OHIO HUB PASSENGER RAIL SYSTEM

Agenda

- Why Ohio Hub
- Initial System Corridors
- FRA Viability Criteria
- Results for Initial System
- Incremental Corridors
- Results for Incremental Corridors
- Implementation
- Economic Impact
- Conclusions

Why the Ohio Hub System

- Limitations in Current Intercity Transportation
 System
 - Congested highway systems in major metropolitan areas make serving intercity markets difficult
 - Regional and short-haul air service is in jeopardy
 - Decline in intercity bus services since early 1980s
 - Minimal and unreliable existing passenger rail service.

Why the Ohio Hub System – (continued)

- Changing Demand Structure
 - Increased demand for regional and intercity transportation between regional centers, urban and rural areas due to growth of "New Economy"
 - New High Tech and Service Industries seek quality of life locations (i.e., small towns).

Why the Ohio Hub System – (continued)

- Regional Rail Potential
- Rail rights of way exist and lead into downtown centers
- New technology is highly cost effective
- Regional system synergies produce economies of scale
- Rail provides connectivity to small, urban, and regional centers
- Regional rail hub and spoke system increases market potential and commuter connectivity through Cleveland, Columbus and Toledo.

Project Objective

- Evaluate the potential for a regional rail system that:
 - Preserves, improves, and expands the Ohio and Lake Erie regional transportation service
 - Meets policy and financial goals of all sponsors
 - Creates appealing "transportation products" that the public will pay for and use
 - Is financially and economically sound, without operating subsidies
 - Follows an incremental approach that is affordable to states.

Current Proposals to Improve Passenger Rail Services

Transportation Economics & Management Systems, Inc.

TEM

October 17, 2006

Proposed Ohio Hub System

Transportation Economics & Management Systems, Inc.

TEM

FRA Financial Requirements

 The 1997 Commercial Feasibility Study describes two conditions that are essential for receiving Federal funding support for proposed intercity passenger rail projects: - A cost-benefit ratio greater than 1.0, and An operating cost ratio of at least 1.0, defined as a precondition for an effective public/private partnership.

The Ohio Hub System

Transportation Economics & Management Systems, Inc.

October 17, 2006

Scenario Definition

Option 1

 Detroit via Detroit Airport / Cleveland-Youngstown-Pittsburgh

- Option 2
- Option 3
- Option 4

- Detroit via Wyandotte / Cleveland-Alliance-Pittsburgh
 - Detroit via Wyandotte / Cleveland-Youngstown-Pittsburgh
- Detroit via Detroit Airport / Cleveland-Alliance-Pittsburgh

Representative Equipment

Loco-Hauled Bi-level Coaches

DMU

Pendolino

High-Speed 110-mph

Talgo T-21

Transportation Economics & Management Systems, Inc.

October 17, 2006

2025 Ridership & Revenue (\$2002 Millions)

Corridors		79-mph			79-mph				110	-mph	
	Option										
	1	2	3	4	1	2	3	4			
Ridership	2.49	2.00	2.11	2.40	3.24	2.74	2.76	3.13			
Revenue	113.12	106.06	107.27	108.22	152.28	145.2	143.98	145.97			
				KOR							

Operating Cost Detail by Corridor

	Option 1	Option 2	Option 3	Option 4
Train Miles	3.76	3.72	3.73	3.76
Total Cost*	\$126.63	\$122.22	\$123.33	\$123.46
Average Cost Per Train Mile	\$33.67	\$32.85	\$33.06	\$32.84

*\$2002 Millions

2025 Operating Ratio

Modern	Scenario	High Speed Scenario			
79-r	mph	110-mph			
Stand Alone Option 1	With MWRRI Option 1	Stand Alone Option 1	With MWRRI Option 1		
0.79	1.01	1.10	1.39		

2025 Cost and Revenue per Train Mile

For Option 1 – Detroit Airport – Youngstown Alternative

Capital Investment Requirement by Corridor (\$2002 Millions)

Option 1

	Cleveland- Columbus- Cincinnati Corridor		Cleveland-Detroit via Detroit Airport Corridor	Cleveland- Pittsburgh via Youngstown Corridor	Cleveland-Buffalo- Toronto Corridor	
Start-up Year	1	2010	2011	2012	2013	
Infrastructure	1	\$1,161.6	\$445.0	\$535.0	\$841.2	
Rolling Stock		\$80.5	\$80.5	\$80.5	\$80.5	
Total Capital Cost		\$1,242.1	\$525.5	\$615.5	\$941.7	

Note: Total infrastructure cost includes Planning, Engineering & Design, Construction and Land costs

Capital Requirements

Option 1

Year 1 estimated to be 2004 based on implementation plan

Total: \$3.32 billion

Willions of 2002\$

Proposed Implementation Plan and Costs

Ohio-Cleveland Hub	\$ 1000's of 2002\$)	Year1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10
3-C Corridor	\$1,090,801		PE	Final De	sign 🔻	Construc	ction	Operatio	n		
Cleveland-Detroit	\$387,101		PI	PE	Fin	nal Design	Construc	ction	Operation		
									-		
Cloveland Bittsburgh	¢497.634					Einal	Donic	notruction		Operation	
Cleveland-Fittsburgh	\$407,024				-	Final		JISUUCUON		Operation	
Cleveland-Toronto	\$803,996				PI PE	Fir	nal Design		Constrution		Operation
Total Investment Costs by Veer		Veerd			No an A	Veer 5				Xeer 0	
Total investment Costs by fear		rear1	Year 2	Year 3	Year 4	rear 5	Year 6	Year /	Year 8	Year 9	Year 10
Planning and Implementation (PI)	\$173,095	\$68,175	\$24,194	\$30,477	\$50,250	+	.				
Preliminary Engineering (PE)	\$242,333	\$15,908	\$69,275	\$45,600	\$45,815	\$54,011	\$11,725				
Final Design	\$276,952			\$54,540	\$73,895	\$43,736	\$64,581	\$40,200			
Construction	\$2,077,142				\$102,263	\$445,341	\$497,665	\$367,106	\$438,643	\$226,124	
Total Infrastructure	\$2,769,522	\$84,083	\$93,469	\$130,616	\$272,222	\$543,088	\$573,971	\$407,306	\$438,643	\$226,124	
Total Land	\$233,209				\$70,756	\$57,930	\$47,351	\$57,172			
Total Rolling Stock	\$322,000						\$80,500	\$80,500	\$80,500	\$80,500	
Total Investment	\$3,324,731	\$84,083	\$93,469	\$130,616	\$342,978	\$601,018	\$701,822	\$544,977	\$519,143	\$306,624	
Key to Implementation Stages				Key to O	peration Pha	ses:					
Project Development				Phase 1							
Preliminary Engineering				Phase 2				se these nur	nbers for Fi	n Plan	
Final Design				Phase 3							
Construction				Phase 4							

Benefits and Costs of All Options – High-Speed Scenario with MWRRS Connectivity -

Lifecycle Present Values (\$2002 Millions)

	Option 1	Option 2	Option 3	Option 4
Net Present Value (NPV)	\$1,040	\$805	\$326	\$722
Benefit/Cost Ratio	1.24	1.18	1.08	1.17

Note:

Option 1: Detroit Airport—Youngstown Alternative

Option 2: Wyandotte—Alliance Alternative

Option 3: Wyandotte—Youngstown Alternative

Option 4: Detroit Airport—Alliance Alternative

Community Economic Benefits Summary for the Cleveland Hub System

Average Annual Household Income Increase	Aggregate Property Value Increase (millions of 2002\$)
\$120 - \$610	\$3,000 - \$23,000
THE FORM	
	Average Annual Household Income Increase

MWRRI and Ohio Hub – Original Routes

Transportation Economics & Management Systems, Inc.

TEM

October 17, 2006

Ohio Hub Incremental Routes

Incremental Corridors Financial Performance

Ohio Incremental Corridors - 2025

Corridor	Revenue	Cost	Surplus	Op Ratio
Cleveland-Cincinnati	\$109	\$52	\$57	2.09
Cleveland-Detroit	\$54	\$38	\$17	1.45
Cleveland-Niagara Falls	\$48	\$25	\$23	1.94
Cleveland-Pittsburgh	\$32	\$21	\$11	1.51
Subtotal OHIO Base	\$244	\$136	\$108	1.80
Pittsburgh-Columbus	\$25	\$19	\$6	1.30
Columbus-Ft Wayne	\$38	\$26	\$12	1.46
Columbus-Toledo	\$25	\$18	\$8	1.44
Subtotal OHIO Incremental	\$88	\$63	\$26	1.41
TOTAL	\$342	\$199	\$134	1.60

Capital Cost

Ohio Hub-Basic System				
Cleveland-Pittsburgh	\$535.0			
Toledo-Detroit	\$152.0			
Cleveland-Niagara Falls	\$724.0			
3C-Corridor	\$1,166.0			
14 Trains @ 17.9 mill	\$251.0			
Total	\$2,828.0			
Ohio Hub-Incremental Corridors				

Pittsburgh-Columbus	\$384.0
Columbus-Ft. Wayne	\$445.0
Dunkirk-Toledo	\$164.0
11 Trains @ 17.9 mill	\$197.0
Total	\$1,190.0

Full System Total Capital Costs \$4,018.0 Million

Implementation Plan Route Segment Scoring

Corridor	Op Ratio	Cost Benefit	Construc- tability	Freight Capacity	Partnership	Total Score
3-C	9	9	4	9	10	41
Cleveland-Detroit	8	5	2	10	7	32
Columbus-Chicago*	9	9	5	2	7	32
Cleveland-Pittsburgh	8	6	17	3	7	31
Toledo-Columbus- Pittsburgh	7	7	8	4	4	30
Cleveland-Buffalo- Toronto	5	2	5	7	1	20

*This partnership scoring assumes that the MWRRS South-of-the-Lake is implemented as planned, in 2012.

Cost Benefit Analysis

Cost-Benefit Analysis for Ohio Hub Implementation

in \$2002 dollars, discounted over 30-years at 3.9% with 3-year implementation period

Incremental Cost Benefits		
Revenue	OHIO Base \$3,141	OHIO Increm \$1,214
Other Mode + Resource	\$2,048 \$2,663	\$1,523 \$1,405
Total Benefit	\$7,852	\$4,142
Capital Cost Operating Cost Track Capital Maintenance	\$2,202 \$1,653 \$83	\$943 \$977 \$49
Total Cost	\$3,937	\$1,969
Cost/Benefit Ratio	1.99	2.10

Overall Economic Rent Results*

Ohio Hub Basic System			
	MWRRI	Ohio Hub	Total
Employment	58,260	16,720	74,980
Household Income (ml)	1,208	1,077	2,285
Property Value (ml)	5,400	3,103	8,503

*Results on income and property value are given in 2005 USD

Columbus, Ohio

Ashtabula, Ohio

Joint Dinei the state of the s fillion

Hamilton, Ohio

Toledo, Ohio

Transportation Economics & Management Systems, Inc.

TEM

Conclusions

- All corridors can meet FRA criteria:
 - Positive Operating Ratio
 - Positive Cost Benefit Ratio
- Because of administrative overhead a minimum network size is need to reduce per-train-mile operating costs enough to attain positive operating ratios
 - Adding Incremental routes improves Ohio Hub performance
- Because of the strength of Ohio corridors, alternative implementation strategies may also be viable
 - 3-C is an obvious candidate for early implementation; it may stand on its own, but to obtain Positive Operating Ratio it might need to be combined with at least one additional corridor for better economies of scale.

Recommendations

- Move forward with system PEIS
- Identify the community benefits of the project to the cities and towns of the region to support public outreach
- Evaluate route options as part of alternatives analysis
- Develop a funding program with federal, state and local participation
- Work with the freight railroads to identify potential partnership opportunities.

Thank You.

