
A Publication

VOLUME 5 • ISSUE 2 • FEBRUARY 2008 • $8.95 • www.stp

Multi-User Testing Can
Be Challenging and Fun

Don’t Drown in Chaos,
Just Pull the Plug

When, Oh When
Will You Profit
From SOA?

BEST
PRACTICES:

Java Testing

For the Enterprise

A Battle of Open-Source Defect TrackersA Battle of Open-Source Defect Trackers

http://www.bzmedia.com

www.stpcon.com

SPRINGSPRING

April 15-17, 2008
San Mateo Marriott

San Mateo, CA

Platinum Sponsors Gold Sponsors Silver Sponsor

A BZ Media Event

http://www.stpcon.com

Register by Feb. 22 To Get The Super Early-Bird
Rate and SAVE OVER $400!

SUPERB SPEAKERS!
Michael Bolton • Jeff Feldstein
Michael Hackett • Jeff Johnson

Bj Rollison • Rob Sabourin
Mary Sweeney • Robert Walsh

AND DOZENS MORE!

“You’ll find informa-
tion outside of your
daily activities, and
options/alternatives to
think about new
approaches to testing.”
—Alex Kang

Staff Engineer, Tellabs

“Great, informative conference for software testers,
leads and managers alike. Useful tutorials and
technical classes of wide variety—A must-attend for
all serious QA/SQE professionals!”
—Alan Abar

Software Quality Engineering Manager, Covad Communications

“It solidifies the total
testing experience and
opens your eyes to alter-
native approaches and
methods that you simply
cannot get from books.”
—John Croft

QA Manager, I4Commerce

STPCon is THE best place to
learn the newest techniques
for improving software quality,
but don’t take our word for it—
just listen to your colleagues:

TERRIFIC TOPICS!
• Agile Testing • Testing Techniques
• UI Evaluation • Java Testing
• Security Testing • Test Automation
• Improving Web Application Performance
• Optimizing the Software Quality Process

• Developing Quality Metrics
• Testing SOA Applications

• Charting Performance Results
• Managing Test Teams

http://www.stpcon.com

Empirix gives you the freedom to test your way.
Tired of being held captive by proprietary scripting? Empirix offers a suite of
testing solutions that allow you to take your QA initiatives wherever you like.

Download our white paper,“Lowering Switching Costs for Load Testing
Software,” and let Empirix set you free.

www.empirix.com/freedom

http://www.empirix.com/freedom

CCoonntteennttss A Publication

1144CCOOVVEERR SSTTOORRYY
Battle of the Defect Trackers:
Bugzilla Takes On Trac

Two open source defect trackers face off. Learn what makes both of these
tools bug-eating behemoths. By Elfriede Dustin

DDeeppaarrttmmeennttss

2200 Multi-User
Testing Rocks!

2299
Seeking
SOA Profit
With SOA, the quest
for quality is the key
to a healthy ROI.

By Frank Grossman

In this case study of manual testing
gone awry, the trials and tribulations of
a fictional novice tester exemplify what
not to do. By Prakash Sodhani

3333
Manual Test
Naïveté

FEBRUARY 2008 www.stpmag.com • 5

Multi-user testing is crucial for every
application that uses a relational
database. Don’t worry, the process can
be fun and exciting.

By Karen N. Johnson

Since 1994, the Standish Group has
published its annual Chaos Report,
documenting the IT industry’s in-
efficiencies. Before you panic, read
our own report on where those
statistics come from.

By Robin Goldsmith

2255 Making Sense Of
Chaos Reports

VOLUME 5 • ISSUE 2 • FEBRUARY 2008

7 • Editorial
Worried about shifty politicians? Maybe
defect-tracking tools can keep them honest.

8 • Contributors
Get to know this month’s experts and the
best practices they preach.

9 • Feedback
It’s your chance to tell us where to go.

11 • Out of the Box
New products for testers.

36 • Best Practices
Java Web apps have changed everything about
software testing. By Geoff Koch

38 • Future Test
Early-stage automated source code analysis
is the next big thing. B y Gwyn Fisher

http://www.stpmag.com/tqa

By the time you read this,
Super-Duper-Kalamazoop-
er Tuesday will likely be in
the history books. I’m
referring of course to what
we in the U.S. call “Super
Tuesday,” the day in
February on which people
of the major political par-
ties from about 20 states
vote in the presidential pri-
mary. Primary votes prior
to Super Tuesday take place one state at
a time. It’s all part of the American
process of deciding who gets to run for
president, the nation’s highest office.

As someone who follows national
politics to a flaw (just ask my daughter),
I sometimes have a tough time keeping
track of candidates’ positions (which
are often numerous). Where does each
one stand on the economy, national
security and other important issues of
the day? And how does their current
position differ from things they’ve said
and done in the past?

As I edited this month’s cover fea-
ture, it occurred to me that the same
tools we use for tracking software
defects could also be applied to tracking
politicians. Enter FlakTrak, a new
defect-tracking system I just invented to
help me keep abreast of where our lead-
ers stand.

Here’s how it works. The first time a
politician takes a position on an issue,
it’s entered into FlakTrak and assigned
to that politician. If it’s a position I agree
with, it’s resolved immediately and
becomes a feature. Promises to reduce
taxes, build a border fence and win the
war in Iraq fall into this category.

If a candidate takes a position I dis-
agree with, a bug is created and
assigned to that politician. Raising
taxes, granting rights to illegal aliens or
calling for surrender, for example.
These all would be classified as defects.
If a candidate has too many unresolved

defects, I wouldn’t vote to
deploy that product into
the Oval Office.

As in software, political
defects can be minor or
severe. Minor defects
might include crying on
TV, having an extramarital
affair or experimentation
with drugs early in life.
While these things might
offer commentary on one’s

character, they alone would not stop a
project from being released.

But severe bugs might, and would
get top priority when discussing and
questioning the candidate. Such things
might include being caught in a lie
(particularly while under oath), any
type of fiscal malfeasance or too many
flip-flops on important issues.

Just as desired software features
change over time, candidates too have
been known to change their positions
on the issues, particularly as shifts in
political climate affect public opinion.
In the days and months after the attacks
of 9/11, most Democrats and
Republicans were in agreement that the
U.S. should invade Afghanistan and
Iraq. Now most disagree.

Similar flip-flops can be seen on
abortion, POW detention, illegal immi-
gration, taxes, global climate change
and “corporate greed.” When a candi-
date switches position, either a bug is
resolved or a feature fails a regression
test, and a new defect is logged.

Historically Significant
For the first time in 80 years, the field of
candidates does not include an incum-
bent president or vice president.
Interestingly, there’s one candidate who
in 1928 was only eight years from being
born. The first few issues he would
find in his queue would be called
McCain-Feingold, McCain-Kennedy and
McCain-Lieberman. !

Defect Tracker
For Politicians

FEBRUARY 2008 www.stpmag.com • 7

VOLUME 5 • ISSUE 2 • FEBRUARY 2008

EEdd NNootteess

President
Ted Bahr

Executive Vice President
Alan Zeichick

Software Test & Performance (ISSN- #1548-3460) is
published monthly by BZ Media LLC, 7 High Street,
Suite 407, Huntington, NY, 11743. Periodicals postage
paid at Huntington, NY and additional offices.

Software Test & Performance is a registered trade-
mark of BZ Media LLC. All contents copyrighted
2008 BZ Media LLC. All rights reserved. The price
of a one year subscription is US $49.95, $69.95 in
Canada, $99.95 elsewhere.

POSTMASTER: Send changes of address to Software
Test & Performance, PO Box 2169, Skokie, IL 60076.
Software Test & Performance Subscribers Services
may be reached at stpmag@halldata.com or by
calling 1-847-763-9692.

Cover Photograph by LuAnn T. Palazzo
Animatronic Godzilla Appears Courtesy of the
Daniel J. and Naomi Pagano Collection, NY

Director of Circulation
Agnes Vanek
+1-631-443-4158
avanek@bzmedia.com

EDITORIAL

SALES & MARKETING

READER SERVICE

Art Director
LuAnn T. Palazzo
lpalazzo@bzmedia.com

Art /Production Assistant
Erin Broadhurst
ebroadhurst@bzmedia.com

ART & PRODUCTION

BZ Media LLC
7 High Street, Suite 407
Huntington, NY 11743
+1-631-421-4158
fax +1-631-421-4130
www.bzmedia.com
info@bzmedia.com

Editor
Edward J. Correia
+1-631-421-4158 x100
ecorreia@bzmedia.com

Copy Editor
Laurie O’Connell
loconnell@bzmedia.com

Editorial Director
Alan Zeichick
+1-650-359-4763
alan@bzmedia.com

Contributing Editor
Geoff Koch
koch.geoff@gmail.com

Publisher
Ted Bahr

+1-631-421-4158 x101
ted@bzmedia.com

Associate Publisher
David Karp
+1-631-421-4158 x102
dkarp@bzmedia.com

Advertising Traffic
Phyllis Oakes
+1-631-421-4158 x115
poakes@bzmedia.com

Director of Marketing
Marilyn Daly
+1-631-421-4158 x118
mdaly@bzmedia.com

List Services
Lisa Fiske
+1-631-479-2977
lfiske@bzmedia.com

Reprints
Lisa Abelson
+1-516-379-7097
labelson@bzmedia.com

Accounting
Viena Ludewig
+1-631-421-4158 x110
vludewig@bzmedia.com

Customer Service/
Subscriptions

+1-847-763-9692
stpmag@halldata.com

Edward J. Correia

http://www.bzmedia.com
http://www.stpmag.com
masilto:koch.geoff@gmail.com
http://www.bpaww.com
http://www.americanbusinessmedia.com

FRANK GROSSMAN is co-founder and president of
Mindreef, which offers testing solutions for Web services
and SOA-based applications. Frank, along with Jim Moskun,
developed SoftICE, BoundsChecker and DevPartner, pop-
ular tools that would ultimately be acquired by Compuware.

Drawing from more than 20 years of technical expert-
ise in software tool development, Frank delivers a
thoughtful examination of what companies need to do
to ensure a positive return on their investment in SOA.
Turn to page 29.

CCoonnttrriibbuuttoorrss

ELFRIEDE DUSTIN is a testing consultant currently employed
by Innovative Defense Technologies (IDT), a Virginia-based
software testing consulting company specializing in auto-
mated testing.

In her role as consultant, Elfriede has evaluated scores of
software testing tools. In this month’s cover story, she tack-
les Bugzilla and Trac, two of the industry’s leading issue-track-
ing systems. If you’re about to select a bug tracker or think-
ing about switching, you won’t want to miss her analysis,
which begins on page 14.

As a quality control specialist with a global IT services
organization, PRAKASH SODHANI is involved in a mul-
titude of testing and quality assurance activities. He has
served as a quality professional in numerous capacities
with several top IT organizations.

Prakash holds a master’s degree in computer science
and many testing certificates. Beginning on page 33,
Prakash converts some of his experiences into a
hypothetical case study on the dos and don’ts of software
testing.

ROBIN GOLDSMITH has been president of Go Pro
Management, a software testing and training consultancy,
since 1982. He specializes in business engineering, require-
ments analysis, software acquisition, project management
and quality assurance.

Beginning on page 25, Robin explores the real cause of
chaos, and why most IT projects are late, over budget and
wrong. Learn to avoid these problems by developing objec-
tive factual project measures in an environment where every-
one involved takes responsibility for their results.

8 • Software Test & Performance FEBRUARY 2008

TO CONTACT AN AUTHOR, please send e-mail to feedback@bzmedia.com.

This month we’re pleased to welcome KAREN N. JOHNSON
to our pages. Karen is an independent software testing con-
sultant working in the Chicago area, is a frequent confer-
ence speaker and has authored numerous articles and papers.
She is active in numerous testing associations.

In the first of what we hope will be many contributions
to this magazine, Karen explores how and why multi-user
testing typically requires a shorter cycle than other types of
testing. Learn how to do multi-user testing right, begin-
ning on page 20.

http://www.itko.com/lisa

CHANGE:THE ONLY CONSTANT
“Traceability: Still a Fact of Life in 2008”
(Test & QA Report, Jan. 8, 2008) is still an
interesting read. Having started in an indus-
try where regulatory compliance was
required, it has been interesting to watch
how things are going back toward compli-
ance. The culture of an organization needs
to change and adapt to compliance. It is
easy to see why some not-so-good software
is produced, as requirements and changes
are not tracked or traced, let alone tested.

Compliance does not mean adding cost
but being smarter about the processes that
are used. If a process is not reviewed and
modified to incorporate the changes
required for compliance, then the bottom-
line cost for software increases, as stated in
the article. Change is the only constant in
life, and we all need to adapt and change.

Gretchen Henrich

LATE-TERM BUG FIX
Edward J. Correia’s article “Defect Tracker,
Heal Thyself” (T&QA Report, Dec. 15,
2007) states the same basic thing found in
many articles: Look at the defects and eval-
uate them early in the testing process to
determine what can be changed in require-
ments or further developed requirements
to reduce future defects.

But what if you are past that stage? How
do you evaluate the situation when there
are over 2,000 critical defects and devel-
opment team is in system test? How do you
look at these defects, determine which ones
are the most important to correct with lim-
ited resources, and which ones can be put
aside so the application can continue for-
ward toward going live? How do you sal-
vage the situation to achieve the most
impact on making the application work
and the least impact on data and the users
when the application goes live?

Jim Watson

AUTOMATION FOR FLASH
Regarding “What’s the Best Way to Test
Flash Apps?” (T&QA Report, March 27,
2007), my biggest pain point is regression
testing for Flash applications. Manual
testing is time intensive. An automated
solution would be helpful.

Scott Schimanski

From the editor:
Thanks for writing, Scott. I suggest that you

take a look at this month’s Out of the Box
section (page 11) for coverage of how a tool
called Eggplant is being used to automate
Flash testing.

According to its creator, Redstone Software,
this was an unexpected development.

FFeeeeddbbaacckk

KNOWLEDGE FIRST,
THEN TOOLS
Regarding Geoff Koch’s question about what res-
onates with his readers (“A Code-Free Look at Change
and Management,” Best Practices, Software Test and
Performance, Dec. 2007), I agree that tools are sec-
ondary to knowing what to do.

People seem to forget this when it comes to CM
and process-related issues. For example, I was work-
ing with a dev manager who wanted me to “enable
the teams to test more effectively,” but he didn't want me to spend too much time
working on current issues or even training people one-to-one, and a new framework
wasn’t going to solve the problem. People needed new habits (and some coaching).

Ironically, this same manager was a big advocate of use cases and architecture
(which are tool independent).Testing, CM and deployment are often treated as sec-
ondary issues.Testing, CM, deployment and architecture are closely related; your test-
ing, configuration and architecture can greatly affect how easy it is to deploy and
upgrade. Maybe that's obvious, but...

Another of my common rants is that a team should have a deployment process from
about day one, so that they can tune the configuration and deployment process. I remem-
ber working at places where “build the installer” was scheduled for a few days before
ship date.

CM Crossroads at www.cmcrossroads.com and the CM Journal are all about issues
related to what Mr. Koch is writing about.

Thanks for the article.
Steve Berczuk

Geoff Koch responds:
Hi, Steve,
I really appreciate you taking the time to correspond. The substance of your com-
ment does validate a conclusion I'm reaching after writing this column for more
than two years—namely, there’s a healthy collection of good tools and processes
for doing test, CM and deployment. Uber-geeks will argue over the finer points of
these tools and processes, but in the bigger picture, these arguments are almost
always irrelevant. That’s because the real stumbling block to sound test & QA is
almost always human behavior, from the individual developer who finds it too much
of a hassle to really embrace test-driven development to organizations that peren-
nially shortchange test and QA when it comes to resources, schedules, etc. And it’s
not as if there’s a shortage of information about the cost to developer organizations
of fixing issues downstream or even the macro cost to society of buggy, unreliable
software.

I know that contemporary economic research is making much hay out of finding
examples of how in fact people most often don’t behave rationally; testing in gener-
al seems to be a case in point of this phenomenon.

Best regards, and thanks again for reading,
Geoff

FEBRUARY 2008 www.stpmag.com • 9

FEEDBACK: Letters should include the writer’s
name, city, state, company affiliation, e-mail
address and daytime phone number. Send your
thoughts to feedback@bzmedia.com. Letters
become the property of BZ Media and may be
edited for space and style.

http://www.testcomplete.com/stp

Configuration management tools maker
mValent last month released Integrity 5,
the latest version of its flagship solution
that it claims now enables companies to
push configuration settings to large, dis-

tributed systems and detect and manage
configuration changes across an enter-
prise.
With the addition of automated deploy-
ment tools, Integrity 5 now can provision

single or multiple hosts
in unlimited numbers
and locations and across
firewalls. Provisioning
can consist of single
components or pack-
ages. The new version
can also analyze local or
remote configurations
to pinpoint differences
and inconsistencies and
help prevent drift.
Reporting is simplified
through new automat-
ed change dashboards.

Tired of all those user
directory moves, adds
and changes whenev-
er someone’s hired or
fired? Scrap them with
Scapa—Scapa ITSA,
that is. That’s short for
IT Service Automa-
tion, an automation
tool introduced in De-
cember that the com-
pany says can auto-
mate many of the IT
operations tasks cur-
rently being per-
formed manually by
people.

Using an Eclipse-
based GUI, IT opera-
tions staff can create
process flows that handle service requests
coming in through e-mail or Web-based
forms or other applications. Tasks appear
as graphical icons that can be set to per-
form operations selected from a drop-down
list. Flows can be run periodically or set to
trigger automatically.

ITSA also includes record and playback
capability. “If you can do something
through the GUI, Scapa ITSA can capture
and automate it,” according to documents
on the company’s Web site. The solution
also can be controlled remotely using Citrix,
VMware/VDI or RDP.

OOuutt ooff tthhee BBooxx

Scapa Scraps IT Repeats

mValent Integrity 5 can now send configurations in whole or in part
to far-flung systems.

Scapa ITSA presents a GUI-based environment for automating repet-
itive tasks now done by people.

mValent Integrity Gets
Pushy With Provisioning

An SDK for Every
Issue Tracker
Perforce in December released an SDK
for its Defect Tracking Gateway, a set of
components for integrating the compa-
ny’s Perforce 2007.3 Fast SCM with third-
party issue-tracking systems. First released
in February 2007, Defect Tracking
Gateway integrated only with Hewlett
Packard’s Quality Center 9.0. The SDK
enables the creation of integration with
any issue tracker.

Defect Tracking Gateway includes a
graphical editor for creating and man-
aging field maps between Perforce 2007.3
and a defect management system. A repli-
cation engine moves data between the
two systems and keeps everything in sync.
Synchronization can be either one-way
or bidirectional. Changelists, created and
used by the Perforce system, describe all
changes made to files, and also can be
replicated.

The SDK and Defect Tracking
Gateway are included with Perforce
Server 2007.3 for Windows XP, available
now; pricing starts at US$800 per seat.

It’s Springtime For
Integration
Open source and Java solutions provider
SpringSource in December unveiled
Spring Integration, an extension of the
Spring Framework that the company
claims can simplify the creation of mes-
sage-driven integration systems.
SpringSource, which changed its name
from Interface21 in November, created
and maintains the Spring application
framework.

According to the company, Spring
Integration simplifies development by
“handling the message-listening and serv-
ice-invoking aspects, [and] applies inver-
sion of control principles” to the runtime.
The tool also handles common input and
output sources through included
adapters, and adds to Spring’s core func-
tionality with support for JMS, remoting,
e-mail and scheduling. Spring Integration
also takes care of task execution, life cycle
management, dynamic languages, aspect-
oriented programming, event-oriented
publishing, and subscription and trans-

FEBRUARY 2008 www.stpmag.com • 11

action management, the company said.
The extensible framework, which is

set to reach version 1.0 by June, allows for
the creation of custom input and output
adapters, content-based routers, content
“enrichers,” and message filters and trans-
lators.

Klocwork Offers
Insight Into Desktop
Code Analysis
According to Klocwork, maker of auto-
mated source code analysis tools, a tool
introduced in January can prevent bug-
gy code from finding its way into an orga-
nization’s main code tree.

Insight, which began shipping in late
January, is a desktop analysis tool with col-
laboration features that ties in with the
team’s larger system and identifies defects
in the developer’s local build. Defect
reports can be broken down by compo-
nent, team or geography.

Although desktop-based source code
analysis tools have been available for years,
Klocwork CEO Mike Laginski claims their
accuracy was limited since they lacked the
context of the overall system. “Conversely,
a system that runs only at the system lev-
el is viewed as an audit tool by develop-
ers and doesn’t give them the ability to
find and fix problems before they check
in their code.” Insight provides both,
Laginski claims.

Along with Insight, Klocwork intro-
duces a declarative language that can be
used to extend or customize it and other
Klocwork products. Insight is available
now in a C/C++/Java version as well as
one just for Java.

Solution for Your
Flash Testing Might
Include Eggplant
Hungry for tools to automate your Flash
application testing? Perhaps you should
try Eggplant. That’s the word from
Redstone Software, which reports an
increase in usage of the multi-platform UI
automation tool for testing apps written
in Adobe’s popular environment.

According to Redstone managing

director Christopher Young, Eggplant was
never intended to test Flash. “We designed
it to test or automate anything, but espe-
cially the user experience,” he says.
“Anyone who has an issue testing their
Flash applications or tests them manual-
ly now” has an easier way. Eggplant works
across multiple browsers and operating
systems, including even Symbian and
Windows CE, the company says.

StackSafe Virtualizes
The Data Center
A new solution from StackSafe uses vir-
tualization technology to give IT opera-
tions teams an easy way to simulate mul-
ti-tiered systems and applications for test-

ing, performance tuning, upgrades and
other activities that might pose risks to
production systems, according to com-
pany claims.

Dubbed Test Center, the new tool
began shipping late last month and is
claimed to enable test teams to “import
[virtual copies of] production systems to
conduct staging, testing, analysis and
reporting.” Imported copies are net-
worked into a working infrastructure
stack that simulates the production con-
figuration, enabling production-safe
changes, regression testing, patch test-
ing, security and risk assessment, diag-
nostics and root-cause analysis, emer-
gency change testing, application assem-
bly and validation and compliance report-
ing, the company says.

Faster, Better
Automation Is The
Claim From VMware
Virtualization technology maker VMware
in December released Infrastructure 3,
which updates its ESX Server to version
3.5 and VirtualCenter to version 2.5, and
delivers “new capabilities for increased
levels of automation, improved overall
infrastructure availability and higher per-
formance for mission-critical workloads,”
according to a company document.

“This new release delivers the nonstop
virtual infrastructure… and better man-
agement,” says Raghu Raghuram,
VMware’s vice president of products and
solutions. Performance in ESX Server 3.5
is enhanced through support of paravir-
tualized Linux and large memory pages,
read company documents, bringing “sig-
nificant performance gains,” particular-
ly to Java applications and Oracle data-
base workloads.

Performance for Citrix and Windows
Terminal Services workloads is improved
thanks to support for TCP segmentation
offload and jumbo frames, which the com-
pany claims reduces the CPU overhead
associated with network I/O processing.

Live migration of virtual machine disks
between storage systems is now possible
with “little or no disruption or downtime,”
using VMware’s Storage VMotion mod-
ule. The tool also supports dynamic bal-
ancing of workloads and can help head
off performance bottlenecks. An Update
Manager automates the deployment of
patches and updates for ESX Server hosts
and virtual machines.

A new Guided Consolidation module
assists in the initial setup of VMware, auto-
matically discovering physical servers. It
identifies candidates for consolidation,
converts them into virtual machines and
“intelligently places them into the opti-
mal VMware server host.”

Also included in the release is an
experimental feature that balances work-
load to help reduce power consumption
in the data center, automatically power-
ing servers up and down based on
demand.

Send product announcements to
stpnews@bzmedia.com

StackSafe’s Test Center, through its browser-
based interface, permits change testing on virtu-
al systems prior to deployment to production.

12 • Software Test & Performance FEBRUARY 2008

http://www.techexcel.com/stp

the best tool for xyz?”—where xyz equals any testing catego-
ry, such as automated software testing, performance testing,
defect tracking, etc. No matter which testing category this
specific query is related to, the answer will generally be “It
depends.”

Finding the best tool for your organization almost always
depends on your specific needs and requirements. In this arti-
cle, I’ll explore how to evaluate and choose a tool using a
defect-tracking tool as an example, enumerate reasons why
open source tools can be a viable solution, and describe an
example comparison of two of the “top” open source defect
tracking tools: Bugzilla and Trac.

Recently, I was tasked with evaluating defect-tracking tools
for a client. We generally approach any type of tool evaluation
strategically, as follows:

1. Identify the tool requirements and criteria (in this case,
defect-tracking tool requirements/criteria)

2. Identify a list of tools that meet the criteria
3. Assign a weight to each tool criteria based on importance

or priority
4. Evaluate each tool candidate and assign a score
5. Multiply the weight by each tool candidate score to get

the tool’s overall score for comparison
As with many tool categories, in the case of defect-track-

ing tools, there are a good many choices. Of course, it does-
n’t make sense to implement these steps for a
hundred tools. Instead, it’s a good idea to narrow the broad

list to a select few. This can be done
using such criteria as:
• Requirements. Does the tool meet

the high-level requirements? For
example, if you’re looking for
Web-based tools and several work
only as client/server, those would
not be considered.

• Longevity. Is the tool brand new or
has it been around a while?
Darwin’s principle of “survival of
the fittest” applies to the tool
market. Decide on a number of
years of existence and eliminate
the rest.

• User base. A large user base generally indicates good utili-
ty. With open source, a busy development community also
means more people providing feedback and improve-
ments.

• Experience. Add points if you or your client have had a

By Elfriede Dustin

Given any online testing user group on any
given day, you’ll see this query—“Which is

P
ho

to
gr

ap
h

by
 L

uA
nn

 T
.P

al
az

zo

www.stpmag.com • 15

Today! An Epic
Battle Between
Two Top Open
Source Defect-
Tracking Tools—
Don’t Miss It!

Elfriede Dustin works for Innovative Defense Technologies (IDT), which
specializes in automated testing.

16 • Software Test & Performance FEBRUARY 2008

good experience with a specific tool
that meets high-level requirements,
longevity and user base criteria
described.
Using these criteria, I narrowed the

field from the scores of defect-tracking
tools to four: two commercial and two
open source. This article compares
and contrasts the latter two, Bugzilla
and Trac. Coincidentally, Bugzilla is
widely used by the open source com-
munity (in Mozilla, Apache and
Eclipse) and was selected “Testers
Choice” by the readers of this maga-
zine, announced in the December
issue (see “Bugzilla: The 2007 Testers
Choice” sidebar for more).

COTS vs. Open Source
Commercial off-the-shelf solutions cer-
tainly have their advantages, including
published feature road maps, institu-
tionalized support and stability
(whether real or perceived). But buy-
ing from a software vendor also has its
downsides, such as vendor lock-in, lack
of interoperability with other prod-

ucts, lack of control over improve-
ments, and licensing costs and restric-
tions.

And while a few of those downsides
might be applied to some open source
projects, the advantages of leveraging the
open source community and its efforts

are holding sway with more and more
companies. Advantages of open source
include:

• No licensing fees, maintenance or
restrictions

• Free and efficient support (though
varied)

• Portable across platforms
• Modifiable and adaptable to suit

your needs
• Comparatively lightweight
• Not tied to a single vendor
Licensing. Trac is distributed open

source under the modified BSD
License (trac.edgewall.org/wiki/Trac
License), a “commercially friendly”
license sometimes known as a “copy-
center” license (take it to the copy cen-
ter and copy it). It permits changes to
be made to source code and kept or
distributed commercially with few
restrictions.

Bugzilla is covered by the Mozilla
Public License (www.mozilla.org/MPL),
which is sometimes described as a
BSD/GPL hybrid. This so-called “weak
copyleft” license requires copies and
changes to source code to remain
under the MPL, but permits such
changes to be bundled with propri-
etary components.

Support. During my Bugzilla and
Trac evaluations, my questions were
often answered within minutes, solv-
ing any issues I ran into from the sim-
ple to the complex.

In my experience working with
commercial tool vendors, support is
usually more complicated. It can take
days before a support specialist
addresses an issue, and there is some-
times an extra cost or annual mainte-

BUGZILLA VS.TRAC

Unconfirmed

New

Assigned

Resolved

Reopened Verified

Closed

New bug from a user with can confirm or
a product without UNCONFIRMED state.

Bug confirmed or
receives enough votes

Developer takes
possession

Bug is reopened,
was never confirmed

Development is
finished with bug

Ownership
is changed

Developer
takes

possession

Development is
finished with bug

Issue is
resolved

Developer takes
possession

QA is not satisfied
with solution

QA verifies
solution worked

Bug is closed

Bug is closed

Bug is reopened

Bug is reopened

Possible resolutions:
FIXED
DUPLICATE
WONTFIX
WORKSFORME
INVALID
REMIND
LATER

FIG. 1: BUGZILLA DEFAULT WORKFLOW (V.3.0)

BUGZILLA:THE 2007 TESTERS CHOICE

Bugzilla was at the top of the 2007 Testers Choice Awards, as noted in the December 2007
edition of this magazine.“Bugzilla, competing in a category with commercial products devel-
oped by companies with infinitely more money and resources than the open source commu-
nity from whence it comes,” writes Edward J. Correia of the product. “Originally written in
Tcl by Terry Weissman, Bugzilla began its life in 1998 as a replacement for the defect track-
er used by Netscape for the Communicator suite (it surely must have been quite loaded).

“Thinking another language might get more traction with the community, Weissman decid-
ed to port it to Perl, resulting in Bugzilla 2.0. As the Wikipedia story goes,Weissman in April
2000 handed the project off to Tara Hernandez, who succeeded in gaining more participa-
tion from the development community. She handed it off to its current custodian, Dave
Miller, and the rest is history. Bugzilla won our top spot in the free test/performance tools
category.”

Download back issues of ST&P, including the December 2007 issue, at www.stpmag.com
/backissues2007.htm

Source: wikipedia.org

http://trac.edgewall.org/wiki/TracLicense
http://www.stpmag.com/backissues2007.htm
http://wikipedia.org

FEBRUARY 2008 www.stpmag.com • 17

nance contract to be kept current.
Adaptability. Trac is written in Python

(www.python.org). First released in 1991
by Guido van Rossum, this dynamic
object-oriented programming language
can be used for all types of soft-
ware development. It offers
strong support for integration
with other languages and tools,
comes with extensive standard
libraries, and can be learned rel-
atively quickly by the average
developer.

Versions of Python are
available for Windows, Linux/
Unix, Mac OS X, OS/2 and
Amiga, as well as for Palm and Nokia
(Symbian) mobile-phone operating sys-
tems. Python has also been ported to
run on Java and .NET virtual machines,
and is used at organizations as diverse as
NASA, Rackspace, Industrial Light and
Magic, AstraZeneca, Honeywell,
Symantec and many others.

Bugzilla (www.bugzilla.org), in its
current iteration, is written in Perl. Perl
(www.perl.org) is a stable cross-platform
programming language first released by
Larry Wall in 1987 that borrows from C,
shell scripting, AWK, sed and Lisp,

according to Wikipedia. It’s employed
for many projects in the public and pri-
vate sectors, and is widely used to pro-
gram Web applications of all stripes.

Perl is a high-level programming lan-

guage with an eclectic heritage. Perl’s
process, file and text manipulation facil-
ities make it particularly well suited for
tasks involving quick prototyping, sys-
tem utilities, software tools, system man-
agement tasks, database access, graphi-
cal programming, networking and Web
programming. These strengths make it
especially popular with system adminis-
trators and CGI script authors, but
mathematicians, geneticists, journalists
and even managers also use Perl,
according to a history posted at
trac.edgewall.org.

And with the release of Bugzilla 3.0,
Trac and Bugzilla both now allow for
modification and customized fields.

Community. Trac is hosted at edge-
wall.org and maintained by a communi-

ty of developers who collabo-
rate on projects based on
Python. Edgewall.org is per-
haps best known for Trac.

Bugzilla is hosted at
bugzilla.org and is among
the many projects adminis-
tered and maintained by the
Mozilla Foundation, which is
probably best known for its
Firefox browser.

By Definition
As defined by their respective Web sites,
Bugzilla is “server software designed to
help you manage software develop-
ment.” Trac is “an enhanced wiki and
issue-tracking system used for software
development projects.”

Trac isn’t an original idea. It owes
much to the many project management
and issue-tracking systems that came
before. In particular, it borrows from
CVSTrac. The project started as a reim-
plementation of CVSTrac in Python and
an entertaining exercise, as well as toy-
ing with the SQLite embeddable data-
base. Over time, the scope of the
endeavor broadened, a goal formed,
and it was brought on its current
course.

Both Trac and Bugzilla offer brows-
er-based defect tracking with multi-user
access, attachments, e-mail integration,
import/export capability, custom fields,
authentication and authorization,
reporting and audit trails.

Once I had identified the two tools I
wished to zero in on, I started compar-
ing features beyond their basic capabili-
ties. Some of their major pluses and
minuses are shown in Table 1.

Installation on Windows. One of my
client requirements was that the tool
installs on Windows servers. While most
open source defect-tracking tools are
cross-platform compatible, Bugzilla
(which also runs on Linux) focused less
on the Windows environment until its
later releases.

Windows installation is a Trac
strength. It offers bundled installation
and simple setup, installing on
Windows without a hitch. Trac also can
run as a stand-alone Web server;
Bugzilla can’t. There is currently no
Bugzilla bundle installation package for

BUGZILLA VS.TRAC

newleave

reassign

acceptreassign

reassign

reassign

accept

accept

resolve

resolve

resolve

resolve

reopen

accept

*

assigned

accepted

closed

reopened

FIG. 2:TRAC DEFAULT WORKFLOW (V.0.11)

Defect-Tracking Tool Evaluation Criteria

Installation on Windows

Ease of use

Extra features

Customizable workflow

Security

TABLE 1: DEFECT-TRACKING TOOLS COMPARED

Bugzilla 3.0
_

+

+

+

+

Trac 0.10

+

+

+

+
_

Source: trac.fuseboxframework.org

http://trac.fuseboxframework.org
http://trac.edgewall.org
http://edgewall.org
http://edgewall.org
http://bugzilla.org

18 • Software Test & Performance FEBRUARY 2008

Windows; components must be collect-
ed and installed separately.

Ease of use. Once installed, both
products are easy to use through Web
interfaces that are straight forward and
intuitive. Of the two, Trac is more light-
weight and requires little overhead,
while Bugzilla includes more compo-
nents and options.

Both tools received pluses in this
category.

Extra features. In addition to their
main role in tracking defects, both Trac
and Bugzilla offer numerous additional
capabilities.

Trac also includes a wiki, allowing
users to add, remove or edit Web con-
tent. This tool can be used for project
management or documentation,
to provide project status to man-
agement and testers at log-in
and be leveraged by other depart-
ments for their own uses. The
environment itself is implement-
ed as a wiki, making every Trac
page editable, if the organization
so chooses. Trac also is compati-
ble out of the box with the
Subversion as well as other SCM
systems via numerous plugins.

Bugzilla also integrates with
Subversion, but requires help
from one of several plugins for
the job. Plugins and its extensi-
ble architecture are among
Bugzilla’s main strengths. Scores
of plugins have been developed,
including several desktop and
handheld clients, integration
with Eclipse, Mylyn and about a
dozen SCM systems. Other free
plugins offer dashboards and

integration with project and test case
managers, IRC, Web apps and data
harvesting.

Customizable workflow. The goal of
any defect management process is to
solve as many defects as possible as
quickly as possible. Independent of the
defect-tracking tool, a process should be
followed to ensure consistency and
accuracy in the way defects are logged
and tracked. A sound workflow is neces-
sary to ensure that a defect follows a
consistent path and doesn’t get lost at
any point. Therefore, the ability to cus-
tomize the workflow is an important
consideration when evaluating a defect
tracking tool.

Both Trac and Bugzilla permit exten-

sive customization. Trac’s ticket work-
flow customization is implemented
through plugins; Bugzilla’s is done by
editing templates written in HTML, CSS
and JavaScript. Their default workflows
are illustrated in Figures 1 and 2.

Personally, I preferred Trac’s option
to Bugzilla’s, but if your team is skilled
in Web-based languages, your choice
might be different. Both tools received
a plus in this category.

Security is job #1. According to Bug-
zilla’s maintainers: “The current develop-
er community is very much concerned
with the security of your site and your
Bugzilla data. As such, we make every
attempt to seal up any security holes as
soon as possible after they are found.”

As such, a list of the security advi-
sories issued with each release that
included security-related fixes is provid-
ed on the Bugzilla homepage. “This is
almost every version we’ve ever released
since 2.10,” read a statement, indicative
of the recent attention being paid to
security matters.

When I asked the Trac develop-
ment team about its attention to secu-
rity, I got this response: “I cannot give
a complete answer, but what I know is
that we actively look at code we have
from multiple angles to see if there’s a
potential abuse.” I am concerned
about such a lax position toward secu-
rity. In our case, lax security was a deal
breaker. And because of the attention
to security paid by Bugzilla developers
of late, the project’s longevity also

played a major part; they’ve
had more time to fix security
flaws.

After all, Darwin’s theory of
survival of the fittest also plays a
role in the open source arena.
And the more active the com-
munity and the longer an open
source tool has been around,
the bigger the user space and
the better the chances that
security issues have been
addressed.

While Trac is lightweight
and its plugins and available
components integrate seam-
lessly, Bugzilla offers more add-
ons and utilities. If you’re look-
ing for a large number of inte-
grations, Bugzilla should get
the nod. On the other hand, if
you’re seeking a lightweight
system that’s quick and easy to
install, Trac is the one. !

BUGZILLA VS.TRAC

FIG. 3: ADD A BUG

FIG. 4:TRAC A TICKET

5th Annual Gathering
of the Eclipse
Community
Attend Eclipsecon 2008
EclipseCon is the premier technical and
user conference focusing on the power of
the Eclipse platform. From implementers
to users, and everyone in between, if
you are using, building, or considering
Eclipse, EclipseCon is the conference
you need to attend.

Over 150 Sessions
and Tutorials Including:
 - Business
 - C/C++ Development
 - Database Development
 - Industry Vertical
 - Java Development
 - Mobile and Embedded
 - Modeling
 - OSGi
 - Project Mashups
 - Reporting
 - Rich Client Platform
 - SOA Development
 - Test and Performance
 - Technology and Scripting
 - Tools
 - Web Development

This is your opportunity to get in-depth
technical information from the Eclipse
experts, learn the latest tips and techniques
for using the tools, network with fellow
enthusiasts and experience the breadth and
depth of the Eclipse community. Attending
EclipseCon will expand your knowledge and
make Eclipse work better for you.

March 17th - 20th
Santa Clara, California

Register at:
www.eclipsecon.org

Keynotes from:

Sam
Ramji

Cory
Doctorow

Dan
Lyons

ad2007_8-5x11.indd 1 10/19/07 10:08:21 AM

http://www.eclipsecon.org

20 • Software Test & Performance

either dramatically with splashy data-
base errors, or quietly as the applica-
tion and database handle the test con-
ditions gracefully and the test cycle
ends without incident.

In either case, multi-user testing
typically involves relatively short test
cycles because the number of objects
that need to be tested in multiple user
scenarios has, in my experience, not
been large. Also, the errors tend to be
less debatable than, say, errors uncov-
ered during functional testing. For
these, opinions can vary about what
the application should do or what the
requirements truly meant. Conversely,
there are no arguments that a dead-
lock error is unacceptable.

Overlooked, but Essential
Multi-user testing involves testing an
application while simulating two differ-
ent users executing the same transac-
tion at the same time for the purpose of
discovering application, data and data-

base errors. Multi-
user testing is a

form of testing fre-
quently not talked

about and often
overlooked. One

reason this cycle gets
forgotten is that over

the past decade, rela-

tional database products have matured,
and errors in this category may be less
likely to occur than they did several
years ago. But database software such as
MySQL has come to market, and new
releases of databases require testing, just
as new software releases require testing.
Clearly, multi-user testing remains nec-
essary.

As many applications have moved to
the Web, focus has shifted to perform-
ance testing, for good reason. We’ve
been focused on dozens, hundreds
and even thousands of users, not just
two. The perceived likelihood that two
users would be accessing and updating
the same object at the same time is low,
low enough to drop multi-user testing
off the list of testing to accomplish.
But errors from this test cycle reveal
that the impact of errors remains high;
we don’t need to think about dozens of
users, we just need two users to create
the dreaded deadlock.

Multi-user testing is often mistaken
for inexpensive performance testing.
Since performance testing and multi-
user testing both (sometimes) focus on
high-frequency, high-volume objects,
the confusion about multi-user testing
persists. But looking at the same

By Karen N. Johnson

Multi-user testing can be fun. That’s true because multi-user apps
are straightforward to test. Bugs in this category appear

Karen N. Johnson is a software testing con-
sultant in the Chicago area.

P
ho

to
gr

ap
h

by
 A

nn
a

S
ir

ot
in

a

objects doesn’t mean the testing focus
is the same; multi-user testing is
focused on the concurrency of transac-
tions and how concurrency and lock-
ing are handled.

Staggered Timing
Tests in the multi-user cycle involve
adding, updating or deleting an object
at the same time or with staggered tim-
ing. Let’s break this description down
with an some example. Imagine a Web
application that allows users to man-
age internal documentation for a com-
pany: a library management system.
This system allows internal users to
access company documents and,
depending on their permissions,
enables them to add, update or delete
documents. The application includes
functionality to allow administrative
users to add users and user groups.
This gives us multiple transactions to
work with.

Now imagine in the course of a
workday, two administrative users
attempt to create a new user group at
the same time. One user adds the new
user group with no error and contin-
ues on. The second user encounters a
database error referencing something
about a unique constraint. Unlikely to
happen? Perhaps. But it’s not unlikely
that two users would be adding or edit-
ing documents; in fact, at a large com-
pany with a heavily used library man-
agement system, dozens of users are

likely hitting the same transactions at
almost exactly the same time all day
long.

Identifying Tests
You can choose from a couple of ways
to plan what objects to test. First, look
at the database in your production
environment when you make this

Identifying Race

Conditions And

Deadlocks In

Your Apps Can

Leave You

Smelling Like

A Rose

www.stpmag.com • 21

22 • Software Test & Performance FEBRUARY 2008

assessment—which means you might
need a database administrator who has
access to production. Unless develop-
ment and test environments contain a
recent copy of production data, you
won’t get the same assessment as pro-
duction. Even with a production copy
in test, you can’t be sure the DBA set-
ting up your dev or test environment
didn’t trim any tables to save space.

A practical way to plan
testing is to use your knowl-
edge of the application.
What objects are users like-
ly to be “touching” all day
long with high frequency?
What are the fastest-grow-
ing tables in the database?
What objects do those
tables contain?

When planning your
testing program, remember
that you don’t need to test
every object. Instead,
you’re looking for high fre-
quency and high volume;
high frequency because
these objects are being
used the most and are
therefore more likely to
encounter errors. High vol-
ume is a likely target
because these are the
fastest-growing objects,
which also likely makes
them high frequency. Timestamps and
version numbers can serve as refer-
ence points to determine frequency.
In the case of volume, you’re looking
for high table counts.

What is high? Compared to other
objects in the database, these are the
objects being added and updated
more often. If you’re conducting per-
formance testing, you might already
be acutely aware of what objects gen-
erate the most traffic. Use Table 1 to
plan multi-user testing.

Once you identify the objects, think
about what action is being used the
most often. Are the objects being
added, updated or deleted? A simple
point I’ve learned in executing this
testing is that once I’ve added an
object, I test edit and then delete. This
makes the testing move quickly since

there’s no additional work in setting
up objects; I cycle through add, then
edit, and my final test even cleans up
my test data as I delete as the last test.

Pair Up or Go Solo?
You can test with two people pairing
up to cycle through various add,
update and delete transactions.
Alternately, I execute this type of test-

ing alone, preferring to arrange two
fairly equal class PCs as I manage two
keyboards and execute transactions. If
you choose to go it alone, don’t forget
to log in to each PC as a different user.
After all, the purpose is to simulate
two users at the same time—not the
same user on two different worksta-
tions (which, by the way, is another
form of testing.) For equal-class PCs,
the same timing is easier to accom-
plish with PCs of equivalent processing
speeds.

What to Watch For
Deadlocks. Unique index constraints.
Lost edits. Application errors. If multi-
user testing didn’t sound exciting at
first blush, consider these errors in
production and you might be willing
to allocate a test cycle to multi-user

testing. If your testing has been more
black-box focused or if you haven’t
included database considerations in
your testing previously, some of these
errors might be new to you. Let’s
examine each error type one at a time.

A deadlock occurs when two process-
es are locked and neither transaction
completes. Deadlocks in production
can wreak havoc if two users lock a

table. If you compare a
deadlock to traveling down
a highway that uses a tunnel
that allows only one car at a
time, you can envision the
lock. As two cars compete to
pass through the entrance
first, neither allowing the
other to pass, the lock is set.
Add a few more cars com-
ing along, like transactions
continuing on a Web site,
and you can envision a
queue growing with frus-
trated users (or drivers).
Deadlocks are ugly.

There are several lock-
ing schemas available to
prevent deadlocks, and
more than one database
vendor on the relational
database market so there
are different locking
schemas and concurrency
controls. In fact, there are

several fascinating problems outlined
as stories you can find on Wikipedia,
beginning with the entry on dead-
locks. Some of the stories are well
known, the most popular and the start
of the collection is the dining philoso-
phers’ problem (see Edsger W.
Dijkstra’s work). One type of problem
and its related teaching story is
referred to as the producer-consumer
problem, which also brings up the
point of race conditions.

Race conditions are a core considera-
tion in deadlocks. Like the tunnel
analogy, many traffic issues wouldn’t
take place without a race condition.
Rush hour is a race condition. The
same takes place on the database as
the timing of transactions becomes an
essential factor.

This is one reason I test both same-

MULTI-USER TESTING

•
If you compare a

deadlock to traveling down

a highway that uses a tunnel that

allows only one car at

a time, you can

envision the lock.

•

FEBRUARY 2008 www.stpmag.com • 23

time and staggered timings. Staggered
timing can catch errors when a
process or lock hasn’t been released
but a user can’t view the lock from the
application front end.
Testing add, update and
delete transactions with
slightly staggered timings
can catch these errors. If the
lock hasn’t been released,
the next transaction will
encounter an error.

In my experience in a
decade of multi-user testing,
I’m more likely to encounter dead-
locks with the same precise timing on
the creation of an object. This is why
I’d rather operate two keyboards than
perform pair testing; I can get to the
exact same precise moment by my own
two hands better than any other way.
Plus, I have the patience to execute
tests multiple times until I can find the
timestamps that make me convinced
I’ve covered the test.

The second most frequent error I
encounter is deleting the same object
with slightly staggered timing.

In terms of practical knowledge
and more immediately tangible ideas
for testing, you might look to know
more information about the specific
database you’re working with. Are you
working with Oracle, Sybase, SQL
Server, Informix, MySQL or another
database? Each has different imple-
mentations available, so it’s worth-
while to talk with your DBA about the
concurrency controls that have been
implemented.

If you can’t get the information you
need, test to find a deadlock and then
you’ll likely get the support and infor-
mation needed—a harsh but effective
approach. As most of the database ven-
dor products have matured, I haven’t
uncovered as many issues as I did years
ago, but multi-user testing still is a test
cycle likely to harvest bugs, and since
the impact can be significant, multi-
user testing remains a risk area worthy
of investigation.

Unique index constraints are database
errors that occur when two users
attempt to add the same information
at the same time. One user should be

able to add the record, and the second
user should be notified of an existing
entry of the same value. If the timing
is sequential, the user who attempts to

add the same record receives an error
stating a record of the same value
already exists. In some cases, such as
with MySQL, unless the database has
been defined as a transactional data-
base, all inserts for the table may be

halted. These issues are sometimes
referred to as primary key or unique key
errors.

A challenge with lost edits is
whether or not the user is informed.
Consider this example: Two users

access the same record at the same
time, with admin users accessing a
user record, and each user updating
the user record. For the first user to

access the record, the edits
will be saved, but the second
user might not obtain the
necessary lock on the record
for their edits to be saved. In
the worst case, the user’s
edits are lost and the user
isn’t informed. Essentially,
the transaction is lost.

This is why, in practice,
when I test multi-user editing, I make
a point to know what edit each user
makes, and the edits made are not the
same. In the case of the user record, I
might edit the last name field, adding
a 1 to the end of the existing name as
admin user 1, and a 2 to the end of the
existing name as admin user 2. In
short, knowing exactly which edit is
being made by each user helps to veri-
fy that both edits made it into the data-
base.

Too Much Information?
Another test idea to keep in mind
while executing multi-user tests is
security. Here’s a test you can pick up
at the same time as multi-user testing.

Review the database errors dis-
played to find the behind-the-scenes
information of an application. Look
for database table names, admin
account information or directory path
information being given away on error
messages that share too much infor-
mation. If your application can trap
for database errors, a design decision
needs to be made about how much
information should be revealed
through error messages.

“When two trains approach each
other at a crossing, both shall come to
a full stop and neither shall start up
again until the other has gone.”

This Wikipedia entry relating to
deadlocks, which quotes a statute
passed by the Kansas state legislature
early in the 20th century, is an excel-
lent way to visualize the importance of
multi-user testing. And now you have
a few techniques to help you imple-
ment it. !

MULTI-USER TESTING

Add

Change

Delete

TABLE 1: MULTI-USER TEST PLANNING FORM

•
Knowing exactly

which edit is

being made by

each user helps to

verify that both

edits made it into

the database.

•

Same Timing Staggered Timing

A BZ Media Event

Save $200 With Our
Early Bird Discount
Register Online by February 8

February 26–27, 2008
New York Hilton
New York City, NY

please note colors:
FUTURE is c 100/m 0/y 0/k 10
2008 is c 98
TEST is k 100

The Future of Software Testing...

Gold Sponsors

http://www.futuretest.net

consequence of arbitrarily mandated
budgets and schedules, inadequately
defined business requirements and too-
little/too-late reactive attention to qual-
ity and testing. Learn to avoid these
problems by developing objective factu-
al project measures and an environment
in which everyone involved takes
responsibility for their results.

Looking Into a Train Wreck
Like a train wreck, the Standish

Group’s periodic CHAOS reports
(www.standishgroup.com) about IT
project success rates evoke a certain
ghoulish fascination. Despite, or per-
haps partly because most readers don’t
recognize the reports’ questionable
measures and analysis—including
overlooking what undoubtedly is the
most common real proximate cause of
project failures—there’s wide accept-
ance of the reports’ basic findings that
IT projects seldom are on time, on
budget and what the stakeholders
want.

While such an unflattering depic-
tion of project effectiveness obviously

FEBRUARY 2008 www.stpmag.com • 25

Drowning in Chaos?

P
ho

to
gr

ap
hs

 b
y

K
ri

st
ia

n
P

ee
tz

Robin Goldsmith is an author and testing
consultant specializing in business engineer-
ing and requirements.

Make Sense

Of the Standish

Reports And

Take Control Of

Your Projects

Pull Yourself Out!

By Robin Goldsmith

Most IT projects are late, over budget and deliver some-
thing other than what was expected. Such outcomes are the

26 • Software Test & Performance FEBRUARY 2008

reflects a somewhat contrarian view of
IT, there’s plenty of room for even
more contrarianism. In fact, the seeds
of this admittedly contrarian article
were born in a letter to the editor and
subsequent correspondence with (I
believe he’d accept the characteriza-
tion) contrarian Bob Glass, who may
have been the first to
publicly question the
seemingly sacrosanct
inviolable CHAOS find-
ings that the great major-
ity of IT projects fail (see
his “Loyal Opposition”
article “IT Failure
Rates—70% or 10-15%?”
in the May-June 2005
IEEE Software).

For more than a
decade, the Standish
Group has published a
series of CHAOS reports
that describe embarrass-
ingly low IT project suc-
cess rates, starting with
an abysmal 16 percent in
1994 and improving to 34
percent in 2006 (a num-
ber that looks good only
in comparison to preced-
ing years’ reports—or for
a baseball batter). Even
though it’s now well over
a decade old, the 1994
report seems to continue to be the one
cited (and read) most, by me and oth-
ers, primarily I assume because it’s the
only one available in its entirety for
free (find it at www.standishgroup.com
/sample_research/register.php). Since
subsequent reports are priced prohibi-
tively (for me), I and presumably most
people know only snippets of them
reported in the trade literature, such
as the current 34 percent figure
(which was described in SQE’s
2/22/2007 Between the Lines e-mail
newsletter).

So far as I can tell, though, the
Standish Group’s methodology, find-
ings and analysis have remained fairly
consistent over the years, with changes
essentially only in the absolute figures.
Consequently, concerns raised by the
1994 report are reasonably likely to
remain current.

Is IT Really That Bad?
Measurements must be both reliable
and valid. The reports’ year-to-year
consistency indicates that the meas-

ures were made reliably. Glass ques-
tioned whether the CHAOS reports
are valid and said his personal experi-
ence indicated a much lower IT proj-
ect failure rate.

He may be right, both about his
personal experiences and their being
representative for the broader IT proj-

ect population. We can’t
really tell either for sure,
though, because the fact
is that nobody else seems
to have sufficient suitable
objective IT project meas-
ures that could validate
whether or not the
CHAOS reports’ main
finding is accurate.

In fact, this lack of
objectively measured IT
project data isn’t just lim-
ited to formal study
reports. It’s highly unlike-
ly that (m)any of the
organizations surveyed
for CHAOS based their
answers on reliable and
valid facts, which raises
serious methodological
reasons to question the
CHAOS figures’ validity.
The CHAOS data comes
from surveys of IT execu-
tives’ perceptions regard-
ing project measures. I

think we all recognize that survey
responses in general tend to be shaky
with regard to both reliability and
validity.

Even when well intentioned, survey
responses often are guesses or, at best,
broad approximations. I don’t know
about you, but I’m asked to respond
all the time to surveys that ask ques-
tions I don’t have good answers to,
either because I don’t know or
because none of the answers actually
fits my situation. Nonetheless, it does-
n’t stop me from answering some-
thing, probably with vague impres-
sions or answers that I know have no
basis.

Illusion of Precision
Although I’m sure it’s unconscious,
statistical manipulations can both dis-
tort reality and imbue an illusory
appearance of precision. For instance,
“About 90 percent” sounds much less
precise than “89.51 percent.” Surveys
often ask people to pick ranges of val-
ues; say 100-150. Having to give a sin-

gle answer fails to take into account
the pattern of variation in the source’s
actual project data, which I’m sure
most of the CHAOS sources were high-
ly unlikely to consider, let alone have
quantified. Thus, the respondent may
have felt the 100-150 range was most
typical, even though perhaps a few
instances are in the 25-50 and 400-500
ranges. It’s like the old story of a per-
son whose left foot is in a bucket of
boiling water and whose right foot is in
a bucket of ice. The average of the two
temperatures might be a comfortable
90 degrees, but neither foot feels at all
comfortable.

While CHAOS groups within proj-
ect size categories, it also consolidates
across categories, and it’s unclear
whether its calculations accurately
reflect the varying sizes of reported
projects. Should a one-month one-per-
son project be given the same weight
as a one-year 100-person project?
Should a project’s size be defined
based on the original estimate or the
bloated size the report tells us the
project eventually reached?

Regardless, to come up with aver-
ages, it’s necessary to convert each of
those 100-150 range responses to an
average score of 125. Although the
reports do show distributions of
responses for the various ranges, they
focus on single average overrun per-
cents, which take on an appearance of
authority and scientific precision.

Moreover, even if the CHAOS-
reported average overruns of 189 per-
cent and 222 percent are absolutely
accurate, it’s unclear exactly how to
interpret these reported overruns. If
the budget was $100, does an overrun
of 189 percent mean that the project
actually cost $189 or $289?

On the other hand, despite such seri-
ous methodological issues, a lot of sub-
jective data, including my own, does
support the general tenor of the
CHAOS conclusions.

For example, when I describe the
1994 CHAOS numbers in my semi-
nars/speeches, I usually ask the partici-
pants whether the report reflects their
own project experience. Over the years,
thousands of attendees regularly have
given what seems to be almost always
unanimous affirmation. Furthermore,
the reports wouldn’t be so widely cited
and accepted unless people do find the
conclusions consistent with their own
experiences.

•
Survey responses

in general
tend to be

shaky
in both

reliability
and validity.

•

CONTROL CHAOS

http://www.standishgroup.com/sample_research/register.php

FEBRUARY 2008 www.stpmag.com • 27

It’s All in Your Head
However, Glass also has a point. IT
projects ordinarily do deliver systems
that people can and do use. Both Glass
and CHAOS are right, to an extent,
and focusing on either’s conclusion
alone may itself obscure other signifi-
cantly important issues. To understand
this balance more fully, certain inter-
esting psychological factors also need
to be taken into account.

CHAOS is correct that IT projects
routinely are late, over budget and not
entirely what is expected. The aberra-
tion is large, and it’s really not neces-
sary to quibble over CHAOS’ specific
numbers. Glass is right that usually
projects produce some kind of work-
ing system. Once people can start
using the system, they get busy with it
and tend to forget that it was late, over
budget and perhaps only a portion of
what they’d expected.

That’s fine; life must go on—but
this forgetting can involve some bigger
ramifications. First, the same scenario
recurs, project after project. As an
industry, IT tends not to learn, or per-
haps tends to learn, but not necessari-
ly the right lessons, from our experi-
ence. Instead, we’ve learned to
become quite proficient at a develop-
ment process that reliably repeats fail-
ure—late, over budget and not what’s
expected—and then through denial
essentially accepts that failure as ade-
quate.

Second, by failing to relate our own
actions to our results, we prevent the
personal initiative needed to make
meaningful improvement. Consider a
perceptual paradox phenomenon
that’s evident in the worlds of politics
and culture. For example, survey after
survey finds low approval ratings of
Congress, yet congressional re-elec-
tion rates historically are close to 100
percent, sometimes not even impeded
by incarceration or death. Similarly,
surveys repeatedly find that people say
the American education system does a
terrible job, but their own local school
is just fine.

People often have an understand-
able disconnect relating broad-scale
external results to their personal
sphere. That’s a major reason why peo-
ple seldom change their individual
behaviors in response to well-known
big problems. Annual reports of lung
cancer death statistics tend not to
cause individuals to stop smoking. The

scientific community’s agreement that
global warming will deplete animal life
in the oceans and submerge coastal
cities doesn’t cause individuals to cut
their gas guzzling. Statistics on the
damaging health impacts of obesity
don’t make individuals eat better or
less. And CHAOS’s reported 84 per-
cent IT project failure rate doesn’t
cause individuals to change how they
do projects.

Perhaps the problem seems over-
whelming, or one’s own power to
affect it seems so insignificant, but
ultimately it comes down to the nor-
mal psychological defense mecha-
nisms people enlist unconsciously to
protect their self-images. We’ve gotten
so good at denying anything that
reflects poorly on us, so unwilling to

recognize, let alone take responsibility
for our results, and so willing to shoot
the messenger, that we not only fail to
take appropriate corrective actions
but also sometimes intentionally
engage in additional self-defeating
behaviors. For example, consider the
dysfunctional behaviors that get acted
out even more excessively every after-
noon on the television scream shows.

The Real Cause of Failure
It’s not only pathetic TV wanna-be
celebrities who respond to dysfunction
with greater dysfunction. Many, if not
most IT projects are destined from the
start for failure because management
has arbitrarily dictated a project budg-
et and schedule that bears no relation-
ship to the work to be done.

But that’s just the beginning of a
downward spiral. When budgets and
schedules are nonsense, overrunning
them becomes nonsense too. So what
if nonsense budgets and schedules are
overrun 189 percent and 222 percent
of the time? People doing the projects
don’t take a personal stake in the out-
come because they go into the projects
“knowing” the nonsense budgets and
schedules are impossible to meet,

which becomes a self-fulfilling prophe-
cy, regardless of how “objectively” fea-
sible the budget/schedule may be.

The more the worker bees grumble
and miss their targets, the more the
managers feel compelled to dictate
yet-even-more nonsensical budgets
and schedules, thereby ensuring fail-
ure and confirming to them that they
were right in having to hold the

CONTROL CHAOS

28 • Software Test & Performance FEBRUARY 2008

troops’ feet to the fire. Dysfunction
begets more dysfunction.

The business users don’t know
about these internal dynamics. They
only know that as an industry, IT
almost always blows project budgets
and schedules. They perceive that IT
doesn’t know what it’s doing, and thus
they may not believe what IT says,
which further impedes IT’s ability to
keep its promises.

Project managers’ psychological
defense mechanisms pre-
vent them from becom-
ing aware, let alone
believing, that they may
have credibility issues. So
they attribute their diffi-
culties to other, often-
irrelevant factors and
mistakenly divert atten-
tion to these perhaps
non-issues instead of
addressing their real
credibility problems.
This further reduces
their likelihood of suc-
cess and their already-
diminished credibility.
The business puts more
pressure on IT manage-
ment, which leads to
even more nonsense dic-
tates and more overruns;
and the cycle perpetu-
ates.

Close, But Missing
Critical Distinctions
Ultimately, project budgets can’t help
being nonsense unless they’re based
on adequately defined real require-
ments. At first glance, this seems very
much in line with the project success
and failure factors that CHAOS analy-
sis identifies.

Requirements and user involve-
ment issues certainly dominate the
tops of the factors lists. They indeed
are important, but I fear the report
simply parrots overly simplistic, wide-
spread conventional beliefs that con-
tinue to miss the distinctions critical
for making meaningful improvement.

The report focuses only on amount
of user involvement. While a certain
quantity of user involvement is neces-
sary for discovering the real require-
ments, it’s not sufficient. Rather, it’s
the quality of that involvement that
really matters. Merely subjecting users
to more of the same ineffective cur-

rent practices won’t produce better
requirements.

It’s understandable that the report
fails to realize this distinction, because
the industry is unaware that such a dis-
tinction exists. Perhaps one reason
why user involvement is low is that
managers may sense that just giving
more time by itself often may not pay
off.

Similarly, the report mirrors the
industry’s general lack of awareness of

the important distinction
between real, business
requirements and prod-
u c t / s y s t e m / s o f t w a r e
requirements.

The common use of
the term requirements
refers to the require-
ments of the product, sys-
tem or software that is
expected to be created.
Said product, system or
software actually is the
high-level design of one
of the possible ways how
to accomplish the pre-
sumed real, business-
requirements deliverable
whats that provide value
when delivered/accom-
plished/met/satisfied.

The CHAOS report
identified incomplete
and changing require-
ments as two separate
issues. In fact, the main
reason that product/sys-

tem/software requirements change is
because they aren’t defined accurately
and completely enough in the first
place, which in turn is mainly due to
the failure to adequately discover the
real business requirements. Designs
(including their product, system
and/or software requirements) can
change frequently and rapidly. Real
business requirements tend not to
change nearly so much as people’s
awareness of them.

Missing Resources And
Unrealistic Expectations
The main remaining failure factors
identified in the report include lack of
resources, unrealistic time frames,
unrealistic expectations, and lack of
executive support. The first three are
all largely attributable to not ade-
quately defining the real business
requirements and the product/sys-

tem/software requirements to satisfy
them, which of course contributes to
management’s propensity for arbitrar-
ily establishing budgets and schedules.

Once a project is set to fail, albeit
by management’s actions or absence
thereof, managers quickly distance
themselves from the project.

One More Little Oversight
Roughly half the time spent in IT proj-
ects is taken up by testing, yet the
CHAOS report’s failure factors don’t
mention quality or testing.
Again, this probably reflects a lack of
awareness among the surveyed indus-
try executives, which in turn translates
into the project failures described.
Inadequate quality clearly causes users
not to receive what they expect, and
the unplanned time needed to fix
defects is a major contributor to proj-
ect budget and schedule overruns.

Without awareness of—and
informed attention to—quality and
testing, quality and testing activities
are too little and too late. Too many
defects escape to be found by the
users. Those defects that are found
during development tend to be discov-
ered so late that they’re very expensive
to fix. Proactive testing can turn this
situation around, actually helping
projects deliver quicker and cheaper
by catching and preventing more of
the errors earlier, when they’re easiest
to fix.

All in all, in spite of significant
questions about their measures and
analysis, the Standish Group’s CHAOS
reports seem generally accurate in
finding that most IT projects are late,
over budget and not entirely what is
expected.

To a considerable extent, such out-
comes are the inevitable consequence
of arbitrarily mandated project budgets
and schedules, inadequately defined
business requirements and too-
little/too-late reactive attention to qual-
ity and testing.

Such problems persist in part
because few organizations have suit-
able or sufficient objective factual
measures of their projects and because
those responsible for IT haven’t creat-
ed an environment in which they and
other involved individuals take
enough personal responsibility for
their results.

The solution? Know, document and
adhere to the real requirements. !

•
Real business
requirements

tend not to
change nearly

so much
as people’s
awareness

of them.

•

CONTROL CHAOS

result. As the use of service-oriented architec-
ture moves from early adopters to mainstream
corporate initiatives, companies are struggling
to achieve their intended goals of business agili-
ty and cost savings from service reuse. Some
industry watchers and media surveys report that
many, if not most companies are engaged in
some form of SOA initiatives—but very few are
at the point of realizing a positive return on

their investments.
It should come as no surprise that the com-

panies seeing positive returns from their SOA
initiatives are the early adopters in vertical
industries such as financial services, telecom-
munications, energy, insurance and healthcare.
These global leaders in technology optimization
have embraced initiatives such as SOA as a core
business strategy and are realizing positive
returns. They also take a pragmatic approach,
knowing that a successful SOA initiative
depends on SOA quality.

FEBRUARY 2008 www.stpmag.com • 29

P
ho

to
gr

ap
h

by
 A

le
xe

y
K

le
m

en
ti

ev
/F

ot
ol

ia
.c

om

By Frank Grossman

Quality—you know it when you see it.
Yet the concept of quality has little

meaning unless it’s related to a specific
service, object, experience or desired

Frank Grossman is president and cofounder of SOA
test-tool maker Mindreef.

The Key to ROI’s in The
Quest for Quality

30 • Software Test & Performance FEBRUARY 2008

Web Services vs. SOA
What exactly is SOA quality? First, let
me tell you what it’s not. Software
quality initiatives are usually associated
with testing. And more recently, test-
ing often means testing a single Web
service using a waterfall approach.
This might work for a Web service that
has a distinct function with a specific
life cycle, and can be designed, devel-
oped, debugged and deployed. It then
exists in production until being

revised, updated and replaced with a
new service, which is subjected to the
same cyclical process to ensure quality.

On the other hand, an SOA doesn’t
have a life cycle. SOA is an architec-
ture made up of infrastructure and
services that must constantly interop-
erate. It doesn’t go offline and it can’t
be replaced. It can, however, evolve
and expand. It can also improve or
degrade. Therefore, the quality of an
SOA is reflected by the amount of use
and reuse of the services within it, and
by how well its implementation meets
the needs of the business, even as
those needs evolve. See “SOA Quality
Defined” for Wikipedia’s take on SOA
quality.

A common misconception among
SOA project leaders is that quality con-
cerns can be addressed with a gover-
nance solution alone, typically in the
form of a registry/repository. Vendors
have positioned governance solutions

as the “law enforcement” for an SOA
by controlling service implementa-
tions with the process, procedures and
standards deemed necessary for
quality.

While SOA governance solutions
vary in functionality, governance must
be applied to design time, change time
and runtime to be truly effective. The
challenge is that each phase requires a
different approach to maximize the
enablement and adoption of gover-

nance controls. In other words, devel-
opers require education more than
enforcement when it comes to build-
ing compliant services (that is, don’t
just tell them a service is not accepted,
show them why and offer guidance on
how to fix it).

Architects and analysts require
more than just a listing of available
services; they need translation of the
XML-formatted descriptions into
something human-readable that they
can easily understand.

Most registry/repository systems
focus on design-time governance in
the same way they address runtime.
They’re designed to regulate access,
security and performance by con-
sumers. Without varying approaches,
the strict enforcement becomes detri-
mental to the SOA’s intended goals. If
developers grow frustrated and uncon-
vinced of the standards and policies
applied by the registry, it often leads to

development of rogue, redundant
services for specific applications in
order to meet their project dates. Not
only is quality at risk, the fundamental
value of the SOA initiative breaks
down.

One approach to achieving SOA
quality is to deploy an SOA quality
gateway along with governance solu-
tions. This can complement the con-
trol aspect with interfaces designed for
various roles within the process and
different approaches for design time,
change time and runtime. The SOA
quality gateway then becomes the
quality enablement point for reg-
istries.

Collaborative Quality
In any SOA, the more loosely coupled
services are, the more communication
is needed among every team and mem-
ber involved in the design, implemen-
tation and support processes. Agility
and interaction are constantly at risk
in these loosely coupled environments
because of the temptation for each
group to be autonomous.

Collaboration begins at design
time. Architects and business analysts
need to be aware of existing services,
what they do and if they’re being used
by other applications. Knowing that a
Web service is already in use provides a
level of trust that is essential to service
reuse and the overall success of an
SOA. At the same time, developers
need to know that quality services exist
before building a redundant service.

To ensure SOA quality, collabora-
tion must continue during runtime
and change time. Once services are
identified and understood, architects
can begin prototyping an application.
Additionally, to obtain SOA quality,
business analysts, developers, QA and
support must find an easy way to work
together, regardless of language or
platform. Traditionally there hasn’t
been a way for them to effectively com-
municate, since their functions are so
different. A collaborative approach for
SOA implementations will help
increase the agility and reuse of Web
services by ensuring quality and build-
ing trust with service consumers.

The Five Components
SOA quality doesn’t exist in any single
part of a system, nor is it the sole
responsibility of an individual or team.
The architecture must have SOA qual-

SOA QUALITY

P
ho

to
gr

ap
h

by
 A

m
an

da
 R

oh
de

FEBRUARY 2008 www.stpmag.com • 31

ity throughout. To do this, you must
build a solid foundation for quality
consisting of five core traits:

• Compliance
• Prototyping
• Testing
• Diagnostics
• Support
As with any foundation, if one of

the components is weak or missing,
the entire structure is at risk.

Compliance. SOA quality starts with
compliance with standards. Non-com-
pliant services pose the highest risk for
SOA quality and positive business
returns, and simply can’t exist if an
SOA is to be successful. Even well-writ-
ten services can’t guarantee broad
interoperability unless standards and
best practices are well designed and
adhered to throughout an organiza-
tion.

Developers must embrace stan-
dards, rules and policies by seeing
value in what they provide. Architects
and governance teams must educate
others as to what the standards are,
why they’re in place and most impor-
tantly, how developers can improve
their projects by becoming compliant.
Finally, analysts and architects must
embrace compliant serv-
ices and leverage them
in SOA applications to
ensure trust and reuse.

Prototyping. Seeing is
believing. As business
and IT groups work
together on SOA initia-
tives, prototyping is one
of the best ways to reach
agreement on a WSDL
contract before any code
is written, and to deliver
SOA quality early.

Prototyping lets busi-
ness analysts, architects
and developers design
and develop very usable
interfaces early in the
process, thereby creating
services designed for
reuse. It also allows con-
sumers and testers to get
involved much earlier in
the design process,
reducing the overall
development cycle.

Testing. SOA has many moving
parts. It’s virtually impossible to test
every Web service and its interaction
with its dependencies within an SOA.

And unlike traditional software appli-
cations, SOA testing occurs while
many services are in various stages of
development or production. Yet with
service-oriented architectures, testing
is unavoidable.

Therefore, teams need tools that
can provide the necessary user inter-
face, simulate unavailable services and
ensure that all team members—even
ones without programming or XML
language knowledge—can test servic-
es. It’s also important that test scripts
are accessible so that retesting can be
easily performed when a service policy
changes or if a new service consumer
uses the service in a different way.

Diagnostics. Remember, this is still
software. So no matter how well Web
services and business processes are
tested, problems will still occur. With
an SOA, problems often need to be
solved in real time, and may involve
disparate teams and systems. This
requires collaborative diagnostics.
Determining if a Web service can per-
form its intended function is often a
time-sensitive issue that may require
fast identification of the root cause of
a problem. This also means that all
members of the team are responsible

for helping to diagnose
problems. For this to be
effective in an SOA,
strong diagnostics are
essential to providing
and maintaining SOA
quality during runtime,
and for preventing run-
time issues by catching
them in design time and
change time.

Support. The final
component in the foun-
dation of SOA quality is
support. It is absolutely
essential to have a mecha-
nism for supporting the
disparate groups that use
services, without over-
whelming the develop-
ment teams. Also, sup-
port is fundamentally dif-
ferent in an SOA because
it involves two phases that
span design time and
runtime simultaneously.

As services are
exposed for use and reuse, consumers
will seek support to assist in the devel-
opment of their applications. In pro-
duction, support teams need to under-

stand and resolve problems quickly
and often need to reproduce scenarios
when a failure occurred. When service
developers need to get involved, com-
plete problem data needs to be shared

with other team members who can
simulate different scenarios to more
effectively diagnose problems.

Communication,Trust and Control
Communication. The ability to commu-
nicate effectively is an essential core
element in a successful SOA. It’s as
important to SOA technologies as it is
to the people involved with the envi-
ronment. Communication in a tech-
nology domain is often referred to as
interoperation and occurs across differ-
ent platforms, languages, locations,
policies and standards.

Communication must take place
between people, because individual
team members depend on each other
to do their jobs, complete a task, solve
a problem or contribute to a project.
The communication between business
and IT is a perfect example. This is
often associated with collaboration.

But communication is more than
just interoperability and collabora-
tion—it involves the interaction
between people and technologies,
which is often where quality breaks
down in an SOA.

Visibility is an important attribute
offered by a registry, providing a cata-
log of services that are available for
use. While this helps architects and
developers to communicate, visibility

SOA QUALITY

In Wikipedia, SOA quality is defined as

“a service-oriented architecture that

meets or exceeds business and techni-

cal expectations by consistently yield-

ing value in the form of cost savings,

productivity and time to market.”

This is achieved through continual

optimization of all components within

the SOA environment to ensure maxi-

mum adoption, business agility and

service reuse.Therefore, SOA quality is

a key component of reaping the intend-

ed benefits of an SOA—it’s the strate-

gy needed to achieve maximum busi-

ness benefit.

SOA QUALITY DEFINED

•
Strong

diagnostics are
essential

to providing
and

maintaining
SOA quality

•

32 • Software Test & Performance FEBRUARY 2008

alone is not enough. Services need to
be visible, accessible and easily under-
stood to ensure SOA quality.

Accessibility and understanding
help make visibility a form of commu-
nication in an SOA. Together, they
allow team members to easily view and
comprehend what a service can and
can’t do, which can be a challenge
when interacting with a technical reg-
istry that lists a myriad of XML files
and WSDL contracts.

An SOA quality gateway can pro-
vide the accessibility and understand-
ing attributes to an existing registry
and address the requirements for
effective communication within an
SOA.

Trust. The primary characteristics
of SOA quality for any business are
agility and reuse. Trust is what drives
service reuse. It’s critical for SOA
teams to be aware of existing services
in the SOA, to understand what they
can and can’t do, and most important-
ly, to have trust and confidence that
the services will execute as intended.

Trust is relevant in nearly every
aspect of an SOA. Architects need to
trust the services they choose to use.
Developers need to trust that an exist-
ing service will be appropriate for an
application versus building a new one.
They must also trust that the imple-
mented policies and standards are
meaningful and add value. SOA lead-
ers must trust that services are being
added to the registry and reused. And
QA teams must trust that policies and
standards will enable compliance and
interoperability at runtime.

Without trust, an SOA will never
achieve reuse, which leads to redun-
dant or rogue services. Trusted servic-
es, however, will lead to “socialized
quality.” As services gain trust, users
will share their positive experience
with peers—the trust factor grows and
reuse increases. This is what we mean
by socialized quality. SOA quality opti-
mization depends on creating trusted
services and then socializing that qual-
ity throughout the SOA.

Control. Governance in an SOA is
about control. Often what is lacking,
however, is the ability to enforce poli-
cies. Control without enforcement
really isn’t control at all, and will not
yield SOA quality. Although gover-
nance alone isn’t the answer to SOA
quality, it’s a critical element, and
comes into play at design time, change

time and runtime.
Governance involves policy

enforcement and sometimes requires
changes in human behavior, develop-
ment concepts and processes. Control
also involves reducing the number of
production issues during runtime and
resolving those issues quickly.

Further, control involves under-
standing the dependencies applica-
tions have on multiple, disparate serv-
ices, and prompts the need to test serv-
ices that depend on other services that
might not be directly accessible.

Quality In = Quality Out
This variation of the old “garbage in,
garbage out” adage from the comput-
er science field is relevant to the SOA
registry/repository concept. If quality
isn’t enforced when services are
entered into a registry, quality is at risk
when services are used from that reg-
istry.

While registries are an essential ele-
ment of SOA governance and gover-
nance is about control, it goes well
beyond simple governance to ensure

SOA quality.

Achieving Business Objectives
As with any business application, the
SOA’s ultimate goal is to help an
organization achieve its business
objectives. And SOA quality is
required to ensure that the service-ori-
ented architecture meets or exceeds
business and technical expectations,
whether in the form of cost savings,
productivity, better customer service
or shorter time-to-market. Achieving
this quality means understanding the
overall goals of the SOA strategy and
optimizing the environment for suc-
cessful execution.

SOA quality also requires a top-
down approach to mapping out those
objectives and a bottom-up strategy for
maintaining it. By laying a foundation
for quality at the outset of any new
project, companies can establish a
process for success that will become a
standard practice as new services are
added—ensuring consistent trust and
reuse, and a high-quality SOA at all
times. !

SOA QUALITY

BUILDING BLOCKS OF SOA

When building a foundation for SOA quality, consider the following:

• How will the individual or team responsible for the overall quality of your SOA manage

all the facets of SOA quality?

• How do you ensure that best practices are actually followed, once they’re defined?

• How do you enable team members to communicate effectively, given diverse development

environments and skill levels?

• How do you enable team members, especially those are remote or who don’t have

advanced coding or XML skills, to test effectively?

• How do you efficiently reproduce and solve problems that span disparate systems and

disparate teams without finger pointing?

• How do you achieve the reuse of your SOA service assets across your team?

Look for platforms and tools that allow team members to:

1. Define executable standards and specifications early in development that team members

must develop to.These help ensure that your Web services will be of high quality.

2. Create and run analysis profiles to verify that your services meet the best practices

defined by your organization.

3. Save services in reusable workspaces that all team members can run, regardless of skill

level.This promotes team communication.

4. Save workspaces, simulations and test scripts that all members of your team can run to

test your services.

5. Run previously saved simulations to effectively reproduce, diagnose and solve problems.

6. Save services simulations for reuse of your existing SOA service assets in new imple-

mentations.

think much of testing efforts that include only manual test-
ing. But I firmly believe that a prerequisite for automation
is a somewhat stable application, which can be ensured only
by doing at least some manual testing.

Let’s look in on a manual testing project that went awry.
It involves someone we’ll call Peter working in a company
that sells merchandise over the Internet.

Recently, Peter worked on a project as the lead tester.
The project, referred to internally as “the Rewrite,”
involved an existing application that was being rewritten
using newer technologies. The app was designed to allow
users to come to a Web site and purchase products. Nothing
very special so far; an e-commerce app with lots of process
flows and state combinations to be tested. But since it was
being rewritten, it carried the potential for lots of new
defects in the system and lots of time to test all functionali-
ty from end to end.

Most of the testing was of the manual variety, with a bit
of load testing thrown in for flavor. What follows is a sum-
mary of Peter’s experiences. Each topic is divided into three
parts: What was done, what went wrong, and what I believe
should have been done.

www.stpmag.com • 33

By Prakash Sodhani

I ’ve long wanted to write an article about man-
ual testing. As an automation specialist, I don’t

A Case Study That
Shows How Not To
Staff a Project

Prakash Sodhani is a quality control specialist at a global IT services
company based in Texas.

34 • Software Test & Performance FEBRUARY 2008

Resource Allocation and Planning
What was done?
The development team followed
Scrum, an agile methodology.
Development was divided into differ-
ent sprints, each one month long.
Each tester was assigned to different
sprints based on a percentage deter-
mined by the testing manger.

Prior to the initial launch, the orig-
inal application development team
included about 14 developers. The
Rewrite project was assigned one of
the original testers, who’d been testing
this application for the past couple of
years. Unfortunately, the manager
approved a month-long vacation for
him during this time.

So we were assigned only two testers
for this project; one, a new hire who
joined the team a couple of weeks
back, was allocated 100 percent to this
project. The other was Peter, who was
allocated 50 percent. So in essence,
the project had 1.5 testers.

What went wrong?
Since we were just starting the Rewrite
project, it was an educated guess as to
how many testers and how much of
their time would be needed. When this
application was first developed, seven
testers were assigned, with 100 percent
of their time allocated to testing. So it
made no sense to us to assign only two
testers, both of whom were new to the

project.
Also, no planning was done.

Management simply assumed that this
sprint would be like any other and fol-
low the existing plan. But as the proj-
ect progressed, the number of applica-
tion features increased by about 50
percent. To make matters worse, no
one realized that we’d lose three days
of testing due to holidays.

What should have been done?
First and foremost, at least one tester
with experience with the application
or a similar project should have been
present at all times. No logic can justi-
fy the decision to assign 1.5 testers to a
project that originally required seven.
Managers also should have sought
input from at least one tester familiar
with the original application to deter-
mine how much work was involved.

Test planning also should have
been made a priority for a project of
such importance to the business.
Scrum Masters and leads should be in
the position to know and have exactly
what they need for such a project
rather than just attending morning
scrums. If test planning had been
done correctly, a viable plan to com-
pensate for time lost during holidays
would have been taken care of, and
testers wouldn’t have to spend late
nights getting the job done.

Prioritizing Features
What was done?
In the absence of a plan, testers went
about testing the application as they
thought best. With countless flows to
be tested, there was no input from the
Scrum Master, development leads or
the test manager as to which should be
a priority. And while experienced
testers might be expected make these
decisions, none were assigned to this
project.

What went wrong?
A lack of guidance and prioritization
led minor functionalities being tested
first, leaving little time for major ones,
and end-to-end flows were also inade-
quately tested. Most of the time was
spent on individual features rather
than on the complete solution.

What should have been done?
Scrum Master and leads should have
made sure that testers knew what was
expected of them, particularly in their

shortened time frame. Testers should
have been asked regularly what they
were testing and how it was going.
Since the testers were new, chances
were good that many common test sce-
narios would be left out. Trust is good,
but blind trust can lead to disaster. It’s
better to “trust but verify.”

Load Testing
What was done?
In one of his earlier jobs, Peter worked
as a load test specialist. He worked on
a variety of projects and learned many
of the minute details of load testing.
However, working on this project
showed him a different side of the
practice.

Peter was asked to perform load
testing just a few days before the appli-
cation was scheduled to go live. He was
literally instructed to “write some
scripts and run them.” No one had any
idea how many users to simulate, what
kind of scenarios to run, and what was
expected from the tests. It seemed that
all they wanted was to hear that “x
number” of users ran successfully with-
out any errors.

What went wrong?
What was done is just about the exact
opposite of what correct load testing is
supposed to be. The goal of load test-
ing is to find the breaking point of the
application, using varying real-time
scenarios. Making the matter worse
was the assumption that test scripts
take little time to write and can be cre-
ated and executed the same day.

This total lack of knowledge in the
area of load testing, and the fact that it
was done as a formality, left Peter
unmotivated. It became worse and
when he tried to explain how useful
load testing can be when done cor-
rectly; no even responded. And
because the order to run load tests was
so close to launch, it was clear to Peter
that even though flaws were found, the
application would go into production
anyway. Peter’s outlook changed from
seeking the breaking point to running
the load tests without any errors.

What should have been done?
Load testing is a specialized form of
testing that requires time and plan-
ning. Just asking someone to write test
scripts shows a lack of knowledge.
Also, load testing should have been
included in test plan as a priority item,

DOS AND DON’TS OF TESTING

FEBRUARY 2008 www.stpmag.com • 35

and resource allocation should have
been done accordingly. Doing these
kinds of activities just for formality’s
sake is a total waste of time and
resources, and should be
avoided, especially when
everyone is hard pressed
for time.

Teamwork
Anyone reading this
should be familiar with
the concept of team-
work, which, if improp-
erly managed, can have a
dramatic effect. In this
case, a small teamwork
incident led Peter to
stop testing the applica-
tion and give it a green
light for release to pro-
duction.

What was done?
Even with Peter’s 50 per-
cent involvement, he
spent around 14 hours
each day during a two-
week period. He was,
after all, the more expe-
rienced tester and was
therefore obliged to
work on the more complex functional-
ities. Most evenings, no developers
were available to support his issues. In
every morning scrum, it was repeated-
ly mentioned how busy everyone was
and that they couldn’t deliver some of
the requested functionality, even
halfway into regression week.

What went wrong?
Here’s the funny part: In one of the
morning scrums, Peter initiated the
notion of working weekends to get
things done. The development lead
asked his developers who would be
available to work. All that could be
heard was crickets. These are same
developers who weren’t able to deliver
the required functionalities on time
and were always “busy.” “Busy doing
what?” Peter wondered. It was an awk-
ward moment, and I would have
expected more concern to get things
done from the leaders and people who
built the product than from a tester
with less of a stake in the project’s suc-
cess.

In another meeting just a couple of
days before the production release,
Peter was asked if he would be avail-

able to work during weekends. His
question was, “Is everyone coming to
work so that we can get a lot done?
After all, it’s a UI-based application,

and everyone can play
around with it to see if
they see something
wrong.” As soon as the
question came out, the
faces of the Scrum Master
and leads became indig-
nant, appearing to say,
“Are you kidding? Why
should we work week-
ends?”

That was the final
blow, and Peter lost all
interest and concern
about the project. From
that moment on, all of his
efforts were toward going
to production as soon as
possible, after which
came the wait for the
inevitable production
defects to come in.

What should have
been done?
The team should have
pulled together. Even a
short presence or small

show of effort and willingness to pitch
in on the part of leads and managers
during crunch time goes a long way
and can motivate the team toward the
common goal.

While it’s a good idea to circulate
e-mails or memos of praise when
everything is said and done, it’s essen-
tial to keep people motivated during
the project. When true effort and com-
mitment have been maintained
throughout the project’s life cycle,
after-project commendation is all the
more sincere and long lasting.

Too Little,Too Late
What was done?
Everyone needs help at one time or
another. This project involved many
extra hours, and the test manager cor-
rectly asked Peter if he needed any
help to get his testing done.

What went wrong?
Even though Peter finally got some
help, it came too late, right before the
application was to go live. It’s difficult
for someone to walk in to a project
where so much has happened and be
expected to instantly perform at a vet-

eran testing level.
Granted, some of the testers who

were assigned to help had previously
worked on the same application, but
all they could do was to go through
the basic flows. The end result? They
spent only a few hours reviewing the
application and concluded that every-
thing looked great. Everyone was
happy to hear that, and the launch
remained on schedule. No one had
any idea of what had happened during
the previous month, and Peter was so
disgusted that he just let it go.

What should have been done?
For help to be effective, it has to be
offered at the right time, or you can
foster a false impression that every-
thing is great. Peter knew that the sys-
tem still had many defects, but was
totally unmotivated to point them out.
Had he noted this early enough in the
life cycle, the project could have been
rerouted toward an effective course.

There are lessons to be learned in
everything we do. Testing is a subjec-
tive practice, and carries no hard-core
formulas for success. It’s important to
learn from experience; in this case,
from our fictional friend. Peter’s mis-
takes encapsulate many of the pitfalls
I’ve witnessed throughout my career
in quality control. Keep him in mind
when you face some of your own. !

DOS AND DON’TS OF TESTING

•
It’s essential

to keep
people

motivated
during the

project.

•

36 • Software Test & Performance FEBRUARY 2008

Frank Cohen is a 30-year
veteran of the software
industry and CEO of
PushToTest, a company
that earns its bread selling
testing tools and services.
So he’s an altogether
unlikely candidate to be
fazed by much in the way of
testing Java-based Web
applications. Yet even the
venerable Cohen had
something of an epiphany during a
recent upgrade of the software that runs
PushToTest.com.

The site runs on Zope, an open
source application server, and Plone, an
open source content management sys-
tem. Among the many recent enhance-
ments to the latest version of Plone that
Cohen’s team installed is a slick AJAX
interface to facilitate the process of
searching the site. Start typing what
you’re looking for in the search box and
up pops a floating window with a list of
suggested results. Type a little bit more
and the list changes, with any luck con-
verging on your search term.

Say you’re looking for the slides
Cohen presented at the Practical
Software Quality Testing 2007 confer-
ence in September. Type “Prac” in the
PushToTest.com search box, and the
first item in the floating window jumps
to an entry on Cohen’s blog where the
slides are posted.

This functionality comes from a wee
bit of JavaScript associated with that
search box. One data model allows the
JavaScript program to send queries as
they’re entered to the back-end server.
Another data model formats the query
results in HTML and displays the results
live. From a user’s point of view—at
least that of an impressionable colum-
nist—the whole experience is slick and
yet another sign that the rich Web will
eventually carry all our browsing blues

away. But there’s a small
problem, at least for those
in charge of the PushTo
Test Web site.

“How do you test any of
that?” asks Cohen. “There
are no standards bodies
standing behind JavaScript
or behind these two data
models that this JavaScript
program is using.

“We never set out to
add AJAX capability to our Web site; it
just happened to show up with the
upgrade,” continues Cohen, author of
the book “Java Testing and Design:
From Unit Testing to Automated Web
Tests” (Prentice Hall PTR, 2004).
“That’s the epiphany. The world is
marching forward because developers
love the rich Internet that AJAX
brings. The world is marching forward
because enterprises know they can
communicate with other enterprises
using things like SOAP, Web services
and XML-RPC—and there’s no gate-
keeper to any of the message formats
that exist.”

Beyond Test-Driven Development
Cohen’s story is evidence of the tecton-
ic shifts occurring in Java testing. Java
1.0 was released in 1995, when client-
server computing was entrenched and
the Web was more or less in its infancy.
A well-established division of labor had
emerged in the world of software.
Roughly speaking, developer organiza-
tions wrote programs, QA organiza-
tions tested programs, and IT organi-
zations supported programs. Indeed,
most early Java programs were accord-
ingly handed off from team to team on
their way from requirements docu-
ment to finished product.

Fast forward to today. Java technolo-
gy, now conspicuously open source, is
used by millions of developers, runs on

hundreds of millions of desktops and,
according to the official history at
www.java.com/en/javahistory/timeline
.jsp, has even been to Mars by way of the
Java-powered Mars Rover, Spirit. Back
on Earth, the Web has exploded and is
fast on its way to joining electricity and
phone service as basic utilities in the
developed world. Internet protocols
have matured to the point where Web
services and SOA are now possible.

Despite these dramatic changes, it’s
still true that, depending on the cir-
cumstances, code should be subjected
to some combination of unit, integra-
tion, functional, system, performance
and acceptance testing. However, the
rise of Java Web applications has
changed the notion of what it means
to test software and even the idea of
what exactly comprises an application,
says Kishore Kumar, director for the
UST Global Java Center of Excellence
in India. “Now there are other consid-
erations, including how to test with
SOA, how to make sure that exposed
services are consistent with terms of
any relevant contracts, and that
changes to such services comply with
the broader regulatory environment,”
says Kumar, author of “Pro Apache
Geronimo” (Apress, 2006).

Kumar, who also serves as a senior
technology evangelist for the Aliso
Viejo, Calif.-based UST Global, sug-
gests that what’s needed is an altogeth-
er new mindset about what constitutes
successful Java programming. The
aim, he says, should be to move
beyond even relatively ambitious prac-
tices such as test-driven development,
where test cases are written before the
production code that implements new
functionality. Soon, he insists, develop-
ers will be measured more by their

Web Services Burden Java
Developers With Testing

BBeesstt PPrraaccttiicceess

Geoff Koch

Best Practices columnist Geoff Koch can be
reached at gkoch@stanfordalumni.org.

http://PushToTest.com
http://java.com/en/javahistory/timeline.jsp
mailto:gkoch@stanfordalumni.org
http://PushToTest.com

ability to write testable code than to
implement new functionality. The fact
that the latest Java versions allow
developers to easily annotate their
code is a foreshadowing of this future,
he believes. In fact, Kumar insists that
each software class might soon come
with notes from the author about just
which combinations of functions can
be used to test it, a change that would
require considerably more skill than
that used simply to cobble the func-
tion together in the first place.

Granted, Kumar speaks at confer-
ences, writes for a slew of trade publi-
cations and leads a team of 400 tech-
nology specialists, while I’m just a casu-
al industry observer marooned in geo-
graphically challenged Michigan. Still,
I’m more than a little skeptical of his
assertion for much the same reason
that I looked askance at the sunniest
unit testing claims in last month’s col-
umn. Here’s the thing: Behavior
change is difficult, and people rarely do
what’s best for them on the basis of

sound, logical argument. Rather, prop-
er incentive is needed, such as fear (do
this or get fired) or greed (do this and
make twice as much money as the poor
sap in the cube next to yours).

Unless I’m missing something, nei-
ther such incentive looms on the tech
horizon, and as Cohen sees it, there’s
little evidence that the overall level of
coding competence is on the rise. So
how to deal with Java testing in the age
of the rich Web, when you wake up one
morning and all of a sudden have an
AJAX-enabled search box on your
home page?

Rx: Repurposing
The only approach, Cohen says, is to
try to combine the efforts of develop-
ment, test, QA and IT. For example,
presumably the developer behind the
search function in the Plone site has
already created a unit test for the
JavaScript program. Perhaps that unit
test could be repurposed for test and
QA into a functional testing frame-

work, which in turn might be repur-
posed for IT to use and run automati-
cally as a business service monitor.

Cohen is right, and his story only
proves that in technology, eventually
everything old is new again. In the early
days of computing, at least through the
mid-1950s, there was essentially no dis-
tinction between testing and debugging.
Developers were expected—required, in
fact—to both test and debug. Testing
and debugging were decoupled by 1960,
and later testing was further subdivided
into the current array of bang-on-the-
code activities, most of which aren’t
done by the developers who wrote the
code in the first place.

Now, the pendulum may be swinging
back. Developers, especially in the
open-source, share-and-share-alike
haven of Java programming, should be
expected to promptly debug their new-
fangled Web application as soon as it’s
unveiled as a service—or at least to
share their secrets for testing it with
their downstream colleagues. !

Best
 Practices

FEBRUARY 2008 www.stpmag.com • 37

Advertiser URL Page

Automated QA www.testcomplete.com/stp 10

EclipseCon www.eclipsecon.org 19

Empirix www.empirix.com/freedom 4

FutureTest 2008 www.futuretest.net 24

Hewlett-Packard www.hp.com/go/securitysoftware 40

iTKO www.itko.com/lisa 8

Software Test & Performance www.stpmag.com 37

Software Test & Performance www.stpcon.com 2-3
Conference Spring 2008

Software Test & Performance www.stpmag.com 39
White Papers

TechExcel www.techexcel.com/stp 13

Test & QA Newsletter www.stpmag.com/tqa 6

Index to Advertisers

http://www.stpmag.com

Bugs are easily mass popu-
lated. In our brave new
Web-connected world, soft-
ware vulnerability is a con-
cern of a whole new magni-
tude. Who’s to blame when
that super fridge, which
automatically orders your
groceries as they run out, is
hacked to run a password-
cracking algorithm or file-
sharing relay? Who pays
when that life-saving defibrillator can’t
power up its paddles because it’s busy
looking for extraterrestrial life?

Although we depend on software
from morning until night, it’s riddled
with bugs—many of which are unearthed
only after the software is deployed in the
appliances we purchase and the services
to which we subscribe. The fact is that this
brilliant multitasking software is devel-
oped by people. And people aren’t per-
fect, especially when armed with inher-
ently dangerous weapons.

Bug Inevitability
The creation of bugs is inevitable, from
typing errors to thinking errors, to not-so-
simple design errors and insanely com-
plex architectural flaws. Throw in some
garden-variety security nightmares and
you’ve got a recipe for disaster, or at least
a recipe for patches, costly recalls and
product churn, because the unfortunate
reality is that software development
encourages features and release dates
over bug-free code.

It’s time for a new approach to soft-
ware testing and debugging. Today’s mis-
sion-critical, ubiquitous software must be
defect-free long before it hits the streets.

One of the flaws of traditional soft-

ware testing in today’s mar-
kets is that it tends to be lim-
ited to testing what the soft-
ware is supposed to do.
Today, software is exposed to
all manner of unexpected
assaults—from the benign
(unexpected use by unex-
pected users) to the mali-
cious (a hacker stealing per-
sonal information). Usage-
driven testing (i.e., testing

the bits that you expect will be used the
most) is a popular model, but it’s increas-
ingly outmoded as the primary approach
to testing software.

Expecting the Unexpected
What’s needed is an approach that rigor-
ously tests the code under expected and
unexpected conditions—one that
ensures all code receives the same test
coverage regardless of whether it is expect-
ed to be executed or not. The approach
must also be thorough, and that’s diffi-
cult to achieve when the testing approach
requires a decision about which paths in
the software will be investigated and
which will be overlooked.

A better process would see developers
themselves testing their own code for
“simple” bugs. At the developer’s desk,
agnostic test coverage (typified by pair-
wise programming and peer review) is
possible because the code is available to
be examined regardless of runtime state.
And, since the code isn’t being executed
at this stage, thorough coverage of all
code paths is theoretically possible.

The challenge with such approaches
is obvious: It’s far too costly to have devel-
opers testing their own code, and it
would interfere with time-to-market.

While we may expect a rocket guidance
system author to apply 100 percent prov-
ability to his test approach, for the major-
ity of software developers, competitive
market dynamics will dictate when soft-
ware is released.

Given these realities, it’s sensible to
equip people as early in the development
process as possible with tools and process-
es to identify bugs that should never even
make it to testing.

Automated source code analysis
provides one such mechanism by allow-
ing developers to scrub code before
check-in and to test for code failures,
such as:

• Memory and resource leaks
• Buffer overflows and code injection

vulnerabilities
• Invalid pointer or object reference
• Tainted data propagation and use of

unsafe libraries or APIs
• Phishing vulnerabilities such as

cross-site scripting, request forging
These aren’t design flaws and they’re

not baffling architectural failings. They
are bugs. As such, they should never
make it off the desk of the developer cre-
ating them.

I believe that automated source-code
analysis at the point of development is
the next evolution of software develop-
ment and testing. Ten years ago, the
number of developers who routinely
used runtime profiling tools was small.
Today there are few professional develop-
ers who haven’t used them at some point.
The smart ones carry these tools with
them from project to project as a vital
part of their work practices.

Likewise, five years from now, every
developer will use source code analysis
as a matter of course, and QA depart-
ments will be freed from the tyranny of
bug-finding missions to get to the real
heart of the matter: testing whether
products are any good and acting as
full-time customer advocates.

This approach has another positive
outcome. By making the developers
who created the bugs responsible for
finding and addressing them, the cre-
ation of those bugs is likely to decline
over time. !

Future
Test

38 • Software Test & Performance FEBRUARY 2008

Who’s Really
Responsible For
Code Quality?

Gwyn Fisher

FFuuttuurree TTeesstt

Gwyn Fisher is CTO of Klocwork, which

makes source code analysis tools.

Get Your Free
White Papers At

www.stpmag.com

Discover all the best software

practices, gain an in-depth

understanding of the

products and services

of leading

software vendors,

and educate yourself

on a variety of topics

directly related to

your industry.

Learn Some
New Tricks!
Learn Some
New Tricks!

http://www.stpmag.com

http://hp.com/go/securitysoftware

