indifference among the
general public for whom recommendations are tar-
geted. Health promotion’s shortcomings may reflect
lack of an overall conceptual framework, a deficiency
that might be corrected by adopting evolutionary
premises: (1) The human genome was selected in past
environments far different from those of the present.
(2) Cultural evolution now proceeds too rapidly for

genetic accomodation—resulting in dissociation
between our genes and our lives. (3) This mismatch
between biology and lifestyle fosters development of
degenerative diseases. These principles could inform
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a research agenda and, ultimately, public policy: (1)
Better characterize differences between ancient and
modern life patterns. (2) Identify which of these affect
the development of disease. (3) Integrate epidemiologi-
cal, mechanistic, and genetic data with evolutionary
principles to create an overarching formulation upon
which to base persuasive, consistent, and effective rec-
ommendations. q 2001 American Health Foundation and Elsevier
Science (USA)

Key Words: evolutionary medicine; Darwinian medi-
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evolution.

INTRODUCTION

In 1930 gastric carcinoma was the most lethal Ameri-
can neoplasm, while lung cancer ranked seventh. Sub-
sequently their rankings exchanged places: mortality
from bronchogenic neoplasms increased 10-fold as
deaths from stomach malignancies fell to 20% of their
previous rate [1]—contrasting trajectories that reflect
altered tobacco use and food preservation practices
more than medical interventions [2]. Similarly, increas-

ing prevalence of type 2 diabetes (nominally up 3-fold
since 1935) [3] and the 20th century’s rise in coronary
heart disease rates [4–6] have resulted mainly from
changes in how people live their daily lives. Preventable
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disorders make up approximately 70% of the American
illness burden and its associated costs [7]; in some stud-
ies individuals with high-risk health habits have had
annual medical claims eight times those of individuals
with low-risk behavior [8]. Logically such considera-
tions should generate palpable enthusiasm for preven-
tive medicine among both health professionals and the
general public. Instead, our view of prevention is jaun-
diced: Health conscious Americans

. . . increasingly find themselves beset with contradictory advice.
No sooner do they learn the results of one research study than
they hear of one with the opposite message. N Engl J Med
1994;331:189–90

The news about health risks comes thick and fast these days
and it seems almost constitutionally contradictory. Science
1995;269:164–9

Advice to the public about what to eat . . . and basically how
to live, seems to do an about-face every time a new study is
published in a medical journal. New York Times 1998 Mar
22:WK 4

Respected opinion-shapers are not alone in recogniz-
ing health promotion disarray; ordinary moviegoers ap-
plaud with ironic appreciation when Woody Allen
awakes, in Sleeper, to find that beefsteak has become
a health food. Part of the problem with prevention is
media-fostered misunderstanding of the epidemiologi-
cal research process, but much results, we suggest, be-
cause there is no overall conceptual framework for this
field. Here we consider whether evolutionary, or Dar-
winian, medicine [9,10] may provide a solid foundation
for health promotion research and eventually for public
recommendations. The central premises are straight-
forward: (1) Our gene pool was shaped by natural selec-
tion for optimal function in past environments far dif-
ferent from the ones in which we now live [11,12]. (2)
There have been some genetic changes since the begin-
nings of agriculture, but natural selection is slow so
most of our genome remains adapted for ancestral con-

ditions. (3) The resulting mismatch between our ancient

bodies and the circumstances of modern life in affluent
Western nations fosters development of chronic degen-
erative diseases. If correct, these theses should provide
a parsimonious, plausible basis for health promotion.

EVOLUTIONARY FOUNDATIONS FOR PREVENTION

Since 1800, life expectancy has doubled in industrial-
ized nations, partly from improvements in medical care,
but more from public health measures and general eco-
nomic prosperity [13]. Over this period, the nature of

disease has changed. As prime causes of mortality, in-
fectious illnesses have been superseded by the degener-
ative diseases now endemic in Western societies. While
longevity plays a role, a Darwinian perspective suggests
that such conditions are not the inevitable consequence
ET AL.

of longer life spans. More important is dissonance be-
tween “Stone Age” genes and “Space Age” circum-
stances [14–16], with resulting disruption of ancient,
complex homeostatic systems [17].

Evidence for this contention comes from studies of
hunter–gatherers and other peoples who continue criti-
cal aspects of Paleolithic life experience. While they
undergo age-related bodily deterioration as do Western-
ers—albeit, in some respects (vision [18], hearing [19]),
more slowly—their overall health pattern is quite dif-
ferent. With the exception of osteoarthritis, they rarely
develop “chronic degenerative diseases” [20–22]. Bio-
markers of incipient illness such as rising blood pres-
sure [23], increasing adiposity [24], deficient lean body
mass [25], hypercholesterolemia [15,26], nonocclusive
atheromata [27], and insulin resistance [28–32] are
quite infrequent among foragers and other traditional
peoples compared with their prevalence in similar-aged
Western populations. These observations suggest that
many chronic degenerative disorders are not unavoid-
able concomitants of aging, but conditions that develop
frequently when behavioral and environmental circum-
stances differ from those under which our ancestors
evolved.

Cardinal goals of evolution-based prevention, then,
are to (1) characterize differences between patterns of
life in ancient and modern environments, (2) identify
which of these are involved in the initiation and pro-
gression of specific diseases, (3) use this information to
design innovative studies of the “proximate” pathophys-

iology, and (4) integrate epidemiological, mechanistic,
and genetic data with evolutionary principles to create
an overarching “ultimate” [33] formulation upon which
to base persuasive, consistent, and effective public rec-
ommendations.

THE HUMAN EVOLUTIONARY PAST

Our genome is a temporal collage. Most of its compo-
nents are far older than our genus, while some have
changed recently, even since the latest Ice Age [11,12].
However, many of the characteristics that make us
unique among primates (brain size, maturation sched-
ule, daily foraging range, limb proportions, relative gut
segment length, speech, etc.) reflect genetic change dur-
ing the 2 million years since emergence of the first
Homo species [34,35]. Evolution can be “rapid” [36,37],
especially for traits affecting survival in early life, but
overall rates of change are constrained by the complex-
ity of the systems involved [38,39]. Disorders deter-
mined by single-gene mutations (e.g., hemoglobinopa-

thies protective against malaria) are often used to
illustrate the potential rapidity of natural selection,
but they are imperfect models for chronic degenerative
diseases, whose clinical manifestations chiefly affect
older individuals (i.e., at ages heretofore uncommonly
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attained) and whose pathophysiology involves tens to
hundreds of genes [40].

Some human genetic alteration since the appearance
of agriculture reflects the effects of pathogens. To the
extent that microorganisms influence chronic disease
etiology, such changes may have altered the natural
history of disorders until recently considered “noninfec-
tious” (see below). Otherwise, however, evolution since
the last Ice Age is unlikely to have systematically af-
fected the gene pool in ways that could alter genetic
susceptibility to cancer, atherosclerosis, osteoporosis,
and like illnesses. As it relates to such conditions, our
genome remains largely adapted for Paleolithic exis-
tence [41,42]. While there was no one specific past envi-
ronment that can be considered uniquely “natural” for
humankind [12], an appreciation of what late Stone
Age life generally entailed should nonetheless be highly
useful in our attempts to explicate environmental fac-
tors influencing chronic degenerative disease incidence.

Nutrition

There is surprisingly little overlap between current
foods and those of the Paleolithic [43]. We get most of
our calories from grains, domesticated livestock, dairy
products, and refined sugars, but preagricultural hu-
mans ate naturally occurring plant foods and wild
game. They used almost no cereal grains and had no
dairy foods, no separated oils, no commercial proc-
essing, and no sources of “empty calories.” People in
the Stone Age consumed more animal protein than do
current Westerners [43]. The proportion of total fat in
Paleolithic diets varied considerably, chiefly with lati-
tude; however, intake of serum-cholesterol-raising fat
was nearly always far less than at present, and there
was more dietary long-chain (C20 and above) polyun-
saturated fatty acid (LCPUFA) [44,45]. The preagricul-
tural essential fatty acid ratio (v-6:v-3) approached
unity [44]; for average Americans it approximates 15:1
[45A]. Dietary cholesterol content roughly equaled cur-
rent U.S. levels [45]. Carbohydrate consumption also
varied with latitude, but in all cases came chiefly from
fruits and vegetables, not from cereals, refined sugars,
and dairy products [43]. Compared with the typical
American pattern, Paleolithic diets generally provided
less sodium but more potassium, fiber (soluble and in-
soluble), micronutrients, and, probably, phytochemi-
cals [43].

These differences are pertinent to several areas of
current nutrition-related research, e.g., v-3 fatty acids
and depression [46–48]; v-6:v-3 ratios and coronary
heart disease [49,50]; fruits, vegetables, and phyto-

chemicals as cancer preventive agents [51,52]; optimal
vs minimal requirements of vitamins and minerals [53];
dietary sodium, hypertension, and overall mortality
[54,55]; and the appropriate contribution of fats to di-
etary energy [56].
ALTH PROMOTION 111

Physical Exertion

Through nearly all human evolution physical exer-
tion and food procurement have been inextricably
linked. Hierarchical social stratification uncoupled this
relationship for elites; industrialization and mechani-
zation have completed the dissociation for practically
everyone. Prior to the industrial era humans are esti-
mated to have expended a total of about 3000 kcal (12
MJ) daily [57]; for current affluent populations compa-
rable estimates are 2000 kcal (8 MJ) or less [58]. This
change has resulted from decreased energy expenditure
through physical exertion: about 20 kcal/kg/day (84 kJ)
for hunter–gatherers versus ,5 kcal/kg/day (21 kJ) for
sedentary Westerners—a fourfold differential [59].

Exercise has important effects on aerobic power [22],
muscular strength [22], and skeletal robusticity [60,61],
all of which were substantially greater for ancestral
populations. Exercise likely affects the incidence of age-
related fractures [62], some cancers [63], and athero-
sclerosis [63]. Obligatory exertion promoted greater
lean body mass while attenuating adipose tissue,
thereby reducing type 2 diabetes risk for our ances-
tors [64].

Reproduction

Studies of women in foraging [65] and other tradi-
tional settings [66] suggest substantial differences be-
tween patterns of ancestral and modern reproduction
[65–67]. For preindustrial women menarche was later
(16 vs 12.5 years) and first birth earlier (,19 years) so
that the nubility (menarche to first birth) interval was
only 3 years, versus about 12 years for average Ameri-
cans and Europeans. Foragers who lived through their
full reproductive span had high parity: typically 6 live
births vs 1.8 for Americans. Nursing was obligatory,
intensive (on demand, not on schedule), and commonly
lasted 3 years. Only about 50% of American babies are
nursed at all and mean nursing duration is barely 3
months [64]. Age at menopause is hard to ascertain for
forager women, but menses apparently ceased some-
what earlier than in affluent societies.

New reproductive patterns and the associated ovula-
tory differential (three times as many ovulations for
Westerners not using oral contraceptives) [65,66] are
associated with increased risk for cancers of the breast
[68], endometrium, and ovary [65]. For example, imma-
ture breast lobules form at puberty; their rapidly divid-
ing cells are relatively susceptible to natural mutation,
genotoxic carcinogens, and clonal promotion (but see

[69]). At first full-term pregnancy most lobules differen-
tiate into mature forms whose cells divide more slowly
and are hence more resistant. Prolonged nubility thus
extends a period of high susceptibility to carcinogene-
sis [65,70,71].
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Infection

Relationships between humans and microbes were
altered by the rise of agriculture. Higher population
density, frequent long-distance contacts, settled living,
and interactions with domesticated animals vastly in-
creased pathogen transmission [72]. As a result, certain
infections assumed greater importance, becoming selec-
tive forces that have subsequently affected the human
genome (e.g., malaria [73], typhoid fever [74]). More
recently, improved sanitation has reduced transmis-
sion, a pivotal contribution to the past 2 centuries’ in-
crease in average life expectancy [13]. Discovery of anti-
biotics had dramatic impact, but intensive usage,
including incorporation into animal feeds, has led to
emergence of resistant organisms. Consequently, “pre-
ventive” anti-infective chemotherapy must now aim at
minimizing resistance as well as attaining clinical effi-
cacy. To this end, mathematical models integrating clas-
sic pharmacological approaches with the principles of
evolutionary biology may help optimize treatment pro-
tocols given inherent conflict between the “within host”
and overall epidemiological contexts [75]. Attempts to
reduce pathogen virulence may also benefit from Dar-
winian considerations. For example, vaccines directed
against virulence-enhancing microbial antigens might
disproportionately affect dangerous strains and pro-
mote their displacement by milder variants [76,77].

While adequate food, public health measures, and
medical interventions have lowered infectious disease
mortality during the past century, the megapolitan
crowding and unparalleled mobility in current affluent
nations have probably increased transmission of cer-
tain organisms, especially those spread by sexual and
respiratory contact. This phenomenon could affect
chronic disease prevalence: there are well-established
relationships between viral infections and certain can-
cers [78,79] as well as intriguing hints of a causal link
between microbes and atherosclerosis [80–82]. Epide-
miological correlation between infectious exposure
rates and incidence of chronic “noninfectious” degenera-
tive diseases might ultimately open new avenues for
preventive intervention via evolution-based antibiotic
prophylaxis and/or vaccine development.

Growth and Development

In Western nations, less frequent and severe child-
hood infection, sharply reduced exercise requirements,
and unprecedented caloric availability result in rapid
bodily growth and early sexual maturation. Average

adult height is asymptotically approaching a maximum
[83] while age at menarche has fallen to about 12.5
years [84], probably near the population’s genetic limit.
Most recent hunter–gatherers have been short-stat-
ured, reflecting the nutritional stress of foraging in
T AL.

marginal environments, but average height for Paleo-
lithic humans appears to have equaled or even exceeded
that at present [85,86]. Nevertheless, maturation may
have been slower, as it is for athletic young women
in Western nations [87,88]. Traditional North African
pastoralists—who have sufficient dietary protein, lim-
ited fat intake, little access to empty calories, and high
levels of physical exertion—may simulate the ancestral
standard. They experience later puberty and slower
growth in height than do Westerners, attaining full
stature only in their early 20s; still, their average adult
height equals that of Europeans [89,90].

Rapid growth is usually interpreted as a sign of soci-
etal health, but maximal is not necessarily optimal.
The current experience of puberty 3 years earlier than
the hunter–gatherer average may result in dissociation
between psychological and sexual maturation, thus con-
tributing to unwanted teenage pregnancies [91]. Both
early menarche [92] and youthful attainment of adult
stature [93] are associated with increased breast cancer
risk. Rapid bodily growth may also affect blood pressure
regulation if renal development is unable to keep pace
allometrically, thus requiring compensatory blood pres-
sure elevation to maintain homeostasis and possibly
establishing a pathophysiological trajectory toward
subsequent hypertension [17]. And, in laboratory ani-
mals at least, slower growth during adolescence and
early adulthood is associated with increased longev-
ity—apparently independent of any effect on chronic
disease susceptibility [94].

Psychosocial Factors

Genes affecting human behavior are ancient and
probably coevolved with our life history characteristics.
For example, prolongation of childhood during hominid
evolution may have facilitated learning and correlated
with brain expansion occurring over the same period
[95,96]. But, like current sedentism and diet, the social
circumstances of contemporary existence are novel
[64,97]. Many factors believed to exert important influ-
ence on psychological development and interpersonal
relations are profoundly different from what they are
thought to have been during our evolutionary past. Av-
erage birth spacing is now closer, while nursing and
physical contact between infants and adults is much
reduced. In most affluent societies, babies do not sleep
with their mothers—a break from general primate ex-
perience dating back many millions of years [98]. Ances-
tral childhood and adolescence were almost certainly
characterized by multiage play groups, less restrictive
supervision, and intense small group interpersonal dy-

namics quite different from the age-segregated, more
structured routines of contemporary schools and little
leagues. Based on what we know about hunter–
gatherers, Paleolithic teenagers had relatively clear so-
cietal expectations, not the exciting-but-daunting array
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of life choices that confronts young people today. For
adults, a global society has advantages, but it differs
radically from the more human-scale experience of our
ancestors who lived, found their roles, and developed
self-esteem in bands of 15–50 people, most of whom
were relatives [98A]. We have little concrete evidence,
but it seems likely that these differences and others—
frequent contact with strangers, conflicting social roles,

wage labor, working in bureaucracies, reduced support
from kin, and education that questions social beliefs
and ideologies—may contribute to syndromes such as
attention deficit/hyperactivity, depression, anxiety dis-
orders, and substance abuse [99,100].

HUMAN PREFERENCES AND PREVENTION

As every physician knows, providing accurate health
advice is less than half the battle; at least as important
is achieving patient compliance. Providing an explana-
tion for health promotion based on a coherent theory
of how disease arises from the mismatch between our
original design and our current circumstances should
help. Perhaps equally valuable, however, will be under-
standing why we so often prefer what is harmful to our
health. Much public resentment about health promo-
tion comes because physicians’ recommendations are
perceived as moralistic prohibitions, which deny people
basic pleasures. Unfortunately, there is a grain of truth
in this—health advice often counters “natural” inclina-
tions. Humans like foods high in fat, salt, and sugar
and they regularly avoid exercise. The explanations for
these tendencies also lie in our evolutionary heritage.
Polyunsaturated fatty acids and sodium are required
nutrients, but on the African savanna they were some-
times in short supply, so taste preferences for them
were advantageous; there was active selection against
wasting calories on unproductive exercise. These and

similar insights are not magic bullets, but at least they
explain why we have innate propensities which, in to-
day’s circumstances, tend to promote disease and why
health practices that forestall chronic illness are actu-
ally in accord with ancestral experience.

A RESEARCH AGENDA

In order to provide an evolutionary foundation for
preventive recommendations, the most pressing re-
search need is to identify, contact, interview, and exam-
ine remaining hunter–gatherers and other traditional
peoples throughout the world. Few such groups still
live in their original settings, but the information they

can provide about relevant living patterns is an irre-
placeable and rapidly vanishing resource. This compar-
atively inexpensive undertaking might return dispro-
portionately valuable health benefits. Of similar
importance is the need to discover mechanisms by
ALTH PROMOTION 113

which cultural changes cause specific diseases: the gen-
eral hypothesis that our genes and lifestyles have be-
come discordant can lead to “euphenic” [17,101] health
recommendations only after detailed scientific evalua-
tion. To this end, evolutionary insight must generate
falsifiable predictions amenable to well-designed mech-
anistic and epidemiological investigation.

Pregnancy and Birth Weight

There is persuasive [102,103], albeit not universally
accepted [104], evidence linking low birth weight with
adult susceptibility to Syndrome X conditions (insulin
resistance, type 2 diabetes, obesity, hypertension, coro-
nary heart disease, etc.). The responsible mechanisms
could be complex and may involve trade-offs, but an
evolutionary perspective suggests that optimal gesta-
tional circumstances will resemble those of our ances-
tors. Limited maternal intake of simple carbohydrate
in the first trimester and substantial third-trimester
animal protein may be beneficial [105], as may generous
intake of folate [106], zinc [107], and LCPUFA, espe-
cially docosahexaenoic acid [DHA (C22:6, v-3)] [43,
108–110]. Such prenatal nutrition is consistent with
the typical pregnancy experience of women in ancestral
conditions [43,44].

Breast Cancer

Mathematical modeling suggests that if American
women’s reproductive experiences could somehow be
made to resemble those of women prior to the demo-
graphic transition, breast cancer incidence could be low-
ered—perhaps by an order of magnitude [65,71,111].
Societal and demographic constraints preclude reinsti-
tution of the actual preindustrial pattern, but interven-
tional endocrinology [65,112–114] (viz. menarcheal de-
lay, early pseudopregnancy, and oral contraception that
reduces average serum estrogen levels) could simulate
the ancestral hormonal milieu. This approach may
seem intrusively artificial, as did oral contraception in
1960, but primate testing and eventual clinical trials
could expand currently limited preventive options for
high-risk individuals.

Neurological Development

Bottle feeding infants, a manifestly unnatural inno-
vation, may adversely affect intelligence. Nursing is
associated with higher cognitive scores and improved
scholastic performance among children [115]. This rela-
tionship probably reflects multiple factors, but nutri-

tional input is a likely contributor [108,109,115,116].
In evolutionary perspective, breast milk composition
represents a compromise between infant needs for nu-
trition and maternal needs to conserve resources for
future reproduction [117]. This competition becomes
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less critical when essential constituents are relatively
abundant in the maternal diet [118]. Over 90% of all
LCPUFA in mammalian brain gray matter is composed
of arachidonic acid [AA (C20:4, v-6)], docosatetraenoic
acid [DTA (C22:4, v-6)], and DHA—nutrients found
exclusively in foods of animal origin and not in plants.
From a largely vegetarian primate baseline, dietary
intake of these nutrients increased fivefold as hunting
and/or scavenging assumed prominence during human
evolution—coincident with a threefold expansion of cra-
nial capacity [44]. Brain enlargement in the hominid
line was probably driven by social complexity [119];
however, increasing availability of AA, DTA, and DHA
may have been a contributing factor. While humans
can synthesize these three LCPUFAs from 18 carbon
precursors available in plant foods, the process appears
too slow to supply amounts needed for optimal brain
growth during fetal development and infancy [44,109].
For now, the evidence justifies studying possible bene-
fits of AA and DHA supplementation in maternal diets
and infant formulas.

Type 2 Diabetes

The relationship between obesity and insulin resist-
ance is well recognized, but evolutionary considerations
suggest that relative skeletal muscle deficiency may
also be important. Contemporary Westerners are dis-
tinguished from ancestral humans by sarcopenia [25]
and decreased physical fitness [15,25,59] as well as hyp-
eradiposity. These altered factors distort the physiologi-
cal milieu for insulin action compared with circum-
stances existing when the relevant genetic selection
occurred. An evolution-based prediction is that func-
tional insulin resistance, in its earliest stages, is di-
rectly proportional to fat mass, but inversely propor-
tional to the mass and metabolic activity of skeletal
muscle. This relationship might reflect competition be-
tween the insulin receptors of myocytes and those of
adipocytes for available insulin molecules. The initial
effect would be repetitive episodes of transient hyper-
glycemia and hyperinsulinemia. In genetically suscep-
tible individuals further metabolic deterioration could
result from secondary down-regulation of insulin recep-
tors, glucose transporters, and intracellular enzymatic
sequences, leading ultimately to glucose intolerance
and type 2 diabetes [64].

Serum Cholesterol

According to The National Cholesterol Education
Project, serum cholesterol levels (TC) below 200 mg/

dl (5.2 mmol/L) are “desirable,” yet many myocardial
infarctions occur in persons with TC between 150 (3.9
mmol/L) and 200 mg/dl. When TC is below 150 mg/dl
clinical coronary artery disease is rare, but aggressive
behavior and depression are more common [120,121].
ET AL.

Also, several studies have shown an inverse association
between hemorrhagic stroke and TC [122]. Notwith-
standing, an evolutionary perspective suggests that op-
timal human TC is below 150 mg/dl, a value exceeding
the mean for free-living nonhuman primates [109 mg/dl
(2.8 mmol/L)], hunter–gatherers [123 mg/dl (3.2 mmol/
L)], and other traditional peoples [134 mg/dl (3.5 mmol/
L)] [15,45]. However, the diets of modern Western indi-
viduals whose TC falls below 150 mg/dl are different
from those of hunter–gatherers with comparable val-
ues—paleolithic humans almost certainly consumed
more animal protein, more dietary cholesterol, and
more LCPUFA (with a more balanced v-6:v-3 fatty acid
ratio). Furthermore, hypertension is almost nonexis-
tent among hunter–gatherers, whereas the linkage be-

tween “low” TC and hemorrhagic stroke is largely re-
stricted to hypertensive individuals [122]. The
relationship of these factors to the putative adverse
effects of “low” TC in affluent nations bears investiga-
tion.

DARWIN’S RAZOR

Evolutionary insights provide an independent per-
spective when conventional biomedical investigations
yield inconclusive or contradictory results. For exam-
ple, dietary sodium has been a major focus of hyperten-
sion research, but epidemiological studies regarding
salt intake, blood pressure, and overall mortality have
aroused fierce disagreement [123]. Theodosius Dobz-
hansky contended that “Nothing in biology makes sense
except in the light of evolution” [124]. Can an evolution-
ary perspective shed light on this dispute?

Contemporary humans are the only free-living pri-
mates who habitually consume more sodium than po-
tassium, the only ones to obtain sodium over and above
that intrinsic to naturally occurring foods, and also the
only ones to commonly develop hypertension [55]. Daily
sodium intake for ancestral humans is estimated to
have been less than 1000 mg/day (17 mEq) [43] and
data from the Intersalt Study [125] suggest a threshold
blood pressure effect just above this level [126]. Ecologi-
cal surveys have identified numerous normotensive tra-
ditional populations who, like Paleolithic humans,
lacked access to commercial salt [15,23]. However, such
groups differed from Westerners in many ways so that
variables in addition to salt may have affected blood
pressure differences. Observations of acculturating so-
cieties [127–130] (and chimpanzees [131]) with graded
salt availability suggest that sodium is a necessary, but
not sufficient, factor in hypertension pathophysiology.

Epidemiological analyses of sodium–blood pressure re-
lationships may be frustrated because almost all con-
temporary humans consume far more sodium than
their ancestors, well above the hypertension threshold
indicated by Intersalt data. In this range sodium may
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exhibit a permissive rather than a direct relationship
to hypertension so even the most amibitious meta-anal-
ysis has difficulty distinguishing the evolutionary
theme amid other epidemiological factors. These addi-
tional influences—obesity, insulin resistance, poor
physical fitness, over-rapid growth, alcohol, and defi-
ciencies of potassium, calcium, fruits, and vegetables—
all reflect environmental and behavioral differences
that have appeared or intensified since the rise of agri-
culture.[15,22,28–32,,13]

An evolution-based prediction, consistent with prior
investigative findings, is that individuals who habitu-
ally consume a nutritionally adequate diet providing

less than 1000 mg sodium per day will be free from
essential hypertension. Above this intake level the
prevalence of high blood pressure will be more closely
related to the other influences noted above than to so-
dium intake per se.

GENES AND VARIATION

Future research will gradually sort out the contribu-
tions of inheritance, environment, and behavior in
chronic disease pathophysiology, but evolutionary con-
siderations argue against blanket categorization of the
genes involved as “defective.” Alleles, which may have
been neutral or beneficial in ancestral environments,
can now promote disease because they interact with
novel modern conditions. Recent foragers—the best
available, if inexact, surrogates for preagricultural hu-
mans—have been largely free from atherosclerosis, dia-
betes, and hypertension, implying that the underlying
genetic factors probably had little adverse effect during
the Paleolithic. This highlights the fundamental princi-
ple, still widely misunderstood, that all phenotypes are
formed by the interactions of a genotype with the envi-
ronment and likewise, that degenerative diseases arise
from one degree or another of genetic predisposition
interacting with operative circumstances. Through
nearly all human evolution genetic adaptation was
closely coupled with environmental alterations. Now,
however, cultural change comes too rapidly for genetic
accommodation to keep pace [132,133]. We still carry
genes that were selected for their utility in the past,
but that in the novel circumstances of contemporary

life confer increased susceptibility to chronic illnesses.
Labeling such alleles “defects” implies an underlying
misinterpretation of the body as a designed machine,
instead of an organism assembled by whatever genes
best get copies of themselves into future generations.
CONCLUSION

The 20th century’s extraordinary medical advances
eliminated previous scourges such as polio and small-
pox and have ameliorated the effects of many other
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illnesses, but chronic degenerative disease incidence
has been little affected [134]. For example, mammogra-
phy, chemotherapy, radiation therapy, and breast-con-
serving surgery have improved breast cancer survivor-
ship, but increasing incidence leaves age-adjusted
mortality from this malignancy near its 1930 level [1].
We can hope that future tertiary prevention, such as
gene therapy, will be more efficacious, but daunting
ethical, economic, and technical obstacles may be diffi-
cult to overcome [135–137].

Prevention research based on attempts to isolate and
identify individual causal factors has contributed much
to our knowledge, but reductionism encounters prob-
lems when addressing multifactorial degenerative ill-
nesses, the salt–hypertension controversy being a case
in point. Furthermore, epidemiological studies of Amer-
ican nurses, traditional Mediterraneans, and the East
Asians of 1960 may be limited because such groups
lack optimal controls: the lifestyles of nearly all their
members differ dramatically from those of our ances-
tors. Valuable data can be derived from investigating
health differences within and between contemporary
populations, but we suggest that some of the most po-
tentially rewarding research involves contrasts be-
tween present and previous humans. Evidence arising
from analyzing the biomedical implications of these dif-
ferences should allow physicians to offer increasingly
valid preventive advice and also to communicate recom-
mendations more coherently and consistently because
of their solid theoretical foundation. “Evolution is now

widely recognized as the organizing principle at all lev-
els of life” [138]. The authors maintain that evolution-
ary principles can provide health promotion with a con-
sistent, persuasive logic, which may, in turn, advance
realization of its full potential.
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