Elsberry Plant Materials Center

2007 Annual Technical Report

PLANT SOLUTIONS FOR CONSERVATION NEEDS Visit us at: <u>http://plant-materials.nrcs.usda.gov</u> or <u>http://www.mo.nrcs.usda.gov</u>

'Helping People Help the Land'

ELSBERRY PLANT MATERIALS CENTER 2007

Advisory Committee

Roger A. Hansen, State Conservationist, Missouri, Chairman Richard W. Van Klaveren, State Conservationist, Iowa William J. Gradle, State Conservationist, Illinois

Resource Personnel

Robert E. Ball, State Resource Conservationist, Missouri James E. Ayen, State Resource Conservationist, Iowa Richard G. Hungerford, Jr., State Resource Conservationist, Illinois

Plant Materials Specialist

Jerry U. Kaiser

Plant Materials Center Personnel

Steven B. Bruckerhoff, Plant Materials Center Manager Ronald L. Cordsiemon II, Soil Conservationist Donald D. Tapley, Agricultural Science Research Technician Pamela K. Stewart, Secretary

ELSBERRY PLANT MATERIALS CENTER

VISION – Excellence in developing plant science technology to help people help the land.

MISSION – To assist land users, federal, state and local partners, and industry growers in Illinois, Iowa and Missouri, in protecting, conserving, and improving natural resources by providing plant materials and plant related technology.

STRATEGY – The Elsberry Plant Materials Center vision and mission is advanced through evaluating and selecting superior plants, developing cultural and management technology, promoting the use of plants and related technology, through field and demonstration plantings, leading tours, and training NRCS employees and others on plant science technology. Plant Materials Committees in Illinois, Iowa and Missouri identify and prioritize plant materials technology needs and the three state conservationists establish direction and funding for the center.

GOALS – The Elsberry Plant Materials Center (PMC) provides plants for conservation, produces foundation seeds and plants or their equivalent, and promotes their use in solving natural resource problems on both private and public land. Beneficial uses for these plant materials include livestock forages, biomass and timber production, carbon sequestration, air quality, erosion reduction, wetland restoration, wildlife food and cover, water quality improvement, stream bank and riparian area protection, and other unique conservation needs. In addition to conservation plant release, the PMC also develops establishment and management technology for successful use of plants in resource conservation programs.

TACTICS – Specialists at the center identify plants that show promise for addressing a specific conservation need, develops related technology and test their performance in the field. After species are proven beneficial for solving the conservation problem, they are released to the private sector for commercial production for general public use. Opportunities for success are to continue working through NRCS field offices, soil and water conservation districts and other conservation partners who come in contact with clients in need of special plants and related technology for special situations. USDA programs that emphasize and utilize plant materials and plant science technology include Conservation Technical Assistance, Environmental Quality Incentive Program, Conservation Reserve Program, Wetlands Reserve Program, Grassland Reserve Program, and Wildlife Habitat Incentive Program with some opportunities in the Conservation program. The Elsberry Plant Materials Center also has the opportunity to support increasing interest in urban conservation by providing plants with unique landscape architecture value in addition to their erosion and sediment control, water and air quality benefits. Emerging opportunities in the agricultural sector lie in biomass for bioenergy production and carbon sequestration.

2007 Annual Technical Report Elsberry Plant Materials Center Elsberry, Missouri

AND AND AND A DOMESTIC AND A DOMESTIC AND A DOMESTICA AND A DOMEST

Introduction	6
Plant Materials Center Operations	6
Tours, Visitors, and Meetings	7
Climatic Data	8
Study Activities:	
29I093R – Miscellaneous Herbaceous Plant Evaluation	9
<u>29I097G</u> – Assembly and Evaluation of Big Bluestem, <i>Andropogon gerardii</i>	13
<u>29I108G</u> – Assembly and Evaluation of Low Growing Rhizomatous Switchgrass for Use in Waterways, Filter Strips and Other Conservation Uses	21
29I110J – Assembly and Evaluation of Chokecherry, Prunus virginiana	27
204116W Evaluation of Missellaneous Trees and Shruha	20
<u>29A110w</u> – Evaluation of Miscellaneous Trees and Shrubs	47
<u>291124G</u> – Production of Native Iowa Ecotypes of Grasses and Forbs for Roadside, Critical Areas, and All Other Vegetative Plantings Where Native Grasses and Forbs are Now Being Planted	36
2011251 Accombly and Evaluation of Hazalnut Complus amaricana Walt	13
<u>2911555</u> – Assembly and Evaluation of Hazemut, Corytus unerteand, wait.	43
29A137O – Wetland/Riparian Propagation	52
<u>291141G</u> – Assembly and Evaluation of Little Bluestem, <i>Schizachyrium scoparium</i> , Michx.	64
<u>291142G</u> – Production of Native Missouri Ecotypes of Grasses, Legumes, and Forbs for Roadsides, Critical Areas, and All Other Vegetative Plantings Where Native Plants are Now Being Planted	83
MOPMC-P-0001, WO, WL, WE – Assembly, Evaluation and Selection of Bur Oak, Quercus macrocarpa, Michx.	88
<u>MOPMC-T-0105, PA</u> – Compatibility Study Using Native Warm Season and Cool Season Grasses with Native Legumes and Forbs	110
MOPMC-T-0106, BU – Collection and Evaluation of Native Cool Season Grasses and Sedges for Filter Strips	120
<u>MOPMC-T-0310, PA, WL</u> – Incorporating Native Warm Season Grasses into Cool Season Pasture with Grazing Management	133

Table of Contents - continued	
<u>MOPMC-P-0613, PA, WL</u> – Evaluation and Release of a Shade Tolerant Big Bluestem, Andropogon gerardii, L., for Silvopasture	135
MOPMC-P-0614, PA, WL, BF – Evaluation and Release of Switchgrass, Panicum virgatum L.	139
<u>MOPMS-T-0615, WL-WO</u> - Direct Seeding of Woody Shrubs for Establishing Shrub Cover for Wildlife Habitat of the Following Species. False Indigo Bush, <i>Amorpha</i> <i>fruticosa</i> ,(a native legume), American Plum, <i>Prunus americana</i> , Roughleaf Dogwood, <i>Cornus drummondii</i> , Fragrant Sumac, <i>Rhus aromatica</i> , Chokecherry <i>Prunus virginiana</i> , Arrow-wood <i>Viburnum dentatum</i> , American Hazelnut, <i>Corylus Americana</i> , (all are native woody shrubs.)	141
<u>MOPMC-T-0716</u> – In-Field Weathering Effects on Biomass of Biomass Yield and Biofuel Quality of Warm Season Grasses	149
MOPMC-P-0717, PA, WL – Evaluation and Release of a Shade Tolerant Little Bluestem for Silvopasture	154
<u>MOPMC-T-0718-WE, WL</u> – Evaluation of Flood Tolerance of Planted Oak Seedlings Derived from Different Seed Origins	156
MOPMS-T-0719-CR/RI07-016 – Critical Area Roadside Vegetation Establishment	157
Herbaceous and Woody Seed and Plant Production 2007	172
2007 Plant Releases from the Elsberry PMC (Notices of Release) Sun Harvest Germplasm American Hazelnut	174 174
Northern Iowa Germplasm Horsemint (Wild Bergamot) Central Iowa Germplasm Horsemint (Wild Bergamot)	174 181 184
Releases From the Elsberry PMC to Date	187
Studies/Projects at the Elsberry PMC 1958 to Date	193

INTRODUCTION

The Elsberry Plant Materials Center (PMC) was established in June 1934 and is the oldest Center in the nation. It is one of 27 PMC's in the United States. The Center is located approximately 60 miles northwest of St. Louis, Missouri, on Highway 79. It includes 243 acres of various soil types. The Elsberry PMC primarily serves Illinois, Iowa and Missouri; however, it makes significant contributions to other states in the Midwest region.

Emphasis is focused on using native plants as a healthy way to solve conservation problems and protect ecosystems. The program seeks to address priority needs of field offices and land managers in both public and private sectors by working with a broad range of plant species, including grasses, forbs, legumes, trees, and shrubs.

The Elsberry PMC assembles, tests, selects and develops improved plants and reliable techniques for successfully establishing and maintaining plants for conservation uses.

Of particular importance is finding suitable plants for wetland situations, high traffic areas, wildlife food and habitat, farmstead and field windbreaks, wind barriers, pastures, landscape and beautification, roadside restoration, riparian plantings, woodland, and erosion control on cropland. Each of the three states served by the Center has identified its plant materials problems, needs and priorities. PMC activities are directed toward meeting the needs and priorities set forth in the states' long-range plans. As early as 1939 the Center began searching for plants to respond to specific conservation problems. During the PMC's earlier existence it produced 10,000,000 seedlings for use in windbreaks during the dust bowl era. Today the Elsberry Plant Materials Center is still striving to solve a new realm of conservation problems in an ever changing world.

PLANT MATERIALS CENTER OPERATIONS

The Center's operations are carried out in accordance with policies set forth in the National Plant Materials Handbook.

Guided by the Center's Multi-Year Business Plan, plant species are collected (mainly local field collections [95%]). Other collections come from locations within the species range in the United States. Center personnel then prepare the seed/plant for planting. Each collection is given an identification number (accession) and planted in a uniform nursery. Initial evaluation data is recorded on such factors as seedling emergence and vigor, rate of growth, disease and insect resistance, and ability to spread. Also recorded are date and amount of bloom, seed production, winter hardiness, and foliage characteristics. Selections are made and seed increased for advanced evaluation plantings. Field plantings are then conducted to determine plant performance and soil and climatic adaptation throughout its intended area of use. Evaluations are made comparing selected candidate accessions with "standards of comparison" such as cultivars or varieties that are already in the commercial market, or other species used for the same purpose.

After several years (10-15) of evaluation, selected accessions are cooperatively released with the USDA-Agricultural Research Service (ARS), State Agricultural Experiment Stations, Conservation Commissions, Universities, Departments of Transportation, and/or other interested agencies. The Center releasing a named variety is responsible for maintaining the breeder and foundation seed. These fields undergo annual inspections by the Missouri Crop Improvement Association to insure that seed is available to commercial producers and ultimately to the public for solving conservation problems.

Additional avenues have been established and used by the Plant Materials discipline to release plants to the commercial market: Source Identified Releases, Selected, and Tested Releases. These three new avenues provide a quicker release of plants as compared to cultivar release (10-15 years).

The Elsberry Plant Materials Center has released over 80 plants during its 72-year history. In 2007 there were three new plant releases. The PMC released two source identified class releases (Northern Iowa Germplasm and Central Iowa Germplasm Wild Bergamot, *Monarda fistulosa*) and one selected class release (Sun Harvest Germplasm Hazelnut, *Corylus americana*). Currently the Elsberry Plant Materials Center has 81 active releases and of these 81 releases, 78 of them are native to the Elsberry PMC service area. For more information regarding Elsberry PMC releases, please contact the Elsberry Plant Materials Specialist.

TOURS, VISITORS AND MEETINGS

In 2007 the Elsberry Plant Materials Center registered 184 visitors and the following is a list of groups which met at the Elsberry Center.

2007 Elsberry Plant Materials Center Visitors

Missouri Department of Conservation Burn Workshop Wetland Conservation Program Workshop Elsberry United Methodist Women Missouri State University Tour University of Missouri Extension – Master Gardeners Foresters' Tour Clarence Cannon Watershed Missouri, Iowa, and Illinois Technical Review Iowa Area 5 Tour Three State Conservationists' Advisory Meeting Farm Service Agency – Livestock Meeting

Month	75 Year	2007	2007	75 Year	2007	2007
	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	High	High	High	Low	Low	Low
	<u>Average</u>	<u>Average</u>	<u>Departure</u>	<u>Average</u>	<u>Average</u>	<u>Departure</u>
January February March April May June July August September October	38.14 43.11 53.07 66.85 76.41 85.32 89.54 87.59 80.40 69.35 50.65	38.65 36.11 62.19 63.83 79.94 84.20 86.55 82.45 84.63 71.61 54.02	+0.51 -7.00 +9.06 -3.02 +3.83 -1.12 -2.99 -5.14 +4.23 +2.26 +4.28	18.49 23.09 37.31 42.96 57.54 71.77 65.48 63.41 50.33 44.03 22.05	24.52 18.26 40.16 40.93 59.10 63.33 63.45 69.65 58.37 49.52 23.42	+6.03 -4.83 +2.85 -2.03 +1.56 -8.44 -2.03 +6.24 +8.04 +5.49
November	50.65	54.9 <i>3</i>	+4.28	33.05	33.43	+0.38
December	42.03	40.74	-1.29	23.40	25.26	+1.86
Total 2007	65.21	65.48	+0.27	44.24	45.50	+1.26

CLIMATIC DATA – CALENDAR YEAR 2007 TEMPERATURE (Fahrenheit)

	2007	Typical
Last Killing Frost (26° and below)	April 13	April 15
First Killing Frost (26° and below)	October 29	October 15
Number of Frost-Free Days	200	184

CLIMATIC DATA – CALENDAR YEAR 2007 Precipitation (Inches)

<u>Month</u>	77 Year Average	<u>2007 Total</u>	Departure
January	1.96	3.09	+1.13
February	1.95	2.03	+0.08
March	3.17	2.70	+0.47
April	3.63	1.01	-2.62
May	4.11	3.45	-0.66
June	3.76	3.88	+0.12
July	3.40	2.34	-1.06
August	3.36	2.37	-0.66
September	3.25	1.36	-1.89
October	3.01	.76	-2.25
November	2.92	1.70	-1.22
December	2.47	3.49	+1.02
Total	37.07	28.97	-8.10

ĺ

Study: 29I093R

Study Title: Miscellaneous Herbaceous Plant Evaluation.

Study Leader: Bruckerhoff, S. B.

Introduction:

Plants arrive at the Plant Materials Center (PMC) from many sources and for many different purposes. Most of the plants are assigned to a specific study. Plants are also received that are not tied to a specific study. These can be from other PMC's for area of adaptation or plants in advanced stages of evaluation. Plants are received from individuals who are interested in an unfamiliar species or a plant with unusual characteristics. Many species existing on the center are not involved with an active study addressing a specific problem.

Problem:

Keeping track of numerous miscellaneous plants around the PMC without an organized evaluation system became inefficient. This study organizes miscellaneous plant material coming into the center for evaluation.

Objective:

Evaluate winter hardiness, insect and disease resistance, and vigor of plants for climatic adaptation. Plants brought in for other specific reasons like forage production, landscape beautification, shoreline stabilization, etc., will be evaluated accordingly.

Procedure:

As miscellaneous plants are received at the center, they are assigned an accession number and as much background information as available or necessary are documented. The accession is then assigned a location for planting that best suits its needs for evaluation. Plants are evaluated as necessary. Many plants are left for plant identification sessions or demonstrations for several years.

Discussion:

1984-1990

This study was initiated in April 1984 in the PMC pipeline area. There are approximately 150 different accessions of the following species of plants: Indiangrass, switchgrass, big bluestem, purpletop, little bluestem, buffalograss, wheatgrass, fescue, timothy, ryegrass, redtop, orchardgrass, kura clover, blackeyed susan, and lespedeza. Factors involved in evaluations dealt with area of adaptation.

1991-1994

Approximately 75 accessions were added during 1991. Forty of them were warm season grasses used in three FEP (Field Evaluation Planting) variety studies: 29A111G, 29A118G, and 29A127G. Twenty-six were accessions of common cool season grasses and legumes used for pasture and hay in the three-state area. These were commonly used for plant identification sessions.

1995-1998

The accessions added in 1997 are being looked at for forage. They include 'Steadfast' birdsfoot trefoil, 'Mandan' Canada wildrye, and several bermudagrasses including Hardy and OK-74-12-6. Also zoysia grass, centipedegrass, and buffalograss from the Fort Leonard Wood Wear Tolerance Study are being looked at for adaptation. Several big bluestem accessions from Study 29I097G are being evaluated as landscape plants.

1999

The accessions added in 1999 are a Lincoln County Missouri collection of Virginia wildrye and a Crawford County Missouri collection of Virginia wildrye variation geneses. These species are being looked at for shade tolerance for riparian areas and covercrop for tree plantings.

2000

No new accessions were added in 2000. Two species that are getting the most interest are the Lincoln County accessions of Virginia wildrye and 'Tufcote' bermudagrass.

The Lincoln County accession of Virginia wildrye is a shade tolerant cool season grass that has potential for a cover crop for woody plantings as well as a possible buffer species along riparian areas. This accession should be in commercial production and available soon.

The 'Tufcote' bermudagrass accession was tested at Fort Leonard Wood for wear tolerance and showed very good potential. It could be used on playgrounds, sports fields, lawns, as well as having potential for high livestock use areas. This species is not native and does show potential for spreading so it should not be planted in areas where it could escape and cause problems.

2001

Three new species of native legumes were added in 2001. Native legumes are seldom used in mixtures with warm season grasses planted for pastures primarily because of their cost, lack of availability, and lack of knowledge on which ones will perform best in a mixture.

The following species were planted for observational evaluation: goats rue, *Tephrosia virginiona;* sensitive brier, *Schrankin uncinata;* and Sampson's snakeroot, *Orbexilium peduncolatum*.

The Lincoln County Missouri collection of Virginia wildrye, accession 9083169, has shown excellent vigor and seed production. Forage quality is comparable to tall fescue, spring

green-up earlier than tall fescue and seedhead emergence is approximately two weeks later than tall fescue. This accession is scheduled for release in 2002.

2002

One new collection was planted in the miscellaneous block. Accession 9083240, western wheatgrass, *Pascopyrum smithii*, was planted as greenhouse plugs May 10, 2002. This material was collected in Audrain County, Missouri.

The Lincoln County Missouri collection of Virginia wildrye, accession 9083169, was released as a selected class and given the name Cuivre River. The Cuivre River selection has early vigorous growth that is earlier than tall fescue. Booting occurred at the end of May to the first week of June at Elsberry. This is approximately two weeks later than tall fescue.

Although Cuivre River was released as a selection and only limited testing has been done, its anticipated uses are wildlife food/cover, plant diversity in wetland and riparian plantings, covercrop for woody plantings, erosion control, and forage.

Cuivre River has not been tested for grazing but forage clippings were taken at different stages of growth and compared to tall fescue clippings from adjacent plots. Forage quality of the Cuivre River selection compared favorably to tall fescue as indicated by data below.

Clipping Date	Percent Protein		Percent ADF		Percent NDF	
	TF	<u>VWR</u>	TF	<u>VWR</u>	TF	<u>VWR</u>
4/24/02		27		26		47
5/30/01	9	12	40	34	61	60
10/11/01	15	15	31	34	52	55
11/15/01	20	17	22	24	37	44

TF = tall fescue; VWR = Cuivre River Virginia wildrye; ADF = acid detergent fiber; NDF = neutral detergent fiber.

2003

One new accession was added during 2003 and this was the medium height, forage type switchgrass that was selected and isolated from the low growing switchgrass assembly.

2004

Three accessions of cluster fescue, *Festuca paradoxa*, were added during 2004. The plants were germinated in the greenhouse from seed and transplanted April 7, 2004, to the initial evaluation area, tier F/a. The accessions established well and had excellent survival the first year. The plants will be evaluated on percent stand, vigor, height, and seed production next year. See collection information below.

Genus	Species	Common Name	Accession No.	Origin
Festuca	paradoxa	Cluster fescue	9083254	Tucker Prairie, MO
Festuca	paradoxa	Cluster fescue	9083255	Paintbrush Prairie, MO
Festuca	paradoxa	Cluster fescue	9083252	Harrison Co, MO

2005

No new accessions were added in 2005. The *Festuca paradoxa* was evaluated along with the other species in the forage quality study. The plants became very dormant by early summer and did not recover but made significant regrowth in the fall.

2006/2007

New accessions planted are as follows;

Observational Nursery

Genus	Species	Common Name	Accn No.	From	Date Pltd
Desmodium	glabellum	Dillenius Tick	9055415	MIPMC	5/5/06
		Trefoil			
Desmodium	glabellum	Dillenius Tick	9005087	MIPMC	5/5/06
		Trefoil			
Desmodium	paniculatum	Panicledleaf	9055428	MIPMC	5/5/06
		Tick Trefoil			
Calamovilf	longifolia	Prairie Sandreed	9086408	MIPMC	5/5/06
a					
Elymus	riparius	Riverbank	9086450	MIPMC	5/5/06
		Wildrye			
Elymus	canadensis	Icy Blue Canada	9084347	MIPMC	5/5/06
		Wildrye			
Salix	sericea	Riverbend Silky		MIPMC	6/15/06
		Willow			
Paspalum	floridam	Harrison Florida	9043874	ETPMC	4/15/06
		Paspalum			
Bouteloua	gracilis	Blue grama	421782	KSPMC	4/20/07

Study: 29I097G

Study Title: Assembly and Evaluation of Big Bluestem, Andropogon gerardii Vitman.

Study Leader: Bruckerhoff, S. B.

Introduction:

Big bluestem is a tall, warm-season, perennial, native grass with stiff, erect culms; flattened and keeled sheaths; membranous ligules; and flat or folded leaf blades. Big bluestem has developed a very efficient spreading root system that may reach depths of 5-8 feet (150-200 cm). Big bluestem reaches a mature height of 3-4 feet (90-120 cm) in northern latitudes, and 6-8 feet (180-240 cm) or more in the southern part of its natural range. Although short rhizomes may be present, it usually makes a bunch type growth. Big bluestem is composed of many ecotypes with a wide range of adaptation to soil and climate. Big bluestem is one of the most widespread and important forage grasses of the North American tallgrass prairie region. It is usually associated with one or more of the other three dominant species, Indiangrass (*Sorghastrum nutans* (L) Nash.), switchgrass (*Panicum virgatum L.*), and little bluestem (*Schizachyrium scoparium* (Michx.) Nash.). Big bluestem occurs on subirrigated lowlands, nearly level to gently undulating glacial till plains, overflow sites, level swales and depressions, residual and glacial uplands, and stream terraces and bottomlands along rivers and tributaries. The abundant, leafy forage is palatable to all classes of livestock.

Problem:

There is a need for an adapted variety of big bluestem for pasture and range seedings, surface mine reclamation, critical area planting, recreational area development and other conservation uses in Arkansas and Southern Missouri. **Objective:**

Objective.

The objective is to assemble, evaluate, develop and cooperatively release an adapted variety and/or varieties of big bluestem for conservation use in the following Major Land Resource Areas: 116A, 116B, 117, 118, and 119.

Cooperators:

USDA-NRCS Plant Materials Center at Elsberry, Missouri and the USDA-NRCS Plant Materials Center at Booneville, Arkansas.

Assembly:

The assembly consists of vegetative materials from adapted ecotypes throughout Northwestern Arkansas and Southwestern Missouri Major Land Resource Areas: 116A, 116B, 117, 118, and 119. Collection dates were between November 9 and 13, 1987. Four collection sites per county within the geographic area of collection were made. The number of sites was determined by the size of the county. The study plan supplement lists the states and the number of sites per county.

Procedure:

Four collections per county in the targeted Major Land Resource Areas were requested. The intent was to get a broad genetic base of plant material; therefore, the site selection attempt was to get as diverse sampling as practical when selecting superior big bluestem plants in the field. If a county had more than one Major Land Resource Area, collections were made in each area. Collections were from typical locations, which included natural grasslands (range), relic areas, and road right-of-ways. Avoided areas were those that may have been artificially seeded. Where possible, collections came from diverse soil textural types, such as sandy and silty; or range site groupings such as: (1) Run-in sites represented by overflow, or subirrigated; (2) normal upland sites represented by sandy, silty or clayey. Six subsamples (6" x 6" x 8" deep) were collected vegetatively at each site.

The samples were transported in material provided by the Plant Materials Center that included cartons, plastic bags, accession data sheets, and instructions for handling.

Plant Materials Center personnel picked up the cartons containing the samples at designated central locations within each administrative area in November 1987.

Transplanting procedures included temporary storage and handling. The samples were first assigned accession numbers and placed in temporary storage. On February 15, 1988, each subsample was transplanted into separate containers and maintained under controlled greenhouse conditions. The plants were then divided between two locations, Elsberry, Missouri and Booneville, Arkansas Plant Materials Centers, and established in space plant initial evaluation nurseries.

Discussion:

1987-1989

A total of 370 accessions (collections) of big bluestem were initially collected during November, 1987, from the targeted areas: 194-Missouri; 85-Arkansas; 82-Oklahoma; and

8-Illinois. Individual plantlets were separated, transplanted into cone-tainers, and grown out in Forrest Keeling Nursery's greenhouse from February until May 1998. More than 4400 individual plantlets were transplanted into a space plant nursery with two replications and six plants per replication. The nursery is located in Field #14 at the PMC and was planted June 1988. The entire nursery was irrigated three times weekly in 1988 to insure good survival. Data collected in 1988 was mostly survival. Data collected in 1989 included survival, vigor, disease resistance, plant size, foliage size, and abundance and visual seed production. Accessions from each state were selected from the above criteria. The numbers selected from each state were as follows: Arkansas-14, Missouri-46, and Oklahoma-13. Table #1 shows the 73 accessions selected from the initial space plant nursery located in Field #14 on the PMC. These plants were vegetatively removed from the initial evaluation nursery in November 1989.

1990-1991

The plants selected in 1989 were transplanted into cone-tainers and grown out in the greenhouse that winter. These plants were planted in an isolated crossing block in Field #1 on May 23, 1990. Fifteen bulk pounds of clean seed were harvested in 1991.

1992-1993

The seed harvested in 1991 was sorted by weight and grown in cone-tainers in the greenhouse from January until April. Approximately 500 plants were planted in Field #7 in April and May 1992 for further evaluation.

Beginning in July 1993, the great flood began flooding approximately 86 acres on the PMC. The area where this planting was located was completely inundated with approximately eight feet of water. Just prior to the flooding of this site (July 8, 1993), the PMC staff uprooted 62 selections of big bluestem and re-established them to an upland site on the PMC (Field #8).

1994-1996

The nursery block established in Field #8 in July 1993 was evaluated for forage quality and quantity, seed production, plant maturity differences, and disease and insect resistance. Twentyeight of the 62 plants were selected and allowed to cross. Seed from this crossing block is a composite of the original 73 accessions collected and is the breeders' block for the new accession 9078831. Seed was harvested in 1995 and 1996 and a seed increase plot will be established in 1997. The Booneville PMC also has made their selection and both will be included in the advanced evaluation.

1997-1998

The diversity in the original nursery block containing all 370 accessions is tremendous. There is a lot of variation within this species. The need for plant diversity for prairie restoration led to the release of the source-identified composite of all 370 accessions. This composite was given the accession number 9062323 and given the name OH-370 which stands for a composite of 370 collections made from the Ozark Highlands of Southern Missouri, Northern Arkansas, Eastern Oklahoma, and Southern Illinois. This plant was released in April 1997.

A 0.4-acre increase planting of 9078832 was planted May 22, 1997, in Field # 6. This planting was established in a conventional seedbed in 36" rows. The first year the planting produced 10 pounds bulk clean seed and in 1998 it produced 27 pounds bulk clean seed. The 1998 seed tested poorly but it is not known why. When seed becomes available from the Arkansas PMC the study will begin an advanced evaluation to compare the new accession, 9078831 with available varieties and also the accession Booneville has selected out of the original assembly of 370 collections.

The original planting was again evaluated the spring of 1997 looking for a tall, stiff stemmed, upright plant to use in wind barriers. Wind erosion is a problem in the flat and sandy crop fields in the bootheel area of Missouri. Switchgrass windbarriers are being tried in areas where field windbreaks using trees are not acceptable. Big bluestem was requested by the Missouri plant materials committee as an additional species to go along with switchgrass since the nursery is still intact. Five accessions (Table #2) were selected and increased vegetatively in the greenhouse and transplanted into an isolation block in Field #4. This block contained 126 plants and of those, 34 plants were selected to represent the crossing block that will serve as the breeders' block for a wind barrier selection. The final accessions represented in this block are 9065960, 9056913, and 9056914.

Selections were also made for landscape and beautification (Table # 3). These selections were transplanted into the rod row initial evaluation area for further evaluation.

1999

The increase plot of 9078831 was expanded in 1999 but did not develop as the 1997 original increase plot did. This accession is scheduled for release as a pre-varietal selection in 2000 if enough seed is available and field plantings are successful.

The wind barrier selection block was again evaluated in 1999 and narrowed down to a single accession, 9066960 (Table #2).

No additional selections were made for landscape plants in 1999 (Table #3).

2000

The increase plot of 9078831 was again expanded in 2000 but again was very slow to germinate. Seed was sent for testing and the sample contained a high percentage of dormant seed. This prevarietal selection was scheduled to be released in 2000 and given the name

OZ-70 that stands for Ozark Highland composite of 70 collections. The release has been delayed until a solution can be found for its high seed dormancy.

Seed was harvested from the wind barrier block and an increase planting will be made in 2001.

2001

The increase plot of 9078831 (OZ-70) was again expanded in 2001 but this year it was planted the first week of March to allow for stratification. Seed harvested in 2000 was used in the planting because seed less than one year old appears to have more dormancy than seed that has had time in storage. The portion of the plot that was planted in 2001 established well and even produced a small amount of seed the first year.

Seed harvested from the wind barrier accession was propagated in the greenhouse and transplanted into an evaluation nursery. The evaluation nursery has approximately 250 plants on a three-foot grid. These plants will be evaluated for two additional years for height, biomass production and lodging. This plant will be released as a tall, stiff stemmed selection.

2002

Field testing has shown possible problems with establishment of OZ-70 big bluestem. A trial was started using replicated plots to compare the establishment of OZ-70 with 'Rountree' big bluestem. First year data indicates that Rountree establishes quicker with higher stand density than OZ-70. It also indicated that the winter dormant plots (planted March 14, 2002) of OZ-70 were better than the spring planted plots (planted June 21, 2002). This was reversed with the Rountree. This information supports the high seed dormancy problem indicated in seed tests. These plots will be monitored one more year to see if the slow establishment has to do with the long-term density of the plots.

A comparison between new seed and one-year-old seed is planned for 2003. Seed tests indicate a problem with seed dormancy in new seed. Storage for one year could help rectify this problem.

2003

A trial comparing new (previous year's harvest) and older seed (one to five years old) was conducted in 2003. Establishment was quicker if new seed was winter dormant planted. This supports that newly harvested seed has higher seed dormancy but all lots of seed developed into successful stands the establishment year.

The technical review committee recommended proceeding with a Selected Release for this accession and OZ-70 Germplasm Big Bluestem was released December 2003.

Release Documentation

The OZ-70 selection has very good forage production and vigor that appears to be comparable or better than Rountree. OZ-70 is approximately two weeks later in booting than Rountree and forage quality is better when tested at Elsberry (see below). Rountree exhibits considerable more rust when compared to OZ-70 in Southern Missouri. OZ-70 also has very good seed production with a 2003 yield of 280 bulk pounds of clean seed per acre.

Forage clippings of OZ-70 Germplasm were compared with Rountree. These samples were replicated and taken at different stages of growth. Forage quality of the OZ-70 selection compared favorably to Rountree as indicated by following data.

Clipping Date	Percent Protein		Percent AD	F	Percent NDF	
	OZ-70	Rountree	OZ-70	Rountree	OZ-70	Rountree
6/19/02	14.3	8	30.9	35.7	55.8	60.8
7/8/02	8.2	5.8	34.1	33.0	59.3	60.5
8/30/02*	11.4	11.9	34.3	34.7	54.6	56.6

*Regrowth material from 7/8/02 clipping.

ADF=acid detergent fiber; NDF=neutral detergent fiber.

OZ-70 Germplasm big bluestem was compared to 'Rountree' big bluestem for establishment and Rountree was quicker to establish indicating better seedling vigor when new (previous year's harvest) seed was planted. A seeding trial was conducted in 2003 and compared seed harvested in 2002, 2001, and a mixture of seed harvested in 1997 through 2000.

The results below indicate some seed dormancy in new crop seed but all plots developed very good to excellent stands and had seedhead production the first year.

	Stems Per Row Foot	Percent Cover
Winter dormant planting, 2002 seed	16	92
Winter dormant planting, 2001 seed	14	78
Winter dormant planting, 97-00 seed	8	65
Spring planting 2002 seed	10	60
Spring planting 2001 seed	14	87
Spring planting 97-00 seed	10	75

2004

The tall, erect, lodging resistant big bluestem currently being evaluated as a wind barrier selection, (accession 9083274) was increased for advanced testing. Seed was harvested in 2003 from the remaining plants in the final evaluation block. The increase block established well but no seed was harvested in 2004. Limited seed production is anticipated for 2005 and available for advanced testing in 2006.

Shorter growing collections were also isolated and evaluated. Six collections were narrowed to three (accessions 9056902, 9056905, and 9056906) and allowed to cross. This composite (accession 9078832) was harvested in 2003 and used to establish an increase block in 2004. Seed production is anticipated for 2005 and available for advanced testing in 2006. This selection will be evaluated for use in vegetative buffers and filters.

2005

The two increase blocks of big bluestem that were established in 2004 (tall, lodging resistant, - accession number 9083274 and shorter growing, - accession 9078832) both produced seed in 2005. These blocks were planted April 28, 2004. Accession 9083274 produced 65.7 bulk pounds on 0.183 acre for a yield of 359 bulk pounds per acre. Accession 9078832 produced 144.9 bulk pounds on 0.51 acre for a yield of 287 bulk pounds per acre.

2006

The two increase blocks of big bluestem planted April 28, 2004 were again managed for seed production. Neither plot was enlarged.

The tall, lodging resistant accession, 9083274, yielded 59.1 bulk pounds on 0.183 acre for a yield of 323 bulk pounds per acre. The year was very dry during parts of the growing season. Seed quality was poor resulting in a very poor percent PLS.

The shorter growing accession, 9078832, yielded 193.2 bulk pounds on 0.51 acre for a yield of 379 bulk pounds per acre. Again seed quality was not very good resulting in a poor percent PLS.

The shorter growing accession (9078832) also is very resistant to lodging and these characteristics look good for this accession's use in conservation programs. With adequate seed on hand for field plantings and grower interest, this accession was released as a selected class release in 2006 as Refuge Germplasm (see 2006 releases section for release notice).

2007

The tall, lodging resistant accession (9083274) increase plot yielded 50.3 bulk pounds on 0.183 acre. The plot was also expanded by a few rows but was slow to establish. Seed from the breeder's block was limited and possibly of poor quality due to a very dry summer. Seed harvested in 2005 from the increase plot was used in the biofuels study plots (MOPMC-T-0716).

The increase field of Refuge Germplasm big bluestem (9078832) has begun showing different heights that indicate contamination of the breeder plot. It was decided to move and isolate the breeder's block and reestablish a new foundation field.

Study 291097G - Assembly and Evaluation of Big Bluestem, *Andropogon gerardii*, Vitman.

Accessions Selected for Crossing Block

			Accession		
Collector	<u>State</u>	<u>County</u>	<u>Number</u>	<u>MLRA</u>	Soil
Levonna S. Vekman	Arkansas	Faulkner	9056956	118	Leadville
Mark L. Kennedy	Arkansas	Fulton	9056968	116A	Geesville
Luther O. Shaw	Arkansas	Izard	9056920	116A	Mako
NRCS-Field Office	Arkansas	Logan	9056964	118	Taff
NRCS-Field Office	Arkansas	Madison	9056962	118	Leadvale
Stephen T. Ford	Arkansas	Madison	9056945	117	Nixa-SL
John Y. Harrington	Arkansas	Madison	9056923	116A	Estate-SC
John Y. Harrington	Arkansas	Madison	9056952	116A	Estate-SC
Lane L. Gentry	Arkansas	Perry	9056922	119	Clebit
John D. Kopf	Arkansas	Scott	9056936	119	Carnasaw
Jeremy R. Funk	Arkansas	Sharp	9056914	116A	Gepp
NRCS-Field Office	Arkansas	White	9057058	118, 134	
NRCS-Field Office	Arkansas	White	9057060	118,134	
Robert S. Garner	Arkansas	Yell	9056908	119,118	Clebit-FSL
H. Dan Philbrick	Missouri	Barry	9056832	116B	
Dudley W. Kaiser	Missouri	Benton	9056840	116B	Bardley
NRCS-Field Office	Missouri	Camden	9056724	116A	Gatewood
William K. Quage	Missouri	Cedar	9056800	116B	Hector
Patricia A. Beneke	Missouri	Cole	9056821	115	Goutewood
Patricia A. Beneke	Missouri	Cole	9056806	115	Gatewood
Melodie Marshall	Missouri	Crawford	9056820	116B	
Melodie Marshall	Missouri	Crawford	9056886	116B	
Melodie Marshall	Missouri	Crawford	9056767	116B, 116A	Lebanon
Myron C. Hartzell	Missouri	Dent	9056773	116B	Coulstone
Myron C. Hartzell	Missouri	Dent	9056763	116B	Lebanon
John L. Lumb	Missouri	Douglas	9056833	116B	Doniphan
Art Kitchen	Missouri	Franklin	9056855	115	Crider
Art Kitchen	Missouri	Franklin	9065771	115	Union
NRCS-Field Office	Missouri	Gasconade	9056848	116B	Gladden
Clayton P. Robertson	Missouri	Gasconade	9056875	116B	
H. Lane Thurman	Missouri	Greene	9056716	116B	Chirty Silt Loam
NRCS-Field Office	Missouri	Hickory	9056839	116A	
Stanley Lamb	Missouri	Iron	9056774	116A	Midco
Howard Combes	Missouri	Howell	9056753	116A	Doniphan
Joe H. Everett	Missouri	Jefferson	9056842	115	GL
NRCS-Field Office	Missouri	LaClede	9056741	116A	Cherty Silt Loam
Kees VanderMer	Missouri	LaClede	9056791	116A	Union
Cecile Allen	Missouri	Lawrence	9056709	116B	Viraton
Ron R. McMurtrey	Missouri	McDonald	9056719	116A	
Larry E. Lewis	Missouri	Miller	9056732	116B	SIL
Larry E. Lewis	Missouri	Miller	9056868	116B	SIL
Henry E. Knipker	Missouri	Moniteau	9056890	116B	Glensted
Mary Beth Roth	Missouri	Morgan	9056831	116B	

		-	-		i - continucu
			Accession		
Collector	<u>State</u>	<u>County</u>	<u>Number</u>	<u>MLRA</u>	Soil
Mary Beth Roth	Missouri	Morgan	9056837	116B	
Stephen E. Robbins	Missouri	Organ	9056770	116A	
William R. Dilbeck	Missouri	Polk	9056828	116B	
NRCS-Field Office	Missouri	Pulaski	9056746	116A	Wilderness
Clarence Wagy	Missouri	Reynolds	9056701	116A	
Charles E. Johnson	Missouri	Ripley	9056895	116A	
Charles E. Johnson	Missouri	Ripley	9056894	116A	
Steve Wall	Missouri	Shannon	9056762	116A	
Claude A. Peifer	Missouri	Ste.	9056819	116B	Bloomsdale
		Genevieve			
Edward L. Templeton	Missouri	St. Francois	9056845	116A	Crider
Carl Wehrman and	Missouri	Taney	9056712	116A	Clarksville
Dude Davidson					
Jeff A. Lamb	Missouri	Texas	9056728	116A	Goss
NRCS-Field Office	Missouri	Wayne	9056854	116A	
Patrick L. Adams	Missouri	Washington	9056817	116A	Silty Clay Loam
Patrick L. Adams	Missouri	Washington	9056870	116A	Silty Clay Loam
John N. Emerson	Missouri	Webster	9056737	116B	
Dan D. Divine	Missouri	Wright	9056733	116B	
Andrew R. Inman	Oklahoma	Adair	9056996	117	Hector Complex
Billy D. Dudley	Oklahoma	Cherokee	9057010	116A, 117	Newtonia
Billy D. Dudley	Oklahoma	Cherokee	9057016	116A, 117	Talpa-Rock
Kenneth W. Swift	Oklahoma	Choctaw	9057025	112	Muskogee SL
Warren R. Sanders	Oklahoma	Coal	9057005	119	Boham
Steve D. Clark	Oklahoma	Latimer	9057014	118, 119	Stigler SL
Robert E. Blackman	Oklahoma	Mayes	9056995	112, 116A	Hector
Sam L. Viles	Oklahoma	McIntosh	9057035	118	Karma SL
Patrick I. Bogart	Oklahoma	Okmulgee	9057032	112, 118	Taloka SL
Patrick I. Bogart	Oklahoma	Okmulgee	9057037	112, 118	Taloka SL
NRCS-Field Office	Oklahoma	Ottawa	9057030	116A, 112	ETA-SL
William R. Bin	Oklahoma	Pushmatoho	9957052	119	Bosville
William R. Bin	Oklahoma	Pushmatoho	9057046	119	Bernow FSL

Study 291097G – Assembly and Evaluation of Big Bluestem, *Andropogon gerardii*, Vitman. Table #1 - continued

Wind Barrier Selection Isolation Block

Table #2

Collector	State	<u>County</u>	Accession Number	MLRA	Soil
	Arkansas	Logan	9056960	118	Laedvale

Study 29I097G – Assembly and Evaluation of Big Bluestem, Andropogon gerardii, Vitman.

Collector	State	County	Accession Number	MLRA	Soil
	Blute	county	Itumber	<u>IVILIU I</u>	<u>5011</u>
Clarence Wagy	Missouri	Carter	9056703	N116A	Opequon
Clarence Wagy	Missouri	Reynolds	9056708	N116A	Clarksville
Myron Hartzell	Missouri	Dent	9056812	116A	Elsah
Kenneth W. Swift	Oklahoma	Latimer	9057025	119	Freestone Variant - Bernow Variant Complex
	Oklahoma	McCurtain	9057049	1336	Kinta Clay Loam
Dennis W. Shirk	Missouri	Maries	9056877	116A	Lebanon
Larry B. Cash	Arkansas	Carroll	9056934	116A	Nixa

Landscape Selection Rod Row Area

Table #3

Study: 29I108G

Study Title: Assembly and Evaluation of Low Growing, Rhizomatous Switchgrass, *Panicum virgatum L.* for Use in Waterways, Filter Strips and Other Conservation Uses.

Study Leader: Bruckerhoff, S. B.

Introduction:

Switchgrass is a warm-season, perennial, native grass. Plants are usually green or glaucous, with numerous scaly creeping rhizomes. Culms are erect, tough and hard, one to two meters rarely to three meters tall; sheaths glabrous; blades 10-60 centimeters long, three to 15 millimeters wide, flat glabrous, or sometimes pilose above or near the base, rarely pilose all over; panicle 15-50 centimeters long; acuminate; first glume clasping, two-thirds to three-fourths as long as the spikelet. Switchgrass frequents a wide variety of habitat, usually sunny including dry or moist prairies, moist seepage of rocky glades and buff escarpments, gravel bars of streams, open woods and along railroad tracks.

Problem:

There is a need for an adapted variety of a dense low growing, strongly rhizomatous switchgrass for use in waterways, filter strips, and for other conservation uses in Missouri, Illinois, Iowa, and adjacent states.

Objective:

The objective is to assemble, select, and develop a dense low growing strongly rhizomatous switchgrass, with good seedling vigor and seed characteristics, for use in waterways and streambank corridors.

Procedure:

The assembly consists of the collection of vegetative material from adapted ecotypes in Iowa, Illinois, and Missouri. The targeted collection area includes the following Major Land Resource

Areas: 102b, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 131, and 134. Five collections from each NRCS administrative area were requested.

Vegetative collections were taken from natural prairie stands, prairie remnants or individual short growing plants growing in areas that are seasonally wet like a waterway. Total height of the plant was to be no more than three feet.

The samples were collected when the plant was dormant in the fall, divided into plantlets in the winter and placed into square open bottom containers and grown out in the greenhouse. Twelve plants per collection were grown out in the greenhouse.

The plants were planted into a randomized complete block with three replications. Each plot had three plants and all plants were planted on four-foot spacing. A border row was planted around the three replications. This study was planted into a clean tilled seedbed with recommended fertility and weed control. Plants were evaluated for survival, vigor, height, and spread that included rhizomatous characteristics, disease and insect resistance, lodging, and seed production.

Discussion:

1990-1991

The collections of *Panicum virgatum* L., low growing highly rhizomatous switchgrass was initiated in November 1990 and extended through 1991. One hundred eighteen collections were obtained from Major Land Resource Areas 102B-116, 131 and 134 in Missouri, Illinois and Iowa. The total number of collections received was 22-Illinois; 28-Iowa and 68-Missouri. All collections were assigned accession numbers and stored in a cool damp building.

1992-1993

The collections were vegetatively propagated in cone-tainers and placed in the greenhouse in January 1992. These plants were then transplanted in Field #7c on the PMC on June 9, 1992, in a randomized complete block with three replications. Baseline evaluations were taken this year; survival, spread, height, and number of panicles per plant. More detailed evaluations were scheduled for succeeding years.

Beginning in July 1993, the great flood began inundating the area where this project was located. Prior to the flooding of this site (July 2, 1993), additional evaluations were started and 67 accessions were vegetatively moved to an upland site on the PMC for continued evaluation. Table #1 lists the selected accessions, origins, and collectors.

1994-1995

Evaluations were continued on the 67 accessions during 1994 and 1995. The original planting in Field #7c that was flooded in 1993 was also checked for survivors. The planting was flooded by as much as eight feet of water for almost eight weeks. Nine plants were found that showed life and were dug up and moved to an upland site. These nine plants represented three accessions (Table #2).

Five accessions were selected out of the block of 67 for a short growing rhizomatous type. The five accessions (Table #3) were allowed to cross and seed was harvested and grown out in the greenhouse. The five accessions were also dug and increased in the greenhouse in containers.

1996

The five selected accessions (Table #3) were planted into a crossing block June 26, 1996. Half the block was from clonal material from each of the five accessions and the other half was from seed harvested from each of the five plants that were allowed to cross with each other. The

accessions of each half of the planting were replicated five times with five plants per replication. Unwanted plants will be eliminated and the remainder of the block will be used for seed increase.

1997-1998

The three accessions (Table #2) of flood tolerant switchgrass were vegetatively increased in the greenhouse. Approximately 250 plants were transplanted April 1997 in Field #7. This is now the breeders' block for the accession 9083170 that is a composite of the three accessions listed in Table #2. Seed was harvested from this plot the first year and used to start a small increase plot in 1998. A small amount of seed was harvested from this increase plot the first year. It is also planned to increase the size of this plot in 1999.

The low growing switchgrass block containing five accessions (Table #3) was again evaluated in 1997. Thirty-five plants were selected from the block of 250. Selected plants were allowed to cross and produce seed. This seed was also used to start an increase field in 1998. This small increase plot produced minimal seed the first year. Seed was again harvested from the 35 plants in 1998 and will be used to make the increase plot size bigger in 1999. The 35 selected plants are the breeder's block for the new accession 9083172 that is a composite of the five accessions in Table #3.

1999

The increase plot of flood tolerant switchgrass, accession 9083170, was expanded in May 1999. This planting did not do well, possibly poor seed germination combined with a very dry summer. Weed control was also poor. Establishment of field plantings was also poor. Expanding the increase plot will again be planned for 2000. Seed was harvested from the breeder's block and the 1998-increase plot. This seed was small due to dry weather.

The increase plot of low growing switchgrass, accession 9083172, was also expanded in May 1999. This planting also did poorly, again possibly poor seed germination combined with a very dry summer. Weed control was also poor. Field testing will begin when seed becomes available. Expanding the increase plot will be planned for year 2000. Seed was harvested from the original 35-plant breeder's block and also the increase field. This seed was also small due to dry weather.

2000

Increase plots of the flood tolerant switchgrass, accession 9083170, and the low growing switchgrass, accession 9083172, were again planted in 2000. These plantings were very sparse and slow to establish. The plantings made in 1999 contained some plants with minimal seed produced. Plantings will again be tried in 2001 with more stratification.

2001

The increase plots of the low growing switchgrass, accession 9083172, that were planted in 1998 and 1999 have filled in and produced seed. The plots planted in 2000 and 2001 have failed. This accession appears to have high seed dormancy and combined with excessive weed competition caused poor establishment. An increase planting is planned for 2002 on an upland site with less weed problems.

The increase plots of the flood tolerant switchgrass, accession 9083170 that was planted in 1998 produced seed in 2001. The 1999 planting was very thin and the 2000 and 2001 plantings have failed. This accession appears to have high seed dormancy. Another increase planting is planned in 2002 with additional stratification.

Accession 9062244 was observed in the nursery block in field eight as having high forage production (very leafy), medium height, and late maturity. Protein analysis of a sample taken was 15.6%. This plant was increased in the greenhouse from vegetative material and planted into a 200-plant nursery in 2000. Unwanted plants were rogued out and seed was harvested in 2001. Plants that germinate quicker from the heaviest seed will be placed in an evaluation nursery in 2002.

2002

The low growing switchgrass, accession 9083172, increase plots had limited seed production in 2002. The 17.3-pound bulk seed produced will be used in the field-planting program for advanced testing. An additional 1.5 acres increase field was planted in 2002. No seed was harvested the establishment year from this plot.

The flood tolerant switchgrass, accession 9083170, increase plots also had limited seed production in 2002. The 32.5-pound bulk seed produced will be used in the field-planting program. Due to an extremely wet spring, no additional seed increase field was planted in 2002.

The medium height forage type switchgrass, accession 9062244, was propagated in the greenhouse and plants were selected for quick establishment and seedling vigor. These plants were transplanted into an evaluation nursery in Field #1 at the PMC.

2003-2004

The low growing switchgrass, accession 9083172, increase plots have been expanded but are slower than expected to develop and produce seed. Available seed is being used in the field planting program for advanced testing.

The flood tolerant swithgrass, accession 9083170, increase plots have been expanded but are also slower than expected to develop and produce seed. Available seed is being used in the field planting program for advanced testing.

The medium height forage type switchgrass, accession 9062244, was again propagated in the greenhouse and the evaluation nursery was expanded in 2003. The plants were allowed to develop and mature in 2004 with evaluations to begin in 2005.

2005

Seed was harvested from the low growing and flood tolerant increase plots. Both of these accessions are being evaluated in the field planting program with mixed results. Seed dormancy is a problem and results in poor and inconsistent establishment.

The medium height switchgrass accession will be placed into a study of its own and go through a recurrent selection process in the development of an improved forage type switchgrass.

2006

Seed was again harvested from the low growing and flood tolerant increase plots. Both are showing poor stand development on heavy soil types with moderate to heavy clay content. These two selections will undergo more testing and selection to improve seedling vigor.

2007

Seed from the low growing and flood tolerant selections was put in the germinator and selected for quick germination, five days or less. Two new evaluation plots were established from the plants selected out of the germinator.

Study 291108G	-Selecteu Accessio	IIS OF LOW GLOWI	ig Switchgi ass	Table #1
Accession #	<u>State</u>	County	MLRA	Collector Name
9062155	Iowa	Louisa	108	Dean L. Pettit
9062157	Iowa	Cherokee	107	Lon Allan
9062158	Iowa	Clay	103	John P. Vogel
9062160	Iowa	Freemont	107	NRCS F. O.
9062163	Iowa	Hamilton	103	Dana C. Holland
9062165	Iowa	Woodbury	107	John P. Vogel
9062166	Iowa	Monona	107	Michael J. Kuera
9062178	Iowa	Muscatine	108	Douglas S. Johnson
9062181	Illinois	Champaign	108	Leon W. Wendt
9062188	Illinois	Macoupin	108	Ivan N. Dozier
9062189	Illinois	Macoupin	115	Ivan N. Doxier
9062190	Illinois	Macoupin	108	Ivan N. Dozier
9062195	Illinois	Carroll	105	Raymond J. Hudak
9062196	Illinois	Carroll	105	Raymond J. Hudak
9062205	Missouri	Barton	112	Jerry L. Cloyed
9062207	Missouri	Bates	112	Robert D. Bouland
9062208	Missouri	Pettis	116A	Thomas J. Hagedorn
9062209	Missouri	Christian	116A	C. Mark Green
9062211	Missouri	Ozark	116A	Carroll W. Foster
9062212	Missouri	Johnson	112	Robert T. Hagedorn
9062213	Missouri	Madison	116A	Sandra L. Lewis
9062214	Missouri	Ste. Genevieve	116B	Renee L. Phillips
9062215	Missouri	Oregon	116A	Stephen E. Robbins
9062216	Missouri	Shannon	116A	Steve Wall
9062217	Missouri	Reynolds	116A	Clarence W. Wagy
9062218	Missouri	Christian	116A	C. Mark Green
9062219	Missouri	Perry	116B	Claude E. Peifer
9062220	Missouri	Reynolds	116A	Clarence W. Wagy
9062221	Missouri	Dade	116B	Todd E. Mason
9062222	Missouri	Morgan	116B	James A. Maberry
9062223	Missouri	Franklin	116B	Arthur P. Kitchen
9062224	Missouri	Cedar	116B	Kim C. Ehlers
9062225	Missouri	Christian	116A	C. Mark Green
9062227	Missouri	Ozark	116	Carroll W. Foster
9062228	Missouri	Texas	116	Jeff A. Lamb
9062229	Missouri	Texas	116	Jeff A. Lamb
9062234	Missouri	Saline	107	Wayne E. McReynolds
9062237	Missouri	Ray	107	James M. Rehmsmeyer
9062238	Missouri	Worth	109	David A. Stevens
9062239	Missouri	Sullivan	109	Stuart A. Lawson
9062240	Missouri	DeKalb	109	Wm. A. Throckmorton

Study 29I108G-Selected Accessions of Low Growing Switchgrass Table #1

				Table #1 - continued						
Accession #	State	County	MLRA	Collector Name						
9062242	Missouri	DeKalb	109	Wm. A. Throckmorton						
9062243	Missouri	Buchanan	107	Rodney Saunders						
9062244	Missouri	Dent	116	Myron C. Hartzell						
9062246	Missouri	Sullivan	109	Stuart A. Lawson						
9062247	Missouri	Buchanan	107	Rodney Saunders						
9062248	Missouri	Sullivan	109	Stuart A. Lawson						
9062250	Missouri	Nodaway	109	Kenton L. Macy						
9062251	Missouri	Worth	109	David A. Stevens						
9062252	Missouri	Daviess	109	James A. Sturm						
9062253	Missouri	Daviess	109	James A. Sturm						
9062254	Missouri	Maries	116A	Dennis W. Shirk						
9062255	Missouri	Maries	116B	Dennis W. Shirk						
9062256	Missouri	Maries	116A	Dennis W. Shirk						
9062257	Missouri	Maries	116A	Dennis W. Shirk						
9062259	Missouri	Shannon	116A	Steve Wall						
9062261	Missouri	Shannon	116A	Steve Wall						
9062265	Missouri	Sullivan	109	Stuart A. Lawson						
9062267	Missouri	Gentry	109	Gary J. Barker						
9062268	Missouri	Platte	107	Terry A. Breyfogle						
9062269	Missouri	Sullivan	109	Stuart A. Lawson						
9062270	Missouri	Platte	107	Terry D. Breyfogle						
9062271	Iowa	Page	104	Kevin J. McCall						
9062272	Illinois	Fayette	104	Brad S. Simcox						
9062274	Iowa	Madison	108/109	Larry Beeler/Tom Oswald						
9062193	Illinois	Fayette	113	Brad S. Simcox						

Selected Accessions of Wet Tolerant Switchgrass Table #2 Accession # MLRA **Collector Name State County** 9062193 Illinois Fayette 113 Brad S. Simcox 9062213 Missouri Madison Sandra L. Lewis 9062235 Missouri Miller 116 Matt L. Burcham

Final Accession	s Selected for Lo	hgrass	Table #3	
Accession #	<u>State</u>	County	MLRA	Collector Name
9062205	Missouri	Barton	112	Jerry L. Cloyed
9062225	Missouri	Christian	116A	C. Mark Green
9062252	Missouri	Daviess	109	James A. Sturm
9062255	Missouri	Maries	116B	Dennis W. Shirk
9062257	Missouri	Maries	116A	Dennis W. Shirk

Study No. 29I110J

Study Title: Assembly and Evaluation of Chokecherry, Prunus virginiana L.

Study Leader: Cordsiemon, R.

Introduction:

Chokecherry is one of the most widely distributed native tall shrubs or small trees in North America. It occurs from Newfoundland south to Georgia and west to California and British Columbia. In the Midwest its habitat includes moist sites in open areas, along fencerows, roadsides, borders of woods as well as sandy or rocky hillsides and ravines. Three varieties have been described: var. *virginiana* in the eastern United States, var. *melanocarpa* in the west, and var. *demissa* along the Pacific Coast. Some forms have yellow rather than dark red or black fruit. The leaves of var. *melanocarpa* are thicker and cordate rather than oval, oblong or obovate as in var. *virginiana*. The fruit is less astringent.

Adaptive characteristics of chokecherry includes fast growth, dependable fruit crops, tolerance to harsh climatic extremes, and the ability to grow in a wide variety of soil types.

Problem:

There is a need for developing a cultivar/selection of chokecherry for use as wildlife food and habitat in the three states served by the Center.

Objectives:

Assemble, comparatively evaluate, select, and release adapted cultivars/selections of chokecherry.

Discussion

1989-1992

Seed collection was initiated in 1989 and 11 collections were made before the State Conservationists' Advisory Committee put the study on hold in 1992 due to lack of personnel at the PMC to carry out the work involved. The intent was to make 40-50 collections from the three-state service area to be placed in a randomized complete block planting.

1993-1996

The project remained in an inactive status until 1996. At this time a decision was reached to germinate the seed that was collected earlier. Based on the viability of this seed collection, it may become necessary to recollect this species.

1997-1998

Seed collections of chokecherry were stratified and placed in the greenhouse for germination (March 1997). A total of 15 collections were made but only 11 germinated. Enough plants of the 11 collections were obtained to initiate a randomized complete block planting with 12 replications. This planting was made on June 23, 1998 in Field #6 on the PMC.

1999-2001

Table #1 lists the accessions of chokecherry collected, collector's name, state, county, MLRA, and soil type. Plans are to continue evaluations for survival, fruit production, height, spread, insect and disease resistance and vigor until selection(s) are made. Several accessions produced light to heavy fruit production. An Eastern tent caterpillar *Malacosoma americanum* infestation was noticed throughout this planting (all accessions) in years 2000 and 2001; however there was no serious damage recorded on any accession in this assembly. A solution of Malathion (one tablespoon per gallon of water) was sprayed on all plants. Control was almost instant in both years.

2002

Evaluations for this study were made on April 25, July 11 and October 9. The following characteristics were documented: vigor, insect and disease resistance, height, spread, and fruit production. The eastern tent caterpillar, *Malacosoma americanum*, infested this planting again this year. No chemical (Malathion) was applied this year in order to determine the extent of damage caused by these insects. Table #1 reflects the evaluations along with accession information.

2003

Evaluations of plants were made again this year for selection purposes and all the other plants were removed from the planting (July 2003). Selections of plants were based on the following characteristics: vigor, insect and disease resistance, height, spread and fruit production. The remaining plants will be allowed to cross-pollinate. The seedlings will be bare rooted and placed in a field planting program in the three-state service area of Missouri, Illinois and Iowa.

2004

Collections were made from the selected trees and over 5.2 pounds of clean seed were harvested. The new collection from selected material has been assigned the accession number 9083259. The fruit will be harvested, de-pulped and planted and grown out as seedlings in the PMC greenhouse. Seed from the 2004 collection will be used to start seedlings for field plantings in the three-state service area. A tested class release is scheduled for 2008.

2005

Dry weather during the summer months of the 2005 growing season prevented the selection block from producing fruit. Seedlings were grown out in the greenhouse from 2004 seed. Poor germination and disease contributed to small number of seedlings. Plans are to produce more seedlings for 2006.

2006

The seedlings that were grown in the greenhouse were stepped up with only 55 trees surviving. All 55 seedlings were planted into a production block in field 11 during the middle of August. Seed collections were made from field 6 and plans are to stratify some of the seed in order to propagate more seedlings and expand the production block in field 11.

2007

Several hundred seedlings were propagated in the spring of 2007 with anticipation of starting a generation 2 (G2) planting and also for distribution to any potential commercial growers. In August it was recommended by the PMC Review Committee to terminate the choke cherry study due to lack of interest and at the Three State Conservationists' Meeting the recommendation to terminate the study was accepted. The generation 1 planting will be maintained along with seed that has been collected from the study. Seedlings will be potentially donated to MDC for wildlife plantings.

					Table #1
Collector	<u>State</u>	County	MLRA's	Soil	Accession
R. W. Nuboer	Illinois	Carroll	111	Seaton Silt Loam	9008107
R. W. Nuboer	Illinois	Whiteside	108	Silt Loam	9057068
R. W. Nuboer	Illinois	Carroll	111	Fayette Silt Loam	9057069
R. E. Szafoni	Illinois	Mclean	108	Unknown	9057089
W. D. Glass	Illinois	Iroquois	110	Sandy Loam	9057143
J. R. Heim	Illinois	Ogle	108	Unknown	9057162
J. P. Vogel	Iowa	Woodbury	107	Kennebec	9057181
J. P. Vogel	Iowa	Woodbury	107	Kennebec Silt Loam	9068669
Maggie Cole	Illinois	Cook	110	Unknown	9068542
Jimmy Henry	Missouri	Lincoln	115	Menfro Silt Loam	9008147
J. R. Heim	Illinois	Lee	108	Martinsville Silt	9068587
Maggie Cole	Illinois	Cook	110		9068660
Maggie Cole	Illinois	Cook	110		9008157
Nancy Pals	Illinois	Coles	108		9068667
Bart C. Pals	Illinois	Effingham	113		9068183
William A					
Throckmorton	Missouri	DeKalb	109	Lamoni	9068668
				Stronghurst Silt	
Kent A. Boyles	Illinois	Tazewell	108	Loam	9068664
Louis Byford	Missouri	Atchison	107	Napier Silt Loam	9068658

Accession Information

Study No. 29A116W

Study Title: Evaluation of Miscellaneous Trees and Shrubs.

Study Leader: Cordsiemon, R.

Introduction:

The evaluation of woody plant materials on the USDA-NRCS Elsberry Plant Materials Center began in 1989. Since that time plants have been added for multiple purposes. The evaluations of these plant materials have been in cooperation with the USDA-ARS, Plant Introduction Station, Ames, Iowa; Missouri Department of Conservation; and other plant materials centers. **Problem:**

т.1.1. #1

Trees and shrubs are needed to provide for windbreaks, recreation, and multipurpose use in the Midwest Region and provide multiple wildlife benefits throughout the three-state area. New selections, collections and public and private releases need to be evaluated as potential conservation species.

Objective:

The objectives of this study are to assemble and evaluate woody plant materials (both collections in the wild and also released cultivars) for conservation uses, area of adaptation, and to select and increase limited quantities of promising woody plants for advanced evaluation. Superior accessions or those exhibiting unique characteristics will be placed in field evaluations and field plantings in the three-state area being served by the PMC.

Assembly:

Plant materials of various woody species representing many species have been planted on the PMC. The sources include other PMC's, commercial nurseries, and other agencies.

Discussion:

1994-2004

This study is a long-term ongoing evaluation of miscellaneous trees and shrubs that are not part of a collection made over several years. New species will be planted as they arrive at the Center. Although this study was started in 1989, it includes some species from past studies. Presently there are 29 different species included. Twenty-two are exhibiting 100 percent survival. Five species have failed to survive. For more information regarding plant performances refer to Table #2.

The trees and shrubs in this study are often utilized during plant identification courses held at the Center.

Table #1 reflects the species included in this assembly, accession numbers, sources and dates planted. Table #2 reflects the plants' performance for years 1990-1992, 1998-2003.

There were no evaluations conducted and no new species added in 2004. There are two new species planned for 2005 that will be received from the Plant Introduction Station in Ames, Iowa. The entire assembly is scheduled to be evaluated in 2005. Very little attention was given to this study in 2004 because the PMC was understaffed.

2005

An evaluation of survival was made in the summer of 2005. Trees and shrubs that had died were noted. The condition of the trees were also evaluated. Black chokeberry (*Aronia melanocarpa*) and common buttonbush (*Cephalanthus occidentalis*) were added to this study. These trees and shrubs will again be evaluated for their survivability and use in conservation.

2006

In April, three new species were added for evaluation, Musclewood (*Carpinus caroliniana*), Bur oak (*Quercus macrocarpa*), and Laurel willow (*Salix pentandra*). There were five trees planted of each species and evaluated for general conditions of the plants (bud break, plant injury, etc.) The buttonbush (*Cephalanthus occidentalis*) and black chokeberry (*Aronia melanocarpa*) were replanted in the fall, 11/14/2005, after dying from an earlier spring planting. They too were

evaluated, but for survival, height, spread, injury, type of care given, plant performance, and variations among plants.

2007

Evaluations were taken on tree species sent from the ARS - Plant Introduction Station in Ames, Iowa. Data was sent back to ARS via their online evaluation forms. Also survival of the miscellaneous tree assembly was taken. In August the Three State Technical Review Committee recommended several species of trees to be eliminated from the assembly. The primary species that were recommended for removal were non-native species or species that were performing poorly.

List of species included in study

List of species inclu	ded in study.				Table #1	
			Accession	Alternate		Date
Common Name	<u>Genus</u>	<u>Species</u>	Number	<u>No.</u>	Source	Planted
'Densehead'	Sorbus	alnifolia		7761	F.K.	11/65
mountain ash					Nursery	
'Ruby' redosier	Cornus	stolonifera	443229		Big Flats	5/89
dogwood					PMC	
Late lilac	Syringa	villosa	9006228		Bismarck	5/89
					PMC	
'Redstone' cornelian	Cornus	mas	9055585		Elsberry	5/89
cherry dogwood					PMC	
'Roselow' sargent	Malus	sargenti	477986		Roselake	5/89
crabapple					PMC	
'Elsmo' lacebark elm	Ulmus	parvifolia	9004438		Asia	5/89
Blueleaf	Lonicera	korolkowi	9062152		Nebraska	5/89
honeysuckle						
Birch	Betula	species	502295		Ames, IA	4/90
Willow oak	Quercus	phellos		4723	Ames, IA	4/90
Fragrant	Pterostyrax	hispida		A80779	Ames, IA	4/90
epaulettetree						
Bradford pear	pyrus	calleryana		19173	Ames, IA	4/69
Prairie rose	Rosa	setigera	495616		Ames, IA	4/90
Ural false spirea	Sorbaria	sorbifolia		7778	Ames, IA	4/90
Weeping lilac	Syringa	pekinensis	478008		Ames, IA	4/90
Flameleaf sumac	Rhus	copallina		7764	Ames, IA	4/90
Western paper birch	Betula	occidentalis	495882		Ames, IA	4/90
Amur honeysuckle	Lonicera	mackii	477998		Ames, IA	4/90
Mountain ash	Sorbus	reducta		A-8371	Ames, IA	4/90
Blackhaw	Viburnum	prunifolium		2813	Ames, IA	4/90
Largeleaf dogwood	Cornus	macraphylla		10178	Ames, IA	4/90
Border privet	Ligustrum	obtusifolium	477010		Ames, IA	4/90
Willow oak	Quercus	phellos		4724	Ames, IA	4/90

			Accession	Alternate		Date
Common Name	Genus	Species	<u>Number</u>	<u>No.</u>	Source	Planted
Arrowwood	Viburnum	dentatum			Elsberry,	4/90
					MO	
Redbud	Cercis	canadensis	496399		Ames, IA	5/91
Birch	Betula	species	14942		Ames, IA	5/91
'Wichita' osage	Maclura	pomifera			Kansas	5/91
orange						
'Denmark' osage	Maclura	pomifera			Denmark,	6/92
orange					IA	
Magenta	Malus	species	514275		Roselake	4/93
					PMC	
Ocean view beach	Prunus	maritima	518824		Cape May	5/93
plum					PMC	
'Sandy' rugosa rose	Rosa	rugosa			Cape May	5/93
					PMC	
Wildwood bayberry	Myrica	pennsylvanica	548966		Cape May	5/93
					PMC	
Wildwood bayberry	Myrica	pennsylvanica	434150		Cape May	5/93
					PMC	
Wildwood bayberry	Myrica	pennsylvanica	548964		Cape May	5/93
					PMC	
Ocean view beach	Prunus	maritima	518822		Cape May	5/93
plum	_				PMC	
Ocean view beach	Prunus	maritima	518823		Cape May	5/93
plum	~		1		PMC	T 10 D
'Oahe' hackberry	Celtis	occidentalis	476982		Bismarck	5/93
			101000		PMC	T 10 D
'King Red' Russian	Elaeagnus	angustifolia	434029		NPMC	5/93
olive			00000000			11/07
Black Chokeberry	Aronia	melanocarpa	9083269	Ames	Ames, IA	11/05
		.,	00000000	2/3/1		11/07
Common	Cephalanthus	occidentalis	9083270	Ames	Ames, IA	11/05
Buttonbush				2/336		

	Study 29A116W - Evaluation of Miscellaneous Trees and Shrubs				ıbs														Table	e #2										
Plt.	•	Accn. /	Date	No.			No.	Sur	vive	d					A	ve. H	lt. (F	t.)						A	ve. V	Vd. (Ft.))			
No	Sc. Name	Alt. No.	Plt.	Plt.	90	91	92	98	99	00	01 02	2 03	3 90	91	92	98	99	00	01	02	03	90	91	92	98	99	00	01	02	03
1	Sorbus	7761	11/65	2	2	2	2	2	2	2	2 2	2	21	22	22	25	26	25.7	26	26	26	8.2	8.2	8.2	12	12.4	12.9	13.3	13.3	13
	alnifolia																													
2	Cornus	443229	5/9/1989	4	4	4	4	4	4	4	4 4	4	0.7	3.7	3.9	4	4.7	4.7	5.3	5.4	5.4	1.8	3.6	4.8	3.5	4	4.2	4.7	4.9	5
	stolonifera																													
3	Syringa	9006228	5/9/1989	4	4	4	3	0	0	0	0 0	0	0.4	0.7	2.3	0	0	0	0	0	0	1.2	1.3	2.4	0	0	0	0	0	0
	villosa																													
4	Cornus	9055585	5/9/1989	3	3	3	3	3	3	3	3 3	3	1.4	1.9	2.8	4.5	5	5	6.2	6.4	6.4	0.4	0.8	1.4	4.5	5	5.5	6.5	7	7.3
	mas											_	_																	
_			= 10 14 0 0 0				_			-						-	_		_		_			~ ~			-			
5	Malus	477986	5/9/1989	3	3	3	3	0	0	0	0 0	0) 2	2.7	2.9	0	0	0	0	0	0	1	1.7	2.6	0	0	0	0	0	0
	Sargerta												_																	
6	Ulmus	9004438	5/9/1989	2	2	2	2	2	2	2	2 2	2	. 5.4	9.6	5 11.8	3 27	27	27.6	28.3	28.4	28.6	3.3	6.4	7.4	16	16.5	17	18	18.4	18
	parvifolia																													
7	Lonicera	9062152	5/9/1989	6	6	6	6	6	6	6	6 6	6	6 4	6.8	8 8	12	12	12.4	12.8	12.9	12.9	5.6	8.8	9.8	13	13.3	13.8	14	14.3	14.2
	korolkowi																													
8	Betula	502295	4/16/1990	3	1	1	1	1	1	1	1 1	1	3.4	3.4	4.1	6	6.5	6.8	7.5	7.7	7.9	1.5	1.9	2.8	5	5.7	6	6.5	6.8	7
	species																													
9	Quercus	4723	4/16/1990	4	4	4	4	4	4	4	4 4	4	1.7	2.6	6 4.1	23	23	23	23	23	23	1	1.8	3.7	12	12	12.9	12.9	13	13.2
	phellos																													
				_	_	_			_	-		_		_		_	_		_							-			-	
10	Pterostyrax	A-8079	4/16/1990	3	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	hispida																													
14	Dumun	40470	4/04/4000	2		-	_		_	4*	4 4	-		07	07			47+	40	40	40		200	04	22	22.0	45*	45.5	45.0	40.0
11	Pyrus	19173	4/21/1969	2	2	2	2	2	2	1"	1 1	1	27	27	27	29	30	17*	18	18	18	20	20	21	33	33.6	15"	15.5	15.8	16.3
	calleryana												_			_														
<u> </u>												_	_																	
				<u> </u>	-	<u> </u>						_	_			+														
												_	_																	
						1						1							1											

	Study 29A11	6W - Eval	uation of M	isce	llan	eous	s Tre	es a	nd	Shru	ubs	- Ta	able	#2 co	ontin	ued															
Plt.	Sc. Name	Acc./	Date	No.			No.	Surv	ive	d							Ave	e. Ht.	(Ft.)					Ave.	Width	ו (Ft.)					
No.		Alt. No	Plt.	Plt.	90	91	92	98	99	00	01	02	03	90	91	92	98	99	00	01	02	03	90	91	92	98	99	00	01	02	03
12	Rosa	495616	4/16/1990	2	2	2	2	2	2	2	2	2	2	1.5	3.7	4.7	6.6	7	7	7	7	7	1.6	5.5	5.9	10	10.4	10.7	11	11.3	11
	setigera																														
							_	_		_	_	_						_	_	_	_	_									
13	Sorbaria	///8	4/16/1990	1	1	1	1	1	1	1	1	1	1	1	1.8	2.3	5	5	5	5	5	5	0.6	1.8	2.1	6	6.5	6.9	7.1	7.3	7.5
	sorbitolia																														
11	Currin go	470000	4/10/1000	2	2	2	2	2	2	0	2	2	2	4	4	4 5	7	70	77	0	0.0	0.4	0.7	1	2	75	7.0	0	0.0	0.5	07
14	Syllinga	470000	4/10/1990	3	2	2	2	2	2	2	2	2	2	1	1	1.5	'	1.5	1.1	0	0.2	0.4	0.7	1	2	7.5	7.0	0	0.2	0.0	0.7
	pekinensis																														
15	Rhus	7764	4/16/1990	4	2	2	2	2	2	2	2	2	2	16	29	53	7	77	79	82	84	86	0.8	28	53	8	83	85	89	9	92
10	copallina	1104	4/10/1000	-	2	2	2	2	2	2	2	2	2	1.0	2.5	0.0	· ·	1.1	1.5	0.2	0.4	0.0	0.0	2.0	0.0	0	0.5	0.0	0.5	5	5.2
	oopunnu																														
16	Betula	495882	4/16/1990	3	2	2	2	2	2	2	2	2	2	1.3	4.5	3	8	8.8	9.1	8.8	9	9.2	0.3	2.4	3.9	5	5.6	5.9	6.2	6.7	6.9
	occidentalis																														
17	Lonicera	477998	4/16/1990	4	3	3	3	3	3	3	3	3	3	0.7	1.5	2.7	7.8	7.9	7.9	7.9	7.9	7.9	0.6	1.2	2.7	4.5	5	5.5	5.9	6.2	6.5
	maackii																														
18	Sorbus	A-8371	4/16/1990	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	reducta																														
19	Viburnum	2813	4/16/1990	4	2	2	2	2	2	2	2	2	2	2.6	2.7	3.4	8	8.5	8.7	9	9	9.2	0.7	1.3	2.4	5	5.3	5.5	6	6.4	6.7
	prunifolium																														
20	Corpus	10170	4/19/1000	2	2	2	2	2	2	2	2	2	2	17	2.2	2	75	70	0	0.0	0.0	0.0	0.5	0.0	17	15	F	5.4	57	6	6.2
20	macraphylla	10176	4/10/1990	3	3	3	3	3	3	3	3	3	3	1.7	2.2	3	7.5	7.9	0	0.2	0.2	0.2	0.5	0.9	1.7	4.5	5	5.4	5.7	0	0.3
	Пастарпуна																														
21	Liqustrum	477010	4/18/1990	4	3	3	3	0	0	0	0	0	0	14	24	26	0	0	0	0	0	0	0.8	23	23	0	0	0	0	0	0
21	obtusifolium	411010	-4/10/1000	-				Ŭ	0	0	•	0	0	1.4	2.7	2.0	Ŭ	Ŭ		Ū	Ū	Ū	0.0	2.0	2,0	•	0	0	v	Ū	0
	00100101101																														
22	Quercus	4724	4/18/1990	4	4	4	4	4	4	4	4	4	4	1.3	3.1	4.4	13	13	13.5	14	14	14.1	0.8	2.4	3.8	12	12.4	12.7	13.4	13.7	14.1
	phellos				1									1									1								

	Study 29A11	6W - Eval	uation of M	isce	llan	eous	s Tre	es a	nd	Shr	ubs	- T	able	#2 co	ontin	ued															
Plt	Sc. Name	Acc./	Date	No.	•		No.	Surv	vive	d							Ave	. Ht.	(Ft.)						Ave.	Widtl	n (Ft.)				
No		Alt. No	Plt.	Plt.	90	91	92	98	99	00	01	02	03	90	91	92	98	99	00	01	02	03	90	91	92	98	99	00	01	02	O3
23	Viburnum	9062310	4/91	5	4	4	4	4	4	4	4	4	4	2	4.3	4.5	7	7	7	7	7	7	0.5	2	2.4	4.5	4.7	4.9	5.3	5.5	5.7
	dentatum																														
24	Cercis	496399	5/8/1991	3	3	3	3	3	3	3	3	3	3	0.5	3.2	3.7	11	11	11.6	11.9	12	12	0.25	0.5	2.7	10	10.5	10.8	11.4	11.7	12
	canadensis																														
05	Datala	4 40 40	5/0/4004	-	_	0	0	_	_	_	_	_	_	0.5	07		4.4		44 7	40.0	40.0	40.0	0.4	0.4		-	7.4	7.0	0.0	0.5	0.7
25	Betula	14942	5/8/1991	5	3	3	3	3	3	3	3	3	3	0.5	0.7	1.4	11	11	11.7	12.3	12.6	12.8	0.4	0.4	1.4	1	7.4	7.9	8.2	8.5	8.7
	nigra																														
26	Maalura		4/02	1	1	1	1	1	1	1	1	1	1	0.5	0.5	1	10	10	12 5	12.0	12.0	12.0	0.25	0.2	25	12	12.2	127	14.2	146	15.2
20	nomifora		4/9Z	1		1	1	1	1	1	I	1	-	0.5	0.5	I	13	13	13.5	13.9	13.9	13.9	0.25	0.5	2.5	13	13.2	13.7	14.5	14.0	15.5
	pomiera																														
27	Maclura		6/19/1992	1	1	1	1	1	1	1	1	1	1	05	05	1	13	13	13.5	14	14	14	0.25	03	05	7	73	77	8	83	85
21	pomifera		0/13/1332										+ '	0.5	0.5		15	10	10.0	14	17	14	0.20	0.0	0.0	'	7.5	1.1	0	0.0	0.0
	ponnora																														
28	Eleagnus		4/26/1999	5				5	5	5	5	5	5				2.5	3	3	3	3.3	4.5			1.5	2	3	3.4	3.8	4	4.5
	umbellata																														
29	Salix		4/14/1995	2				2	2	2	2	2	2				30	31	31	31	31	31.2				10	10.5	11	11.3	11.5	12.4
	Mat. X Alba																														
													+																		
													+																		
				-	-																										
				-		-	-						-																		
													-																		
																														•	

Study: 29I124G

Study Title: Production of Native Iowa Ecotypes of Grasses and Forbs for Roadside, Critical Areas, and All Other Vegetative Plantings Where Native Grasses and Forbs are Now Being Planted.

Study Leader: Cordsiemon, R.

Introduction:

Well-adapted native grass, legume, and forb plantings offer many advantages as low cost sustainable vegetative cover for management of soil and water resources. Native plant communities resist noxious weed invasion, provide excellent erosion control, and generally require relatively low maintenance.

These characteristics make them an excellent selection for use in roadside plantings, critical areas, long term land retirement programs, and all other vegetative plantings where monocultures of native grasses are being planted. This is especially true along public transportation right-of-ways. These transportation corridors constitute a major land resource and management problem in the state of Iowa. Based on 1987 Natural Resources Inventory (NRI) data, over one million acres of Iowa land are devoted to rural transportation.

Proper vegetation management along these corridors is an important element in controlling soil loss and unwanted weedy plant species. Many of these acres are now seeded to introduced cool-season grass and legume species which are often invaded by noxious weeds requiring extensive mowing or herbicide treatment programs. These management techniques are expensive and can also result in additional water quality problems where herbicides are used extensively.

Managing or re-seeding these acres to promote native grasses, legumes, and forbs offers a low cost environmentally sound approach to roadside vegetation management. Herbicide use, soil erosion, and most mowing can be reduced significantly where a vigorous native grass, legume, and forb mixture dominates a roadside right-of-way. In addition, these goals are consistent with on-going NRCS programs designed to improve ground and surface water quality, reduce soil loss and increase wildlife habitat.

Problem:

Many adapted native species are either currently not commercially available or available only in very limited quantities. When native species are available, the origin is often from considerable distance away and adaptation can be a concern. The species that are available are often as a 'variety' that has been developed for pasture and hay. These are generally high forage producing and more vigorous than wild collections of seed that have not been through an evaluation and breeding program. Seed of local origin that have not been improved or selected for superior forage yield is more likely to remain in a prairie mixture without crowding out other species and becoming monoculture. There is a need for additional native grass, legume, and forb species for use in roadside and other types of conservation plantings.
Objective:

The objective of this study is to accelerate the collection and increase of selected native grass, legume, and forb species through a cooperative program between the University of Northern Iowa (UNI), USDA Natural Resources Conservation Service (NRCS), and the Iowa Roadside Integrated Vegetation Management Program (IRVM).

Cooperators:

The USDA Natural Resources Conservation Service, Plant Materials Center; the University of Northern Iowa; and the Integrated Roadside Vegetation Management Office.

Procedures:

The state of Iowa was divided into three zones: North, Central, and South (Table #1). Seed collected from within each zone was kept separate from the other zones. The IRVM office organized seed collections from each zone. Collections were made from native prairie remnants throughout each zone striving for a relatively equal and representative collection. Seed from each collection site was inventoried by location and a small portion was started in the greenhouse at UNI and transplanted into plots. The remainder of the seed was sent to the PMC, cleaned, and seeded for increase plots. Seed from the plots at UNI was hand harvested and also used to start increase plots or mixed with additional seed and became available to seed growers. When enough seed becomes available, the species is released as 'Source Identified' germplasm from the zone in which it was collected. Source identified seed has not been improved by evaluation and selection or plant breeding procedures.

Discussion:

The study officially started October 1, 1990, at the beginning of fiscal year 1991 with agreements signed. Seed collections had started earlier in the year and seed was available for increase plots the spring of 1991. Most of the plots started from 1991 to 1993 were destroyed in the flood the summer of 1993. Plant re-establishment started in 1994 and new plots have been started each year. Progress of species released to growers as 'Source Identified' germplasm can be seen in Table #2.

2000

New increase plots established in 2000 were *Liatris asper*, rough blazing star; *Monarda fistulosa*, horsemint; and *Lobilia siphilitica*, great blue lobelia. Surflan was used for weed control and the horsemint was not resistant.

New plant releases for 2000 were Northern Iowa Germplasm Big Bluestem, Northern Iowa Germplasm Tall Dropseed, Northern Iowa Germplasm Roundhead Lespedeza, and Southern Iowa Germplasm Prairie Blazing Star.

2001

There were no new plant releases through the plant materials program in 2001 but seed of previous releases was allocated to growers. Initial seed increase is now in production at the new UNI Native Roadside Vegetation Center at the University of Northern Iowa, Cedar Falls, Iowa. A new plot of Southern Iowa June grass was established at the PMC from plants started in the greenhouse. This species exhibits very slow growth and a serious problem is weed control.

2002

There were no new increase plots established in 2002. Seed production and allocation to growers continued on previously established plots.

New plant releases for 2002 were Northern, Central and Southern Iowa Germplasm New England Aster, Northern and Southern Iowa Germplasm Pale Purple Coneflower, Southern and Central Iowa Germplasm Rigid Goldenrod, and Southern Iowa Germplasm Tall Dropseed.

2003

In 2003 there were no new plantings or increases added. Production and allocations to growers continued from previously established plots. Weed control was maintained by using a non-selective herbicide in late winter/early spring on most plots, followed by a pre-emergent herbicide on all plots. Late spring and summer weed control was achieved by manual labor and selective herbicides.

There were eight new plant releases for 2003. They were Southern Iowa Germplasm Wild Burgamot (*Monarda fistulosa*), Northern, Central, and Southern Iowa Germplasm Rough Blazing Star (*Liatris aspera*), Northern Iowa Germplasm Purple Prairie Clover (*Dalea purpurea*), Central Iowa Germplasm Switchgrass (*Panicum virgatum*), Northern and Central Iowa Germplasm Junegrass (*Koelaria macanthra*). Refer to the table of contents for a complete list of 2003 PMC releases.

2004

The Iowa Ecotype Program continued to produce seed for the three different zones on the center in 2004. Although there were no new plots established and no plot increases, the PMC plans to introduce five new Iowa releases in 2005. Weed control was very similar to that of 2003, with the use of non-selective herbicide early and manual labor and selective herbicide later in the growing season. There were some plots taken out of production in 2004 (refer to Table #2) because of consistently low seed production.

2005

The releases scheduled for 2005 were held off until 2006 because there was a lack of available seed. Plots were maintained the same as the past two years. Unproductive plots that had a supply of seed on inventory were mowed and not maintained or harvested.

In fiscal year 2006 the PMC released Central Iowa Germplasm Pale Purple Coneflower (*Echinacea pallida*), 9068612. Future releases are still planned. Each species that the PMC is working with should have a release from each of the three zones. Those releases that are not represented will be a priority for the next few years. Fiscal year 2007 is scheduled to have two releases, northern and central zones of wild bergamot, (*Monarda fistulosa*). In fiscal year 2008 and 2009 the PMC will finish out the Iowa Ecotype Program with the releases of southern zone purple prairie clover, (*Dalea purpurea*), southern zone Junegrass, (*Koeleria macanthra*), and northern and southern zones of switchgrass, (*Panicum virgatum*). The Elsberry PMC and the University of Northern Iowa cooperatively grow and have seed on hand for commercial production.

2007

The Iowa Ecotype Program had two more releases in 2007 with the release of Northern and Central Iowa Germplasm horsemint (also known as wild bergamot), *Monarda fistulosa*. There are limited quantities of seed from both zones currently available and being produced at the Elsberry PMC. More production plots are being phased out as the Tallgrass Prairie Center in Iowa continues to grow and manage more production plots. Plots at the Elsberry PMC that have been taken out of production are being mowed until needed for other uses or the plot needs to be re-established.

		Iowa Geo	graphic Zones	s and Year of			
Ecotype	e Species		Release				
Common Name	Scientific Name	Northern	Central	Southern			
Pale Purple Coneflower	Echinacea pallida	2002	2006	2002			
Purple Prairie Clover	Dalea purpurea	2003	1998	2008*			
Switchgrass	Panicum virgatum	2009*	2003	2009*			
Junegrass	Koeleria macanthra	2003	2003	2008*			
Horsemint	Monarda fistulosa	2007	2007	2003			
Rough Blazing Star	Liatris aspera	2003	2003	2003			
New England Aster	Aster novae-angliae	2002	2002	2002			
Tall Dropseed	Sporobolus compositus	2002	1996	2002			
Stiff Goldenrod	Oligneuron rigidum	1998	2002	2002			
Big Bluestem	Andropogon gerardii	2000	1998	2000			
Prairie Blazing Star	Liatris pycnostachya	1999	1999	2000			
Bushclover	Lespedeza capitata	2000	1996	1997			
Little Bluestem	Schizachrium scoparium	1999	1997	1999			
Rattlesnake Master	Eryngium yuccifolium	1998	1999	1999			
Indiangrass	Sorghastrum nutans	1996	1996	1998			
Canada Wild Rye	Elymus canadesis	1995	1995	1997			
Oxeye False Sunflower	Heliopsis helianthoides	1996	1995	1997			
Sideoats gramma	Bouteloua curtipendula	1995	1995	1995			

TABLE #1

IOWA ECOTYPE ZONE MAP

Study 29I124G-Production of Native Iowa Ecotypes of Grasses and Forbs for Roadside, Critical Areas, and All Other Vegetative Plantings Where Native Grasses and Forbs are Now Being Planted (UNI).

Now Being Planted (Or	.			T 1 1 "0			
				Table #2			
Common Nomo		A	Veeref	Ctatura of	Herricete	d Cood (D.	
Common Name	Zone	Accession	Tear of Release	Status of	2005	a Seea (Bi 2006	JIK LDS.) 2007
Rig bluestem	1	9068614	2000	in production	*	8.00	6.20
Andronogon gerardii	2	9068615	1008	in production	5.00	0.00	11 00
Andropogon gerardii	2	9000015	2000	in production	12.00	9.00	25.00
	5	3000010	2000	Inproduction	13.90	15.57	23.00
Sideoats grama	1	9062278	1995	in production	7.00	11.30	4.60
Bouteloua curtipendula	2	9062279	1995	in production	2.30	2.50	6.00
	3	9062280	1995	4.00	19.00	30.00	
Purple prairie clover	1	9068608	2003	in production	0.80	0.31	*
Dalea purpurea	2	9068609	1998	in production	1.20	3.73	2.70
	3	9068610	2008	in production	4.40	1.00	2.80
Pale purple coneflower	1	9068611	2002	in production	6.50	2.30	0.80
Echinacea pallida	2	9068612	2006	in production	7 20	1.90	0.30
	3	9068613	2002	in production	0.49	0.90	0.60
	Ŭ	0000010	2002	Inproduction	0110	0.00	0.00
Canada wildrye	1	9062275	1995	in production	12.00	33.00	21.00
Elymus canadensis	2	9062276	1995	in production	*	15.20	11.00
,	3	9062277	1997	in production	*	27.18	*
				•			
Rattlesnake master	1	9068602	1998	out of production	3.00	1.40	0.15
Eryngium yuccifolium	2	9068603	1999	in production	0.60	0.17	*
	3	9068604	1999	in production	0.90	2.84	1.30
Oxeye false sunflower	1	9068605	1996	in production	12.70	*	*
Heliopsis helianthoides	2	9068606	1995	in production	9.60	2.80	*
	3	9068607	1997	in production	2.00	2.84	*
	4	0000000	0000	and of one dustion	4.00	*	*
Junegrass	1	9068620	2003	out of production	4.00	*	*
Koelena macrantha	2	9068621	2003	out of production	5.00	*	*
	3	9068622	n/a	In production	1.30		
Round-head bushclover	1	9062281	2000	out of production	6.00	0.52	1 20
l espedeza capitata	2	9062282	1996	out of production	4 00	2.30	1.20
	3	9062283	1997	out of production	*	0.49	1100
	-					01.10	
Rough blazing star	1	9068684	2003	out of production	*	*	*
Liatris asper	2	9068685	2003	in production	0.30	*	*
· ·	3	9068686	2003	in production	1.40	0.44	0.20
				-			
Prairie Blazing star	1	9068626	1999	in production	2.00	*	*
Liatris pycnostachya	2	9068627	1999	in production	1.40	0.53	0.50
	3	9068628	2000	in production	1.00	*	*

Study 29I124G - Native	lowa	Ecotypes	Та	able #2 - continue	ed		
Common News		Accession	Veeref	Status of	Honvester		ulu l b a b
Common Name	Zono	Accession	Tear of	Status of	narvested	2006 (BI	11K LDS.)
Genus/Species	Zone	Number	Nelease	Increase Fior	2005	2000	2007
Horsomint	1	0068678	2007	in production	0.45	1 10	0.30
Monarda fistulosa	2	9000070	2007	in production	1 00	3.40	1 40
	2	9068680	2007	in production	4.90 0.01	3.40	1.40
	5	9000000	2003	In production	0.91	5.04	1.50
l ittle hluestem	1	9062319	1000	in production	3.00	11 10	0.10
Schizachvrium	2	9062320	1997	in production	11 70	*	*
sconarium	2	9062321	1999	in production	18.70	48 20	*
scopanum	5	3002321	1333	In production	10.70	40.20	
Compassionant	1	9068675		out of production	*	1 / 2	1 /0
Sumpasspiant Silnhium laciniatum	2	9068676		out of production	*	0.63	2 10
Sipilium acimatum	2	9000070		out of production	*	1 01	2.10
	5	3000077				1.01	
Stiff goldenrod	1	0068617	1008	in production	*	*	*
Sulidado rigida	ו ר	0068619	2002	in production	*	*	*
Suluayu nyila	2	0062610	2002	in production	*	1 20	*
	3	9000019	2002	In production		1.20	
ndianarass	1	0062316	1006	in production	12 10	17 70	33.00
Sorabastrum nutans	2	9002310	1006	in production	12.10	46.50	24.00
Sorgnastrum nutaris	2	9002317	1990	in production	12.00	40.00	12 00
	3	9002310	1990	in production	4.30	14.70	13.00
Tall dropseed	1	9062313	2002	in production	1.30	11.00	12.80
Sporobolus compositus	2	9062314	1996	in production	50.60	3.79	7.90
	3	9062315	2002	in production	2.10	31.28	33.30
New England aster	1	9068681	2002	in production	*	*	*
Aster novae angliae	2	9068682	2002	in production	*	0.82	0.30
	3	9068683	2002	in production	*	0.17	1.80
Butterfly milkweed	1	9068687		out of production	*	0.03	3.30
Asclepias tuberosa	2	9068688		out of production	*	0.02	*
	3	9068689		out of production	*	0.14	1.30
Blue lobelia	1	9068696		out of production	*	*	*
Lobilia siphilitica	2	9068697		out of production	*	*	*
	3	9068698		out of production	*	*	*
Switchgrass	1	9068705	2009	in production	*	*	21.90
Panicum virgatum	2	9068706	2003	in production	*	71.00	48.40
	3	9068707	2009	in production	*	0.57	1.70
		0000700			*	0.00	
Golden alexanders	1	9068702		out of production	*	8.90	*
∠ızıa aurea	2	9068703		out of production	*	4.60	*
	3	9068703		out of production	*	2.25	4.50
	1						

Study: 29I135J

Study Title: Assembly and Evaluation of Hazelnut, Corylus americana Walt.

Study Leader: Cordsiemon, R.

Introduction:

American hazelnut is a shrub or very small tree probably native to every county in Missouri. It commonly occurs in dry or moist thickets, woodland, and borders of woodland, in valleys and upland. It ranges from Maine to Saskatchewan, south to Georgia, Arkansas, and Oklahoma. Leaves are borne simply on bristly stalks, the bristles somewhat glandular. Flowers are separate with male and female flowers on the same tree. Male catkins droop and form the season before opening. Female flowers are enclosed in a scaly bud. They have red stigmas that protrude at the tip of the bud. The fruit is a globe-shape nut enclosed in a large, leaf-like covering. This species flowers March-May with fruit ripening July-September.

Problem:

There is a lack of an available cultivar of American hazelnut specifically for this area. A need for developing a selection, source identified, and sources of hazelnut for use as wildlife habitat and for agroforestry in the three states being served by the Center has been identified by NRCS and other conservation and wildlife agencies.

Objective:

The objective is to assemble, comparatively evaluate, select and release an adapted cultivar of source identified or selected hazelnut.

Discussion

1989-1994

Collections of hazelnut were assembled at the PMC between 1989 and 1992. Thirty-six accessions from Illinois and Missouri were stratified and placed in the greenhouse in 1993. Twenty-one accessions germinated and were grown out in two-gallon containers. These accessions were placed in a randomized complete block with eight replications. The planting was established May 3 and 4, 1989, in Field #11E on the PMC.

The summer of 1994 had several significant dry spells and considerable time was spent irrigating. Many plants were stressed, lost leaves, and resprouted. Four plants in the evaluation block failed to survive in 1994.

1995-1998

The assembly was evaluated in 1995, 1996, 1997 and 1998. Of the original 138 plants being evaluated a total of 11 died. The survival was good but the rate of growth seems to be slow, which seems characteristic of hazelnuts.

The following accessions were selected in 1997 for field plantings: 9057168 and 9057169 (Iroquois County, Illinois), 9057188 and 9068528 (Coles County, Illinois), 9068562 (Adams

County, Illinois), and 9068573 and 9068574 both from Chariton County, Missouri. The selection criteria for these accessions are as follows: form, growth, height, width and fruit production and resistance to insect and disease.

1999

The selected accessions continue to be utilized in the plant materials field-planting program throughout the PMC service area. The plants' performance data for 1999 were recorded only for nut production. This information can be found in the following tables.

Nut production for the selected accessions for 1998:

9057168 9057188	=	1.75 pounds 1.90 pounds	9057169 9068528	=	1.00 pound 1.00 pound
9068562	=	1.67 pounds	9068573	=	1.50 pounds
9068574 =		1.30 pounds			

Nut production for the selected accession for 1999.

9057169	=	1.4 pounds	9068528	=	2.2 pounds
9057188	=	0.5 pound	9068573	=	1.9 pounds
9068562	=	2.7 pounds	9057168	=	1.8 pounds
9068574	=	4.3 pounds			•

2000

Nut production is being harvested from those accessions selected for field plantings in the service area of the PMC (Iowa, Illinois and Missouri). One-tenth of the nut production for each of the selected accessions was left on the shrubs to determine the dates the fruits would fall to the ground. The following chart reflects the selected accessions, fruit production and dates nuts fell to the ground. There were no plant evaluations on the assembly of plants this year.

Accession Numbers	Nut Production With Husks	Date Nut Dropped
9057188	1.4 Pounds	11/27/00
9068562	10.3 Pounds	11/27/00
9068574	4.6 Pounds	11/27/00
9068528	12.2 Pounds	11/27/00
9068573	3.7 Pounds	11/27/00
9057168	3.2 Pounds	11/16/00

2001 - 2002

The following table reflects the performance of those accessions initially selected and placed in the plant materials field planting program in the PMC service area for years 1997 through 2002. As reflected in the PMC Business Plan, releases from these accessions will be made in 2005. One plant out of the following accessions will be moved to a crossing block in Field #6 on the PMC in the February 2003. The progeny from this crossing block will be assigned a separate accession number and only one release (Tested Class) will be made for the PMC service area. These accessions are: 9057168, 9068562, 9068573, 9068574, 9057188, and 9068528. The remaining plants in the assembly will be left until the area is needed for a new study.

2003

The plants selected (six accessions) out of the initial nursery planting were transplanted in

Field #6 on March 21, 2003. These plants will be allowed to cross-pollinate and the progeny will be assigned a new accession number, 9083247. These plants will be placed in the field planting program for continued testing.

2004

The selected plants were moved from Field #11 to Field #6 and used the 2004 growing season to establish their root systems. Seed production was very poor due to the transplanting. The seed, if any produced, was very small in size. The selected material is expected to start producing quality seed in 2005 and production from this material will be grown out in bare root seedlings for field plantings.

2005

The selected plants, accession 9083247, produced small quantities of nuts. The seed was propagated in the greenhouse and approximately 30-40 seedlings germinated. These seedlings will be stepped-up into large containers and planted in a production block as first generation material.

2006

Seedlings were propagated in the PMC greenhouse and also at the Forrest Keeling Nursery facility. These seedlings will be used for both field plantings and seed production material. A production block will be established at the PMC in the spring of 2007. The selection of hazelnut, 9083247, is scheduled for release in 2007.

2007

In fiscal year 2007, the Elsberry PMC released a selected class release of *Corylus americana*, American Hazelnut. The Elsberry release will be referred to as Sun Harvest Germplasm hazelnut. Plants and/or seed are available in limited quantities through the PM Program. Seedlings were produced from six selected trees in field six. All trees that were not selected in field 11 were removed and the remaining selected trees will serve as the nursery block for Sun Harvest Germplasm. For more information on this release study, please refer to "Release Notices from the Elsberry PMC" on page 174 of this report. This will conclude this study.

					•		T	able #1
Acc. Number	Criteria	1997	1998	1999	2000	2001	2002	Averages
9057168	Height (Ft.)	4.3	5.4	5.7	6	6.5	6.8	5.8
	Spread (Ft.)	4.2	7	7.3	7.5	8	8.3	7.05
	Ins/Disease	2	2	2	2	2	2	2
	Form	3	3	3	3	3	3	3
	Nut Prod.		1.8 lbs.	1.3 lbs.	2.0 lbs.	2.3 lbs.	1.5 lbs	1.8 lbs.
9068562	Height	5.2	7	7.4	8	8.2	8.5	7.4
	Spread	6.5	7.4	7.6	8	8.5	8.8	7.8
	Ins/Disease	2	3	2	2	2	2	2.9
	Form	2	2	2	1	2	2	1.8
	Nut Prod.		1.67 lbs.	1.60 lbs.	1.7 lbs.	1.9 lbs.	6.2	2.6 lbs.
9068573	Height	4.6	6.3	6.5	6.7	7.1	7.3	6.4
	Spread	5	6	6.3	6.5	7	7.5	6.4
	Ins/Disease	2	2	2	2	2	2	2
	Form	3	3	3	3	3	3	3
	Nut Prod.		1.5 lbs.	1.9 lbs.	2.6 lbs.	4.3 lbs.	2.6 lbs	2.6 lbs.
9068574	Height	6.8	6.9	7	7.3	7.5	7.9	7.2
	Spread	4.5	5.8	6	6.3	6.5	6.8	6.0
	Ins/Disease	2	3	2	2	2	2	2.2
	Form	3	4	3	3	3	4	3.3
	Nut Prod.		1.3 lbs.	1.8 lbs.	1.3 lbs.	2.1 lbs.	3.5	2.0 lbs.
9057188	Height	5.1	6.4	6.7	6.8	7	7.3	6.6
	Spread	3.7	7	7.5	7.8	8	8.2	7.03
	Ins/Disease	2	2	2	2	2	2	2
	Form	3	3	3	3	3	3	3
	Nut Prod.		1.0 lbs.	0.5 lb.	1.4 lbs.	1.9 lbs.	8.2 lbs.	2.6 lbs.
9068528	Height	3.5	4.3	5.0	6.3	6.7	7.0	54.
	Spread	3.0	4.1	5.5	5.8	6.3	6.8	5.3
	Ins/Disease	2	2	2	2	2	2	2
	Form	5	4	3	3	3	3	3.5
	Nut Prod.	0	1.0 lbs.	2.2 lbs.	12.2 lbs. 4.2 lbs.		6.3 lbs.	4.3 lbs.

Performance Data 1997 – 2002

	Table #2 reflects	accession	information
--	-------------------	-----------	-------------

Table #2

Accession Number	State or Origin	City or County					
9057081	Illinois	Coles					
9057082	Illinois	Coles					
9057087	Illinois	Coles					
9057119	Illinois	Whiteside					
9057120	Illinois	Carroll					
9057167	Illinois	Will					
9057168	Illinois	Iroquois					
9057169	Illinois	Iroquois					
9057184	Illinois	Clark					
9057186	Illinois	Coles					
9057188	Illinois	Coles					
9057192	Illinois	Montgomery					
9057195	Illinois	Morgan					
9068505	Illinois	Coles					
9068507	Illinois	Cumberland					
9068508	Illinois	Mercer					
9068509	Illinois	Ogle					
9068510	Illinois	Iroquois					
9068511	Illinois	Effingham					
9068512	Illinois	Clay					
9068513	Illinois	Pike					
9068525	Illinois	Cumberland					
9068526	Illinois	Coles					
9068527	Illinois	Maultrie					
9068528	Illinois	Coles					
9068529	Illinois	Vermilion					
9068562	Illinois	Adams					
9068565	Illinois	Jo Daviess					
9068585	Illinois	DeWitt					
9068586	Illinois	Vermilion					
9068570	Missouri	Lincoln					
9068573	Missouri	Chariton					
9068574	Missouri	Chariton					
9068575	Illinois	Johnson					

Tables #3 – #6 reflect the performance										nance	data for	all	accessions	inclu	ded ir	n this s	study f	or 199	5 - 19	999				
Study 291135.	iJ - As	sembly	and E	valuati	on of H	lazelnu	t, Coryl	us ame	ericana , W	alt.													Table #	3
												Hei	ight in Feet											
	1995																1997							
Accession R	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Tallest	Location		Accession	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Tallest	Location
9068562	1.2	2.5	1.4	1.3	1.5	1.7	2.9	4.0	2.1	4.0	R8		9068574	4.9	4.3	3.8	3.9	6.8	3.8	3.2	2.2	4.1	6.8	R5
9057188	2.6	4.0	1.6	3.1	2.6	2.0	2.3	2.2	2.6	4.0	R2		9068562	3.3	5.2	2.7	2.7	3.4	4.6	4.2	4.5	3.8	5.2	R2
9068573	3.6	2.7	3.2	1.5	3.0	2.2	2.5	3.2	2.7	3.6	R1		9057188	4.0	5.0	2.9	4.2	5.1	3.7	4.7	4.0	4.2	5.1	R5
9068508	2.0	3.0	2.2	2.3	1.3	1.0	1.6	1.5	1.9	3.0	R2		9057169	5.0	4.1	3.4	3.5	2.3	3.6	3.2	2.8	3.5	5.0	R1
9068574	1.7	2.0	1.7	3.0	2.3	2.2	1.3	2.0	2.0	3.0	R4		9057168	3.8	1.2	4.6	2.4	4.3	4.1	3.0	2.0	3.2	4.6	R3
9057169	2.9	1.6	1.4	1.7	0.8	1.0	1.4	1.6	1.6	2.9	R1		9068573	4.2	4.5	4.0	3.4	4.6	3.1	2.5	3.4	3.7	4.6	R4
9068507	1.7	1.0	2.6	Dead	Dead	2.0	1.3	1.8	1.7	2.6	R 3		9068528	4.5	4.2	Dead	4.0	3.1	3.2	3.0	2.8	3.5	4.5	R1
9068565	2.3	2.6	2.5	2.0	2.4	2.2	1.6	Dead	2.2	2.6	R2		9068510	3.1	2.0	3.0	4.5	4.3	2.8	2.0	4.0	3.2	4.5	R4
9068558	1.5	2.2	1.7	1.3	2.0	1.5	2.5	Dead	1.8	2.5	R7		9068558	3.6	Dead	2.4	3.5	2.8	4.3	3.9	Dead	3.4	4.3	R6
9057168	1.3	1.3	2.1	1.0	1.9	2.2	1.4	0.9	1.5	2.2	R6		9068507	2.3	Dead	3.5	Dead	Dead	4.0	2.0	2.3	2.8	4.0	R6
9068510	0.6	1.3	2.1	1.7	1.5	1.4	0.6	2.2	1.4	2.2	R8		9068565	2.7	3.3	2.3	3.0	4.0	2.8	1.6	Dead	2.8	4.0	R5
9068528	1.3	1.2	Dead	2.1	Dead	1.7	2.0	1.4	1.6	2.1	R4		9068525	3.3	2.3	4.0	3.6	Dead	3.1	Dead	3.2	2.8	4.0	R3
9068586 D	Dead	Dead	1.2	1.7	2.0	2.0	1.0	1.3	1.5	2.0	R5,6		9068508	3.2	3.6	3.9	3.3	3.4	2.8	3.5	3.3	3.4	3.9	R3
9068525	1.3	1.2	1.0	1.0	1.0	1.5	Dead	1.7	1.2	1.7	R8		9068586	Dead	Dead	2.9	2.6	3.7	3.0	2.0	3.1	2.9	3.1	R8
	_			1996													1998		_					
Accession R	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Tallest	Location	1	Accession	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Tallest	Location
0057400	0.0		0.0			0.0	0.4	0.0	0.4				0000500	4 7	7.0	4.0	1.0	5.4		4.0	5.4	1.0	7.0	Do
9057188	3.3	4.1	2.6	3.2	4.1	3.2	3.4	2.9	3.4	4.1	R2, 5		9068562	4.7	7.0	4.0	4.6	5.1	4.1	4.6	5.4	4.9	7.0	R2
9068562	2.0	3.8	1.7	1.0	2.7	2.8	3.2	4.1	2.7	3.8	R2		9068558	4.6	Dead	5.0	4.3	4.1	5.0	6.4	Dead	4.9	6.4	
9068586 D	Jead	Dead	2.9	2.6	3.7	3.0	2.0	2.0	2.7	3.7	R5		9057188	4.0	5.8	6.0	5.0	6.4	5.8	5.0	5.7	5.5	6.4	R5
9068573	2.0	3.7	3.4	2.1	3.6	3.0	2.8	3.3	3.1	3.7	RZ DC		9068573	6.3	4.9	5.2	5.0	6.3	5.0	6.0	4.0	5.3	6.3	K0 DC
9068574	3.2	2.3	2.4	3.7	3.5	2.6	2.7	2.0	2.8	3.5	KD DO		9068574	5.2	5.3	5.0	4.0	6.3	3.2	3.6	3.0	4.5	6.3	KD D4
9066506	2.3	3.4	3.3	2.0	1.7	1.4	2.5	2.3	2.4	3.4	RZ D2 5		9057169	5.9	5.Z	5.0	5.0	5.2	4.4	3.2	3.3	4.4	5.9	
9057108	2.3	1.3	J.J Dood	1.0	Dood	3.0	1.0	1.3	2.3	3.3	R3, 3 D4		9057108	5.0	1.0	Dood	3.0	5.4	3.1	4.2	3.0	4.2	5.4	
9008328	3.0	3.2	Deau	J.J Dood	Dead	2.0	2.0	2.1	2.0	3.3	R4 D2		9008528	2.4	4.4	Deau	4.2	4.0	4.0	4.0	3.2	4.3	5.4	
9000507	2.1	I.J Dood	3.2	Deau	Deau	2.9	2.0	T.5 Dood	2.2	3.2	RJ DG		9008510	3.9	4.0 Dood	4.0	4.0 Dood	Dood	5.0	4.0	4.0	4.3	5.4	
9000000	2.0	Deau 2 1	2.1	2.1	2.4	3.2	2.1		2.4	3.2			9008507	2.3	Deau	4.3	Deau 4.0	Dead	0.Z	Z.0	4.0	3.7	5.2	
9057109	2.9	3.1 2.0	2.3	2.1	1.0	2.2	2.1	Upead	2.4	2.1	R2		9000020	4.2 Dead	0.0 Dead	0.2	4.9	5 O	3.4	3 F	4.0	3.7	5.2	R5
9068510	2.3	2.9	2.3	2.3	2.0	2.3	1.4	2 7	2.3	2.9	R5.8		9000380	2 5	2 Peau	3.2	4.0	17	4.0	1.0	4.1	4.2	J.U	R/
9068525	1.0	2.2	1.7	2.2	2.7	2.3	Load	2.1	2.1	2.1	R/ 8		9000300	2.0	3.0 / 9	3.2	0.t- Dead	4.7	3.0	3.4	Dead	4.0	4.0	R2
3000323	۷.۷	1.0	1.7	2.0	1.0	1.9	Deau	2.0	2.0	2.0	114,0		9000303	2.9	4.0	5.2	Deau	4.4	4.0	5.4	Deau	5.0	4.0	114
├ ───┼─																								
Height Measu	ured in	Feet																						

Study 29I13	5J - As	sembly	and E	valuati	on of H	azelnu	t, Cory	lus am	ericana, W	/alt.													Table	#4
												Spread in F	eet											
				1995													1997							
Accession	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Best	Location		Accession	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8 A	Average	Best	Location
9057188	1.0	0.7	0.6	1.2	1.4	0.9	0.9	2.0	1.1	2.0	R8		9068562	3.3	6.5	2.3	2.3	3.8	3.7	3.5	4.2	3.7	6.5	R2
9068562	0.4	1.4	0.3	0.4	0.4	0.6	0.4	1.5	0.7	1.5	R8		9068573	4.1	3.5	4.3	5.1	5.0	3.6	2.5	2.9	3.9	5.1	R4
9068573	1.5	0.6	0.8	0.8	1.0	0.7	0.9	0.3	0.8	1.5	R1		9057188	3.6	5.0	4.2	4.7	3.7	4.5	4.0	4.4	4.3	5.0	R2
9068574	1.5	0.8	1.0	1.0	0.9	0.9	0.6	0.4	0.9	1.5	R1		9057169	3.6	5.0	4.2	4.7	3.7	4.5	4.0	4.4	4.3	5.0	R2
9068507	0.6	0.3	1.2	Dead	Dead	1.0	0.3	0.3	0.6	1.2	R3		9068574	4.9	4.4	4.6	3.7	4.5	3.2	3.0	2.0	3.8	4.9	R1
9068510	0.2	1.2	0.6	0.4	0.9	0.6	0.2	0.8	0.6	1.2	R2		9057168	4.4	1.5	4.2	2.0	4.2	3.3	2.5	2.0	3.0	4.4	R1
9057168	0.7	0.4	1.1	0.4	1.1	0.8	0.7	0.5	0.7	1.1	R3, 5		9068528	3.0	4.4	Dead	3.3	2.9	2.0	3.4	2.3	3.0	4.4	R2
9068558	0.3	0.3	0.5	0.7	0.9	1.1	0.7	Dead	0.6	1.1	R6		9068508	4.0	Dead	3.2	3.7	3.9	3.0	3.4	3.4	3.5	4.0	R1
9068586	Dead	Dead	0.4	0.6	1.0	0.9	0.1	0.2	0.5	1.0	R5		9068510	3.0	3.2	3.0	3.3	3.9	2.1	4.0	3.3	3.2	4.0	R7
9057169	1.0	0.8	0.6	0.4	0.2	0.5	0.7	0.4	0.6	1.0	R1		9068525	4.0	3.3	4.0	3.4	Dead	2.0	Dead	4.0	3.0	4.0	R1, 3, 8
9068508	0.5	0.4	0.4	0.8	0.6	0.9	0.8	0.8	0.7	0.9	R6		9068586	Dead	Dead	3.7	2.5	3.1	3.5	1.8	2.8	2.9	3.7	R3
9068565	0.6	0.4	0.9	0.8	0.5	0.7	0.7	Dead	0.7	0.9	R3		9068558	3.2	1.5	3.2	3.0	2.7	3.5	3.3	Dead	2.9	3.5	R6
9068528	0.8	0.6	Dead	0.6	Dead	0.5	0.6	0.3	0.6	0.8	R1		9068565	2.8	3.5	2.2	2.0	3.1	3.0	1.5	Dead	2.6	3.5	R2
9068525	0.4	0.4	0.4	0.3	0.3	0.3	Dead	0.6	0.4	0.6	R8		9068507	2.3	Dead	3.0	Dead	Dead	3.2	1.0	1.8	2.3	3.0	R3
				1996													1998							
Accession	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Best	Location		Accession	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8 /	Average	Best	Location
9057188	2.4	2.8	2.4	2.6	2.9	3.3	2.3	3.7	2.8	3.7	R8		9057188	4.6	7.5	5.4	5.4	7.7	7.0	4.8	6.0	6.1	4.6	R1
9068562	1.8	3.6	1.0	0.9	2.2	2.7	1.8	3.3	2.2	3.6	R2		9068508	4.4	5.8	4.4	5.2	4.8	5.4	4.6	4.9	4.9	4.4	R1, 3, 8
9068574	2.8	3.1	2.8	2.3	2.5	1.9	3.4	1.1	2.5	3.4	R 7		9068573	7.0	5.5	5.4	6.0	6.0	5.4	5.7	4.3	5.7	4.3	R8
9068573	3.1	2.7	2.3	2.4	3.0	2.2	2.4	1.2	2.4	3.1	R1		9068558	4.0	Dead	5.0	4.4	4.0	5.0	5.2	Dead	4.6	4.0	R1, 5
9057169	3.1	2.5	3.0	2.4	0.8	2.4	1.3	1.0	2.1	3.1	R1		9068528	4.3	4.6	Dead	4.0	4.4	3.4	3.8	4.0	4.1	3.4	R6
9057168	2.8	1.0	2.9	1.4	2.8	2.1	2.1	1.2	2.0	2.9	R3		9068525	3.4	4.8	5.7	5.2	Dead	3.4	Dead	4.6	3.9	3.4	R1,6
9068508	2.0	2.5	2.3	2.2	2.4	1.7	2.8	1.8	2.2	2.8	R7		9068562	4.2	7.4	4.0	3.3	5.0	5.5	5.1	5.8	5.0	3.3	R4
9068510	1.6	2.7	2.1	1.8	2.6	1.8	1.0	0.6	1.8	2.7	R2		9068510	3.4	3.2	4.0	4.2	4.8	3.5	3.5	4.0	3.8	3.2	R2
9068586	Dead	Dead	2.6	1.5	1.5	2.0	1.1	1.6	1.7	2.6	R3		9057169	4.8	4.6	5.3	5.2	2.8	4.3	3.5	4.0	4.3	2.8	R5
9068565	1.0	2.4	1.6	2.0	1.7	2.6	1.0	Dead	1.8	2.6	R6		9057168	4.0	2.6	6.0	3.4	7.0	5.0	4.6	3.2	4.5	2.6	R2
9068558	1.7	Dead	2.4	2.5	2.0	2.1	2.5	Dead	2.2	2.5	R 4,7		9068574	2.4	5.3	5.2	2.6	5.8	3.8	4.5	3.3	4.1	2.4	R1
9068528	2.2	2.3	Dead	2.2	1.7	2.4	2.4	1.8	2.1	2.4	R6, 7		9068565	4.0	4.6	3.0	Dead	5.0	4.2	2.3	Dead	3.9	2.3	R7
9068525	1.7	2.2	2.0	2.0	1.4	2.0	Dead	2.3	1.9	2.3	R8		9068586	Dead	Dead	4.9	4.0	3.8	3.5	2.1	4.1	3.7	2.1	R7
9068507	1.4	0.8	2.1	Dead	Dead	2.3	1.4	0.6	1.4	2.1	R3		9068507	2.7	Dead	5.0	Dead	Dead	6.0	1.3	4.6	3.9	1.3	R7
Width Measu	ured in	Feet																						

Study 29I13	5J - As	sembly	and E	valuati	on of H	azelnu	t, Cory	rlus am	ericana, V	Valt.											Table	#5
										Form												
			1995											1997								
Accession	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Best Location	Accession	Rep 1 I	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Best	Location
9057188	3.0	4.0	5.0	5.0	5.0	5.0	5.0	2.0	4.3	2.0 R8	9068562	5.0	3.0	5.0	7.0	7.0	4.0	8.0	3.0	5.3	3.0	R2,8
9068562	3.0	3.0	3.0	4.0	3.0	5.0	6.0	3.0	3.8	3.0 R1,2,3,5,8	9057168	5.0	8.0	4.0	8.0	3.0	5.0	6.0	7.0	5.8	3.0	R5
9057168	5.0	8.0	3.0	6.0	4.0	5.0	6.0	7.0	5.5	3.0 R3	9068558	4.0 [Dead	5.0	5.0	6.0	5.0	3.0	Dead	4.7	3.0	R7
9068558	7.0	8.0	5.0	7.0	3.0	4.0	7.0	Dead	5.9	3.0 R5	9068573	7.0	4.0	5.0	5.0	3.0	5.0	5.0	6.0	5.0	3.0	R5
9068508	5.0	7.0	8.0	5.0	6.0	3.0	5.0	6.0	5.6	3.0 R6	9057188	3.0	4.0	4.0	4.0	3.0	5.0	3.0	4.0	3.8	3.0	R1,5,7
9068573	3.0	4.0	5.0	5.0	4.0	5.0	4.0	6.0	4.5	3.0 R1	9068565	7.0	3.0	6.0	8.0	5.0	5.0	7.0	Dead	5.9	3.0	R2,8
9068507	5.0	7.0	4.0	Dead	Dead	5.0	6.0	6.0	5.5	4.0 R3	9068510	7.0	8.0	6.0	5.0	5.0	4.0	6.0	3.0	5.5	3.0	R8
9057169	4.0	5.0	5.0	8.0	6.0	6.0	6.0	6.0	5.8	4.0 R1	9068574	7.0	6.0	4.0	6.0	3.0	6.0	6.0	6.0	5.5	3.0	R8
9068510	8.0	5.0	4.0	5.0	8.0	8.0	5.0	6.0	6.1	4.0 R3,4,6	9068507	5.0 [Dead	4.0	5.0	Dead	4.0	8.0	6.0	5.3	4.0	R3,6
9068574	4.0	6.0	4.0	6.0	6.0	6.0	6.0	6.0	5.5	4.0 R1	9068586	Dead [Dead	6.0	7.0	4.0	5.0	6.0	5.0	5.5	4.0	R4
9068565	5.0	6.0	7.0	5.0	6.0	5.0	7.0	Dead	5.9	5.0 R1,4,6	9068508	7.0	5.0	5.0	5.0	5.0	7.0	6.0	4.0	5.5	4.0	R8
9068528	5.0	5.0	Dead	5.0	Dead	6.0	6.0	6.0	5.5	5.0 R1,2,4	9057169	4.0	4.0	6.0	4.0	7.0	5.0	5.0	8.0	5.4	4.0	R1,2,4
9068525	6.0	6.0	5.0	8.0	6.0	8.0	Dead	6.0	6.4	5.0 R3	9068528	4.0	4.0	Dead	5.0	6.0	4.0	6.0	6.0	5.0	4.0	R1,3,6
9068586	Dead	Dead	6.0	6.0	7.0	6.0	9.0	8.0	7.0	6.0 R3,4,6	9068525	5.0	6.0	7.0	8.0	Dead	8.0	Dead	5.0	6.4	5.0	R1,8
			1996											1998								
Accession	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Best Location	Accession	Rep 1 I	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Best	Location
9068573	3.0	4.0	4.0	6.0	4.0	4.0	4.0	5.0	4.3	3.0 R1	9068586	5.0	Dead	3.0	6.0	5.0	7.0	7.0	2.0	5.0	2.0	R8
9057188	3.0	5.0	5.0	4.0	4.0	4.0	4.0	5.0	4.3	3.0 R1	9068562	5.0	2.0	2.0	5.0	3.0	5.0	6.0	2.0	3.8	2.0	R2,3,8
9057169	3.0	5.0	6.0	5.0	4.0	5.0	5.0	5.0	4.8	3.0 R1	9068558	3.0	5.0	3.0	5.0	3.0	2.0	2.0	Dead	3.3	2.0	R6,7
9068507	4.0	5.0	4.0	Dead	Dead	4.0	4.0	5.0	4.3	4.0 R1,3,6,7	9068574	5.0	2.0	3.0	6.0	5.0	6.0	3.0	5.0	4.4	2.0	R2
9068586	Dead	Dead	5.0	7.0	4.0	5.0	5.0	4.0	5.0	4.0 R3,8	9057168	5.0	7.0	5.0	5.0	3.0	5.0	5.0	7.0	5.3	3.0	R5
9068562	5.0	5.0	4.0	7.0	5.0	4.0	5.0	4.0	4.9	4.0 R6,8	9068573	5.0	5.0	5.0	3.0	3.0	3.0	4.0	5.0	4.1	3.0	R4,5,6
9057168	6.0	6.0	5.0	6.0	4.0	4.0	6.0	6.0	5.4	4.0 R5,6	9057188	6.0	5.0	3.0	6.0	3.0	3.0	5.0	3.0	4.3	3.0	R3,5,6,8
9068558	4.0	Dead	6.0	5.0	6.0	5.0	5.0	Dead	5.2	4.0 R1	9068528	3.0	5.0	3.0	5.0	3.0	7.0	5.0	6.0	4.6	3.0	R1,3,5
9068565	5.0	4.0	6.0	7.0	5.0	6.0	5.0	Dead	5.4	4.0 R2	9068510	5.0	7.0	5.0	3.0	3.0	7.0	7.0	5.0	5.3	3.0	R4,5
9068528	5.0	4.0	Dead	5.0	5.0	5.0	6.0	5.0	5.0	4.0 R2	9068565	5.0	5.0	7.0	Dead	5.0	5.0	4.0	Dead	5.2	4.0	R7
9068510	5.0	7.0	6.0	4.0	5.0	4.0	4.0	5.0	5.0	4.0 R4,6,7	9068507	7.0	Dead	5.0	Dead	Dead	5.0	7.0	7.0	6.2	5.0	R3,6
9068574	5.0	7.0	4.0	5.0	4.0	5.0	5.0	5.0	5.0	4.0 R3,5	9068508	Dead	5.0	7.0	5.0	7.0	5.0	6.0	5.0	5.7	5.0	R2,4,6,8
9068508	7.0	5.0	5.0	5.0	5.0	7.0	5.0	5.0	5.5	5.0 R2,3,4,5,7,8	9057169	7.0	5.0	7.0	5.0	7.0	5.0	6.0	5.0	5.9	5.0	R2,4,6,8
9068525	5.0	5.0	5.0	6.0	6.0	6.0	Dead	6.0	5.6	5.0 R1,2,3,	9068525	5.0	7.0	5.0	7.0	Dead	7.0	Dead	6.0	6.0	5.0	R1,3,5
Rating: 1-E	xcellen	, 9=Poo	r																			

Study 29I13	5J - As	sembl	y and E	Evaluatio	on of Ha	azelnu	t, Cory	lus ame	ericana, W	/alt.													Table	#6
												E a la la	D											
												Fruit	Production											
			4007													4000								
• • • • • • • • • •	Den 4	D 0	1997 Dem 2	Den 4	D C .	.	D 7	D 0	A				A :	Dand	D 0	1998	Den 4	Den 5	Den C	D 7	D 0	A	Deet	Leastian
Accession	кер т	кер 2	кер з	кер 4	керэі	керо	кер /	кер в	Average	Best Loc	ation		Accession	керт	кер 2	кер з	кер 4	кер э	керь	кер /	кер в	Average	Best	Location
0057160	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	20 D1			0069507	FO	Dood	5.0	Dood	Dood	2.0	0.0	0.0	4.0	2.0	DC
9057169	2.0	3.0	9.0	9.0	0.0	0.0	0.0	0.0	D.0	2.0 RT			9066507	0.C	Dead	5.0	Dead	Deau	2.0	0.0	0.0	4.0	2.0	
9068562	0.0	7.0	0.0	0.0	0.0	3.0	9.0	7.0	0.5	3.0 R6			9068586	Dead	Dead	7.0	7.0	7.0	7.0	5.0	2.0	5.8	2.0	R8
9057168	9.0	9.0	3.0	0.0	7.0	9.0	0.0	0.0	7.4	3.0 R3			9068562	2.0	2.0	7.0	0.0	7.0	5.0	2.0	2.0	3.9	2.0	R1,2,7,8
9057188	3.0	7.0	Dead	9.0	9.0	9.0	7.0	7.0	7.3	3.0 R1,	R/		9057168	7.0	5.U Daad	2.0	0.0	2.0	5.0	7.0	0.0	4.7	2.0	R3,5
9068574	6.0	0.0	0.0	8.0	3.0	0.0	0.0	0.0	5.7	3.0 R5	Dr		9068558	2.0	Dead	5.0	2.0	0.0	5.0	5.0	Dead	3.8	2.0	R2,4
9068573	3.0	6.0	9.0	0.0	6.0	0.0	0.0	0.0	6.0	6.0 R2,	R5		9068508	5.0	5.0	2.0	5.0	2.0	5.0	2.0	2.0	3.5	2.0	R1,2,3,5,7,8
9068528	9.0	6.0	0.0	9.0	0.0	6.0	8.0	0.0	7.6	6.0 R2,6	6		9068573	7.0	2.0	2.0	5.0	2.0	7.0	5.0	7.0	4.6	2.0	R2,3,5
9068510	0.0	7.0	0.0	0.0	6.0	0.0	0.0	0.0	6.5	6.0 R5			9068565	7.0	7.0	2.0	7.0	0.0	2.0	5.0	0.0	5.0	2.0	R3,6
9068507	0.0	Dead	7.0	Dead	Dead	0.0	0.0	0.0	7.0	7.0 R3			9057169	7.0	7.0	2.0	7.0	0.0	2.0	5.0	0.0	5.0	2.0	R3,6
9068565	8.0	0.0	9.0	7.0	9.0	9.0	0.0	Dead	8.4	7.0 R4			9068528	2.0	2.0	Dead	5.0	2.0	5.0	5.0	2.0	3.3	2.0	R1,2,5,8
9068508	9.0	Dead	9.0	0.0	9.0	0.0	9.0	8.0	8.8	8.0 R8	D -7		9068510	7.0	2.0	7.0	7.0	7.0	5.0	0.0	5.0	5.7	2.0	R2
9068558	9.0	Dead	0.0	0.0	0.0	0.0	9.0	Dead	9.0	9.0 R1,	R7		9068574	5.0	7.0	7.0	2.0	2.0	5.0	5.0	0.0	4.7	2.0	R4,5
9068525	0.0	0.0	0.0	0.0	0.0	0.0	Dead	9.0	9.0	9.0 R8			9068525	5.0	5.0	7.0	7.0	2.0	7.0	Dead	2.0	5.0	2.0	R5,8
9068586	Dead	Dead	0.0	0.0	0.0	0.0	0.0	0.0	0.0				9057188	7.0	7.0	5.0	7.0	5.0	0.0	0.0	Dead	6.2	5.0	R3,5
4.11	i D		0.0	E 11 D									4	i David					-					
1=Heavy Fr	lit Prod	luction;	9=Poor	Fruit Pr	oductior	1							1=Heavy Fru	lit Prod	uction;	9=Poor	Fruit Pi	oductio	n					
												Insec	t/Disease											
			1997				1	1								1998								
Accession	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5 H	Rep 6	Rep 7	Rep 8	Average	Best Loc	ation		Accession	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Best	Location
						_											-		_	-				
9068586	Dead	Dead	4.0	3.0	4.0	4.0	5.0	4.0	4.0	2.0 R2			9068507	4.0	Dead	6.0	Dead	Dead	2.0	9.0	3.0	4.8	2.0	R6
9068562	3.0	2.0	4.0	5.0	4.0	2.0	3.0	2.0	3.1	2.0 R2			9068586	Dead	Dead	4.0	3.0	3.0	3.0	4.0	2.0	3.2	2.0	R8
9057168	3.0	4.0	3.0	3.0	2.0	3.0	4.0	4.0	3.3	2.0 R5			9057168	2.0	4.0	3.0	4.0	2.0	2.0	6.0	3.0	3.3	2.0	R1,5,6
9068558	2.0	Dead	3.0	5.0	7.0	3.0	3.0	Dead	3.8	2.0 R1,3	3,6		9068558	3.0	Dead	4.0	3.0	3.0	2.0	2.0	Dead	2.8	2.0	R6,7
9068508	3.0	3.0	3.0	3.0	2.0	3.0	4.0	5.0	3.3	2.0 R5			9068573	5.0	3.0	2.0	3.0	2.0	3.0	3.0	3.0	3.0	2.0	R5
9068573	8.0	3.0	3.0	2.0	2.0	3.0	3.0	3.0	3.4	2.0 R4,	5		9057188	7.0	3.0	3.0	2.0	3.0	2.0	2.0	4.0	3.3	2.0	R4,6,7
9057188	2.0	2.0	2.0	4.0	2.0	6.0	2.0	2.0	2.8	2.0 R1,2	2,3,5,7,8		9057169	2.0	4.0	4.0	3.0	2.0	3.0	2.0	3.0	2.9	2.0	R1,5,7
9068565	3.0	2.0	7.0	6.0	3.0	5.0	4.0	5.0	4.4	2.0 R2			9068528	3.0	4.0	Dead	3.0	3.0	3.0	2.0	2.0	2.9	2.0	R7,8
9057169	2.0	2.0	6.0	2.0	3.0	2.0	3.0	7.0	3.4	2.0 R1,2	2,4,6		9068510	6.0	4.0	3.0	3.0	5.0	3.0	3.0	2.0	3.6	2.0	R8
9068510	4.0	4.0	4.0	3.0	4.0	5.0	2.0	2.0	3.5	2.0 R7,8	8		9068574	3.0	6.0	4.0	4.0	3.0	2.0	3.0	3.0	3.5	2.0	R6
9068574	3.0	3.0	5.0	4.0	2.0	5.0	3.0	3.0	3.5	2.0 R5			9068562	3.0	3.0	5.0	4.0	3.0	4.0	3.0	3.0	3.5	3.0	R1,2,5,7,8
9068525	2.0	3.0	2.0	7.0	Dead	3.0	Dead	2.0	3.2	2.0 R 1,	,3,8		9068508	4.0	4.0	3.0	3.0	3.0	4.0	3.0	4.0	3.5	3.0	R3,4,5,7
9068507	3.0	Dead	3.0	Dead	Dead	3.0	4.0	4.0	3.4	3.0 R1.3	3,6		9068565	7.0	3.0	4.0	6.0	3.0	4.0	3.0	Dead	4.3	3.0	R2,5,7
9068528	3.0	3.0	Dead	3.0	3.0	4.0	4.0	4.0	3.4	3.0 R1.2	2,4,5		9068525	3.0	4.0	3.0	3.0	Dead	3.0	Dead	3.0	3.2	3.0	R1,3,4,6,8
1=No Insect	/Diseas	e; 9=S	evere In	sect/Dis	ease								1=No Insect	Diseas	e; 9=Se	vere Ins	sect/Dis	sease						

Study: 29A137O

Study Title: Wetland/Riparian Propagation, Establishment, and Demonstration

Study Leader: Cordsiemon, R.; J. Kaiser

Introduction:

There is a growing interest in wetland restoration throughout the conservation community. Government programs, such as USDA-Wetland Reserve Program, the USFWS Partners for Wildlife, Wetland Restoration Program, the Missouri Department of Conservation (MDC) Private Lands Wetland Program, and private programs sponsored by Ducks Unlimited and Waterfowl USA have all focused on the need for a suitable supply of plants in wetland restoration efforts.

The increasing use of wetlands as filters in agricultural waste management and the control of non-point source pollution also indicate the need for a greater knowledge base for proper plant selection.

Understanding wetland ecosystems will require improved and increased quality of information on wetland plants and ecosystems. Innovative approaches to field management and additional training of personnel in wetland conservation and management will also be needed. Intra- and interagency coordination and information exchange among state and federal agencies will help standardize monitoring and management strategies.

Problem:

Information is largely unavailable related to the propagation, adaptation, and potential use of many of the wetland species found in the Midwest. Wetland plants of interest often have multiuse potential providing wildlife benefits, shoreline stabilization, water quality improvement, and/or aesthetic benefits. They are also needed to fulfill conservation needs resulting from increased demands in wetland development and water treatment. The ability to document this information or to observe the interaction of selected species is restricted by the availability of plants and plant communities especially under controlled conditions. Proper use of species to address conservation problems is limited by specific knowledge and technology for using these plants.

Objectives:

The objectives of the Elsberry PMC wetland study are to:

- 1. Provide a demonstration of various plant materials for wetland conservation and aesthetic values.
- 2. Provide an area for interagency research on the biology of selected wetland plants.

Discussion:

1994 – 1999

A large wetland was constructed in Field #4 on the Plant Materials Center in July 1994. Selected plant materials were planted with the intent of evaluating these plants for flood tolerance. The PMC has been working with a flood tolerant switchgrass since 1991. As a result, it was placed in this wetland for further testing along with six accessions of eastern gamagrass which were

found growing in wet conditions: accessions 9078842, 9078844 and 9078843 were collected in Atchison County, Missouri, 9078845 collected in Holt County, Missouri, 9078840 collected in Chariton County, Missouri and 9078846 was collected in Clinton County, Missouri. Local collections of bermudagrass and swamp milkweed were planted in the spring of 1998. Two collections of prairie cordgrass (Cuivre Island and Lost Creek) were also planted in this wetland. The switchgrass, eastern gamagrass and the prairie cordgrass were planted in 1997. All plants in this wetland were given time to establish prior to the beginning of the flooding operation which took place in October 1999. The wetland was flooded to a depth of 40 inches. This water remained in the wetland until early spring of 2000. Once the water is drained out of the wetland and enough time elapses for plant regrowth, evaluations on survival will take place.

The following Tables #1, #2, #3 and #4 reflect the plants' performance.

2000

Water was drained out of the wetland in segments because the drainpipe was not functioning properly. This operation started on March 21, 2000 and ended on March 30, 2000. The prairie cordgrass were the first plants to begin green up (March 30) followed by the bermudagrass planting. 'Cave-In-Rock' switchgrass sod (23 plugs) was planted on the west side of the flood tolerant switchgrass (sod) for comparison with other plant species in the wetland. On June 1, 2000, flood tolerant switchgrass was seeded in a plot 50 feet long and three feet wide. On August 9 an evaluation of the seeded flood tolerant switchgrass revealed no germination had taken place in the plot seeded on June 1. Poor germination has been experienced with this selection since 1998. There was no flooding of the wetland this fall to allow the Cave-In-Rock to get fully established. The following is a listing of percent survival of plants included in this study. The best performing plants in this study are Cuivre Island and Lost Creek collection of *Spartina pectinata, Tripsacum dactyloides* accessions 9078843, 9078845, and 'Pete'; and *Cynodon dactylon*. The following tables reflect the different plants' performance before and after a flooding event.

2001

The objective of the flooding was to parallel flood events that were occurring on the Mississippi River during that same time event. Began pumping turbid water into wetland on April 24, 2001 to flood the wetland to a depth of approximately 32 inches of water, which was achieved by April 27, 2001. The water was allowed to remain in the wetland for seven days. Water was then allowed to drain out of the wetland starting on April 30, 2001. All the water was drained out of the wetland by May 1, 2001. On May 8 evaluations were conducted to document re-growth after flooding. Again on June 11 a quick flooding scenario was conducted in the wetland to simulate a flash flooding event, similar to what was occurring on the Mississippi River. Thirty-four inches of turbid water was pumped into the wetland. The PMC began draining the water out of the wetland on June 15. The process of draining the water out of the wetland was completed on June 19.

The following is a listing of plant vigor ratings for each accession/variety included in this study. Plant evaluations for vigor were taken on June 21 and 26, 2001.

2002-2003

Plant performance evaluations were performed on April 24, 2002 and May 27, 2003. The wetland was not burned in 2002; however it was burned in 2003 and in previous years to remove accumulated vegetation. Flooding of the wetland began on April 29, 2002 and June 10, 2003. A total of 45 inches of water was pumped into the wetland (2002) and 42 inches in 2003 before the de-watering process began. All water was drained out of the wetland by May 17, 2002 and July 7, 2003. The plants were under water for 17 days in 2002 and 22 days in 2003. Once all the water was drained out of the wetland, follow-up evaluations took place on June 2002 and August 2003. The flood event in 2003 was to inundate the site for more than 20 days to test the switchgrass, *Panicum virgatum*. Table #4 reflects the plant performances during 2003 before and after the flood event. Previous years' plant performances can be found on Tables #1 - #3.

2003-2004

Switchgrass, *Panicum virgatum*, accessions 9062193, 9062235, 9083170 were compared to Cave-In-Rock. The percent was 76%, 77%, and 78% survival compared to Cave-In-Rock at 65%. The composite 9083170 Flood Tolerant switchgrass is the next generation of the three accessions 9062193, 9062235, and 9083170 which did perform from seed that was planted in 2000. Vigor was slow with only 20% stand the first growing season. Flood events occurred in 2001, 2002, and 2003 with the stand increasing in density to 85% by spring of 2004.

Prairie cordgrass, *Spartina pectina*, accessions 9083166 Cuivre Island and 9083167 Lost Creek planted on the 3'X 3' grid was a solid block in two growing seasons. The cordgrass planted on the 10'x 10' grid was a solid block in six growing seasons. The vegetative spread averaged 1.5 feet during a growing season. The flooding events did enhance the plants' ability to flourish and produce seed that spread seedlings in the wetland cell.

Virginia wildrye, *Elymus virginicus*, accession 9083169 Cuivre River was vegetatively transplanted in 2001. In the flood event of early spring 2002 there was 100% survival of the plants; however the flood event of 2003 late spring to early summer did result in a decline in the plants with 47% survival by spring 2004. Many seedlings were observed that came from seed in the soil that developed fall 2003 and spring 2004.

2004

The wetland cell was not burned and there was no flooding in 2004. A new block was added to the wetland for evaluation. The block contained 16 plants of low growing switchgrass, *Panicum virgatum*, erect big bluestem, and short growing big bluestem, *Andropogon gerardii*. 'Cave-In-Rock' switchgrass was added to the block as a check. The plants were transplanted from plugs grown in the greenhouse in order to get good established plants. They were evaluated for survival in October and only the low growing and 'Cave-in-Rock' switchgrasses were needed; three and four plants respectfully. The block will be flooded in late April to June of 2005 and the entire wetland planting will be evaluated.

2005

In 2005 there was no activity with this study. The warm season grasses, erect big bluestem, 9083274 and short-growing known as Refuge, 9078832, and low growing switchgrass, 9083172, and Cave-in-Rock, 469228, were allowed to establish. Then control of broadleaf weeds was addressed. The flooding sequences are again planned for 2006, but with lack of help may be put off indefinitely.

2006

A re-evaluation of this study was done and a determination was made to evaluate the warm season grasses and other plants in the wetland cell if time and labor is available. A survival evaluation was done on the warm season grasses (bluestems and switchgrasses). Those plants that have died were replaced.

2007

The wetland cell was mowed and the eastern side of the cell has been cleaned and made available for new specie evaluations. There were no flooding sequences in 2007 and plants that are in the wetland cell have been maintained. Plans are to flood the cell in 2008 and simulate the flooding sequence of the Mississippi River in 2007. Evaluations will be taken for survival and regrowth after the flooding event. Potentially new flood tolerant species may be added to the study in 2008.

Study 29A1370 - Wetland Species in Wetland at Elsberry PMC							Table #1
		-					
Plugs Planted	5-2-97 (Ea	astern Gan	nagrass)				
2002 Data	Began Fl	ooding on	4/24/02				
2003 Data	Began Fl	ooding on	6-10-03				
	_						
	Total #	Active	Weed	Disease/	Developed		
	Planted	Growing	Comp.	Insect	Seed Head	Vigor	Ave. Ht.
Eastern Gama	grass 907	8840 Char	iton, Miss	ouri. 5' spacing	g, planted 5/2	97.	
						25 plants	planted
Dates Evaluate	ed						
7/9/1998	20	20	severe	moderate	yes	good	2'5"
9/29/1999	20	20	moderate	light rust	yes	good/exc	3'5"
5/11/2000	19	17	moderate	moderate	none	poor	6"
9/19/2000	13	13	mod/sev	light rust	none	good	2'5"
6/26/2001	20	20	light	none	yes	good	3'4"
4/24/02 (BFE)	18	18	light	none	none	good	8"
6/17/02 (AFE)	15	15	light	none	yes	exc	2'
5/27/03 (BFE)	15	15	light	none	yes	exc.	2'
8/5/03 (AFE)	*						
Percent surviv	ving as of	6/17/02 wa	s 75%				
Eastern Gama	grass 907	28844 Atch	ison, Miss	ouri. 7' spacin	g, planted 5/2	/97.	
						18 plants	planted
Dates Evaluate	ed						
7/9/1998	12	12	severe	moderate rust	yes	poor	2'5"
9/29/1999	12	12	moderate	moderate rust	yes	fair	2'5"
5/11/2000	12	10	moderate	moderate	none	poor	6"
9/19/2000	12	13	severe	light rust	Yes	fair	2'
6/26/2001	12	9	light	light rust	yes	fair	2'10"
4/24/02 (BFE)	9	9	light	none	none	fair	7"
6/17/02 (AFE)	9	9	light	none	none	exc.	2'
5/27/03 (BFE)	*						
8/5/03 (AFE)	*						
Percent surviv	ving as of	6/17/02 wa	s 75%				
Eastern Gama	grass 907	28842 Atch	ison, Miss	ouri. 15' spaci	ng, planted 5/	2/97.	
						9 plants p	lanted
Dates Evaluate	ed						
7/9/1998	5	5	severe	none	yes	tair	2'
9/29/1999	5	5	severe	none	yes	tair	2'5"
5/11/2000	5	3		none	0	poor	6"
9/19/2000	5	4	severe	none	none	fair	1'8"
6/26/2001	3	3	light	none	yes	fair	2'2"
4/24/02 (BFE)	4	4	light	none	none	tair	7"
6/17/02 (AFE)	4	4	light	none	none	exc.	2'
5/27/03 (BFE)	*						
8/5/03 (AFE)	*						
Percent surviv	ving as of	6/17/02 wa	s 44%				
Rating for Vigo	r: 1=Exce	llent; 9=Poo	or				
Rating for Wee	d Competi	tion and Dis	s/Insect: 1	=Excellent; 9=S	evere		
* = Cannot det	ermine ro	ws of plan	ts				

Study 29A1370) - Wetlan	d Species	in Wetlan	d at Elsberry Pl	NC	Table #1-c	continued
	Total #	Active	Weed	Disease/	Developed		
	Planted	Growing	Comp.	Insect	Seed Head	Vigor	Ave. Ht.
Eastern Gama	grass 907	8846 Clint	on, Misso	uri. 8' spacing,	total planted	5/2/97.	
						16 plants	planted
Dates Evaluate	ed						
7/9/1998	11	11	severe	none	yes	good	2'
9/29/1999	11	11	moderate	none	yes	good	2'5"
5/11/2000	8	8	moderate	none	none	poor	7"
9/19/2000	10	10	severe	light rust	none	fair	2'
6/26/2001	8	8	light	light rust	yes	good	3'2"
4/24/02 (BFE)	10	10	light	none	none	good	8"
6/17/02 (AFE)	10	10	light	none	yes	exc.	2'6"
5/27/03 (BFE)	*						
8/5/03 (AFE)	*						
Percent surviv	ing as of	6/17/02 wa	s 63%				
Eastern Gama	grass 907	28843 Atch	ison, Miss	ouri. 15' spaci	ng, planted 5/	2/97.	
						9 plants p	lanted
Dates Evaluate	ed						
7/9/1998	13	13	severe	none	yes	poor	2'5"
9/29/1999	13	13	moderate	none	yes	moderate	3'
5/11/2000	5	5		none	none	poor	7"
9/19/2000	10	10	severe	slight rust	none	fair	2'
6/26/2001	4	4	light	light	none	fair	2'6"
4/24/02 (BFE)	4	4	light	light	none	fair	8"
6/17/02 (AFE)	4	4	light	light	none	good	2'
5/27/03 (BFE)	*						
8/5/03 (AFE)	*						
Percent surviv	ing as of	6/17/02 wa	s 44%				
Eastern Gama	grass 907	'8845 Holt,	Missouri.	8' spacing, pla	nted 5/2/97.		
						16 plants	planted
Dates Evaluate	ed						
7/9/1998	12	12	severe	none	yes	good	3'5"
9/29/1999	12	12	severe	none	yes	good	3'
5/22/2000	12	9	severe	none	none		8"
9/19/2000	16	16	severe	slight rust	yes	good	2'5"
6/26/2001	10	10	light	none	yes	good	3'2"
4/24/02 (BFE)	10	10	light	none	none	good	8"
6/17/02 (AFE)	10	10	light	none	none	exc.	2'6"
5/27/03 (BFE)	*						
8/5/03 (AFE)	*						
Percent surviv	ing as of	6/17/02 wa	s 63%				
Rating for Vigor	: 1=Excel	llent; 9=Poo	or				
Rating for Wee	d Competi	tion and Dis	s/Insect: 1	=Excellent; 9=S	evere		
BFE - Before F	looding Ev	rent					
AFE - After Floo	oding Ever	nt					
* = Cannot det	ermine ro	ws of plan	ts				

Study 29A1370) - Wetlan	d Species	in Wetlan	d at Elsberry PM	AC	Table #1-continued	
Eastern Gama	grass 907	'8845 Holt,	Missouri	8' spacing, plan	ted 5/2/97		
	Total	Active	Weed	Disease/	Developed		
	Plant #	Growing	Comp.	Insect	Seed Head	Vigor	Ave. Ht.
Pete Eastern G	amagras	s 5' spacin	ig, 25 tota	l planted 5/2/97.	П		
						25 plants	planted
Dates Evaluate	ed						
7/9/1998	21	21	severe	light	21/21	good	3' 5"
9/29/1999	21	21	severe	light	21/21	good	3'
5/11/2000	21	20		light		fair	10"
9/19/2000	21	21	severe	light rust	17/21	exc.	3'
6/26/2001	19	19	light	none	none	exc.	4'4"
4/24/02 (BFE)	19	19	light	none	none	exc.	8"
6/17/02 (AFE)	14	14	light	none	yes	exc.	2'
5/27/03 (BFE)	*				-		
8/5/03 (AFE)	*						
,							
Percent surviv	ing as of	6/17/02 wa	s 56%				
	_ U						
BFE - Before F	loodina Ev	/ent					
AFF - After Floo	odina Ever	nt					
Rating for Vigo	. 1=Exce	llent: 9=Poo	ר זר				
Rating for Wee	d Competi	tion and Di	s/Insect: 1	=Excellent: 9=Se	evere		
* = Cannot det	ermine ro	ws of plan	ts				
				-			
				-			
.							

Study 29A1370 - Wetland	Elsberry P	МС		Table #2				
Plugs Planted 6-24-97 (Fl	ood Toleran	Switchgra	iss)					
2002 Data: Flood Event f	rom 4/29/02	to 5/17/02						
2003 Data: Flooding beg	an 6/10/03							
% Cover	Active	Weed	Disease/	Developed				
Plant #	Growing	Comp.	Insect	Seed Head	Vigor	Ave. Ht.		
Switchgrass 9062213 3'	spacing, 41	total plante	ed (plugs) (6/24/97.				
Dates Evaluated								
7/9/1998	35 plants	moderate	none	all plants	poor/fair	2'		
9/29/1999	35 plants	moderate	none	all plants	fair	2' 5"		
4/26/2000	35 plants	moderate	none	none	exc.	5" regrow	/th	
9/19/2000 85% row	35 plants	moderate	none	all plants	exc.	4'5"		
6/26/2001	33 plants	light	none	none	exc.	3' 4"		
4/24/02 (BFE)	31 plants	light	none	none	good	6"		
6/17/02 (AFE)	31plants	light	none	none	exc.	2' 6"		
5/27/03 (BFE)	32 plants	light	none	none	exc.	1'7"		
8/5/03 (AFE	32 plants	light	none	none	good	2' 5"		
Percent surviving as of 6	17/02 was 7	6%						
Switchgrass 9062235 4's	spacing, 31 t	otal plante	d (plugs) 6	/24/97.				
Dates Evaluated								
7/9/1998	22 plants	moderate	none	all plants	poor/fair	5' 5"		
9/29/1999	22 plants	moderate	none	all plants	fair	5'		
4/26/2000	26 plants	moderate	none	none	exc.	6' 5"		
9/19/2000	26 plants	moderate	none	All plants	exc.	4' 5"		
6/26/2001	24 plants	light	none	none	exc.	2' 9"		
4/24/02 (BFE)	20 plants	light	none	none	good	6"		
6/17/02 (AFE)	20 plants	light	none	none	good	2'		
5/27/03 (BFE)	23 plants	light	none	none	exc.	1'8"		
8/5/03 (AFE)	23 plants	light	none	none	good	2'9"		
Percent surviving as of 6	17/02 was 6	5%						
								-
Switchgrass 9062193 5's	spacing; 25 t	otal plante	d (plugs) 6	5/24/97.				
Detec Evelueted								
	17 planta	modorato	2020	all planta	foir	2' 5"		
0/20/1000	17 plants	moderate	none	all plants	and	3 5		
4/26/2000	21 plants	moderate	none	all plants	guuu	4 5		
9/19/2000	21 plants	moderate	none	all plants		5'		
6/26/2001	21 plants	light	none	none		3' 6"		
4/24/02 (BEE)	16 plants	light	none	none	dood	5"		
6/17/02 (AFF)	14 plants	light	none	none	exc	2' 6"		
5/27/03 (BFF)	19 plants	light	none	none	exc.	1'5"		
8/5/03 (AFF)	19 plants	light	none	none	aood	2'8"		
					3000			
Percent surviving as of 6	/17/02 was 5	6%						
	1102 Was J							
BFF - Before Flooding Fy								
AFE - After Flooding Even								
* = Cannot determine row	s of plants							
		1	1	1	1	1	L	L

Study 29A1370 - Wetland Species in Wetland at			Vetland at	Elsberry P	МС	Tab		
	% Cover/ Plant #	Active Growing	Weed Comp.	Disease/ Insect	Developed Seed Head	Vigor	Ave. Ht.	
Evaluation Dates	:	4/24/02 & 6	6/17/02					
Cave-In-Rock S	witchgras	s 23 plants p	lanted.					
Dates Evaluatio	n							
4/18/2000	23	23	severe	none	none	good	5"	
9/19/2000	9	growing weak	severe	none	yes	poor	2'	
6/21/2001	21	21	liaht	liaht	none	aood	2' 6"	
4/24/02 (BFE)	10	10	liaht	none	none	aood	8"	
6/17/02 (AFE)	12	12	light	liaht	none	aood	2' 6"	
5/27/03 (BFE)	16	16	light	light	none	aood	1'5"	
8/5/03 (AFE)	16	16	light	light	none	fair	2' 6"	
Percent survivir	ng as of 6/	17/02 was 52	2%					
Flood Tolerant S	Switchgra	ss, seeded 5	0' row plus	3' wide.				<u> </u>
Dates Evaluated	1					1		+1
Seeded 6/1/00 50)' x 40" plo	t0038 ac.	Rate 6# PL	S/ac.				
		-						
9/19/2000	15%-	fair	moderate	none	6/5 5%	good	8"	
	20% of							
	50' row							
6/21/2001	22	22	light	none	none	exc.	3'	
4/24/02 (BFE)	16	16	light	none	none	good	5"	
6/17/02 (AFE)	33	33	light	none	none	good	1' 6"	
5/27/03 (BFE)	45%	45%	light	none	none	good	1'6"	
8/5/03 (AFE)	45%	45%	light	none	none	good	2' 5"	
Flood tolerant s	witchoras	s pluas bloc	k. 63 plan	ts planted	5/25/99			
	Witerigras	s plugs bloc			5/25/33.			
Dates Evaluated								
4/26/2000	92%	58 plants	none	none	6/5 100%	exc.	6' 5"	
9/19/2000	95%	95%	none	none	6/5 100%	exc.	4' 5"	
6/21/2001	80%	66 plants	light	none	none	exc.	3'	
4/24/02 (BFE)	85%	66 plants	light	none	none	good	6"	
6/17/02 (AFE)	85%	66 plants	light	none	none	good	2'	
5/27/03 (BFE)	85%	66 plants	light	none	none	good	1' 3"	
8/5/03 (AFE)	85%	66 plants	light	none	none	fair	2' 2"	
Bermudagrass I	olock plug	s, planted 5	/25/99.					╡───┤
Dates Evaluated								
9/28/1999	35%	100%	light	none	50%	exc.	3"	
4/26/2000		100%	light	none	none	exc.	3-5"	
9/19/2000	100%	100%	light	none	100%	exc.	9"	
6/21/2001	100%	100%	none	none	none	exc.	6"	
4/24/02 (BFE)	100%	50%	none	none	none	good	2"	
6/17/02 (AFE)	90%	90%	none	none	none	good	3"	
5/27/03 (BFE)	100%	100%	none	none	none	fair	1"	
8/5/03 (ÀFE)	100%	100%	none	none	none	fair	1"	
BFE = Before FI	ood Event	t				<u> </u>		
AFE = After Floo	od Event							

Study 29A1370 - Wetland Species in Wetland at Elsberry PMC		Tabl	e #2 - con	tinued					
	% Cover/	Active	Weed	Disease/	Developed				
	Plant #	Growing	Comp.	Insect	Seed Head	Vigor	Ave. Ht.		
Swamp milkwee	d block 8	rows plugs,	1' center p	lanted 5/2	5/99.				
Dates Evaluated									
9/28/99	8 plants		severe fox	ail none	none	poor	9"		
5/11/2000	46 plants		moderate	none	none	poor	8"		
9/19/2000	30%	30%	moderate	none	30%	fair	1'2"		
6/26/2001	54 Na alaata	54	light	none	none	good	2.2		
4/24/02 (BFE)			avy muich	cover of we	eas	aood	41		
0/17/02 (AFE)	41	41	light	none	none	good	1'2"		
3/2//03 (DFE)	50	50	light	none	none	goou fair	1 3		
0/3/03 (AFE)	50	50	nynt	none	none	Iall	1 1		
Cardinal flower	nlanted 8	plants on 4	/17/01 and	on 5/1/01					
Cardinal nower,	planteu o	piants on 4/	17701 anu	01 5/ 1/01					
4/24/2001	BEE		8	none	8	aood	2"		
5/8/2001	AFE		8	none	8	aood	2"		
6/11/2001	BFF		16	none	16	aood	10"		
6/26/2001	0.2	7	moderate	none	none	poor	10"		
4/24/02 (BFE)		19	none	none	none	exc.	1'1"		
6/17/02 (AFE)		19	none	none	none	good	2'		
5/27/03 (BFE)		11	light	none	none	good	7"		
8/5/03 (AFE)		8	light	none	none	poor	1'6"		
			-			•			
BFE - Before Flo	oding Ev	ent							
AFE - After Floo	ding Ever	nt							

Study 29A1370 - Wetland Species		in Wetland	at Elsber	ry PMC		Table #3			
Prairie Cordg	rass	-							
2002 Data: F	ood Evei	nt from 4/29/	02 to 5/17/0)2					
2003 Data: Fl	ooding E	Began 6/10/0	3						
	-	Active		1	1	1	Ave. Ht.	Average	
	Total #	Growing	Weed	Disease/	Developed		Seed	Forage	
	Planted	Spreading	Comp.	Insect	Seed Head	Vigor	Head	Height	
						_	10' x 10'	_	
Prairie Cordg	rass Coll	ection, plant	ted 9/29/97				3 2 1		
East —	•						6 5 4		
							9 8 7		
7/9/1998	9	6" average	severe	none	NA	exc.	-	-	
8/1/1999	9	30" average	moderate	none	9/9	good	-	-	
9/19/2000	9	4'.5" ave.	none	none	9/9	exc.	6'.5"	5'.0 forage	
6/21/2001	9	6'	light	none	none	exc.	6'	45"	
4/24/02 (BFE)	9	7.5'	light	none	none	exc.	none	17"	
6/17/02 (AFE)	9	8'	light	none	none	exc.	none	36"	
5/27/03 (BFE)	9	8.5'	light	none	none	exc.	none	30"	
8/5/03 (AFE)	9	8.5'	light	none	none	exc.	6.5'	40"	
Percent surviv	ing as of (6/17/02 was '	100%						
Cuivre Island	Prairie C	ordgrass Co	ollection, p	anted 5/1	5/98 🔺		3' x 3'		
		_			North		4 3 2 1		
							8 7 6 5		
7/9/1998	8	5.'5"	severe	none	6 plants	good/exc.	4'.0"	4'.0"	
5/25/1999	8	1'.5" each	moderate	none	none	exc.	none		
		direction							
Lost Creek Pr	airie Cor	dgrass Colle	ection, plar	ted 5/15/9	8		3'x3'		
							12 11 10 9		
							16 15 14 13		
7/9/1998	8	6"	severe	none	4 plants	good/exc.	4'.0"	4'.0"	
					•	0			
5/25/1999	8	1'.5" each	moderate	none	none	exc.	none		
		direction							
9/19/2000									
Total block for	both colle	ections	none	none	35%	exc.	6' 0"	5'0"	
								More lodgir	ng Cuivre
								Island colle	ction
9/19/2000									
14' x 13'5" tota	I spread	of blocks	none	none	35%	exc.	6'.0"	More lodgir	ng Cuivre
								Island colle	ction
9/19/2000									
3' x 3' block is	filled in to	otal							
prairie cordg	rass		none	none	35%	exc.	6'.0"	More lodgir	ng Cuivre
0/00/2001								Island colle	ction
6/26/2001		solid	none	none	none	exc.	6,0"	50"	
4/24/02 (BFE)		80%	none	none	none	exc,	15"		
6/1//02 (AFE)		SOUD DIOCK	none	none	none	exc.	48"	20"	
5/2//U3 (BFE)		SOLID DIOCK	none	none	none	exc.	HONE	29 40"	
0/3/03 (AFE)		SOIIU DIOCK	none	none	none	EXC.	C.0	42	
DEE Defere Fleeding Event									
AFE - Alter FI	oouing E	.vent							

						Table #4
Genus/Species	Common Name	Accession	Vigor 1	Rating	Date of	Rating
		No.	BFE	AFE	BFE	AFE
Tripsacum dactyloides	Eastern gamagrass	9098840	*	*	5/27/03	8/5/03
Tripsacum dactyloides	Eastern gamagrass	9078844	*	*	5/27/03	8/5/03
Tripsacum dactyloides	Eastern gamagrass	9078842	*	*	5/27/03	8/5/03
Tripsacum dactyloides	Eastern gamagrass	9078846	*	*	5/27/03	8/5/03
Tripsacum dactyloides	Eastern gamagrass	9078843	*	*	5/27/03	8/5/03
Tripsacum dactyloides	Eastern gamagrass	9078845	*	*	5/27/03	8/5/03
Tripsacum dactyloides	Eastern gamagrass	Pete	*	*	5/27/03	8/5/03
Panicum virgatum	Switchgrass	9062193	Exc.	Good	5/27/03	8/5/03
Panicum virgatum	Switchgrass	9062235	Exc.	Good	5/27/03	8/5/03
Panicum virgatum	Switchgrass	9062213	Exc.	Good	5/27/03	8/5/03
Panicum virgatum	Switchgrass	C-I-R	Good	Fair	5/27/03	8/5/03
Panicum virgatum	Switchgrass	9083170	Exc.	Good	5/27/03	8/5/03
	Direct Seeded 2001	Flood-				
		Tolerant				
Spartina pectinata	Prairie cordgrass	Cuivre	Exc.	Exc.	5/27/03	7/5/03
		Island				
Spartina pectinata	Prairie cordgrass	Lost Creek	Exc.	Exc.	5/27/03	7/5/03
Cynondon dactylon	Bermuda grass	Elsberry	Fair	Fair	5/27/03	7/5/03
Asclepias incarnata	Swamp milkweed	Iowa	Good	Fair	5/27/03	7/5/03
Lobelia cardinalis	Cardinal flower	Forrest	Good	Poor		7/5/03
		Keeling				
Carex scoparia	Broomsedge	MDC	Died			7/5/03
Elymus virginicus	Virginia Wildrye	Cuivre	Fair	Тор	5/27/03	7/5/03
		River		Grow		
				th		
				Died		
Spartina pectinata	Prairie cordgrass		Exc.	Exc.	5/27/03	7/5/03
	Seedlings					
Panicum virgatum	Plugs of switchgrass	9062213	Good	Fair	5/27/03	7/5/03
		9062235				
		9062193				

Study: 29A1370 - Wetland/Riparian Propagation, Establishment, and Demonstration

BFE = Before Flood Event AFE = After Flood Event

• = Cannot determine rows from plants/seed that germinated

Study: 29I141G

Study Title: Assembly and Evaluation of Little Bluestem, Schizachyrium scoparium, Nichx.

Study Leader: Bruckerhoff, S. B.

Introduction:

Little bluestem is a native warm season prairie grass. It was a major component making up as much as 50 percent of the tall grass prairie that was native to much of the Elsberry PMC service area. It can also be a major component of glade areas and mixed grass prairies. Little bluestem can be found in prairies, open woods, dry hills, and fields, from Quebec and Maine to Alberta and Idaho, south to Florida and Arizona.

Problem:

There are no current varieties of little bluestem on the market that have an origin within the three-state service area. Available varieties do not always perform as well as expected. There is a need for an adapted and improved variety of little bluestem for pasture and range seedings, surface mine reclamation, critical area planting, wildlife plantings, recreational area development and other conservation uses in Missouri, Iowa, and Illinois.

Objective:

The objective is to assemble, evaluate, develop and cooperatively release an adapted variety and/or varieties of tested class of little bluestem for conservation use in Missouri, Iowa, and Illinois.

Procedure:

Vegetative material from native ecotypes was collected throughout the states of Missouri, Iowa, and Illinois. A minimum of three collections per Major Land Resource Area/state was requested. (Approximately 60 collections total.) Field selection of collected plant material was based on forage quantity and plant vigor.

Each collection (accession) was one individual plant. A collection was made up of more than one plant if they were in the same immediate area (within five feet) and appeared to be clones of each other.

Discussion:

1996

The study was approved in July 1996. Collection instructions were sent out and plants were dug in October and November. The samples were picked up shortly after collection and stored in the packing shed at the Plant Materials Center. At this time we received 113 collections from the three-state area. There are a few additional collections expected.

1997 - 1998

The collections were vegetatively propagated in containers in January and grown out in the greenhouse until April. These plants were then transplanted in Field #1 on the PMC April 22-24, 1997 in a randomized complete block with four replications (see Table #2 for map of plot layout). Thirteen additional collections were made in the summer of 1997 and planted into the replications August 14-15, 1997. This brought the total accessions represented to 130: 79 from Missouri, 20 from Illinois, 27 from Iowa, and four standards of comparison. A list of collectors

can be seen in Table #1. First year evaluation consisted of survival. The second year evaluations consisted of survival, height, late dormancy, and form.

1999

The assembly was evaluated in 1999 for forage amount and vigor (Tables #3 and #4). The higher rated plants will have forage quality samples taken in 2000.

2000

The assembly was evaluated for mid season forage production, quality and vigor on June 27, 2000. The entire planting was then clipped to a height of six inches on June 28, 2000. The assembly was evaluated for amount of regrowth and vigor on July 25, 2000 and forage quality samples were taken on August 1, 2000. The assembly was clipped the second time on August 2, 2000 and evaluations for regrowth amount and vigor were taken October 24, 2000.

2001

Evaluations from previous years were correlated and the best plants from the top 10-20 percent of the total accessions were propagated in the greenhouse from clonal material from each individual plant. Plants were then isolated in two locations. A northern region was established containing plants from Iowa, northern Missouri, and northern Illinois. A southern region was established containing plants from southern Missouri and central and southern Illinois. These isolation blocks will receive additional evaluation to remove unwanted plants and the remaining plants will be allowed to produce seed. Plants from this seed will be selected for the next evaluation nursery. After further evaluation, plants from the nursery planted in 2003 will be used as a breeder's block for improved selections. Plants selected for each region can be found in Table #5.

2002

The south region crossing block did very well in 2002. Very few plants were rouged out and seed was harvested from each accession in the block. This seed will be used to establish the next evaluation nursery scheduled for 2003.

The north region crossing block did not do well in 2002. Weed control became a problem and many of the plants were reestablished and did not make seed. Filling in additional plants is scheduled for 2002 and also seed production from this crossing block.

2003

Seed from the south region crossing block was evaluated for quick establishment and plants were grown in the greenhouse for establishment of the recurrent selection evaluation nursery. Approximately 500 plants were transplanted on three foot centers in this evaluation block.

The plants will be allowed to develop and be evaluated for forage. Plants in the north region crossing block were not all equally matured and no seed was harvested from this block.

2004

The plants in the southern region evaluation block were given 2004 to develop and mature. Evaluation of this block will begin in 2005.

Seed was harvested from the northern region crossing block, cleaned, and planted in the greenhouse. These plants were evaluated for quick establishment and seedling vigor. Selected plants will be transplanted into an evaluation nursery.

2005

The plants in the southern region nursery were evaluated based on vigor, amount of forage production, leafiness, drought resistance, disease and insect resistance, and late maturity. Of

312 plants 195 plants were selected (62.5%) and allowed to cross pollinate. Seed was collected from the selected plants to establish a foundation field next year. This south region selection was given the accession number 9083271.

Greenhouse plants selected for seedling vigor from seed harvested from the northern crossing block were transplanted into an evaluation nursery.

2006

A .75 acre foundation field (G1) of southern region selection (accession 9083271) was planted in field #12 on the PMC. Establishment was good but no seed was harvested the first year. Some plants did produce seed but there was not enough to justify a harvest.

The northern region crossing block was evaluated for survival and missing plants were reestablished with greenhouse plants selected for seedling vigor. This evaluation nursery had no further evaluation or selection.

2007

The southern region selection (accession 9083271) G0 block (field 11) was harvested in 2006 but seed was very limited. This seed was used to expand the foundation (G1) field (Field 12). The small expanded portion of the field established poorly. The larger part of the G1 field produced 58.9 pounds bulk seed from approximately 0.60 acre. This seed will be used for field plantings for additional testing.

The northern region crossing block was evaluated for forage production, seed production and late maturity. This block started with 506 plants with a survival of over 95%. There were 159 of these selected and allowed to cross pollinate. Seed was harvested individually from the 159 and will be placed in the germinator and plants germinating the quickest will go to the next evaluation block.

Study 29I141G - Assembly and Evaulation of Little Bluestem, Schizachyrium										
scoparium , Nic	chx.									
Little Bluestem	1				Table #1					
	REFERENCE		- 1	1	I					
ACCESSION	NUMBER	COLLECTOR	MLRA	COUNTY	STATE					
9078894	MO-1	Robert S. Crowder	M115	Chariton	Missouri					
9078951	MO-2	Robert J. Crowder/	109	Chariton	Missouri					
		George L. Pollard								
9078895	MO-3	Joe Tousignant	N116B	Cape Girardeau	Missouri					
9078896	MO-4	Douglas Rainey	M115	Clark	Missouri					
9078897	MO-5	David S. Mackey	113	Knox	Missouri					
9078898	MO-6	Larry R. Brewer	M109	Putnam	Missouri					
9078899	MO-7	Tommy Robins/	116	Ripley	Missouri					
		Jim Hoefer								
9078900	MO-8	Grant P. Butler	N116B	Jefferson	Missouri					
9078901	MO-9			Iron	Missouri					
9078902	MO-10	Tommy Robins/	116	Carter	Missouri					
		Jim Hoefer								
9078903	MO-11	Arch J. Mueller	M115	Ste. Genevieve	Missouri					
9078904	MO-12			St. Francois	Missouri					
9078905	MO-13	J. Mark Mitchell		Butler	Missouri					
9078906	MO-14	Randy C. Miller	N116A	Shannon	Missouri					
9078907	MO-15	Tom Johnson	N116B	Bollinger	Missouri					
9078908	MO-16	Tom Johnson	N116A	Bollinger	Missouri					
9078909	MO-17	Randy C. Miller	N116B	Reynolds	Missouri					
9078910	MO-18			Franklin	Missouri					
9078911	MO-19	Tom Johnson	N116A	Wayne	Missouri					
9078912	MO-20	Mark E.Nussbaum	N116B	Cape Girardeau	Missouri					
9078913	MO-21	Frank Oberle	115	Adair	Missouri					
9078914	MO-22	David S. Mackey	113	Knox	Missouri					
9078915	MO-23	Claude F. Peifer	116B	Perry	Missouri					
9078916	MO-24	Grant P. Butler/	N116A	Washington	Missouri					
		Bryan L. Westfall								
9078917	MO-25	John E. Turner	113/115	Monroe	Missouri					
9078918	MO-26	David S. Mackey	113	Knox	Missouri					
9078919	MO-27	Douglas Rainey	M115	Clark	Missouri					
9078920	MO-28	Frank Oberle	115	Adair	Missouri					
9078921	MO-29		M115	Montgomery	Missouri					
9078922	MO-30	David S. Mackey	113	Knox	Missouri					
9078923	MO-31	Curtis W. Walker	109	Clinton	Missouri					
9078924	MO-32	James A. Mayberry	109	Carroll	Missouri					
9078925	MO-33	Gary J. Barker	M109	Gentry	Missouri					
9078926	MO-34			Vernon	Missouri					
9078927	MO-35	Louis Byford		Atchison	Missouri					
9078928	MO-36	Todd E. Mason	M109	Worth	Missouri					
9078929	MO-37	Louis Byford		Atchison	Missouri					
9078930	MO-38	Louis Byford		Atchison	Missouri					
9078931	MO-39	Ronald L. Musick	M109	Harrison	Missouri					

Study 29I141G	- Little Blu	estem		Table #1 - continued			
	REFERENCE	E					
ACCESSION	NUMBER	COLLECTOR	MLRA	COUNTY	STATE		
		<u> </u>					
9078932	MO-40	Gary J. Barker	M109	Gentry	Missouri		
9078933	MO-41	Curtis Walker	109	Gentry	Missouri		
9078934	MO-42	Curtis Walker	107	Buchanan	Missouri		
9078935	MO-43	Louis Byford		Atchison	Missouri		
9078936	MO-44	Ronald L. Musick	M109	Harrison	Missouri		
9078937	MO-45	Louis Byford		Atchison	Missouri		
9078938	MO-46	Louis Byford		Atchison	Missouri		
9078939	MO-47	Bob Sipec		Holt	Missouri		
9078940	MO-48	Bib Sipec		Holt	Missouri		
9078941	MO-49	Bob Sipec		Holt	Missouri		
9078942	MO-50	lan S. Kurtz	116A	Taney	Missouri		
9078943	MO-52	Dennis Shirk/	115	Gasconade	Missouri		
		Ed Gillmore					
9078944	MO-53	Dennis Shirk/	116	Osage	Missouri		
		Ed Gillmore					
9078945	MO-54	Raleigh Redman	112	Henry	Missouri		
9078946	MO-55	Dennis Shirk/	116	Maries	Missouri		
		Ed Gillmore					
9078947	MO-56	Jerry Cloyed	M112	Barton	Missouri		
9078948	MO-57	lan S. Kurtz	116A	Taney	Missouri		
9078949	MO-58	Ben A. Reed	M112	Barton	Missouri		
9078950	MO-59	Jerry Cloyed	M112	Barton	Missouri		
9078952	MO-60	M. Denise Brown	N116A	Miller	Missouri		
9078953	MO-61	M. Denise Brown	N116B	Miller	Missouri		
9078954	MO-62	Howard L. Coambes	N116B	Cedar	Missouri		
9078955	MO-63	Howard L. Coambes	N116B	Cedar	Missouri		
9078956	MO-64	Douglas G. Newman		Shannon	Missouri		
9078957	MO-65	Tom E. Toney		Wayne	Missouri		
9078958	MO-66	Rod Doolen		Wayne	Missouri		
9078959	MO-67	Rod Doolen		Wayne	Missouri		
9078960	MO-68	Kenneth L. Dalrymple		Pike	Missouri		
9078963	MO-69	Maurice Davis/		Pettis	Missouri		
		Steve Clubine					
	MO-70	Maurice Davis/		Benton	Missouri		
		Steve Clubine					
	MO-71	Maurice Davis/		St. Clair	Missouri		
		Steve Clubine					
	MO-72	Maurice Davis/		Benton	Missouri		
		Steve Clubine					
9078964	MO-73	Maurice Davis/	1	Pettis	Missouri		
		Steve Clubine					
9078965	MO-74	Maurice Davis/		Pettis	Missouri		
		Steve Clubine					
			1				

Study 29I141G	- Little Blu	estem		Table #1 - continued				
	REFERENCE	C	I		1			
ACCESSION	NUMBER	COLLECTOR	MLRA	COUNTY	STATE			
	MO-75	Maurice Davis/		Pettis	Missouri			
		Steve Clubine						
	MO-76	Maurice Davis/		Benton	Missouri			
		Steve Clubine						
9078966	MO-77	Maurice Davis/		Maries	Missouri			
		Steve Clubine						
9078967	MO-78	Dennis Shirk		Maries	Missouri			
9078968	MO-79	Steve Clubine		Maries	Missouri			
9078969	MO-80	Maurice Davis		Maries	Missouri			
9078970	MO-81			Lawrence	Missouri			
9078961	IA-27	Robert R. Bryant/	108	Scott	lowa			
		Shawn Dettman						
9078847	IA-1	Curt Donohue	109	Clarke	Iowa			
9078848	IA-2	Curt Donohue	109	Clarke	lowa			
9078849	IA-3	Janet M. Thomas/	107	Cherokee	lowa			
		John P. Vogel						
9078850	IA-4	John P. Vogel	107	Woodbury	lowa			
9078851	IA-5	Henry D. Tordoff	107	West	lowa			
				Pottawattamie	lowa			
9078852	IA-6	Henry D. Tordoff/	107	West	lowa			
		Galen Barrett		Pottawattamie	lowa			
9078853	IA-7	John P. Vogel	107	Woodbury	lowa			
9078854	IA-8	Henry D. Tordoff	107	West	lowa			
				Pottawattamie	lowa			
9078855	IA-9	John P. Vogel	107	Plymouth	lowa			
9078856	IA-10	Henry D. Tordoff	107	West	lowa			
				Pottawattamie	lowa			
9078857	IA-11	Julie K. Watkins/	108	Franklin	lowa			
		Charlie E. Kiepe						
9078858	IA-12	Brad Harrison	103	Dallas	lowa			
9078859	IA-13	Shawn A. Dettman	108	Muscatine	lowa			
9078860	IA-14	Jim Ranum	105	Allamakee	lowa			
9078861	IA-15	Rick Cordes	104	Howard	lowa			
9078862	IA-16	James Ranum	105	Allamakee	lowa			
9078863	IA-17	Jay E. Ford	107	Crawford	lowa			
9078864	IA-18	Steve Maternack	103	Polk	lowa			
9078865	IA-19	Jay E. Ford	107	Crawford	Iowa			
9078866	IA-20	Jay E. Ford	107		lowa			
9078867	IA-21	ALENIEY	104	Cerro Gordo	Iowa			
9078868	IA-22	AI Ehley	104	Cerro Gordo	Iowa			
9078869	IA-23	Jonn P. Vogel	102	Lyon	Iowa			
9078870	IA-24	Jay E. Ford	107	Crawford	Iowa			

Study 29I141G	- Little Blu	estem		Table #1 - continued			
	REFERENCE	C					
ACCESSION	NUMBER	COLLECTOR	MLRA	COUNTY	STATE		
			10-				
9078871	IA-25	Jay E. Ford	107	Crawford	lowa		
9078872	IA-26	John Vogei	102	Lyon	Iowa		
9078962	IA-28		105		Minnesota		
0070070	11.4	Darbara Chaffar	05D	Kana	Illinoio		
9070073		Darbara Sherier	900	Whiteside	IIIInois		
9076674	IL-2	David J. Harrison/	105	vvniteside	IIIINOIS		
0079975	11.2	Barbara Shoffor	05P	Kana	Illinoic		
9078876	IL-3	Timothy Dring	115	Piko	Illinois		
0078877	IL-4 II_5	lim Ritterbusch	115	Stophonson	Illinois		
9078878	IL-5	lim Ritterbusch		Stephenson	Illinois		
9078879	IL-0	Dennis D. Clancy	113	lasper	Illinois		
9078880	IL -8	Bob Jankowski/	110	Will	Illinois		
5070000		Steve Hollister	110	VVIII	11111013		
9078881	II -9	Barbara Sheffer	95B	Kane	Illinois		
9078882	II -10	Timothy P Dring	108	Henderson	Illinois		
9078883	II -11	John D. Lundquist	105	Carroll	Illinois		
9078884	II -12	Bill Kleiman	100	Lee	Illinois		
9078885	IL-13	Laura S. Dufford	105	Jo Daviess	Illinois		
9078886	IL-14	David J. Harrison/	108	Whiteside	Illinois		
		Mark Kaiser					
9078887	IL-15	Timothy P. Dring	108	Mason	Illinois		
9078888	IL-16	W. Burke Davies	113	Marion	Illinois		
9078889 IL-17		Michael Stanfill/	115	Monroe	Illinois		
		Marty Kemper					
9078890 IL-18		Kenton L. Macy	114	Cumberland	Illinois		
9078891	IL-19	Martha E. Sheppard	115	Calhoun	Illinois		
9078892	IL-20	Michael Stanfill/	113	Washington	Illinois		
		Marty Kemper					
9078893	IL-21	Remington T. Irwin	114	Wayne	Illinois		
	1		1		•		

Study 29	11410	;																
Little Blu	lester	n														Table #2		
								Plot Layo	out Map									
								Randomi	ized Comp	olete B	Block							
								Four Rep	olications									
					▲				Field #1									
					North													
PLT #	1	234	5 - 28	29 30 31	32 33 34	35 - 58	59 60 61	62 63 64	65 -76	77		78	79 - 90	91 92 93	94 95 96	97 - 120	121 122 123	124
																		_
TIER #																		<u> </u>
I																		
										F	2							
		-								C	2							
IV		-								A	4							
V)							_
VI			REP 1			REP 2			REP 3	V	N		REP 3			REP 4		_
VII										A	4							_
VIII										Y	(-
IX																		_
X																		_
XI																		_
XII																		
XIII					-													-
XIV																		
XV																		_
																		_
									Highwa	iy JJ								

Study 291	141G	;				For	age	Rat	ing	: 8/9	/99				Table	#3	
Little Blue	sten	n															
			1 =	Hig	h	9 =	Low	V									
				Į					1	1	Ave.						
Local	R	ep 1		R	Rep 2		Rep 3		Rep 4			Percent	Living	Best			
Number	P1	P2	P 3	Ρ4	P5	P6	P7	P8	P9	P10	P11	P12	Survival	Plants	Plant	Location/	S
MO-7	2	3	1	3	3	2	2	1	2	5	1	3	100	2.33	1	P 1, 8, 11	
MO-12	1	2	1	3	2	2	3	2	2	1	1	1	100	1.75	1	P 1, 3, 12,	11, 12
MO-21	1	2	2	6	2	3	4	3	3	4	4	5	100	3.25	1	P 1	
MO-74	3	3	5	4	4	4	5	5	4	1	2	1	100	3.42	1	P 10, 12	
MO-80	3	3	Х	4	5	5	4	4	2	1	4	3	92	3.45	1	P 10	
MO-4	х	5	5	4	8	2	3	4	4	6	х	х	83	4.10	2	P 6	
MO-9	4	4	4	3	4	4	3	4	3	2	3	3	100	3.42	2	P 10	
MO-14	4	4	3	4	4	4	5	2	2	4	4	3	100	3.58	2	P 8, 9	
MO-15	3	2	3	5	4	3	6	4	5	4	3	5	100	3.92	2	P 2	
MO-22	4	5	5	3	4	2	5	5	6	х	8	х	83	4.70	2	P 6	
MO-23	3	5	6	2	6	8	5	4	5	8	8	3	100	5.73	2	P 4	
MO-24	3	х	2	х	4	4	3	4	3	3	4	5	83	3.18	2	P 3	
MO-32	4	х	8	6	7	3	3	4	5	2	5	6	92	4.82	2	P 10	
MO-34	4	4	4	3	4	3	х	х	4	2	х	5	75	3.00	2	P 10	
MO-37	2	4	3	7	5	4	х	5	4	3	4	3	92	3.67	2	P 1	
MO-42	5	5	6	4	5	2	4	4	4	5	5	7	100	4.67	2	P 6	
MO-50	3	3	4	2	2	2	3	4	6	2	3	4	100	3.17	2	P 4, 5, 6, 1	0
MO-51	3	3	3	3	4	4	4	6	3	4	3	2	100	3.50	2	P 12	
MO-53	4	4	5	5	5	5	2	4	5	5	6	7	100	4.75	2	Ρ7	
MO-56	3	3	2	2	5	4	5	3	3	3	3	3	100	3.25	2	P 3, 4	
MO-58	3	3	3	5	4	5	5	5	5	2	2	4	100	3.83	2	P 10, 11	
MO-59	2	3	4	4	4	5	3	3	3	3	4	4	100	3.50	2	P 1	
MO-66	3	3	Х	3	3	3	3	2	4	4	5	5	92	3.45	2	P 8	
MO-73	7	4	4	3	3	2	4	5	5	7	8	6	100	4.83	2	P 6	
MO-79	2	3	2	5	3	5	3	8	5	4	4	3	100	3.92	2	P 1, 3	
MO-2	4	5	3	5	5	5	5	3	3	3	4	3	100	4.00	3	P 3, 8, 9, 1	0, 12
MO-5	7	3	3	5	5	5	6	8	4	4	5	4	100	4.92	3	P 2, 3	
MO-8	6	х	5	5	4	5	7	4	8	3	3	4	92	4.91	3	P 10, 11	
MO-10	4	5	5	3	3	5	5	5	5	7	5	4	100	4.67	3	P 4, 12	
MO-11	х	7	Х	4	5	6	6	6	5	3	3	6	83	4.25	3	P 10, 11	
MO-13	5	8	5	5	х	5	4	4	3	6	4	6	100	4.58	3	P 9	
MO-16	4	3	8	6	6	54	5	6	4	4	5	100	75	3.00	3	P 2	
MO-17	4	4	3	4	3	7	8	6	5	4	5	5	100	4.83	3	P 3, 5	
MO-18	3	4	3	7	7	8	х	х	Х	5	5	5	75	3.92	3	P 1, 3	
MO-19	3	5	5	3	4	3	4	6	5	3	5	4	100	4.17	3	P 1, 4, 6, 1	0
MO-20	8	7	6	7	6	5	3	4	5	4	8	3	100	6.60	3	P 7, 12	
MO-25	3	3	х	5	5	5	5	4	6	5	5	6	92	4.33	3	P 1, 2	
MO-26	3	4	4	5	х	4	3	4	4	3	4	5	92	4.30	3	P 1, 7, 10	
MO-27	5	6	3	4	5	4	6	5	4	5	5	7	100	5.36	3	P 3	
MO-29	4	3	х	4	5	4	4	6	3	3	5	8	92	4.45	3	P 2, 9, 10	
MO-30	3	4	5	7	7	х	4	4	7	4	3	4	92	4.73	3	P 1, 11	
MO-31	7	3	4	4	4	6	7	8	х	5	5	5	92	5.27	3	P 2	
Study 29I1	410	;				For	age	Rat	ing	: 8/9	/99				Table	#3 - contir	nued
-------------	------	-----------	------------	-----	-----	-----------	-----	-----------	-----------	-------	------	-----	----------	---------------	-------	-----------------	------------------
Little Blue	ster	n							•								
			1 =	Hig	h	9 =	Low	/									
		1												Ave.			
Local	R	ep 1	1	R	lep	2	R	lep	3	R	ep 4		Percent	Living	Best		
Number	P1	P2	P 3	P4	P5	P6	P7	P8	P9	P10	P11	P12	Survival	Plants	Plant	Location/	S
MO-33	3	х	3	5	5	3	4	5	5	8	8	4	92	5.89	3	P 1, 3, 6	
MO-35	4	7	8	5	6	7	5	3	6	5	4	х	92	5.45	3	P 8	
MO-38	6	6	5	3	3	4	4	6	7	3	3	4	100	5.40	3	P 4, 5, 10	,11
MO-41	5	6	5	4	4	7	6	Х	4	3	х	5	83	4.90	3	P 10	
MO-43	4	4	Х	5	5	5	5	6	5	4	3	4	92	4.55	3	P 11	
MO-46	4	Х	4	4	3	3	3	5	5	4	4	4	92	3.91	3	P 5, 6, 7	
MO-47	5	6	6	6	5	4	3	4	5	5	8	4	100	5.08	3	Ρ7	
MO-48	3	7	8	5	5	6	4	4	6	4	5	5	100	5.17	3	P 1	
MO-52	3	3	3	4	3	3	4	5	4	4	3	4	100	3.58	3	P 1, 2, 3,	5, 6, 11
MO-54	Х	х	Х	5	5	5	4	5	5	6	4	3	75	4.67	3	P 12	
MO-57	4	4	Х	3	5	х	4	4	Х	5	4	3	92	3.27	3	P 4, 12	
MO-60	7	4	6	4	6	3	6	4	6	5	5	4	100	5.00	3	P 6	
MO-61	5	8	6	х	4	5	х	8	8	3	7	5	83	5.90	3	P 10	
MO-65	4	5	6	7	х	х	4	5	3	4	6	6	83	5.00	3	P 9	
MO-67	3	3	3	3	3	3	6	5	Х	3	3	3	92	3.45	3	P 1, 2, 3, 4, 5	5, 6, 10, 11, 12
MO-69	4	5	4	3	3	5	4	5	4	7	4	5	100	4.42	3	P 3, 4	
MO-71	х	5	5	4	3	5	4	4	5	4	5	3	92	4.27	3	P 5, 12	
MO-77	6	х	6	4	6	4	3	4	5	6	6	5	92	5.00	3	Ρ7	
MO-78	5	6	5	5	3	5	3	5	6	4	3	3	100	4.42	3	P 5, 7, 11,	12
MO-1	4	5	4	4	4	6	4	7	5	4	5	5	100	4.75	4		
MO-3	4	7	4	5	4	4	4	4	4	5	4	5	100	4.50	4		
MO-6	7	7	7	7	7	5	х	8	7	4	4	4	92	6.09	4		
MO-28	6	5	6	6	7	5	4	7	7	4	х	х	83	4.75	4		
MO-36	4	4	5	6	6	6	х	5	5	5	6	5	92	5.18	4		
MO-39	4	6	7	4	6	4	6	5	Х	6	5	х	83	5.89	4		
MO-40	7	6	7	5	4	4	х	6	5	5	5	5	92	5.36	4		
MO-44	7	4	5	5	6	7	7	Х	6	5	4	6	92	5.64	4		
MO-45	4	4	4	5	6	6	5	6	5	4	4	4	100	4.75	4		
MO-49	6	5	6	6	5	Х	5	5	4	7	5	6	92	5.45	4		
MO-55	Х	6	Х	4	4	5	4	5	Х	8	х	5	67	5.13	4		
MO-62	4	4	5	5	4	5	5	7	6	5	5	6	100	5.08	4		
MO-63	5	6	5	5	4	4	8	4	6	4	5	5	100	5.08	4		
MO-68	7	6	6	6	8	4	5	6	5	4	4	4	100	5.42	4		
MO-72	5	6	5	5	6	5	4	6	6	5	4	4	100	5.08	4		
MO-81	х	4	5	5	4	6	Х	x	х	6	х	8	58	5.43	4		
MO-64	Х	7	6	7	6	6	6	5	8	х	7	5	92	5.73	5		
MO-70																	
MO-75																	
MO-76																	

Study 291	14 [,]	1G					For	age	Rat	ing	: 8/9	/99					Table	#3 - contir	nued
Little Blue	est	em	1							Ū									
				1 =	Hig	jh	9 =	Low	1										
						-										Ave.		1	
Local		Re	ep '	1	F	Rep	2	F	lep	3	R	ep 4			Percent	Living	Best		
Number	P	1	P2	P 3	P4	P5	P6	P7	P8	P9	P10	P11	P12	2	Survival	Plants	Plant	Location/s	5
													1						
IA-16	х		х	4	3	6	5	3	Х	1	х	5		5	75	3.56	1	P 9	
IA-27		1	1	3	3	4	5	5	5	4	5	4		2	100	3.50	1	P 1, 2	
IA-6		4	5	6	5	2	4	3	4	3	7	4		5	100	4.33	2	P 5, 6	
IA-8		5	6	3	5	3	5	5	5	5	5	3		2	100	4.33	2	P 12	
IA-12		7	5	7	х	4	5	4	3	2	4	5		5	92	4.64	2	P 9	
IA-15		5	4	5	х	х	х	2	Х	5	5	5	(6	67	4.63	2	Ρ7	
IA-23		6	5	5	8	8	6	5	4	х	2	4	. (6	92	5.36	2	P 10	
IA-1		8	5	5	5	4	4	4	5	Х	3	7		3	92	4.82	3	P 10, 12	
IA-2		4	4	4	3	4	4	6	5	5	4	х	(6	92	4.45	3	P 4	
IA-3	х	_	х	8	х	3	3	4	5	4	4	5		4	75	4.44	3	P 5, 6	
IA-4		5	8	4	3	х	3	4	7	5	4	7		5	92	5.00	3	P 4, 6	
IA-5		4	5	4	3	6	8	6	4	4	3	5	х		92	4.73	3	P 4, 10	
IA-7		5	3	3	5	5	5	4	4	6	5	5	4	5	100	4.58	3	P 2, 3	
IA-9		4	6	7	6	6	6	8	6	6	4	3		4	100	5.50	3	P 11	
IA-11		6	5	6	5	7	3	5	5	6	4	х	1	5	92	5.18	3	P 6	
IA-13		4	4	6	4	7	х	5	4	Х	3	4		3	83	4.40	3	P 10, 12	
IA-17		3	7	4	5	х	4	6	Х	6	4	6		5	83	5.00	3	P 1	
IA-19		6	Х	Х	6	3	3	х	4	4	х	х	х		50	4.33	3	P 5, 6	
IA-20	х		4	Х	7	5	5	4	Х	4	6	7		3	75	5.00	3	P 12	
IA-24		4	5	3	5	4	4	4	4	5	5	5		4	100	4.33	3	P 3	
IA-25		4	5	6	6	5	6	6	4	5	3	5	;	3	100	4.83	3	P 10, 12	
IA-26	х		3	4	3	3	6	X _	X	4	5	6	х		67	4.25	3	P 2, 4, 5	
IA-10		6	7	7	4	5	5	5	6	7	6	4	Х	_	92	5.64	4		
IA-14		4	6	4	5	5	6	4	5	5	5	1		5	100	5.08	4		
IA-18		5	6	5	6	5	6	5	4	5	4	5		5	100	5.08	4		
IA-21		4	5	4	4	х	6	X	<u>x</u>	6	-	4		5	67	4.75	4		
IA-22	х		Х	X	/	X	Х	/	6	6	5	8		ğ	58	6.71	5		
11 10		0	-	F	<u>^</u>	0	A	F		٨		-		_	00	E 00		D 11	
IL-1∠ II 47		ð	1	5	3	8	4	5	5 4	4	4	2	X	2	92	5.00	2		
IL-1/ II 10		3 E	4	3	2	3	0	3 5	4	2	2	3	-	ა ⊿	100	3.08	2	F 4, 9, 10	
IL-10 II 2		с С	4 6	0	3	3	3 6	C E	0	4	3	 		4	100	4.00	2		
IL-∠ II _5		0	0	7	4	0	0	C A	5	5 5	4	C		о Б	100	E 00	<u> </u>	F O D G	
IL-0 II 7		0	C ∧	1	4	7	3	4	<u>م</u>	с 0	2 6	4		ວ ວ	100	5.08	3 2		
ı∟- <i>1</i> II _8	v	4	4 V	3 5	4	/ v	0	0 V	0	0	v v	8		2	<u>الال</u> 50	0.00	3	г 3 D 12	
IL-0 II _11	×		× v	2	4 v	× 1	v	^ ~	v	4	^ v	4 V	v	5	00 22	4.00	<u>່</u> ວ	D 3	
IL-1/	^	Λ	× F	3 V	^ っ	4	X V	C A	<u>л</u>	7	^ ~	^ 	^	6	 	4.00	<u>່</u> ວ		
IL-14 II -16	-	4	ט ד	<u>л</u>	 _∧	2	^ 2	0	4 V	ר י	7	C A		⊿	<u></u> 03	1 36	2	D560	
IL-10		5	С А	4	4	2	2	4	× 2	 _∕	2	0		+ 2	92 100	4.00	<u>່</u> ວ	P1569	2 12
16-19		J	0	1	3	3	3	4	3	4	3	4	-	5	100	4.00	3	1 4 , 3, 0, 0	, I∠
	-						-												
	-																		
	1			1	l						l		1						

Study 29I141G		IG					For	age	Rat	ing	: 8/9	/99				Table	#3 - contir	nued
Little Blue	st	em	า															
				1 =	Hig	h	9 =	Lov	V									
															Ave.			
Local		R	ep 1		R	lep	2	F	Rep	3	R	ep 4		Percent	Living	Best		
Number	P	I	P2	P 3	P4	P5	P6	P7	P8	P9	P10	P11	P12	Survival	Plants	Plant	Location/s	S
IL-20		5	3	3	х	6	5	4	4	4	3	5	3	92	4.09	3	P 2, 3, 10,	12
IL-21		5	5	4	3	4	4	5	4	4	5	4	4	100	4.25	3	P 4	
IL-1		4	х	4	6	7	6	4	7	7	5	6	5	92	5.55	4		
IL-6		7	7	4	6	5	7	х	Х	Х	6	5	5	75	5.78	4		
IL-9		6	х	6	х	5	7	6	5	4	4	4	7	83	5.40	4		
IL-10	х		х	Х	4	6	7	х	Х	7	х	5	7	50	6.00	4		
IL-13	х		7	Х	5	7	4	6	6	7	х	8	6	83	5.60	4		
IL-15		8	8	х	х	7	6	4	5	5	5	4	5	83	5.70	4		
IL-3		5	4	х	7	х	х	8	7	6	5	х	х	58	6.00	5		
IL-4		6	7	4	4	6	5	6	5	5	5	5	5	100	5.25	5		
IL-22																		
Aldous		2	3	3	3	3	3	5	4	5	3	2	2	100	3.17	2	P 1, 11, 12	2
Cimmeron		2	3	2	4	2	3	3	2	5	3	5	3	100	3.08	2	P 1, 3, 5, 8	3
Camper		З	4	5	4	5	6	5	4	5	х	3	5	92	4.45	3	P 1, 11, 12	2
Pastura	х		х	5	6	х	6	6	6	х	3	3	х	58	5.00	3	P 10, 11	
																		•

Study 29I1	41G	ì				Vig	or Ra	ating	: 8/9	/99						Table #4	
Little Blue	sten	n															
			1 =	High	Ì	9 =	Low										
Local	R	ep '	1	R	ер	2	R	ep 3	3	Re	ep 4		Percent	Living	Best		
Number	P1	P2	P 3	P4	P5	P6	P7	P8	P 9	P10	P11	P12	Survival	Plants	Plant	Location/s	
														Ave.			
MO-4	х	3	4	4	6	2	4	5	5	3	х	Х	75	4.00	2	P 6	
MO-7	2	2 3	2	3	3	3	5	2	2	5	2	2	100	2.83	2	P 1, 3, 8, 9	, 11, 12
MO-12	З	3 3	3	4	2	2	4	4	3	3	3	3	100	3.08	2	P 5, 6	
MO-16	З	8 2	6	6	4	3	4	5	6	4	5	3	100	4.25	2	P 2	
MO-24	5	i x	5	х	5	3	5	5	5	2	4	6	83	4.50	2	P 10	
MO-25	2	2 3	х	5	4	3	5	4	4	5	6	6	92	4.27	2	P 1	
MO-32	3	8 X	6	5	5	3	4	6	4	2	4	6	92	4.36	2	P 10	
MO-35	2	2 6	7	2	4	5	6	6	3	5	4	Х	92	4.55	2	P 1, 4	
MO-42	5	6 4	5	3	4	2	4	4	6	4	5	6	100	4.33	2	P 6	
MO-47	4	- 5	6	4	5	4	2	2	3	4	6	3	100	4.00	2	P 7, 8	
MO-56	3	8 4	3	3	3	2	4	4	4	4	3	3	100	3.33	2	P 6	
MO-61	5	5 5	4	х	3	4	х	7	7	2	5	4	83	4.60	2	P 10	
MO-67	3	3 3	3	2	3	3	5	4	х	4	5	5	92	3.64	2	P 4	
MO-69	4	5	6	3	3	4	2	3	5	8	4	5	100	4.33	2	P 7	
MO-79	2	2 3	3	3	3	4	5	6	4	5	4	3	100	3.75	2	P 1	
MO-1	3	8 4	3	4	3	5	5	5	5	3	5	4	100	4.08	3	P 1, 3, 5, 1	0
MO-3	3	8 4	4	5	4	3	4	5	5	4	3	4	100	4.00	3	P 1, 6, 11	
MO-5	5	5 3	3	5	4	6	5	7	4	5	6	4	100	4.75	3	P 2, 3	
MO-6	3	8 7	6	6	5	5	Х	5	5	5	5	3	92	5.00	3	P 1, 12	
MO-8	5	X -	4	6	3	3	6	6	5	6	5	7	92	5.09	3	P 5, 6	
MO-9	5	5	6	3	3	3	4	4	4	5	5	5	100	4.33	3	P 3, 4, 5	
MO-11	X	5	X	5	6	6		5	3	5	4	6	83	5.20	3	P 9	
MO-13	5		6	6	х	5	5	6	3	6	5	1	92	5.55	3	P 9	
MO-14	4	4	3	_ ⊃	5	5	4	0	0	4	C 0	4	100	4.58	3	P3 D4 0 0 5	0
MO-15	3	5 3	3	4	3	3	5 7	4	4	4	4	4	100	3.07	3	P 1, 2, 3, 5	, 0
MO-17	0		2	4	4	1	1	5	4	3	4	C 0	100	4.03	ు స		6
MO-19	3		<u>っ</u>	4	4	4	4	C A	C 0	4	4	4	100	3.92	ు స	P 1, 2, 3, 3	, 0
MO 22	3	0 3	2	0	4	4	5	4	4	0 V	7	V V	100	4.50	3	F 1, 2, 3	6
MO 22	4	5	2	3	5	3	5	5	4	× 5	7	~ 5	100	4.00	3	F 2, 3, 4, 5	, 0
MO 26			3	4	5 V	2	5	5	5	5	5	5	100	0.17	3		
MO-27	4	- 4 - 5	4	3	× 1	3	6	5	5	4	1	5	92	4.30	3	F4,0 P1346	10
MO-29		3	- 3 - V	5	4	5	5	5	3	5	4	6	02	4.20	3	P 1, 3, 4, 0	, 10
MO-31	4	. 3	^ 2	3	3	1	5	5		6	1	5	92	4.73	3	F 2, 3 P 2 3 4 5	
MO-33			6		1	4	J 1	1	^ 	6	4	5	92	4.27	3	P 2, 3, 4, 3	
MO-34	4	· ^	3	4	4	1	4 V	4 V	4	0	v	3	92 75	4.55	3	P2345	12
MO-36		· 3	3	6	5	5	^ V	^ /	5	- - -	^ 5	5	02	1 36	3	P 2 3 10	, 12
MO-37		. 3	3	0	3	1	^ V	4	5	1	1	3	92	3.82	3	P 2, 3, 10	
MO-38			3	4	1	4	^ 3	5	5	+ 2	4	4	100	3.02	3	P 7 10 11	
MO-30	5	4	7		- - -	4	5	2	x J	5	7	Y 4	28	1 RO	2	P568	
MO-40	2	, U 2	י 2	4	5	2	x J	5	л Л	2 2	י 2	~ 7	100	5.00	2	P1611	
		, 0	0	-	5	5	^	5	+	0	0	1	100	5.25	5	1 1, 0, 11	

Study 29I1	41	G					Vig	or Ra	ating	g: 8/9	9/99							Table #4 -	continued
Little Blue	ste	əm																	
				1 =	High)	9 =	Low											
Local		Re	ep 1	l	R	ер	2	R	ер	3		Re	р4		Percent	Living	Best		
Number	P	1	P2	P 3	P4	P5	P6	P7	P8	P 9	P1	0	P11	P12	Survival	Plants	Plant	Location/s	
MO-43		6	3	4	4	4	4	5	6	5	5	4	5	3	100	4.42	3	P 2, 12	
MO-45		4	4	3	3	4	3	4	5	3	3	3	4	4	100	3.67	3	P 3, 4, 6, 9	, 10
MO-46		3	Х	3	3	3	4	5	5	3	3	5	3	4	92	3.73	3	P 1, 3, 4, 5	, 9, 11
MO-48		4	5	5	3	4	4	5	3	5	5	4	6	6	100	4.50	3	P 4, 8	
MO-51		4	5	4	3	3	3	4	5	4	ŀ	4	4	4	100	3.92	3	P 3, 4, 5	
MO-52		5	4	5	5	3	4	5	6	5	5	5	4	5	100	4.67	3	P 5	
MO-53		5	5	6	4	5	6	3	4	4	ŀ	5	5	6	100	4.83	3	Ρ7	
MO-54	х		Х	х	5	7	3	6	7	7	'	6	3	4	75	5.33	3	P 11	
MO-60		4	4	4	3	4	3	5	3	5	5	5	6	6	100	4.33	3	P 4, 6, 8	
MO-62		4	4	4	3	4	5	4	4	4	ŀ	5	6	7	100	4.50	3	P 4	
MO-63		4	4	4	3	3	3	5	5	4	ŀ	4	6	4	100	4.08	3	P 4, 5, 6	
MO-65		3	4	4	6	х	х	5	6	5	5	5	7	6	83	5.10	3	P 1	
MO-66		5	5	х	4	3	3	6	6	5	5	6	7	7	92	5.18	3	P 5, 6	
MO-71	х		3	5	5	3	4	5	4	5	5	3	4	4	92	4.09	3	P 2, 5, 10	
MO-72		3	3	3	3	5	4	3	4	5	5	5	4	3	100	3.75	3	P 1, 2, 3, 4	, 7, 12
MO-73		6	5	3	3	3	3	5	7	4	ŀ	6	7	6	100	4.83	3	P 3, 4, 5, 6	
MO-77		6	х	6	5	3	5	3	4	5	5	6	6	6	92	5.00	3	P 5, 7	
MO-78		6	4	4	4	6	4	4	5	3	3	4	4	3	100	4.25	3	P 9, 12	
MO-80		4	3	х	3	3	3	6	6	5	5	3	6	6	92	4.36	3	P 2, 4, 5, 6	, 10
MO-81	х		3	5	5	4	4	х	х	х		6	х	5	58	4.57	3	P 2	
MO-2		4	5	5	4	5	6	4	4	5	5	4	4	4	100	4.50	4		
MO-18		4	6	4	4	5	7	х	х	х		6	4	6	75	5.11	4	P 1, 3, 4, 1	1
MO-20		4	6	6	6	5	5	6	5	5	5	4	6	4	100	5.17	4		
MO-28		6	4	5	4	6	5	5	6	5	5	4	х	x	83	5.00	4		
MO-30		4	5	5	4	4	х	5	5	6	5	5	4	4	92	4.64	4		
MO-41		4	7	4	5	5	4	6	х	5	5	4	х	4	83	4.80	4		
MO-44		6	4	4	5	5	5	7	х	6	5	5	4	6	92	5.18	4		
MO-49		8	8	8	8	8	х	7	7	6	5	6	4	4	92	6.73	4		
MO-50		5	5	5	4	4	4	6	6	4	ł	5	5	5	100	4.83	4		
MO-55	х		5	х	4	6	5	5	4	х		6	х	4	67	4.88	4		
MO-57		4	5	х	5	4	х	6	5	х		5	6	5	75	3.75	4		
MO-58		6	5	4	6	5	6	7	7	7	'	4	4	5	100	5.50	4		
MO-59		7	6	5	5	4	4	7	6	7	'	6	6	5	100	5.67	4		
MO-68		5	5	5	4	5	5	5	4	4	ŀ	6	4	5	100	4.75	4		
MO-74		5	6	6	4	4	5	5	5	5	5	5	5	4	100	4.92	4		
MO-10		6	7	7	5	5	5	5	6	6	5	7	6	4	100	5.75	5		
MO-64	х		7	7	5	7	7	6	6	6	i x		7	5	83	6.30	5		
MO-70	╞										-								
MO-75	ł						+			-									
MO-76	╞									-	-								
	-										-								
	-						-	-			+								

Study 29I1	41	G					Vig	or Ra	ating	g: 8/9	9/99							Table #4 -	continued
Little Blue	ste	m																	
				1 =	Hig	h	9 =	Low											
Local		Re	ep 1	1	F	Rep	2	R	ер	3	F	lep	4		Percent	Living	Best		
Number	P 1	l	P2	P3	P4	P5	P6	P7	P8	P 9	P10) P	11	P12	Survival	Plants	Plant	Location/s	
IA-3	х		Х	5	х	3	2	6	6	7		7	5	5	75	5.11	2	P 6	
IA-4		4	5	3	4	x	3	4	6	4		2	5	5	92	4.09	2	P 10	
IA-5		6	6	6	4	- 5	6	6	5	6		2	5	х	92	5.18	2	P 10	
IA-9		4	4	4	4	4	5	6	5	5		3	2	5	100	4.25	2	P 11	
IA-10		3	4	5	3	6 4	4	5	5	5		6	2	Х	92	4.18	2	P 11	
IA-13		2	3	4	3	5	х	5	4	х		4	5	3	92	3.45	2	P 1	
IA-15		5	4	4	х	х	х	2	х	6		4	4	5	67	4.25	2	P 7	
IA-27		2	2	2	2	3	3	5	6	5		4	3	3	100	3.33	2	P 1, 2, 3, 4	
IA-1		6	3	3	5	5	4	4	4	х		4	7	4	92	4.45	3	P 2, 3	
IA-2		3	3	3	4	- 5	5	6	5	5		5 x		6	92	4.55	3	P 1, 2, 3	
IA-6		6	4	4	4	. 3	3	5	4	4		7	3	5	100	4.33	3	P 5, 6, 11	
IA-7		3	3	4	3	3	3	3	4	6		4	4	4	100	3.67	3	P 1, 2, 4, 5	, 6, 7
IA-8		5	6	3	3	3	4	5	6	5		4	3	4	100	4.25	3	P 3, 4, 5, 1	1
IA-12		4	5	6	х	5	4	3	5	4		3	3	3	92	4.09	3	P 7, 10, 11	, 12
IA-14		6	5	5	3	3	3	5	7	7		4	6	5	100	4.92	3	P 4, 5, 6	
IA-16	х		Х	4	3	5	4	3	х	5	x		5	6	67	4.38	3	P 4, 7	
IA-17		4	6	5	4	x	4	5	х	4		3	5	3	83	4.30	3	P 10, 12	
IA-18		5	6	5	5	6 4	5	4	4	5		3	3	4	100	4.42	3	P 10, 11	
IA-23		4	4	4	5	6	6	5	5	х		3	3	4	100	4.08	3	P 10	
IA-25		5	5	5	5	6 4	4	4	5	5		4	4	3	100	4.42	3	P 12	
IA-26	х		6	4	3	4	5	х	х	4		4	6	Х	67	4.50	3	P 4	
IA-11		7	6	7	4	- 5	4	6	6	7		5 x		5	92	5.64	4		
IA-19		6	Х	Х	5	6 4	4	х	4	4	x	Х		Х	50	4.50	4		
IA-20	х		4	Х	7	5	5	5	х	6		5	6	5	75	5.33	4		
IA-21		4	4	5	4	x	5	х	х	4	x		5	4	67	4.38	4		
IA-22	х		Х	Х	5	x	х	5	4	4		6	8	8	58	5.71	4		
IA-24		5	5	4	6	6	6	7	7	7		6	5	5	100	5.75	5		
IL-8	х		Х	6	4	×	5	х	2	3	х		5	3	58	4.00	2	P 8	
IL-12		6	6	2	3	5	3	4	4	3		3	2	Х	92	3.73	2	P 3, 11	
IL-1		7	Х	3	5	5 7	6	5	6	8		6	5	5	92	5.73	3	P 3	
IL-2		3	3	4	4	5	3	4	5	5		5	4	4	100	4.08	3	P 1, 2, 6	
IL-3		3	7	3	5	x	х	6	7	6		5 x		Х	67	5.25	3	P 1, 3	
IL-5		5	5	6	5	3	4	5	6	5		5	4	5	100	4.83	3	P 5	
IL-6		7	5	4	8	3	5	х	х	х		5	4	7	75	5.33	3	P 5	
IL-9		5	Х	3	х	4	5	5	3	3		5	4	6	92	3.91	3	P 3, 8, 9	
IL-10		4	4	5	5	4	3	х	Х	8	х		6	6	100	3.75	3	P 6	
IL-11	х		Х	3	х	4	х	3	Х	5	x	X		Х	33	3.75	3	P 3, 7	
IL-13	х		5	Х	4	5	5	6	6	7	x		6	3	75	5.22	3	P 12	
IL-14		5	4	Х	3	4	х	5	3	5		5	4	5	83	4.30	3	P 4, 8	
IL-15		5	7	Х	х	5	4	6	6	5		4	4	3	83	4.90	3	P 12	
								1		1									

Study 29I1	410	3				Vig	or Ra	ating	j: 8/9)/99)						Table #4 -	continued
Little Blue	ste	m																
			1 =	High	Ì	9 =	Low											
Local		Rep	1	R	ер	2	R	ер З	3		Re	p 4		Percent	Living	Best		
Number	P1	P2	P 3	P4	P5	P6	P7	P8	P9	P1	0	P11	P12	Survival	Plants	Plant	Location/s	
IL-16		3 3	8 4	4	4	5	5	х	6		7	5	4	92	4.55	3	P 1, 2, 6	
IL-17		4 4	- 3	3	3	3	3	3	3		3	3	3	100	3.17	3	P 3, 4, 5, 6, 7	, 8, 9, 10,,11, 12
IL-18		4 3	5 5	4	4	3	5	6	4		4	5	4	100	4.25	3	P 2, 6	
IL-19		4 4	6	3	3	3	5	3	4		4	3	4	100	3.83	3	P 4, 5, 6, 8	, 11
IL-20		4 5	5 4	х	3	4	4	3	4		4	6	3	92	4.00	3	P 5, 8, 12	
IL-21		7 7	7	3	5	4	6	5	5		5	5	5	100	5.33	3	P 4	
IL-4		6 5	5	4	4	4	5	5	5		6	6	5	100	5.00	4		
IL-7		4 4	- 5	4	5	6	6	5	6		6	7	6	100	5.33	4		
IL-22																		
Cimmeron		2 2	2 2	2	3	2	3	5	4		3	4	3	100	2.92	2	P 1, 2, 3, 4	, 6
Aldous		4 3	8 4	3	3	3	5	5	4		3	3	3	100	3.58	3	P 2, 4, 5, 6	, 10, 11, 12
Camper		3 3	3 3	4	5	5	5	5	6	х		5	5	92	4.45	3	P 1, 2, 3	
Pastura	х	х	5	5	х	7	5	7	х		3	4	Х	58	5.14	3	P 10	
		_																
			_															
		_																
		_																
		_	+															
		_	+															
		_	+															
		_	+															
																		•

Study 29I1410	- Assembly	y and Evaluation of L	ittle Blu	iestem, Schizachy	yrium
scoparium Mi	chx.				
Selected access	sions for eac	h region			Table #5
		Northern Region			
		IA - All			
		MO - North of Missouri	River		
		IL - Northern 2/3rds of	of the stat	e	
	REFERENC	E			
ACCESSION	NUMBER	COLLECTOR	MLRA	COUNTY	STATE
0070000			445		NA's so s'
9078896	MO-4	Douglas Rainey	115	Clark	Missouri
9078913	MO-21	Frank Oberie	115	Adair	Missouri
9078914	MO-22	David S. Mackey	113	Knox	Missouri
9078924	MO-32	James A. Mayberry	109	Carroll	Missouri
9078934	MO-42	Curtis Walker	107	Buchanan	Missouri
9078849	IA-3	Janet M. Thomas/	107	Cherokee	Iowa
		John P. Vogel			
9078854	IA-8	Henry D. Tordoff	107	West	lowa
				Pottawattamie	lowa
9078861	IA-15	Rick Cordes	104	Howard	lowa
9078862	IA-16	James Ranum	105	Allamakee	Iowa
9078884	IL-12	Bill Kleiman		Lee	Illinois
9078891	IL-19	Martha E. Sheppard	115	Calhoun	Illinois
		Southern Region			
		MO - South of Missour	River		
		IL - Southern 1/3 of s	state		
	REFERENC	E		~~~~	
ACCESSION	NUMBER	COLLECTOR	MLRA	COUNTY	STATE
0070005	MO 0	les Teurisment		O an a Oireada au	Minner
9078895	MO-3	Joe Tousignant	N116B	Cape Girardeau	Missouri
9078899	MO-7	Tommy Robins/	116	Ripley	IVIISSOURI
0070045	110.00	JIM HOETER	4400	Dava	NA's second
9078915	MO-23	Claude F. Peifer	116B	Perry	Missouri
9078942	MO-51	Ian S. Kurtz	116A	Taney	Missouri
9078950	MO-59	Jerry Cloyed	M112	Barton	Missouri
9078952	MO-60	M. Denise Brown	N116A	Miller	Missouri
9078964	MO-73	Maurice Davis/		Pettis	Missouri
		Steve Clubine			
9078965	MO-74	Maurice Davis/		Pettis	Missouri
		Steve Clubine			
9078968	MO-79	Steve Clubine		Marries	Missouri
9078969	MO-80	Maurice Davis/			Missouri
9078893	IL-21	Remington T. Irwin	114	Wayne	Illinois

Study	291 [°]	141G	Little Blues	stem					Field #1		Table #2 -	continu	ied	
PLT #	1	234	567	8 9 10	11 12 13	14 15 16	17 18 19	20 21 22	23 24 25	26 27 28	29 30 31			Rep #1
TIER #	ŧ													T I
I	j	VVX	ХјХ	ХХХ	јХХ	јХХ	ХјХ	XWW	WWW	WWW	WWW	I		NORTH
II	V	MO-9	IA-11	MO-30	MO-45	MO-31	MO-78	MO-47	IL-8	IA-25	MO-63	II		1
Ш	V	MO-55	IL-21	MO-10	IL-13	MO-6	MO-60	MO-28	MO-36	MO-24	IL-15			
IV	V	IA-12	MO-74	MO-51	MO-40	MO-27	MO-57	MO-58	MO-15	IA-17	MO-1	IV		
V	V	MO-42	IA-26	IL-3	MO-77	MO-67	ALDOUS	IA-15	MO-28	MO-50	IA-19	V		
VI	V	IA-7	MO-52	MO-39	MO-35	IL-4	IA-5	MO-23	IA-16	MO-21	MO-33	VI		
VII	i	MO-14	IL-17	MO-13	IA-3	IA-23	MO-65	IA-18	MO-61	IA-24	MO-48	VII		
VIII	V	MO-56	MO-26	MO-69	IL-5	MO-46	IL-20	MO-80	MO-5	MO-7	IL-10	VIII		
IX	i	MO-34	PASTURA	IL-11	MO-4	IL-16	MO-16	MO-37	MO-32	MO-59	IA-22	IX		
Х	V	IL-2	MO-8	MO-29	MO-49	MO-81	IA-1	IL-7	IA-27	MO-25	CAMPER	Х		
XI	i	IA-10	MO-64	MO-20	MO-66	IA-4	MO-12	MO-22	IL-1	IA-2	MO-54	XI		
XII	V	MO-71	MO-17	IL-14	MO-73	MO-44	CIMMERON	MO-18	MO-53	MO-79	MO-72	XII		
XIII	V	IL-12	MO-41	IA-8	IL-19	IA-20	MO-62	IA-6	MO-68	MO-11	IA-21	XIII		
XIV	Т	MO-38	IA-13	MO-43	IA-9	IL-9	IL-6	MO-19	MO-3	IA-14	IL-18	XIV		
XV	Т	ТТј	јТТ	ТТТ	Тјј	ТТҮ	ΥΥΥ	ΥΥΥ	ΥΥΥ	ΥΥΥ	ΥΥΥ	XV		
MO-57	' ON	ILY ONE	PLANT		3 PLANTS	S/PLOT (M	O-9)							
IL-8	٥N	ILY ONE	PLANT		LETTERS	5 (V, j, ETC	.,) ARE SING	LE PLAN	F BORDER	ROWS				
DIT#	32 '	33 34	35 36 37	38 30 /0	11 12 13	11 15 16	17 18 19	50 51 52	53 54 55	56 57 58	59 60 61			Ron #2
	52 . t		00 00 07	00 00 40	71 72 70		47 40 40	50 51 52	00 04 00	000700	00001			
	2 7	2	w w w	w w w	WWb	h h h	h h h	h h h	h h h	h R R	RRR	1		
	MO	-34	II -18	IA-7	MO-31	MO-6	MO-53	MO-2	IA-18	MO-22	MO-48			
	MO)-71	MO-24	MO-35	IA-14	IA-23	IA-2	MO-74	MO-28		MO-57			
IV	MO)-8	MO-42	MO-67	II -1	MO-60	MO-33	MO-37	MO-26	II -21	III -7			
V	IA-1	13	IA-3	MO-9	MO-39	IL-16	IA-8	MO-15	MO-69	MO-14	MO-25	IV		
VI	MO	-50		IL-4	MO-59	MO-52	MO-40	MO-51	IA-27	MO-81	IA-16	VI		
VII	IA-1	17	MO-63	MO-66	IL-20	MO-72	IL-19	MO-19	MO-23	IL-11	IL-10	VII		
VIII	MO	-32	IA-6	MO-4	IA-11	IL-2	MO-54	IA-26	IL-8	MO-41	IA-4	VIII		
IX	IA-1	10	MO-77	IL-5	MO-46	MO-56	MO-64	MO-1	MO-21	MO-65	MO-10	IX		
X	 IL-1	4	MO-38	MO-49	MO-27	IL-12	MO-79	IA-19	MO-68	IA-1	ALDOUS	X		
XI	MO	-61	IA-9	MO-55	IL-15	IA-25	MO-17	MO-7	IA-5	IL-9	IL-3	XI		
XII	IA-2	24	MO-47	MO-78	MO-43	PASTURA	MO-20	MO-73	MO-12	IA-20	MO-13	XII		
XIII	MO	-30	MO-18	MO-11	IL-6	MO-3	IL-13	IA-12	IA-22	MO-29	MO-44	XIII		
XIV	MO	-45	MO-62	MO-58	MO-5	IL-17	IA-21	MO-80	MO-16	MO-36	IA-15	XIV		
XV	ΥY	Y S	iS S	SSS	SSS	SSS	SSS	hSS	YhY	ΥΥΥ	hJJ	XV		

Study 2	29I141G		Little Blue	estem								Table #2 -	continued				
,																Rep #3	
PLT #	62 63 64	65 66 67	68 69 70	71 72 73	74 75 76		77	7	78	79 80 81	82 83 84	85 86 87	88 89 90	91 92 93		North 🕈	
TIER #																	
I	RRR	RRR	Rcc	ссс	ссс	С		a	l I	ааа	abb	jbb	jjj	RRR	I		
I	MO-45	IL-6	MO-71	IA-13	MO-31	В	5	a	l	IL-4	MO-63	MO-11	IL-8	IL-11	П		
II	MO-61	MO-19	MO-43	MO-50	MO-40	В	5	R a	l	IA-21	IL-13	IL-17	MO-68	MO-29	Ш		
V	IA-9	MO-51	MO-58	IA-17	MO-55	E		o a	l I	MO-47	MO-56	MO-2	MO-13	IL-11	IV		
/	MO-35	MO-1	MO-23	IA-24	MO-24	E		a a	l I	IL-5	CAMPER	MO-69	IL-12	MO-25	V		
/1	MO-39	MO-28	MO-36	MO-42	MO-53	E		D a	l I	MO-54	IA-26	IA-14	IA-5	IA-15	VI		
/11	MO-77	IA-19	CIMMERON	IA-18	MO-64	С	;	w a	l I	MO-6	MO-33	MO-73	MO-16	IL-3	VII	IL-8 on	ly
/111	MO-9	MO-7	IA-23	IL-20	IA-4	С	;	A İ		MO-32	IA-26	MO-52	MO-22	MO-44	VIII	one plan	nted
X	IA-6	MO-80	IL-2	IA-10	MO-5	Ģ	;	Yа	l I	IA-7	MO-20	IL-16	MO-48	IA-16	IX		
<	MO-8	IA-12	MO-78	MO-30	IA-25	Ģ	;	а	l I	MO-79	MO-17	MO-59	MO-14	IL-7	Х		
(I	MO-34	MO-12	MO-46	IA-8	MO-18	I		а	l I	IA-11	IL-21	MO-72	IA-22	PASTURA	XI		
(II	IL-14	MO-26	MO-4	IL-19	MO-38	I		а	l I	MO-74	MO-33	MO-21	MO-65	IL-9	XII		
	IL-18	IA-27	MO-66	ALDOUS	MO-67	C)	а	l I	IA-3	MO-27	MO-81	MO-41	IA-20	XIII		
(IV	MO-60	MO-10	MO-37	MO-15	MO-62	C)	а	l I	MO-49	IL-15	MO-57	IA-1	IL-10	XIV		
<v< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></v<>																	
	ННА	ΑΚΚ	FFD	DLL	ΜΜΝ	Ν	1	a	ı	acc	ссс	ссс	ссс	hcc	XV		
PLT #	94 95 96	97 98 99	100 101102	103 104 105	106 107 108	1	09 1	10 11	11 11	2 113 114	115 116 117	118 119 120	121 122 123	124		Rep #4	
IER #															I –		
	RiR	ааа	ХХХ	XXU	iUU	l	υŪ	U		UUU	WWW	WWW	W W W	d	II –		
l i	IA-9	IL-18	MO-8	MO-74	MO-40	1/	4-25	5		MO-5	MO-42	IA-4	IA-20	d	Ш		
II	MO-58	IA-19	MO-28	IL-17	MO-53	II	8			PASTUR/	4MO-37	IL-10	MO-77	d	IV		
V	ALDOUS	MO-80	IA-21	MO-2	IA-8	N	10-2	26		IA-26	MO-68	MO-14	MO-52	d	V		
/	MO-51	IA-18	MO-20	MO-46	IL-1	N	10-1			MO-62	MO-44	MO-9	MO-34	d	VI		
/I	IA-17	IA-10	MO-33	IA-24	MO-43	II	12			IA-5	MO-81	CIMMERON	MO-19	d	VII		
/11	MO-64	IA-10	CAMPER	MO-3	MO-69	N	10-6	61		IA-16	IL-4	MO-35	MO-21	d	VIII		
/111	IA-27	MO-39	IL-19	MO-57	IL-6	N	10-3	38		MO-67	MO-25	MO-48	IL-14	е	IX		
Х	MO-60	MO-15	MO-63	IA-7	MO-36	II	-15			MO-49	IA-13	MO-29	MO-30	е	Х		
<	MO-12	MO-41	MO-32	MO-55	IA-12	N	10-4	17		IA-26	IL-21	MO-65	IL-9	е	XI		
<i< td=""><td>IL-20</td><td>IA-23</td><td>IA-11</td><td>MO-46</td><td>MO-17</td><td>II</td><td>-2</td><td></td><td></td><td>IL-13</td><td>MO-45</td><td>IL-11</td><td>IA-22</td><td>f</td><td>XII</td><td></td><td></td></i<>	IL-20	IA-23	IA-11	MO-46	MO-17	II	-2			IL-13	MO-45	IL-11	IA-22	f	XII		
<ii< td=""><td>MO-50</td><td>MO-6</td><td>MO-59</td><td>IA-14</td><td>MO-31</td><td>N</td><td>10-5</td><td>54</td><td></td><td>MO-79</td><td>IA-3</td><td>MO-16</td><td>IL-7</td><td>f</td><td>XIII</td><td></td><td></td></ii<>	MO-50	MO-6	MO-59	IA-14	MO-31	N	10-5	54		MO-79	IA-3	MO-16	IL-7	f	XIII		
<iii< td=""><td>MO-71</td><td>MO-78</td><td>MO-27</td><td>MO-73</td><td>MO-18</td><td>l/</td><td>A-15</td><td>5</td><td></td><td>MO-66</td><td>MO-72</td><td>MO-22</td><td>MO-10</td><td>f</td><td>XIV</td><td></td><td></td></iii<>	MO-71	MO-78	MO-27	MO-73	MO-18	l/	A-15	5		MO-66	MO-72	MO-22	MO-10	f	XIV		
XIV	MO-7	MO-11	IL-16	MO-23	IA-1	II	5			IA-6	MO-13	IL-3	MO-56	f	XV		
XV	c R R	MO-24	RhR	RSh	hSS	S	S	Т		hhh	Τ٧٧	Vhg	ggg	g			

Study No. 29I142G

Study Title: Production of Native Missouri Ecotypes of Grasses, Legumes and Forbs for Roadsides, Critical Areas, and All Other Vegetative Plantings Where Native Plants are Now Being Planted.

Study Leader: Cordsiemon, R.C.

Introduction:

Well-adapted native grass, legume and forb plantings offer many advantages as a low cost sustainable vegetative cover for management of soil and water resources. Native plant communities resist noxious weed invasion, provide excellent erosion control, and generally require relatively low maintenance.

These characteristics make native plants an excellent selection for use in roadside plantings, wildlife habitat enhancement, long-term land retirement programs, public land and all other vegetative plantings where mono-cultures of grasses are presently being planted. This is especially true along public transportation corridors that constitute a major land resource and management problem in the state of Missouri. Based on 1987 National Resource Inventory (NRI) data, over one million acres of Missouri land are devoted to rural transportation. Other federal and state agencies also own a significant land base in Missouri.

Proper vegetation management along these corridors is an important element in controlling soil loss and unwanted weedy plant species. Many of these acres are now seeded to introduce cool-season grass and legume species which are often invaded by noxious weeds requiring extensive mowing or herbicide treatment programs. These management techniques are expensive and can also result in additional water quality problems where herbicides are used extensively.

Managing or reseeding these acres to promote native grasses and forbs offers a low cost environmentally sound approach to roadside vegetation management. Herbicide use, soil erosion, and most mowing can be reduced significantly where a vigorous native grass and forb mixture dominates a roadside right-of-way. In addition, these goals are consistent with on-going NRCS programs designed to improve ground and surface water quality, reduce soil loss and increase wildlife habitat.

Problem:

Many adapted forb, legume and grass species of native origin are either currently not commercially available or available only in very limited quantities, which make them very expensive. Species that are available are often varietal releases that have undergone an evaluation and selection process or a plant-breeding program. Most varieties are designed for high forage production and are highly vigorous plants. They are generally excellent for pasture and hay production but can be too domineering for diversified mixtures. Their origins are often not from within the state in which they are being planted. There is a need for additional native species for use on public lands and other types of conservation plantings with origins close to where they are being planted.

Objective:

The objective of this study is to accelerate the availability of selected native grass, legume and forb species.

Cooperators:

The Missouri Department of Conservation (MDC), USDA Natural Resources Conservation Service (NRCS), Plant Materials Center (PMC), the University of Missouri at Columbia, Missouri (UMC), and the National Audubon Society-Audubon Missouri (NAS).

Procedures:

The state of Missouri was divided into four zones: Northern Glaciated Plains, Zone #1; Western Prairie, Zone #2; Ozarks, Zone #3; and the Bootheel Region, Zone #4 (See Table #1). Plant materials were collected as seed by the study coordinator, selected personnel from USDA-NRCS, MDC, UMC, and other knowledgeable interested persons. Collections were made from prairie remnants throughout each zone striving for a relatively equal and representative sample. Large collections from one site were not allowed to dominate the mixture from throughout the zone. Seed from each collection site was inventoried by location. Seed collected from within each zone was kept separate from the other zones. Increase plots were and will be established, as seed becomes available. Each species will be released as 'Source Identified' germplasm from the zone in which it was collected. Evaluation and selection or plant breeding procedures has not improved 'Source Identified' seed.

Discussion:

1997

The Missouri Ecotype Enhancement Program was officially started as a plant materials study with the signing of the study plan in December of 1997. This plan is an agreement between cooperators and funded by a grant from the MDC. Several meetings preceded the document signing that included MDC, NRCS, UMC, Department of Transportation, Missouri Department of Natural Resources, and other interested individuals.

The initial grant from MDC to UMC was received July 1997 and a program coordinator was hired by UMC in September 1997 to work at the Elsberry Plant Materials Center.

1998

A grant was given to UMC once again by MDC that would fund the program through August of 1999. Goals were established for 1998 collections. Some species from 1997 were recollected and new species were added.

1999

The Missouri Ecotype program continued during 1999 and the species released listed in Table #2. Beginning in September, the Lincoln County Soil and Water Conservation District took over as the administrator for the Missouri Ecotype Program replacing UMC. MDC funded the program for the 1999-2000 fiscal year.

2000

The Missouri Ecotype program continued through August until funding was depleted. The program was continued under direction of Missouri Audubon Society and MDC in cooperation with the NRCS Plant Materials Center.

2001

The Missouri Ecotype program is growing increase plots at Elsberry and also at the Charles Green Conservation area near Ashland, Missouri.

2002

MDC took over as administrator of this study and is currently still funding the program with the aid of grants. The Missouri Ecotype program is continuing to increase plots at the Elsberry PMC and Green Conservation Area. New collections are being made of both old and new species.

2003

MDC is continuing to administrate the Missouri Ecotype program. All plots are still in production and seed is being allocated. The PMC is planning to increase plots for seed production in 2004.

2004

In the spring of 2004, the plots of zones 1 and 2 sideoats gramma, *Bouteloua curtipendula*, and zone 1 river oats, *Chasmanthium latifolium*, were increased for seed production. There were no new releases from the Missouri Ecotype Program in 2004 and there are no releases scheduled for

2005. Plans are to increase river oats-zone 1 again in 2005. Becky Erickson, Missouri Ecotype Program Coordinator, has several production plots located at the Green Conservation Area in Ashland, Missouri. The number of plots on the Green Area has increased over the past year and now sustains almost 35 different ecotypes. Plans for both the Plant Materials Center and the plots at the Green Conservation Area are to sustain the plots already established and increase the plots that display good seed production and survival. This will allow for potential releases as early as 2006.

2005

Chasmanthium latifolium, river oats from the northern zone were increased in the late summer of 2005. Plans are to increase several other better seed producing species in the spring of 2006, such as the big bluestem (northern zone), little bluestem (northern zone), sideoats gramma (northern and western zones), tall dropseed (northern and western zones), pale purple coneflower (northern and western zones), grayhead coneflower (northern zone), and Virginia wild rye (northern zone).

2006

Supplemental funding for the Missouri Ecotype Program was not extended past the agreement date of June 2007. Plans are to continue growing the species that have been previously released or have potential for high use in the commercial market. The PMC planted production plots of big bluestem (northern zone), little bluestem (northern zone), sideoats gramma (northern and western zones), tall dropseed (northern and western zones), pale purple coneflower (northern and western zones), and grayhead coneflower (northern zone) in the spring of 2006. A fall planting of Virginia wild rye (northern zone) was also planted. The plots were increased to provide more seed production and averaged ¹/₄ to two acres in size.

2007

Production plots of sideoats grama were increased to help meet the demand for higher priority species requested by seed growers. In FY 2008, plans are to again increase these production plots. The PMC continued to put efforts into a select group of species (production species started in 2006) as they are the priority for most commercial growers interested in Missouri ecotypes. Those species are big bluestem (northern zone), little bluestem (northern zone), sideoats gramma (northern and western zones), tall dropseed (northern and western zones), pale purple coneflower (northern and western zones), and grayhead coneflower (northern zone). Plans are to release northern Missouri sideoats grama in 2008. With growing interest in southern zone little bluestem, the Elsberry PMC will expand the production plot in 2008.

Study 29I142G - Missouri E	cotype Releas	ies				Table #2
Missouri I	Ecotype Relea	ses from the Elsher	rv Plant Ma	terials Center		
			Accession	Cooperating	Type of	Year of
Scientific Name	Release Name	Common Name	Number	Agency(ies)	Release	Release
Schizachvrium scoparium, Michx	Southern MO	little bluestem	9079006	MOPMC MDC	N	2004
,			0010000			2001
Ratibida pinnata	Northern MO	grayhead coneflower	9079060	MOPMC, MDC	Ν	2004
Sporobolus compositus var	Northern MO	tall dropseed	9079040	MOPMC MDC NAS	N	2001
			0070040			2001
Coreopsis palmata	Northern MO	prairie coreopsis	9079028	MOPMC, MDC, NAS	Ν	2001
Coreonsis nalmata	Western MO	prairie coreopsis	0070020	MORME MDE NAS	N	2001
	Western We		3073023			2001
Echinacea pallida	Northern MO	pale purple coneflower	9079032	MOPMC, MDC, NAS	Ν	2001
Echinacea nallida	Western MO	nale nurnle coneflower	0070033	MORME MDE NAS	N	2001
	Western WO		307 3033			2001
Liatris pycnostachya	Northern MO	prairie blazing star	9079020	MOPMC, MDC, NAS	Ν	2001
Liatris pycnostachya	Western MO	prairie blazing star	9079021	MOPMC, MDC, NAS	Ν	2001
Et anno 1		\ <u>//</u>	0070044			1000
Elymus virginicus L.	Northern MO	virginia wiidrye	9079044		IN	1999
Sorghastrum nutans (L) Nash.	Northern MO	Indiangrass	9079036	MOPMC,UMC,MDC,MODOT	Ν	1999
		1 P	0070007			1000
Sorgnastrum hutans (L) Nash.	Western MO	Indiangrass	9079037	MOPMC,UMC,MDC,MODOT	N	1999
<i>Andropogon gerardii</i> Vitman	Northern MO	big bluestem	9079000	MOPMC,UMC,MDC,MODOT	N	1999
Ochima da minara di sua Misha		Pat the s	0070004			1000
Schizachynum scopanum, Michx.	Northern MO	little bluestem	9079004	MOPMC,UMC,MDC,MODOT	N	1999
Department of Conservation: MODO	T=Missouri Plant Mate	tment of Transportation. NA	sity of Missour	udubon Society-Audubon Miss	souri	
Grow Native.						
in a particular region, state ecosyste	em or habitat witho	naturally in the USA. Gene	activity.			
Net astro-Parely 1			ataria a lla di di di		h	
ivat.=naturalized releases; collected	from a population	within the USA, but were o	riginally introdu	ucea to the USA sometime in t	ne past.	
I=introduced; means that the original	collection from wh	hich the release was made	was not from v	within the USA.		

Study ID Code: MOPMC-P-0001-WO, WL, WE

Study Title: Assembly, Evaluation and Selection of Bur Oak, Quercus macrocarpa Michx.

Study Leader: Cordsiemon, R.

Description:

Bur oak is a large-size tree 60-80 feet tall and 2-3 feet in diameter (max. 170 by 7 feet); crown rounded with large, heavy branches. Leaves are deciduous, oblong to ovate; 6-12 inches long; characteristically 5-9 lobed, with rounded lobes. Fruit matures in one year; acorns are 3/5-2 inches long, ellipsoidal, brown, enclosed for 1/3 to all of its length in a characteristic fringe-margined cup. Twigs are stout; yellow-brown to gray, often with characteristic corky wings. Winter buds; 1/8-1/4 inch long, hairy. Bur oak is one of the largest American Oaks. Commonly distributed throughout Missouri, Iowa and Illinois, bur oak are is important bottomland tree, frequently found in moist flats, wetlands, and undulating flood plains. Important associates of bur oak include red maple, American elm, silver maple, swamp white oak, sycamore and eastern cottonwood.

Objective:

The objective of this study is to select a local source, fast growing, and high nut producing bur oak.

Materials and Methods:

Field collections were assembled, accessioned, and held in storage until the collection period ended. The assemblage of collections began at the PMC in October 2000 and ended mid-December 2000. After the collection period was over the seed was stratified and planted in the greenhouse using the Root Pruning Method (RPM) containers. The plants will be transplanted in Field #7 on the PMC in mid to late April 2002. The design will be a randomized complete block with one plant per plot: one block for the Iowa collections, one for the Illinois collections and one block for the Missouri collections.

Discussion

2000

A total of 24 collections were made from the PMC three state service area: seven from Iowa, two from Illinois and 15 from Missouri. As these collections arrived at the PMC they were given accession numbers and placed in stratification for 120 days (cool moist storage 38 degrees Fahrenheit). At the time this report was being developed, these collections were being germinated in the greenhouse.

2001

The 24 collections of bur oaks were taken out of the germination trays and placed in containers $(3 5/8" \times 6")$ and allowed to grow to approximately one foot tall. These plants were later transplanted into one-gallon size containers and placed in the portable greenhouse. In early December 2001 the plants were transported to the root cellar for over wintering. The scheduled

planting date is April 2002. The plantings will be randomized complete block designs with one block for Iowa's collections, one block for Illinois' collections and one block for Missouri's collections. Refer to Table #1 for collection information.

2002

Three assemblies of bur oaks were planted in April 2002 representing each state's collections, Iowa, Illinois and Missouri. Iowa's collections were planted in Field #6 on April 18, 2002, Illinois' collections were planted in Field #12 on April 17, 2002, and Missouri's collections were planted in Field #7 on April 18 – 19, 2002. These collections were evaluated for height, spread, vigor, and insect and disease resistance. The evaluation data was not documented in this year's report but will be in the 2003 Annual Technical Report. Table #1 reflects collection information.

2003

The three assemblies of bur oak representing the Missouri, Illinois, and Iowa collections were evaluated in October 2003. Performance characteristics evaluated were height, spread, vigor, and insect/disease resistance. The 2003 plant performance summaries can be found in Tables #2, #6, and #10 and plot layout maps are Tables #11 to #13.

2004

All three plantings, Missouri, Iowa, and Illinois, were evaluated again for height, spread, vigor, and insect/disease resistance. Evaluation data for 2004 can be found in Tables #3, #7 and #10. The Iowa and Missouri plantings originally were planted with two trees of each collection in each replication. Not all collections had enough material to allow for two trees in each replication, but most did. In 2004, the lesser dominant tree was removed to allow the dominant tree to grow without competition. There are some replications that had trees die and the extra (non-dominant) trees were, in some cases, used to replace trees that died. The 2005 evaluations will reflect the replacement trees. Fertilizer, 13-13-13, was added to the three plantings to encourage growth and healthier plants.

2005

Evaluations were taken in September for height, spread, vigor, and insect/disease resistance on the three plantings. Fertilizer, 13-13-13, again was added to each tree. Acorns were produced on a few trees in the Missouri accession in field #7. Evaluation data for 2005 can be found in Tables # 4, #8, and #10.

2006

In early spring, all three plots of bur oaks were sprayed with an ounce per acre rate of Oust to control grass and weed competition. There was good control through mid-summer. Late summer broadleaf weeds and grasses encroached back around the tree. Fertilizer, 13-13-13, was also added at a rate of 8 oz. per tree. An evaluation for acorn production was done on all three plots (five year old trees); Missouri plot (Rep. 3, tree MO-11) produced several acorns and in the Iowa plot (Rep. 3, tree IA-5; Rep. 6, tree IA-6; and Rep. 7, tree IA-5) all produced significant amounts of acorns. There were no height, spread, and insect/disease resistant evaluations taken this year.

In 2007, the seven surviving trees from Illinois in field #12 were moved to field #11 to make room for another planting. During the summer, these seven trees stressed heavily due to drought conditions. There were no evaluations for the Illinois trees and a determination will be made in FY 2008 if there is a need to continue with an Illinois source bur oak. There were no evaluations made on the Illinois planting in FY 2007. Missouri and Iowa bur oak plots look good and are performing well. Oust again was used in the spring to control white clover and grasses around the trees. Missouri source bur oaks have been susceptible to small galls that cover the leaf surface, possibly caused by small wasps. The damage is mostly cosmetic and seems to be mainly associated with the Missouri plot, but is also evident in the Iowa planting. The Iowa and Missouri plots were evaluated again for height, spread, vigor, insect/disease resistance, and acorn production. This year the trees were measured at 24 inches high to get a diameter measurement on the trunk. This will help determine how well each tree is performing against other trees in the planting. The Iowa planting had six trees that produced acorns, while the Missouri planting did not have any trees produce in 2007. The drought conditions could possibly have been the reason for little to no acorn production. The Iowa and Missouri evaluation data can be found in Tables #5 and #9.

Table # 1

Temporary No.	State	County	MLRA	Collector
MO-1	Missouri	Calloway	115	Thomas L. Wekenborg
MO-2	Missouri	Chariton	NA	Charles Lewis
MO-3	Missouri	Shannon	053	Randy Misser
MO-4	Missouri	Lincoln	115	Jimmy Henry
MO-5	Missouri	Lincoln	115	Jimmy Henry
MO-6	Missouri	Lincoln		Wayne Lovelace
MO-7	Missouri			
MO-8	Missouri	Pike		Keith Jackson
MO-9	Missouri	Pike		Keith Jackson
MO-10	Missouri	Pike		Keith Jackson
MO-11	Missouri	Pike		Keith Jackson
MO-12	Missouri	Howard	N/A	Robert D. Dewitt
MO-13	Missouri	Boone	N/A	Robert D. Dewitt
MO-14	Missouri	St. Charles	115	Dan Crigler
MO-15	Missouri	Moniteau	115	Douglas Wallace
IL-1	Illinois	Clark	N/a	David E. Hiatt
IL-1	Illinois	Jasper	113	Dennis D. Clency
IA-1	Iowa	Dickinson	103	Tim K. Moran
IA-2	Iowa	Dickinson	103	Tim K. Moran
IA-3	Iowa	Dickinson	103	Tim K. Moran
IA-4	Iowa	Wayne	N/A	Duane Bedford
IA-5	Iowa	Decatur	109	Kevin Reynolds
IA-6	Iowa	Bremer	104	Richard J. Cornes
IA-7	Iowa	Black	104	Rick Cordes

Study Title: Assembly, Evaluation and Selection of Bur Oak Quercus macrocarpa Michx.

Study MOPMC-P-0001-WE, WLAssembly, Evaluation and Selection of Bur Oak, Quercus macrocarpa, Michx.Table #2

2003 Evaluation

Summary of Iowa Collections, Located in Field #6

Summary of Height (feet)

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avg.
IA-1	1.1	0.4	0.8	1.1	1.3	0.6	0.8	1.0	0.8	1.0	1.2	1.2	0.93
IA-2	0.7	0.8	0.8	0.8	1.2	1.0	1.3	0.8	0.8	0.8	1.1	1.3	0.95
IA-3	0.8	0.7	0.8	1.1	0.9	0.7	0.6	0.8	0.9	1.0	0.9	0.8	0.81
IA-4	1.3	1.3	1.2	0.8	0.8	1.0	0.0	0.9	1.3	1.1	0.9	0.0	1.07
IA-5	1.1	1.3	1.3	0.7	1.3	1.2	2.0	1.9	1.0	1.4	1.7	0.8	1.30
IA-6	0.8	0.7	1.0	1.1	1.0	1.0	0.4	0.3	0.5	1.1	0.6	0.7	0.77
IA-7	1.1	1.3	0.8	1.0	1.8	1.0	0.8	0.5	0.5	1.7	0.9	1.6	1.08

Summary of Spread (feet)

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avg.
IA-1		0.3	0.2	0.2	0.0			0.1	0.2	0.1	0.2	0.3	0.17
IA-2		0.3		0.1	0.2	0.2	0.1	0.2	0.1	0.0	0.0	0.2	0.15
IA-3			0.1	0.2	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.08
IA-4		0.2	0.1	0.1	0.1		0.0	0.1	0.1	0.2	0.2		0.14
IA-5		0.3	0.1	0.1	0.3	0.1	0.1	0.3	0.0	0.0	0.0	0.1	0.13
IA-6				0.2	0.2	0.1		0.0	0.1	0.2	0.0	0.2	0.13
IA-7	0.2	0.3	0.1		0.1	0.1	0.1	0.0	0.1	0.1	0.0	0.0	0.11

Summary of Vigor (1-9 Rating) 1=Very Good 9=Poor

	, - J	-											
Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avg.
IA-1	4	5	4	3	4	6	4	4	6	4	4	4	4.33
IA-2	4	4	4	4	3	4	6	4	5	5	4	3	4.17
IA-3	dead	4	3	3	4	4	6	6	4	4	5	6	4.45
IA-4	3	3	3	4	4	4		4	3	4	4		3.60
IA-5	3	3	3	4	3	3	2	2	6	3	3	3	3.17
IA-6	4	4	3	3	4	4		9	7	4	6	6	4.91
IA-7	3	3	4	3	2	4	4	7	7	3	4	3	3.92

Summary of Insect and Disease Resistance (1-9 Rating) 1=Very Good 9=Poor

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avg.
IA-1	3	3	2	2	2	2	5	4	3	2	3	2	2.73
IA-2	2	2	2	2	3	2	3	5	4	4	3	2	2.91
IA-3	2	3	3	3	2	3	3	3	2	4	3	3	2.91
IA-4	2	2	3	2	2		4	4	3	2	3		2.78
IA-5	3	2	3	3	3	2	2	2	4	2	2	2	2.45
IA-6	2	2	2	2	3	2	4	3	4	3	4	3	2.91
IA-7	3	3	2	2	2	3	2	3	3	3	4	3	2.73

Study MOPMC-P-0001-WE, WL Assembly, Evaluation and Selection of Bur Oak, *Quercus macrocarpa*, Michx.

Table #3

2004 Evaluation

Summary of Iowa Collections, Located in Field #6

Summary of Height (feet)

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avg.
IA-1	2.2	4.0	2.8	2.9	2.6	2.4	2.2	2.3	3.7	3.6	3.6	3.5	3.0
IA-2	2.9	3.1	2.4	2.7	2.9	3.1	2.4	3.6	3.5	3.4	3.7	3.8	3.1
IA-3	3.7	2.3	2.5	3.0	2.7	3.2	2.4	dead	3.6	2.5	3.3	3.4	3.0
IA-4	3.0	4.0	3.4	4.1	3.2	3.1	3.8	3.1	4.4	3.8	4.1	4.3	3.7
IA-5	4.3	3.7	4.9	3.7	3.5	3.2	3.2	3.2	3.5	dead	3.2	2.6	3.5
IA-6	2.3	3.0	2.4	2.4	3.6	3.5	dead	dead	3.4	3.1	2.2	3.5	2.9
IA-7	3.5	3.2	3.2	3.2	3.7	3.6	3.2	4.1	2.4	3.4	3.8	4.1	3.5

Summary of Spread (feet)

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avg.
IA-1	2	3.6	2.5	3.2	2.9	2.5	3	2	3.8	3.7	3	3.2	3.0
IA-2	2.7	2.7	2.4	2.1	2.2	2.8	3	3	2.6	3	2.9	2.6	2.7
IA-3	3.7	2.1	2.8	2.7	2.4	3.3	1.5	dead	3.3	3.1	2.2	3.6	2.8
IA-4	3	2.6	3.1	3.4	3	3.4	5	3.7	3	3.1	3.4	3.4	3.3
IA-5	4.4	3.2	3.3	4.1	3.8	2.5	2	3.4	2.9	dead	3.1	2.4	3.2
IA-6	2	3.6	2.2	2.4	3.4	3.4	dead	dead	3.8	3.2	2.6	2.5	2.9
IA-7	2.8	2.6	2.3	2.4	3.5	3.2	3.3	3.5	2.2	3.7	3	3.4	3.0

Summary of Vigor (1-9 Rating) 1=Very Good 9=Poor

	,	• (• •		-									
Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avg.
IA-1	5	3	5	3	4	5	4	5	3	3	3	4	3.9
IA-2	4	3	5	5	4	4	5	3	4	4	3	4	4.0
IA-3	2	5	4	3	5	4	6	dead	3	4	5	3	4.0
IA-4	3	3	2	2	3	3	2	3	2	2	3	2	2.5
IA-5	1	3	1	2	2	4	5	3	4	dead	4	5	3.1
IA-6	5	3	5	4	3	3	dead	dead	3	3	5	4	3.8
IA-7	3	4	3	3	2	3	4	4	4	3	3	3	3.3

Summary of Insect and Disease Resitance (1-9 Rating) 1=Very Good 9=Poor

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avg.
IA-1	2	3	3	3	1	4	2	3	2	2	2	2	2.4
IA-2	1	2	2	1	2	2	4	2	2	2	3	2	2.1
IA-3	2	2	3	3	2	3	2	dead	2	2	2	2	2.3
IA-4	2	3	2	2	3	2	3	2	3	2	2	1	2.3
IA-5	2	2	2	2	1	3	3	3	3	dead	5	2	2.5
IA-6	2	2	2	2	2	1	dead	dead	1	1	1	2	1.6
IA-7	2	3	2	1	2	2	2	2	2	2	4	2	2.2

Study M	OPMC-F	-0001-\	NE, WL										
Assembl	y, Evalı	uation a	nd Sele	ction o	f Bur Oa	ak, <i>Que</i>	rcus ma	acrocar	pa, Mic	hx.	•	Table #4	ļ
2005 Ev	valuati	on											
Summar	v of low	a Colle	ctions	locater	l in Fiel	d #6							
Caninar	y 01 10 1			Looutet									
Summar	v of Hoi	aht (foc	at)										
	Ren 1	Ren 2	Ren 3	Ren 4	Ren 5	Ren 6	Ren 7	Ren 8	Ren 9	Ren 10	Ren 11	Ren 12	Δνα
	36	15	13	16	5 1	35	<u>17</u>	30	53	5		54	<u> </u>
IΔ-1 IΔ-2	13	4.5	3.8	3.8	15	1.0	3.6	0.0 1 1	1.6	10	5.2	5	4.0
14-2	63		0.0 1	5.6	3.7	5.2	0.0 1	Dead	4.0 6	4.5	5.2	13	1.0
	5.2	51	- - 1.8	6	4.6	5.1	5.8	5.2	62	5.4	6.3	4.5 6	5.5
14-4	5.8	5.6	63	53	5.2	4.6	1.6	5	5.2	Dead	5	29	5.5
14-5	3.5	5.0	1.2	1.5	5	4.0	Dead	Dead	<u> </u>	5 1	3.2	2.3 A A	11
	J.J 1 5	Dood	4.Z	4.J	55	4.5	1 7	1 G	Pood	J.1 17	J.Z	4.4 5.7	4.4 5.1
14-1	4.5	Deau	5.0	J.Z	5.5	5	4.7	4.0	Deau	4.7	4.3	5.7	5.1
Summar	v of Spr	oad (fo	et)										
	Ren 1	Ren 2	Ren 3	Ren 4	Ren 5	Ren 6	Ren 7	Ren 8	Ren 9	Ren 10	Ren 11	Ren 12	Δνα
ΙΔ-1	26	3	2.3	36	51	34	38	36	37	4	4.2	33	36
IA-2	2.0	32	2.0	3.6	3	3.5	3.6	3.6	3.6	32	3.6	3.1	3.3
IA-3	4.2	2.6	3	4	2	3	2.6	Dead	49	3	2.4	4.3	3.3
ΙΔ-4	4	3	35	5	36	4	47	4	3.4	4	3.4	4.4	3.9
IA-5	4.3	34	4.5	4	3.6	5	37	4	32	Dead	3	34	3.8
IA-6	22	4	2.5	3.5	2.5	4	Dead	Dead	3.6	42	24	2.6	3.2
IA-7	2.8	Dead	2.3	3.4	3.5	3.5	4.2	3.9	Dead	3	4	4	3.5
										-	-	-	
Summar	y of Viq	or (1-9	Rating)	1=Verv	Good	9=Poor							
Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avq.
IA-1	6	3	5	3	1	5	4	5	3	2	3	3	3.6
IA-2	5	4	5	5	5	3	6	3	3	3	3	3	4
IA-3	2	5	4	5	5	4	5	Dead	2	4	4	3	3.9
IA-4	3	3	3	1	3	3	1	2	2	3	2	2	2.3
IA-5	1	3	1	2	2	2	3	2	3	Dead	4	6	2.6
IA-6	6	3	5	3	3	3	Dead	Dead	3	3	6	4	3.9
IA-7	9	Dead	5	4	2	3	3	3	Dead	5	3	2	3.9
Summar	y of Ins	ect/Dise	ease Re	<u>sista</u> nc	e (1-9 R	ating)	1=Very	Good	9=Poor				
Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avg.
IA-1	3	2	2	2	2	4	2	2	3	3	2	2	2.4
IA-2	2	2	3	3	4	1	3	2	3	3	3	2	2.6
IA-3	3	4	2	7	3	2	1	Dead	1	3	2	2	2.7
IA-4	1	2	1	1	1	2	1	1	1	2	1	1	1.3
IA-5	2	3	2	2	3	1	1	3	1	Dead	2	2	2
IA-6	2	3	1	2	3	3	Dead	Dead	2	2	2	4	2.4
	9	Dead	5	3	2	2	1	3	Dead	2	2	2	31

Study MOPMC-P-0001-WE, WL Assembly, Evaluation and Selection of Bur Oak, *Quercus macrocarpa*, Michx. Table #5

2007 Evaluation

Summary of Iowa Collections, Located in Field #6

Summary of Height (feet)

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avg.
IA-1	9.8	10.2	9.0	9.7	8.4	9.0	9.8	9.5	10.1	9.5	9.1	10.6	9.56
IA-2	8.0	9.4	7.5	7.2	6.8	7.5	9.8	9.4	9.7	8.2	8.6	6.7	8.23
IA-3	11.8	8.0	8.5	8.0	7.2	8.5	8.5	dead	11.4	9.0	8.9	8.5	8.94
IA-4	9.7	9.2	10.2	9.7	9.6	9.6	11.0	10.6	11.7	12.0	11.9	10.6	10.48
IA-5	11.6	10.8	11.0	9.8	9.6	7.6	8.3	11.2	10.6	dead	9.5	6.9	9.72
IA-6	5.6	9.0	7.7	9.3	9.3	7.0	dead	dead	10.8	8.9	8.0	7.3	8.29
IA-7	9.8	7.5	9.3	9.0	9.1	9.4	10.2	9.6	5.8	9.2	11.0	11.2	9.26

Summary of Spread (feet)

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avg.
IA-1	6.7	7.3	6.9	8.5	7.0	6.8	8.0	7.6	9.7	8.2	9.7	7.2	7.80
IA-2	5.7	8.0	7.4	6.8	6.0	7.5	9.3	8.1	9.8	6.9	7.9	6.0	7.45
IA-3	10.6	6.6	6.8	8.0	5.0	6.7	7.4	dead	10.0	7.2	5.6	8.6	7.50
IA-4	6.9	6.5	8.0	9.6	9.0	7.7	11.5	9.8	8.8	9.2	10.2	10.9	9.01
IA-5	11.0	8.9	9.2	8.2	8.0	8.7	9.3	11.5	8.3	dead	10.0	6.0	9.01
IA-6	5.0	8.5	6.8	7.5	10.2	8.2	dead	dead	9.5	8.4	5.7	7.0	7.68
IA-7	7.7	4.0	8.0	7.6	8.0	8.2	10.7	10.0	4.0	6.6	10.0	9.9	7.89

Summary of Vigor (1-9 Rating) 1=Very Good 9=Poor

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avg.
IA-1	4	5	6	3	5	6	4	5	3	3	3	3	4.17
IA-2	5	5	6	7	8	6	3	4	3	5	5	7	5.33
IA-3	3	7	6	5	7	6	5	dead	2	5	5	4	5.00
IA-4	5	5	3	3	3	5	1	1	1	1	1	1	2.50
IA-5	2	4	2	3	4	4	4	1	2	dead	3	6	3.18
IA-6	7	5	5	4	4	6	dead	dead	2	5	5	6	4.90
IA-7	4	8	6	5	5	3	2	4	7	4	1	1	4.17

2007 Evaluation Summary of Iowa Collections, Located in Field #6

Table #5 - Continued

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avg.
IA-1	5	3	4	3	3	5	4	3	3	3	1	3	3.33
IA-2	3	3	3	3	4	4	2	3	2	3	4	3	3.08
IA-3	4	2	3	3	3	3	1	dead	3	8	3	3	3.27
IA-4	4	3	2	2	1	2	3	1	3	3	2	2	2.33
IA-5	3	3	3	2	3	3	3	2	2	dead	3	2	2.64
IA-6	2	3	3	2	2	3	dead	dead	2	2	3	3	2.50
IA-7	3	3	5	3	3	3	3	3	2	4	2	3	3.08

Summary of Insect/Disease Resistance (1-9 Rating) 1=Very Good 9=Poor

Summary of Trunk Diameter Measured at 24 Inches High

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12	Avg.
IA-1	5	6.5	5.5	8	6.25	6.75	5	5.5	7.75	6.5	7	6.25	6.33
IA-2	5.5	5.75	5.5	5	4	6.25	6.75	5.75	6.25	6.25	6	3.5	5.54
IA-3	8.25	4	5.75	5	6	5.5	4.5	dead	5.75	6.75	5.75	5.25	5.68
IA-4	9.25	8.2	7.75	8.5	7.25	8	9	8.25	7	7	9.5	9	8.23
IA-5	10	6.5	8.25	7.5	7.75	7.75	6.25	7.75	7.25	dead	6	4.5	7.23
IA-6	3.5	6.5	4.75	5.5	7.5	6	dead	dead	6.5	5.5	4.25	6	5.60
IA-7	6	3.5	5.25	5	7.5	6.75	6	5.75	2.25	6.25	6.75	5.75	5.56

Sumary of Acorn Presence

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Rep 11	Rep 12
IA-1	no	YES	no	no	no							
IA-2	no	no	no									
IA-3	no	dead	no	no	no	no						
IA-4	no	no	no									
IA-5	YES	no	no	no	no	no	no	YES	no	dead	YES	YES
IA-6	no	no	no	YES	no	no	dead	dead	no	no	no	no
IA-7	no	no	no									

Study MOPMC-P-0001-WE, WL Assembly, Evaluation and Selection of Bur Oak, *Quercus macrocarpa*, Michx.

2003 Evaluation

Summary of Missouri Collections, Located in Field #7

Summary of Rejume (inches)	Summarv	of Heiaht	(Inches)
----------------------------	---------	-----------	----------

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Average
MO-1	2.1	1.2	2.1	1.5	1.3	1.6	1.7	1.8	1.7	1.6	1.7
MO-2	1.7	2.0	1.6	2.2	1.5	0.8	0.6	0.6	0.7	1.1	1.3
MO-3	1.4	1.1	0.6	0.4	0.8	1.3	1.9	2.0	1.4	2.0	1.3
MO-4	0.8	1.3	1.7	1.9	2.1	0.7	1.5	1.3	1.5	1.2	1.4
MO-5	1.5	1.1	1.3	1.1	1.2	1.4	0.6	1.6	1.1	1.4	1.2
MO-6	1.6	0.0	0.0	0.0	0.0	2.0	1.0	2.0	1.7	1.9	1.7
MO-7	1.8	1.8	1.6	1.8	1.5		1.0	1.0	1.3	1.4	1.4
MO-8	1.1	0.7	1.2	0.5	1.1	2.1	1.6	1.9	2.1	1.6	1.4
MO-9	1.8	1.4	1.6	2.3	1.0	1.5	1.5	2.1	1.4	1.7	1.6
MO-10	2.0	1.5	2.3	2.3	1.6	0.8	1.5	1.3	1.5	1.3	1.6
MO-11	1.2	2.0	2.0	2.0	0.9	0.6	1.5	1.8	2.2	1.5	1.6
MO-12	2.0	1.9	1.7	1.1	0.8	1.3	1.5	1.5	2.0	1.5	1.5
MO-13		2.1	1.7	2.1	1.5	2.1	2.1	1.6	2.0	1.4	1.9
MO-14	1.8	1.8	2.3	1.7	1.1	1.3	1.2	1.5	1.7	1.4	1.6
MO-15	0.0	0.0	1.2	1.4	1.6	0.0	0.0	0.0	0.0	0.0	1.4

Summary of Spread (Inches)

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Average
MO-1	0.1	0.2	0.2	0.0	0.0	0.2	0.5	0.3	0.3	0.2	0.2
MO-2	0.4	0.2	0.2	0.3	0.4	0.1	0.1	0.2	0.0	0.4	0.2
MO-3	0.1	0.0	0.0	0.0	0.1	0.2	0.0	0.0	0.0	0.1	0.1
MO-4	0.1	0.1	0.1	0.0	0.1	0.1	0.2	0.1	0.0	0.1	0.1
MO-5	0.1	0.1	0.1	0.0	0.1	0.2	0.2	0.1	0.3	0.1	0.1
MO-6	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.2
MO-7	0.2	0.1	0.1	0.2	0.3		0.0	0.3	0.1	0.2	0.2
MO-8	0.3	0.2	0.3	0.1	0.3	0.3	0.1	0.2	0.1	0.1	0.2
MO-9	0.3	0.1	0.2	0.3	0.1	0.3	0.1	0.3	0.0	0.3	0.2
MO-10	0.3	0.2	0.2	0.1	0.1	0.0	0.4	0.2	0.1	0.0	0.1
MO-11	0.1	0.2	0.2	0.1	0.0	0.1	0.1	0.1	0.1	0.3	0.1
MO-12	0.3	0.3	0.3	0.2	0.1	0.0	0.2	0.2	0.3	0.1	0.2
MO-13		0.0	0.1	0.2	0.1	0.3	0.1	0.1	0.3	0.2	0.2
MO-14	0.2	0.2	0.2	0.3	0.4	0.2	0.0	0.0	0.3	0.2	0.2
MO-15	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.1

2003 Evaluation Summary of Missouri Collections, Located in Field #7

Table #6 - continued

ACC. NO.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Average
MO-1	1	4	1	3	4	2	4	2	2	3	2.6
MO-2	1	1	3	1	3	7	7	8	8	5	4.4
MO-3	3	4	8	8	5	4	7	1	4	5	4.9
MO-4	3	3	2	1	1	7	3	5	3	4	3.2
MO-5	3	4	4	4	4	4	8	3	4	4	4.2
MO-6	3					2	5	1	2	1	2.2
MO-7	2	7	3	2	3		6	5	4	4	4.0
MO-8	2	7	4	8	4	1	3	1	1	3	3.4
MO-9	2	4	3	1	5	6	3	1	4	2	3.1
MO-10	1	4	1	1	3	6	3	4	2	6	3.1
MO-11	4	1	1	1	5	8	3	2	1	4	3.0
MO-12	1	1	1	1	4	4	3	3	1	4	2.3
MO-13		1	2	1	3	1	1	3	1	4	1.9
MO-14	2	1	8	2	4	4	4	3	2	4	3.4
MO-15		3		4	3						3.3

Summary of Vigor (1-9 Rating) 1=Very Good 9=Poor

Summary of Insect and Disease Resistance (1-9 Rating) 1=Very Good 9=Poor

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Average
MO-1	2	3	2	3	4	2	5	3	2	3	2.9
MO-2	2	2	4	2	3	4	4	4	5	2	3.2
MO-3	3	3	4	4	4	5	3	2	4	2	3.4
MO-4	2	3	4	2	2	4	4	3	5	2	3.1
MO-5	3	4	3	4	3	2	3	4	4	3	3.3
MO-6	4					2	3	2	3	2	2.4
MO-7	2	3	3	4	4		3	2	4	3	3.1
MO-8	2	4	4	5	3	2	4	3	2	2	3.1
MO-9	3	3	3	2	3	3	4	2	2	3	2.8
MO-10	2	2	2	2	2	4	2	5	3	4	2.8
MO-11	4	2	3	3	3	5	3	3	2	3	3.1
MO-12	2	2	2	4	3	4	2	2	4	2	2.7
MO-13		2	2	4	2	2	2	3	2	3	2.4
MO-14	3	2	3	3	2	4	3	2	3	3	2.8
MO-15		4	4	3	3						3.5

R = Tree was originally MO-6 accession, but was replaced with MO-15 accession

Study MOPMC-P-0001-WE, WL Assembly, Evaluation and Selection of Bur Oak, *Quercus macrocarpa*, Michx.

Table #7

2004 Evaluation

Summary of Missouri Collections, Located in Field #7

Summary of Height (feet)

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Avg.
MO-1	3.0	3.2	3.2	2.8	3.7	2.4	3.9	dead	dead	2.4	3.1
MO-2	2.8	3.4	dead	3.1	3.6	dead	dead	dead	dead	2.6	3.1
MO-3	3.8	3.4	3.3	3.1	2.8	2.1	2.8	2.7	1.7	2.4	2.8
MO-4	3.6	3.1	2.9	3.3	3.0	1.3	3.1	3.1	3.2	2.8	2.9
MO-5	1.9	2.8	3.1	3.8	3.3	2.8	dead	2.8	2.9	3.3	3.0
MO-6	3.4	R	R	R	R	2.2	3.0	3.0	1.5	3.0	2.7
MO-7	3.9	dead	2.5	2.8	2.1	dead	dead	2.6	dead	3.6	2.9
MO-8	3.2	2.1	3.0	2.2	2.6	2.4	3.0	3.6	2.7	3.2	2.8
MO-9	4.3	2.8	4.2	2.6	2.4	2.5	1.3	4.2	1.6	3.4	2.9
MO-10	3.2	3.4	3.3	2.7	2.2	2.6	2.3	2.5	2.2	dead	2.7
MO-11	2.6	3.1	2.5	2.1	1.7	2.8	2.4	2.4	2.7	3.0	2.5
MO-12	2.4	2.4	3.0	2.0	2.2	2.0	2.7	2.6	2.4	3.2	2.5
MO-13	3.8	3.8	2.8	3.6	2.9	3.1	2.9	2.4	3.2	1.7	3.0
MO-14	3.5	3.3	2.6	2.8	1.7	2.1	dead	2.1	2.9	2.6	2.6
MO-15		3.9	3.1	3.0	3.1						3.3

Summary of Spread (feet)

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Avg.
MO-1	2.4	3.5	3.2	2.5	3.7	2.7	3.8	dead	dead	2.2	3.0
MO-2	3.2	3	dead	3.1	2.3	dead	dead	dead	dead	3	2.9
MO-3	3	2.6	3.5	2.9	2.6	2.3	2.3	2.7	1.7	3	2.7
MO-4	2.6	2.8	2.5	2.6	2.3	1.1	2.9	2.4	3	3	2.5
MO-5	1.8	3	2.3	3.4	3.3	2.5	dead	2.5	2.6	2.6	2.7
MO-6	2.6	R	R	R	R	2	2.1	2.6	1.2	2.4	2.2
MO-7	3.3	dead	2.6	3.5	2.1	dead	dead	2.8	dead	4	3.1
MO-8	2.9	1.9	3.3	1.8	2.2	2.6	2.4	3.1	2.7	3.1	2.6
MO-9	4.2	2.7	3.2	2.3	2.4	2.1	1.3	4.3	1.5	2.9	2.7
MO-10	2.9	2.8	2.7	3	2.2	2.2	2.1	2	2.7	dead	2.5
MO-11	2.6	2.8	2.6	1.8	1.9	2.4	2	2.6	3.4	3.3	2.5
MO-12	1.5	2.8	2.7	2	2.3	2.4	2.7	3	3	4.2	2.7
MO-13	3.4	3.1	2.9	3.6	3	2.9	2.6	2.3	3.2	1.2	2.8
MO-14	2.1	4.4	2.3	3.4	2.1	2.1	dead	2.7	2.5	3.1	2.7
MO-15		3.3	3.3	2.7	3.1						3.1

Table #7 - continued

2004 Evaluation Summary of Missouri Collections, Located in Field #7

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Avg.
MO-1	4	4	3	5	2	4	1	dead	dead	5	3.5
MO-2	5	4	dead	3	5	dead	dead	dead	dead	4	4.2
MO-3	3	4	3	4	4	5	4	4	7	4	4.2
MO-4	3	4	4	4	4	8	3	4	3	4	4.1
MO-5	6	5	4	1	3	4	dead	4	4	4	3.9
MO-6	4	R	R	R	R	5	4	4	8	4	4.8
MO-7	3	dead	5	3	6	dead	dead	5	dead	1	3.8
MO-8	3	6	3	6	5	4	4	2	4	3	4.0
MO-9	1	5	3	4	4	5	7	1	7	4	4.1
MO-10	4	4	3	3	4	5	4	6	5	dead	4.2
MO-11	4	4	5	6	6	4	5	4	3	3	4.4
MO-12	6	5	4	6	5	5	3	4	4	2	4.4
MO-13	3	3	4	2	3	3	4	6	4	7	3.9
MO-14	4	4	5	3	6	5	dead	4	4	4	4.3
MO-15		2	3	3	3						2.8

Summary of Vigor (1-9 Rating) 1=Very Good 9=Poor

Summary of Insect and Disease Resistance (1-9 Rating) 1=Very Good 9=Poor

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Avg.
MO-1	3	5	3	2	4	1	2	dead	dead	3	2.9
MO-2	4	2	dead	2	4	dead	dead	dead	dead	2	2.8
MO-3	3	4	3	3	2	2	2	2	3	2	2.6
MO-4	2	2	3	3	2	1	2	2	2	1	2.0
MO-5	1	3	2	2	2	1	dead	2	2	2	1.9
MO-6	4	R	R	R	R	2	2	2	1	2	2.2
MO-7	3	dead	2	2	2	dead	dead	2	dead	1	2.0
MO-8	4	3	3	4	3	1	3	2	3	2	2.8
MO-9	2	2	3	2	1	3	1	3	2	2	2.1
MO-10	3	4	2	2	1	2	1	3	2	dead	2.2
MO-11	3	3	3	2	3	2	2	2	2	2	2.4
MO-12	2	2	4	4	2	3	1	1	3	1	2.3
MO-13	5	2	3	1	2	2	3	2	4	3	2.7
MO-14	6	3	2	3	2	2	dead	2	3	3	2.9
MO-15		2	3	3	1						2.3

R = Tree was originally MO-6 accession, but was replaced with MO-15 accession

Study M	Study MOPMC-P-0001-WE, WL Table #8											
Assemb	ly, Evalu	ation and	d Selecti	on of Bu	r Oak, Q	uercus n	nacrocar	pa, Mich	х.			
2005 E	valuatio	on										
Summar	y of Mis	souri Co	lections	, Located	d in Field	#7						
Summar	y of Heig	ght (feet)										
Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Avg.	
MO-1	4.5	4.0	6.5	3.3	•	3.6	4.6	Dead	Dead	4.0	4.4	
MO-2	3.6	4.5	Dead	4.4		Dead	Dead	Dead	Dead	5.3	4.5	
MO-3	5.0	5.0	4.3	4.3		1.9	3.6	3.8	Dead	2.9	3.9	
MO-4	4.9	4.4	4.3	4.6		1.0	4.3	4.4	5.3	4.5	4.2	
MO-5	3.7	5.0	4.3	4.3		3.8	Dead	3.8	5.8	3.2	4.2	
MO-6	6.4	R	R	R		1.0	3.9	4.0	Dead	3.5	3.8	
MO-7	6.1	Dead	3.9	3.3		Dead	Dead	3.5	Dead	6.0	4.6	
MO-8	6.2	4.0	3.4	3.9		Dead	Dead	4.6	4.8	4.7	4.5	
MO-9	6.1	3.7	5.0	3.0		3.2	Dead	5.0	Dead	3.9	4.3	
MO-10	4.0	4.2	Dead	3.2		Dead	3.6	3.0	4.0	Dead	3.7	
MO-11	3.7	4.0	3.8	Dead		3.2	3.3	3.7	4.7	4.4	3.9	
MO-12	3.2	6.7	3.4	3.1		Dead	4.1	4.0	3.8	4.6	4.1	
MO-13	4.3	4.2	4.0	4.7		3.6	3.7	3.4	5.0	Dead	4.1	
MO-14	4.0	5.0	Dead	4.0		2.8	Dead	4.8	4.0	4.0	4.1	
MO-15		5.2	4.3	4.7							4.7	
Summar	v of Spr	ead (feet)									
Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Avg.	
MO-1	3.5	4.0	5.0	2.0		3.0	3.3	Dead	Dead	3.5	3.5	
MO-2	3.2	3.6	Dead	3.6		Dead	Dead	Dead	Dead	4.0	3.6	
MO-3	3.0	3.7	3.6	3.0		1.0	2.9	2.8	Dead	2.5	2.8	
MO-4	3.3	3.1	2.7	3.0		1.0	2.8	2.3	4.0	2.9	2.8	
MO-5	2.3	3.6	3.0	3.0		2.4	Dead	3.2	1.8	3.0	2.8	
MO-6	3.7	R	R	R		1.0	3.0	3.0	Dead	2.9	2.7	
MO-7	4.3	Dead	2.6	3.7		Dead	Dead	3.0	Dead	4.4	3.6	
MO-8	4.0	3.0	2.8	2.0		Dead	Dead	2.5	3.2	2.7	2.9	
MO-9	6.0	3.0	2.4	1.4		1.8	Dead	4.0	Dead	1.5	2.9	
MO-10	3.0	3.7	Dead	3.0		Dead	2.7	2.5	2.0	Dead	2.8	
MO-11	3.0	3.0	2.5	Dead		2.2	2.6	2.6	3.7	3.0	2.8	
MO-12	1.2	3.3	2.5	2.5		Dead	3.0	3.2	3.0	4.0	2.8	
MO-13	3.0	3.0	3.0	3.3		2.8	2.8	2.0	4.6	Dead	3.1	
MO-14	3.0	2.2	Dead	3.6		2.3	Dead	3.2	2.5	4.0	3.0	
MO-15		4.8	3.4	3.3							3.8	

2005 E	valuatio	on							Table #8	B - contin	ued
Summar	y of Miss	souri Co	llections	, Located	l in Field	#7					
Summar	y of Vigo	or (1-9 Ra	ating)	1=Very G	iood 9=	Poor					
Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Avg.
MO-1	3	3	1	6		6	3	Dead	Dead	4	3.7
MO-2	4	2	Dead	4		Dead	Dead	Dead	Dead	3	3.3
MO-3	3	2	3	4		8	4	4	Dead	6	4.3
MO-4	4	4	7	4		8	3	5	2	5	4.7
MO-5	7	3	5	3		5	Dead	4	3	6	4.5
MO-6	2	R	R	R		8	5	5	Dead	5.0	5.0
MO-7	2	Dead	7	5		Dead	Dead	5	Dead	1	4.0
MO-8	2	4	7	7		Dead	Dead	3	2	3	4.0
MO-9	1	2	5	8		6	Dead	1	Dead	8	4.4
MO-10	5	4	Dead	6		Dead	6	6	6	Dead	5.5
MO-11	6	4	6	Dead		6	6	4	2	4	4.8
MO-12	8	2	6	7		Dead	5	5	4	3	5.0
MO-13	5	2	5	4		5	3	6	2	Dead	4.0
MO-14	5	3	Dead	5		7	Dead	4	6	3	4.7
MO-15		1	4	5							3.3
	_			_							
Summar	y of Inse	ect and D	isease R	esistanc	e (1-9 Ra	ting) 1	I=Very G	ood 9=	Poor		
Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Avg.
MO-1	2	4	2	2		2	4	Dead	Dead	3	2.7
MO-2	3	2	Dead	2		Dead	Dead	Dead	Dead	2	2.3
MO-3	4	3	2	1		1	2	1	Dead	1	1.9
MO-4	3	5	4	2		8	2	3	2	2	3.4
MO-5	5	4	4	3		2	Dead	1	2	2	2.9
MO-6	3	R	R	R		8	2	2	Dead	1	3.2
MO-7	5	Dead	4	2		Dead	Dead	1	Dead	1	2.6
MO-8	3	3	3	4		Dead	Dead	3	3	2	3.0
MO-9	2	2	2	6		4	Dead	3	Dead	8	3.9
MO-10	5	5	Dead	4		Dead	3	1	2	Dead	3.3
MO-11	4	4	1	Dead		3	2	2	3	3	2.8
MO-12	5	2	3	1		Dead	3	3	1	4	2.8
MO-13	4	1	5	4		2	2	1	3	Dead	2.8
MO-14	4	3	Dead	3		1	Dead	4	2	1	2.6
MO-15		3	4	2							3.0
				alan hut							
R = Tree	was ong		-6 acces	SION, DUT	was repia		MU-15 a				
Replicati	on #5 wa	s remove	a and us	ed in ano	ther study	y offsite o	i the Pivic	ر			
			1	1	1		1		1	1	

Study MOPMC-P-0001-WE, WL Assembly, Evaluation and Selection of Bur Oak, *Quercus macrocarpa*, Michx. Table # 9

2007 Evaluation

Summary of Missouri Collections, Located in Field #7

Summary of Height (feet)

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Avg.
MO-1	8.3	7.3	10.7	7.9	Gone	7.8	9.9	Dead	Dead	7.5	8.5
MO-2	7.4	7.7	Dead	8.5	Gone	Dead	Dead	Dead	Dead	8.7	8.1
MO-3	10.3	8.8	8.3	8.6	Gone	3.9	8.1	6.6	Dead	7.5	7.8
MO-4	10.4	8.2	7.0	9.1	Gone	Dead	9.8	7.6	10.7	8.1	8.9
MO-5	7.9	9.8	8.9	9.6	Gone	6.7	Dead	7.9	11.1	8.2	8.8
MO-6	10.4	R	R	R	R	Dead	7.4	7.6	Dead	6.0	7.9
MO-7	11.6	Dead	8.2	8.1	Gone	Dead	Dead	6.3	Dead	10.0	8.8
MO-8	9.8	8.0	6.1	8.8	Gone	4.7	Dead	9.5	9.8	9.9	8.3
MO-9	11.0	5.9	7.3	3.0	Gone	5.1	Dead	8.8	Dead	7.5	6.9
MO-10	8.7	7.0	5.5	9.0	Gone	4.4	7.4	6.4	9.2	Dead	7.2
MO-11	6.9	9.1	8.0	4.0	Gone	7.3	8.1	7.4	10.2	9.6	7.8
MO-12	5.5	11.5	6.0	7.0	Gone	4.5	7.5	7.8	8.2	8.0	7.3
MO-13	7.8	9.1	6.6	8.5	Gone	7.6	7.6	8.9	7.7	Dead	8.0
MO-14	6.0	9.8	6.4	8.2	Gone	6.7	Dead	9.0	8.3	7.0	7.7
MO-15		9.6	9.0	8.8	Gone						9.1

Summary of Spread (feet)

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Avg.
MO-1	9.3	6.2	11.5	8.8	Gone	6.0	9.5	Dead	Dead	9.0	8.6
MO-2	7.6	9.0	Dead	10.0	Gone	Dead	Dead	Dead	Dead	7.1	8.4
MO-3	9.0	8.4	10.0	7.6	Gone	3.4	8.2	7.2	Dead	7.3	7.6
MO-4	10.2	8.0	5.7	7.3	Gone	Dead	9.4	6.0	12.0	6.6	8.2
MO-5	6.5	8.0	8.0	9.0	Gone	6.0	Dead	7.0	10.3	6.8	7.7
MO-6	8.0	R	R	R	R	Dead	7.2	8.0	Dead	7.1	7.6
MO-7	11.5	Dead	9.0	7.8	Gone	Dead	Dead	8.6	Dead	9.3	9.2
MO-8	6.9	9.0	6.5	6.0	Gone	4.0	Dead	9.2	11.0	8.0	7.6
MO-9	11.5	8.0	7.0	2.8	Gone	5.0	Dead	9.0	Dead	6.0	7.0
MO-10	6.5	11.5	4.3	6.4	Gone	3.7	7.7	7.0	7.8	Dead	6.9
MO-11	6.0	10.0	6.3	3.4	Gone	6.4	7.8	7.8	10.8	7.3	7.3
MO-12	5.0	8.0	8.0	6.0	Gone	3.7	7.0	7.9	8.2	11.0	7.2
MO-13	7.2	9.0	7.0	8.8	Gone	9.2	6.7	8.0	10.1	Dead	8.3
MO-14	4.8	11.0	6.5	7.5	Gone	5.2	Dead	9.2	6.9	8.2	7.4
MO-15		11.0	9.5	8.0	Gone						9.5

Table 9 - Continued

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Avg.
MO-1	4	5	1	5	Gone	4	4	Dead	Dead	5	4.0
MO-2	5	4	Dead	3	Gone	Dead	Dead	Dead	Dead	3	3.8
MO-3	2	3	3	3	Gone	8	4	5	Dead	5	4.1
MO-4	2	3	5	3	Gone	Dead	3	5	2	4	3.4
MO-5	6	2	4	3	Gone	4	Dead	5	1	4	3.6
MO-6	2	R	R	R	R	Dead	5	4	Dead	5	4.0
MO-7	1	Dead	4	4	Gone	Dead	Dead	6	Dead	2	3.4
MO-8	3	4	6	4	Gone	7	Dead	3	2	2	3.9
MO-9	1	6	4	9	Gone	6	Dead	2	Dead	5	4.7
MO-10	5	5	8	4	Gone	7	5	5	5	Dead	5.5
MO-11	7	3	4	8	Gone	4	3	5	2	3	4.3
MO-12	7	1	6	5	Gone	7	4	4	4	3	4.6
MO-13	6	3	7	3	Gone	4	4	4	4	Dead	4.4
MO-14	7	3	6	3	Gone	6	Dead	3	4	4	4.5
MO-15		2	3	4	Gone						3.0

Summary of Vigor (1-9 Rating) 1=Very Good 9=Poor

Summary of Insect and Disease Resistance (1-9 Rating) 1=Very Good 9=Poor

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Avg.
MO-1	3	4	3	3	Gone	6	7	Dead	Dead	3	4.1
MO-2	3	2	Dead	2	Gone	Dead	Dead	Dead	Dead	4	2.8
MO-3	3	3	2	3	Gone	3	4	3	Dead	3	3.0
MO-4	3	3	3	3	Gone	Dead	3	3	2	2	2.8
MO-5	3	3	4	3	Gone	2	Dead	5	2	3	3.1
MO-6	2	R	R	R	R	Dead	2	3	Dead	3	2.5
MO-7	2	Dead	2	3	Gone	Dead	Dead	6	Dead	3	3.2
MO-8	4	3	4	3	Gone	8	Dead	3	2	3	3.8
MO-9	2	2	2	2	Gone	4	Dead	2	Dead	2	2.3
MO-10	2	4	2	3	Gone	2	3	2	3	Dead	2.6
MO-11	6	3	3	2	Gone	3	2	2	3	4	3.1
MO-12	2	3	3	5	Gone	4	2	2	7	3	3.4
MO-13	3	4	5	4	Gone	2	2	3	4	Dead	3.4
MO-14	4	1	2	3	Gone	3	Dead	3	3	4	2.9
MO-15		2	3	5	Gone						3.3

2007 Evaluation Summary of Missouri Collections, Located in Field #7

Table #9 - Continued

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	Avg.
MO-1	8.50	5.75	11.25	5.75	Gone	5.75	9.00	Dead	Dead	6.25	7.5
MO-2	5.25	5.25	Dead	6.75	Gone	Dead	Dead	Dead	Dead	5.75	5.8
MO-3	7.00	6.75	6.75	5.50	Gone	1.75	4.75	4.50	Dead	4.25	5.2
MO-4	8.50	5.75	5.75	6.75	Gone	Dead	8.75	6.25	6.75	5.25	6.7
MO-5	6.25	9.00	5.75	6.50	Gone	6.75	Dead	5.00	8.00	5.75	6.6
MO-6	9.25	R	R	R	R	Dead	7.75	6.50	Dead	5.00	7.1
MO-7	9.25	Dead	6.25	4.75	Gone	Dead	Dead	4.50	Dead	7.50	6.5
MO-8	7.25	7.75	4.25	7.00	Gone	2.25	Dead	6.75	9.25	8.50	6.6
MO-9	13.00	5.00	6.50	1.00	Gone	4.00	Dead	9.00	Dead	5.00	6.2
MO-10	5.50	8.00	2.50	5.00	Gone	2.75	4.25	4.50	5.00	Dead	4.7
MO-11	5.25	6.25	6.50	1.75	Gone	6.25	5.50	4.50	8.50	6.00	5.6
MO-12	3.50	8.00	5.00	3.50	Gone	2.25	6.50	5.50	5.75	8.00	5.3
MO-13	5.75	9.50	5.75	8.00	Gone	7.25	6.50	5.00	5.75	Dead	6.7
MO-14	5.50	6.00	2.50	7.50	Gone	5.25	Dead	9.75	6.50	5.25	6.0
MO-15		9.00	8.00	7.00	Gone						8.0

Summary of Diameter of Trunk at 24 Inch Height

Summary of Visible Acorn Production

Acc. No.	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
MO-1	no	no	no	no	Gone	no	no	Dead	Dead	no
MO-2	no	no	Dead	no	Gone	Dead	Dead	Dead	Dead	no
MO-3	no	no	no	no	Gone	no	no	no	Dead	no
MO-4	no	no	no	no	Gone	Dead	no	no	no	no
MO-5	no	no	no	no	Gone	no	Dead	no	no	no
MO-6	no	R	R	R	R	Dead	no	no	Dead	no
MO-7	no	Dead	no	no	Gone	Dead	Dead	no	Dead	no
MO-8	no	no	no	no	Gone	no	Dead	no	no	no
MO-9	no	no	no	no	Gone	no	Dead	no	Dead	no
MO-10	no	no	no	no	Gone	no	no	no	no	Dead
MO-11	no	no	no	no	Gone	no	no	no	no	no
MO-12	no	no	no	no	Gone	no	no	no	no	no
MO-13	no	no	no	no	Gone	no	no	no	no	Dead
MO-14	no	no	no	no	Gone	no	Dead	no	no	no
MO-15		no	no	no	Gone					

R = Tree was originally MO-6 accession, but was replaced with MO-15 accession Replication #5 was removed and used in another study offsite of the PMC Study MOPMC-P-0001-WE, WL

Assembly, Evaluation and Selection of Bur Oak, Quercus macrocarpa, Michx.

2003 Evaluation (AVERAGES) Summary of Illinois Collections, Located in Field #12											
Collection	Height (Feet)	Spread (Feet)	Insect/Disease	Vigor							
IL-1	1.0	0.2	2.0	3.0							
IL-2 1.1 0.3 2.3 3.9											

2004 Evaluation (AVERAGES) Summary of Illinois Collections, Located in Field #12												
Accession No.	Height (Feet)	Spread (Feet)	Insect/Disease	Vigor								
IL-1	1.9	1.8	3.0	5.5								
IL-2 1.7 1.6 2.8 6.1												

2005 Evaluation (AVERAGES) Summary of Illinois Collections, Located in Field #12													
Accession No.	Height (Feet)	Spread (Feet)	Insect/Disease	Vigor									
IL-1	2.8	2	4.0	6.0									
IL-2	IL-2 2.5 1.6 4.4 6.7												

There were only 2 collections from Illinois so they were put into 1 replication and the accessions were averaged. Height and spread are measured in feet and insect and disease resistance and plant vigor have been given a rating of 1-9; 1 is very good and 9 is poor.

Study MOPM	C-P-001 Asse	embly, Eva	lua	tion and Sele	ction of Bur Oak,	Quercus mac	rocarpa	, Micł	וא.	
Plot Layout:	5-11-02									
Field 7 - Miss	ouri Collecti	ons		/	2 ROWS				Table	e #11
		Reps							Reps	
			12	Border Plant		Border Plant	3			
			(14 🗲	accessions -	▶ 1				NORTH
				13	n	2				
				12	"	3				
				11	"	4				
				10	н	5				
				9	н	6				
		10		8	11	7			1	
		Ń		7	н	8		^		
				6	н	9				
				5	"	10				
				4	"	11				
				3	"	12				
				2	"	13				
				1	11	14				
			\tilde{r}	14 🗲	accessions -	▶ 1	\vdash			
			[13		2				
				12	11	3				
				11	11	4				
				10	н	5				
				9	н	15				
		9	-	8	н	7			2	
				7	н	8		\succ	_	
				6	"	9				
				5	"	10				
				4	"	10				
					"	12				
				2	11	13				
			$\left(- \right)$	1	"	10				
			È	•			ี้ วั			
				Reneat 🗲	accessions -	Repeat				
		8 <		14		1 to 14	ļ		3	
				to 1	re	placing 6 with	15			
			l			- aong o with				
			2	<u> </u>			⊢┤			
		7		Repeat-	accessions -	Repeat			Δ	
		ŀ{		14		1 to 14	├── ≻		T	
				to 1	re	placing 6 with	15			
			>			- song o with	<u>ر د.</u>			
		6		Repeat-	accessions -	Repeat				
		l ⁻ ──≺		14		1 to 14			5	
				to 1	re	placing 6 with	15			
		'	13	Border Plant		Border Plant	1			
						Server Hall	-			
				<u> </u>						
FOURTEEN A	CCESSIONS			ATION FIVE	REPLICATIONS	PER ROW				
TWOROWS	TOTAL ING 10			NS AND 70 P						
				<u> </u>						

Study MOPM	IC-P-001 Asse	embly, Evalua	tion and Sele	ection of Bur (Oak, Quer	cus macrocarpa	, Michx.	
Plot Layout: 5-30-02							Tab	le # 12
Two plants planted per location				BP=Border F	Plant (only	one plant plant	ed)	
FIELD 6 - Iov	va Collections	6						•
			2 ROWS					
		3 (BP)		3 (BP)				NORTH
REPS	(2		6)	REPS		
		5		2				
		6		7				
12		4		1	5	1		
	1	7		3				
		1		5				
		3		4				
	Č	4		5	1 1			
		7		3				
		5		7				
11	L J	1		2	<u> </u>	2		
		3		6	+ (Z		
		3 2		0	+			
		2		1	+			
	├ ───≻	0		4	₭			<u> </u>
		4 7		1	+1			
		1		3				
	ļ]	2		2				
10	1	1		7	 }	3		
		3		5				
		5		4				
	Ĺ	6		6	J			
		5		7				
		4		3				
9		3		1				
		7		4	}	4		
		1		6				
		2		2				
		6		5	IJ			
)	1		4	1			
		6		2				
		5		5				
8	ł	3		3	15	5		
		7		1		-		
		4		6				
		2		7	+}			<u> </u>
		1		2	К			<u> </u>
		6*		5	+			
		о И		7	+			
7		+		1	+t	6		
1	<u>`</u>			1	+	U		
		(3	+			
		3 5		٥ [°]	_			
	(5		4)			<u> </u>
		2 (BP)		1 (BP)				
	*ONLY ONE	OF PLANT 6 P	LANTED IN	THESE				
	LOCATIONS.	RAN OUT OF	F PLANT 6.	(BP=Border	Plant)			
	1			1	1	1		·
STUDY MOPMC-P-0001-WO Assembly, Evaluation and Selection of Bur Oak, *Quercus macrocarpa*, Michx.

Illinois bur oak assembly

Trees Moved in Spring 2007 from Field 12 to Field 11 (7 Total)

Table #13

Collection Number

109

Study ID Code: MOPMC-T-0105, PA

Study Title – Compatibility Study Using Native Warm Season and Cool Season Grasses with Native Legumes and Forbs

Study Leader: Bruckerhoff, S. B.

Introduction:

Herbaceous plantings using native species are often a single grass species or a mixture of grasses with few legumes or forbs. These types of plantings are typical for forage, conservation cover or even wildlife plantings. Many native forbs and legumes are compatible with native grass species in a native prairie. In a planting using native species it is important to know which ones are most likely to compete with the grasses during the establishment period. Forb and legume seed are more expensive than the grass seed and most plantings lack diversity.

Problem:

There is little to no documented information regarding the compatibility of native warm and cool season grasses with native legumes and forbs in a pasture or range seeding. As a result of the lack of this needed information, the PMC Advisory Committee has directed the PMC to initiate this study.

Objective:

The objective of this study is to determine which native forbs and legumes will establish the easiest and persist the longest with specific native grasses.

Procedure:

Secure seed of the following native cool and warm season grasses, forbs, and legumes.

- Cool Season Grasses: Virginia wildrye, Western wheatgrass, Junegrass, and Porcupinegrass.
- Warm Season Grasses: Eastern gamagrass, Little bluestem, Big bluestem, Indiangrass, and Switchgrass.
- **Forbs:** Oxeye daisy, Prairie coreopsis, and Grayhead coneflower.
- Legumes: Bush clover, Showy tick trefoil, Purple prairie clover, White prairie clover, Illinois bundleflower, Goat's rue, Wild senna, and Lead plant.

Plots of a native warm season grass mixture, native cool season grass mixture and warm and cool season grass mixture will be established in four replications. Native legumes and forb mixtures will be planted with the grass mixtures. Plots will be planted in the spring and also as winter dormant plantings. All species will also be planted at the same time in the spring and winter except one warm and cool season grass mixture.

Plots will be mowed for weed control during the establishment year. The forage will be removed two to three times a year from half the plot the following years to assimilate rotational grazing.

Discussion:

2001

A site was prepared on the PMC using glyphosate to kill existing vegetation that consisted of mostly annual weedy species. The area was then plowed, disked and planted to an annual covercrop of 80% oats and 20% wheat. Plot composition of species can be seen in Table #1. Seeding rates are 40 pure live seed per square foot with 60% being the grass component and 40% being the forb and legume component.

2002

The winter dormant plots were planted January 8 and 9, 2002 using a plot planter. Seeding depth was one fourth inch for all species except the eastern gamagrass which was planted three fourths to one inch deep. The spring plots were planted May 20 and 21. All seed was planted at a depth of one fourth to one half inch with the exception of eastern gamagrass which again was planted at a depth of three fourths to one inch. All species that required treatment were stratified and/or scarified and inoculated. The plot map of the winter dormant planting is Table #2 and the spring planting is Table #3.

Mowing throughout the summer was the weed control method used. The plots were mowed when vegetation reached six to eight inches. Mowing height was three to four inches.

All plots were evaluated toward the end of the growing season for species composition. Most of the grasses were represented in the plots but in very low densities. Only sideoats gramma and Virginia wildrye appeared in plots in densities in the moderate range. The only legumes/forbs that were identified even at low densities were winter dormant planting Illinois bundleflower, grayhead coneflower, and prairie coreopsis. Spring planting was Illinois bundleflower and wild senna.

2003/2004

The plots were evaluated for specie density during 2003 and 2004 (see Tables 4 and 5). A winter burn was conducted on all plots in early 2004.

Most species that were planted were identified in the plots although some in very low densities. The specie in the legume/forb mixture showing up in the highest concentration is grayhead coneflower. Others most consistently found were showy tick trefoil, oxeye daisey, Illinois bundleflower(spring seeding only), and purple prairie clover (spring seeding only).

Most of the grass components of the plots established well but were not very thick stands. The sideoats gramma was high density and the plots with western wheatgrass, Junegrass, and porcupine grass were very poor or none at all.

2005/2006

The plots were again evaluated in 2005 and 2006 (see Tables 4 and 5). The only maintenance to the plots during this period was a burn in March of 2005.

Most of the species planted could be found in the 2006 evaluation although most of the legumes and forbs were in very low densities. Evaluations were visual estimates on a one to nine scale with plants to square feet estimates on the scale. The 2006 evaluation was done by the visual estimate method and also actual counts of three, random one square foot samples per plot. The table below is actual counts. In comparing the evaluation methods it showed the visual estimates somewhat under estimated the grass species, especially when the densities were high; and over estimated some of the very low densities. Visual estimates were above zero when a few scattered plants could be seen in a plot, but when only three actual counts of one square foot each were made, several had counts of zero.

Winter Dormant S	Seeding (1	1/8/2002)		Spring Planting (5/26/2002)	-
Grasses	St/sqf t	Legumes	St/sqf t	Grasses	St/sqf t	Legumes	St/sqft
Eastern gamagrass (Plot #8)	13.3	Grayheaded coneflower	2.575	Switchgrass (Plot #4)	24.2	Grayheaded coneflower	1.338
Virginia wildrye (Plot #6)	8.6	Oxeye false sunflower	0.250	Siedoats grama	18.2	Bush clover	0.325
Switchgrass (Plot #1)	7.3	Wild senna	0.113	Virginia wildrye (Plot #1)	15.1	Desmodium Showy tick trefoil	0.275
Eastern gamagrass (Plot #3)	5.8	Desmodium	0.100	Switchgrass (Plot #11)	13.4	Oxeye false sunflower	0.125
Indiangrass	5.5	Illinois bundleflower	0.013	Indiangrass	11.7	Purple prairie clover	0.113
Virginia wildrye (Plot #5)	5.0	Bush clover	0.013	Eastern gamagrass (Plot #3)	11.2	Illinois bundleflower	0.050
Little bluestem	3.9	Purple prairie clover	0	Eastern gamagrass (Plot #8)	8.3	White prairie clover	0
Switchgrass (Plot #4)	2.7	White prairie clover	0	Virginia wildrye (Plot #5)	2.1	Goat's rue	0
Sideoats grama	2.3	Goat's rue	0	Big bluestem	1.4	Lead plant	0
Big bluestem	0.3	Lead plant	0	Little bluestem	0	Prairie coreopsis	0
Western wheatgrass	0	Prairie coreopsis	0	Western wheatgrass	0	Wild senna	0 not plante d
Porcupine grass	0			Porcupine grass	0		
Junegrass	0			Junegrass	0		
Total stems/sq ft In 8 plots	54.7		3.064		105.6		2.226

Species density (stems/sq ft) five years after planting (planted 2002, density at end of 2006)

Total stem counts for grass species were higher in the spring planting than the winter dormant planting with 105.6 compared to 54.7. Total stem counts of the forb legume mix were higher in the winter dormant planting with 3.064 compared to 2.226 even though the seed was stratified.

2007

The plots were not burned in 2007 and no stem counts were made. A mid summer (June or July) mowing of plots is planned for 2008.

Stı	udy MOPMC	-PA-0105	Compatil	oility	Study										Та	ble #1
														8/16/01		
			Spring plan	ting	Randomized	coi	mplete block	4	Replications	S						
			Winter dorr	nant p	planting Ran	dor	mized compl	ete	block 4 Re	pli	cations \1					
	Plot 1		Plot 2		Plot 3		Plot 4		Plot 5		Plot 6		Plot 7	Plot 8		Plot 9
	BB , SG	8'	LB , SO	8'	EG		T , SG		VW , IG		VW,WW		JG , PG	EG		Check
	Legume		Legume		Legume		Legume		Legume		Legume		Legume			
	Forb		Forb		Forb		Forb		Forb		Forb		Forb	Kura		
	Mixture		Mixture		Mixture		Mixture		Mixture		Mixture		Mixture	clover		
							\1									
WS	S grass com	ponents	CS grass of	omp	onents		Legume co	m	ponents		Forb compo	ne	ents			
b	oig bluestem ((BB)	Virginia w	vildrye	(VW)		bush clov	er			oxeye daise	ey	,			
li	ttle bluestem	(LB)	western v	vheat	grass (WW)		purple pra	airie	e clover		grayhead c	or	neflower			
S	witchgrass (S	SG)	junegrass	s (JG)			white pra	rie	clover		prairie core	0	osis			
S	ideoats gram	ima (SO)	porcupine	e gras	s (PG)		desmodiu	Im								
е	astern gama	grass (EG))				goat's rue	;								
In	diangrass (l	G)	timothy (Γ)			wild senn	а								
							Illinois bu	ndl	leflower							
							lead plan	t								
Fa	Il planted oat	s covercro	p on winter	dorma	ncy plantings	5										
plo	t size 10' X	20'					Kura clov	er								
\1	This plot will	not have a	a winter dorr	nant p	planting but ra	the	er a late sum	me	er planting.							

STUDY I	MOI	PM	С-Т	-010	05 N	lati	ive	Gra	ass	/Le	gun	ne/I	For	b C	om	pat	ibil	ity \$	Stu	dy							Fie	eld #	¥1				Т	abl	e #2
																											Ea	stsi	de						
																											Do	rma	int p	olantir	ng				-
																															Ĩ				
		◀				Te	rrad	ce -				-																				No	orth		
REP #1		1		2		3		4		5		9		7		8	•		_	Те	rrad	ce						-							
								-							-	-		Re	n 1	Re	n 2	Re	n 3	Re	n 4									⊢₩	
DED #2		4		7		0		1		6		0		2		2		6		5	μ2	7	i P U		р -									<u> </u>	
NEF #Z		4		'		9		-		0		0		3		2		0		5	Į	<u> </u>	-	· /										<u> </u>	
								<u> </u>								 		2		4	1	5		9		8		1		6	3		Re	n 4	
RFP #3		6	1	1		4		2		9		3		8	1	5		_				Ĕ		Ŭ		Ŭ		-		Ŭ	Ŭ			р. 	
		0		-		-		-		0		0		Ŭ		Ŭ				-		-	-									-			
			-				-							-	1																				
	-		_	Ro	adv	vav		_					•																						
				_								-																							-
	Plo	ot #'	1	Bio	ı blu	lest	tem). SV	vitcl	hara	ass.	Le	aur	ne a	and	Fo	۲b N	/ixti	ure																
	Plo	ot #2	2	Litt	le b	lue	ste	m. s	side	oat	s ar	am	ma	. Le	aur	ne	and	Fo	rb N	/lixt	ure														-
	Plo	ot #3	3	Ea	ster	n a	am	adr	ass	. Le	aur	ne	and	Fo	rb N	Mixt	ure																		-
	Plo	ot #4	4	Tin	noth	<u>ی</u> ا	swi	tcho	iras	s. L	.eai	ume	ar	nd F	orb	Mi	xtur	е																	-
	Plo	ot #:	5	Vir	gini	a w	ildr	ve.	Índ	iano	aras	s, I	_ea	ume	e ar	nd F	orb	Mi	xtu	re															
	Plo	ot #(6	Vir	gini	a w	ildr	ve,	wes	ster	n w	hea	atgra	ass	, Le	gur	ne	and	Fo	rb N	/ lixt	ure													
	Plo	ot #	7	Jur	negi	rass	s, p	orc	upir	ne c	ras	s, L	.egi	ume	, an	nd F	orb	Mix	ktur	е															
	Plo	ot #8	8	Ea	ster	n g	am	agra	ass	, Ki	ira d	clov	/er																						
	Plo	ot #9	9	Ch	eck	Le	egu	me	Mix	ture	e Or	nly																							
							Ŭ					Ĺ																							
														1	1					1	1														
	1		1											1	1					1	1														
														1	1					1	1														

STUDY I	MOP	MC-	- T-01	05 Na	tive	e Gra	ss/L	.egı	ıme	/Fo	rb Co	mpatil	bility	Stu	dy				Fie	eld #1					Table #3	
																			W	est side)					
																			sp	ring pla	nting					
																			pla	anted 5/	20-21	/02				
																									No	rth
	-			Teri	race	e —			-																	
REP #2	7		3	8		1	6		9		4	5	2		4	7	3	8	6	1	5	9		2	REP #4	
																										ļ
					Ī					Ι																
REP #1	1		7	5		4	6		8		3	2	9		3	8	1	6	4	9	2	5		7	REP #3	
	-		Road	lway																						
	Plot	#1	Big b	lueste	em,	switc	hgra	ass,	Leg	Jum	e and	Forb N	Лixtur	е												
	Plot	#2	Little	blues	ten	n, side	eoat	s gr	amn	na,	Legur	me and	I Forb	Mix	xture											
	Plot	#3	Easte	ern ga	ima	igrass	, Le	gun	ne a	nd	Forb N	Mixture														
	Plot	#4	Timo	thy, s	wite	chgras	ss, L	.egu	ıme	and	d Forb	Mixtu	re													
	Plot	#5	Virgir	nia wil	ldry	e, Ind	iang	gras	s, Lo	egu	ime ar	nd Fork	o Mixt	ure												
	Plot	#6	Virgir	nia wil	ldry	e, we	ster	n wl	heat	gra	iss, Le	gume	and F	orb	Mixtu	re										<u> </u>
	Plot	#7	June	grass	, рс	orcupi	ne g	ras	s, Le	egu	me an	d Forb	Mixtu	ure												L
	Plot	#8	Easte	ern ga	ima	grass	, Ku	ira c	love	er																L
	Plot	#9	Chec	k Leç	gun	ne Mix	cture	e Or	nly																	
							-										 									<u> </u>
							-										 									<u> </u>
							-										 									<u> </u>
																	_									<u> </u>

Study MOPMC-PA-0105 Compatability Study																	Table #	4		
																Plante	d 1/8/02			
	Winter	Plant	ed Plot	s						Stems	/Square	e Ft Pei	Plot							
	Plot #1				Plot #	2			Plot #3	5			Plot #4				Plot #5			
	2003	2004	2005	2006	2003	2004	2005	2006	2003	2004	2005	2006	2003	2004	2005	2006	2003	2004	2005	2006
WS grass components																				
big bluestem (BB)	0.75	1.25	3.00	0.30			0.10										0.13			
little bluestem (LB)					0.50	0.38	0.40	3.90												
switchgrass (SG)	1.75	1.75	6.80	7.30									0.50	0.50	0.90	2.70				
sideoats gramma (SO)					1.00	0.38	2.20	2.30												
eastern gamagrass (EG)									3.00	2.25	9.50	5.80								
Indiangrass (IG)							0.10										1.75	1.00	9.40	5.50
CS grass components																				
Virginia wildrye (VW)																	0.50	1.75	1.60	5.00
western wheatgrass (WW)																				
junegrass (JG)																				
porcupine grass (PG)																				
timothy (T)													0.25	1.75						
Legume components																				
bush clover	0.13	0.13	0.10	0.00	0.13	0.25	0.10		0.13	0.25	0.30			0.13	0.10			0.50	0.10	
purple prairie clover	0.13								0.13											
white prairie clover																				
desmodium	0.38	0.38	0.10	0.00	0.25	0.50	0.10		0.25	0.50	0.10	0.20	0.13	0.13	0.10		0.13	0.38	0.10	
goat's rue																				
wild senna	0.38	0.25	0.10	0.10	0.38	0.50	0.10		0.38	0.50	0.10		0.25	0.50	0.10	0.10	0.25	0.38	0.10	
Illinois bundleflower								0.10					0.13					0.13		
lead plant																				
kura clover																				
Forb components																				
oxeye daisey	0.50	0.50	0.20	0.10	0.50	0.50	0.30	0.10	0.50	0.50	0.20	0.20	0.50	0.50	0.20	0.30	0.50	0.50	0.10	
grayhead coneflower	0.50	2.00	2.00	0.30	0.50	2.00	4.00	0.60	0.50	2.50	3.80	1.90	0.50	2.00	0.50	4.50	0.50	2.25	2.40	1.40
prairie coreopsis	0.13					0.50				0.13				0.25				0.25		
2003, 2004, 2005 estimated on	03, 2004, 2005 estimated on 1-9 scale																			
2006 actual plant count - 3 cou	ctual plant count - 3 counts/plot were averaged																			
Study MOPMC-PA-0105 Con	npatabil	ity Stu	ıdy														Table #	4		

continued																	Plante	d 1/8/02	
											Stems	/Square	Ft Per	Plot					
		Plot #	6			Plot #	7	, in the second s		Plot #8	3			Plot #9					
		2003	2004	2005	2006	2003	2004	2005	2006	2003	2004	2005	2006	2003	2004	2005	2006		
WS grass co	omponents																		
big blueste	em (BB)	0.25		0.10		0.13								0.25					
little bluest	em (LB)			0.10										0.13		0.10			
switchgras	s (SG)			0.10		1.25													
sideoats g	ramma (SO)																		
eastern ga	magrass (EG)									3.50	6.75	18.00	13.30						
Indiangras	s (IG)			0.10						0.13				0.25		0.10			
CS grass co	omponents																		
Virginia wil	ldrye (VW)	0.50	0.50	1.70	8.60														
western wh	heatgrass (WW)			0.10															
junegrass	(JG)																		
porcupine	grass (PG)																		
timothy (T)																			
Legume cor	mponents																		
bush clove	er	0.25	0.50	0.10		0.25	0.25	0.10						0.13	0.13	0.10	0.10		
purple prai	rie clover															0.10			
white prair	ie clover																		
desmodium	n	0.38	0.38	0.10	0.60	0.25	0.50	0.10						0.38	0.50	0.10			
goat's rue		0.13				0.25	0.13								0.25				
wild senna	l	0.25	0.38	0.20	0.30	0.25	0.38	0.10						0.38	0.13	0.10	0.40		
Illinois bun	dleflower													0.13					
lead plant						0.13								0.13					
kura clove	r										0.25								
Forb compo	onents																		
oxeye dais	sey	0.50	0.50	0.30	0.70	0.38	0.50	0.20	0.60	0.13				0.50	0.50	0.30			
grayhead o	coneflower	0.50	2.75	5.00	3.60		2.25	4.00	1.90					0.50	3.00	4.00	6.40		
prairie core	eopsis	0.13	0.25			0.38	0.25								0.38				

Study MOPMC-PA-0105 C	Compat	ability	Study															Table	#5	
																	Plante	d 5/20	/02	
	Spring	g plant	ed plot	S						Stems	s/Squar	e Ft P	er Plot							
	Plot #	1			Plot #	2			Plot #	3	_		Plot #	4	_		Plot #	5		
	2003	2004	2005	2006	2003	2004	2005	2006	2003	2004	2005	2006	2003	2004	2005	2006	2003	2004	2005	2006
WS grass components																				
big bluestem (BB)	0.50	1.25	3.30	1.40			0.10													
little bluestem (LB)					0.75	0.38	0.50													
switchgrass (SG)	4.25	6.00	12.40	13.40			0.10						5.75	20.63	26.30	24.20				
sideoats gramma (SO)					30.00	26.25	30.00	18.20												
eastern gamagrass (EG)									1.75	6.38	24.40	11.20								
Indiangrass (IG)							0.10										2.75	5.00	15.00	11.70
CS grass components																				
Virginia wildrye (VW)																	0.75	4.75	3.30	2.10
western wheatgrass (WW)																				
junegrass (JG)																				
porcupine grass (PG)																				
timothy (T)																				
Legume components																				
bush clover	0.13	0.50	0.20	0.30	0.50	0.38	0.50	0.60		0.38	0.70	0.40		0.38	0.40		0.13	0.38	0.30	0.30
purple prairie clover	0.38	0.50	0.10		0.50	0.50	0.40	0.30	0.38	0.50	0.20	0.50	0.25	0.50	0.10		0.38	0.50	0.20	
white prairie clover		0.13				0.25	0.10			0.38				0.50				0.13	0.10	
desmodium	0.38	0.50	0.10	0.10	0.38	0.50	0.20	0.30	0.50	0.50	0.20		0.38	0.50			0.38	0.50	0.30	0.80
goat's rue		0.38			0.13	0.25				0.50				0.38			0.00	0.25		
wild senna																	0.13			
Illinois bundleflower	0.38	0.50		0.10	0.25	0.25	0.10		0.38	0.38			0.50	0.50			0.38	0.38		
lead plant	0.38				0.38				0.13				0.13				0.25			
kura clover																				
Forb components																				
oxeye daisey	0.50	0.50	0.10	0.50	0.50	0.50	0.10		0.38	0.50	0.20		0.50	0.50	0.20		0.50	0.50	0.20	
grayhead coneflower	0.50	1.00	0.30	0.60	0.38	0.50		0.70	0.38	0.50	0.80	0.50	0.38	0.75	1.10	1.10	0.38	0.75	0.80	
prairie coreopsis							1.10											0.13		

Study MOPMC-PA-0105 C	Compat	ability	Study	1															
continued																			
	Spring	g plante	ed plo	ts						Stems	s/Squa	re Ft P	er Plot					ļ	
																		ļ	
	Plot #	6			Plot #7	7			Plot #	B			Plot #	9				ļ	
	2003	2004	2005	2006	2003	2004	2005	2006	2003	2004	2005	2006	2003	2004	2005	2006		ļ	
WS grass components																		ļ	
big bluestem (BB)																		ļ	
little bluestem (LB)																		ļ	
switchgrass (SG)							0.10								0.10			ļ	
sideoats gramma (SO)															0.10			ļ	
eastern gamagrass (EG)									2.00	3.00	30.00	8.30						ļ	
Indiangrass (IG)			0.10				0.10											ļ	
																		ļ	
CS grass components																		ļ	
Virginia wildrye (VW)	1.25	4.00	6.60	15.10														ļ	
western wheatgrass (WW)		0.13	0.10															ļ	
junegrass (JG)					0.13													ļ	
porcupine grass (PG)																		ļ	
timothy (T)																		ļ	
																		ļ	
Legume components																			
bush clover	0.13	0.38	0.30	0.10	0.13	0.25	0.10	0.20			0.70		0.25	0.38	0.40	0.70			
purple prairie clover	0.50	0.50	0.60	0.10	0.50	0.38	0.10				0.20		0.25	0.50	0.10				
white prairie clover		0.38				0.13								0.50					
desmodium	0.38	0.50	0.70	0.10	0.50	0.50	0.30	0.70			0.20		0.38	0.50	0.40	0.20			
goat's rue	0.00	0.25			0.00	0.25								0.38					
wild senna					0.13														
Illinois bundleflower	0.50	0.50	0.10	0.30	0.50	0.50	0.10						0.50	0.38	0.10				
lead plant	0.25				0.38								0.50						
kura clover																			
Forb components																		 	
oxeye daisey	0.50	0.50	0.10		0.50	0.50	0.50	0.50			0.20		0.50	0.50	0.30			 	
grayhead coneflower	0.38	1.00	2.30	0.70	0.38	0.75	2.40	2.70			0.80		0.50	1.25	0.70	4.40		Ļ	
prairie coreopsis		0.13												0.13			 	Ļ	
																		ĺ	

Study ID Code: MOPMC-T-0106, BU

Study Title: Collection and Evaluation of Native Cool Season Grasses and Sedges for Filter Strips

Study Leader: Cordsiemon, R.

Description:

A need has developed out of a three-state technical review committee and approved by the State Conservationists Advisory Committee to evaluate different native cool season grasses and sedges for filter strips.

Grasses and sedges to be considered are Virginia wildrye, *Elymus canadensis*; Canada wildrye, *Elymus canadensis*; Junegrass, *Koeleria crista;* bluejoint, *Calamagrostic canadensis*; sweet woodreed, *Cinna arundinacea*; river oats, *Uniola latifolia*; longhair sedge, *Carex cosmosa*; Frank sedge, *Carex frankii*; shoreline sedge, *Carex hyalinolepis*; wheat sedge, *Carex atherodes*; raven's foot sedge, *Carex crus-corvi* Shuttlew; short sedge, *Carex shortina*; hop sedge, *Carex lupulina* Muhl.; crested sedge, *Carex normalis*.

Objective:

There is little to no documented information regarding native cool season grasses and sedges being used in filter strip situations. In an attempt to respond to this lack of information, the PMC has been directed to initiate this study. Depending upon the performance of selected native cool season grasses and sedges in filter strip situations, previous recommendations may change to include those native cool season grasses and sedges performing excellently in this situation.

Discussion:

2001

The study plan for this study was initiated and approved by the State Conservationists' Advisory Committee in August of 2001. Selected field offices in the PMC service area will be contacted in the spring of 2002 requesting their participation in this collection, however everyone is welcomed to participate. One to three collections per state per species are being requested, both seeds and plants. The plants will be grown in the PMC greenhouse and later transplanted in randomized complete blocks. Each block will be one foot wide and five feet long with approximately 30 plants per plot. The spacing of the plants in the blocks will be six inches x six inches.

2002-2003

Collections of native sedges and cool season grasses began on July 2, 2002. The following chart reflects a listing of the collections made as of the time this report was developed. The collection period was extended one more year to make collections of those species that have not been made or those species needing more collections. Fourteen additional collections were made in the state of Missouri and eleven were made in Iowa during 2003. Samples of seed from each different species were planted in the greenhouse to determine the germination percentage. The results will be documented in

the 2004 Annual Technical Report. Field #10 on the PMC has been selected as the site for this study because of the access to water. Two collections of river oats were planted (vegetatively) on September 9, 2002. Both collections were performing with fair to good vigor.

2004

The planting site for this project was changed from Field #10 to Field #7. There is still available water and space. There were two separate wetland cells constructed by using a landscraper in order to simulate a wetland environment. The wetland cells measure 20 feet x 200 feet and are made up of several different individual blocks. The blocks themselves measure 5 feet x 20 feet (refer to Table #2 for map). Collections that did well in the greenhouse were stepped up in plug containers. They were planted in Field #7 on May 3 and were evaluated for percent stand, percent cover, lodging, and survival in late June (refer to Table #3). The west cell contains 17 blocks that include 100 plants per block of a particular species. The east cell contains 27 different collections consolidated into 11 different blocks. These collections were added together because they did not contain 100 plants. All blocks were planted on one foot by one foot spacing. Each collection will be evaluated three times in 2005, (late winter, summer, and fall) for percent stand and cover, lodging, and survival. The cells will be kept fairly damp throughout the growing season and will be treated with a pre-emergent grass herbicide in the sedge plots to help control annual grasses.

2005

Two evaluations were completed (refer to Table # 5) in 2005. Six species were selected based on evaluations for increase plantings. The species selected for increase are larger straw sedge (*Carex normalis*), Crested Sedge (*Carex cristella*), Fox Sedge (*Carex vulpinoidea*), Crowfoot Sedge (*Carex crus-corvi*), Franks Sedge (*Carex frankii*), and Green Bulrush (*Scirpus atrovirens*). The increase plantings are scheduled for January 2006.

2006

On February 15, 2006 the six selected species were planted into production blocks. The blocks were 0.25 acre in size. The plots were planted to cereal rye the season prior to planting and mowed in the fall, plowed in January 2005, disked and rolled prior to planting. Plots were planted in 8" rows with the plot planter on the surface to 1/4" deep. All six species (larger straw sedge (*Carex normalis*), Crested Sedge (*Carex cristella*), Fox Sedge (*Carex vulpinoidea*), Crowfoot Sedge (*Carex crus-corvi*), Franks Sedge (*Carex frankii*), and Green Bulrush (*Scirpus atrovirens*)) were planted at an estimated rate of 40 pure live seed per square foot. See figure 1 for production plantings in field 7A. Plots were sprayed with both Poast (grass herbicide) and 2,4-D (broadleaf herbicide). When the plots were sprayed no sedges were present, weed competition was extreme with white clover dominating the plots. The plots were evaluated several times throughout the growing season, but the selected sedges were not observed. Plans are to replant the same plots with the same species at a later date (April) in 2007. The selected species will be put in the germinator to check germination percent.

2007

On April 25, 2007, the six selected species were planted again in the same areas of field 7 in an attempt to establish production plots of each. Again all six species (larger straw sedge (*Carex normalis*), crested sedge (*Carex cristella*), fox sedge (*Carex vulpinoidea*), crowfoot sedge (*Carex crus-corvi*), franks sedge (*Carex frankii*), and green bulrush (*Scirpus atrovirens*)) were planted at an estimated rate of 40 pure live seed per square foot. Neither Poast, nor 2,4-D were used; instead a new chemical called Stinger was used to control weed competition. Several seedlings were identified, but the plots still struggled to establish. Weed competition again became a problem by late summer and drought conditions did not help in the survival of these wetland species. After speaking with Chris Hoag, Aberdeen PMC in Idaho, it was determined that water would play a huge factor in establishing the different species of sedges.

Seed from the PMC evaluation plots was depleted after planting plots in April 2007. The decision was made to make more collections of the same species from the US Fish and Wildlife Refuge in Annada, Missouri. Candy Chambers, assistant manager of the Clarence Cannon Refuge, assisted in collecing the seed. Collections were made from June to August 2007; some by hand and two were harvested by using the plot combine. Plans for FY 2008 are to plant production plots at the Clarence Cannon Refuge in Annada where the amount and level of water is easily controlled.

Species of Sedges Co	ollected from Clarence Ca	nnon Refuge in 2007
Scientific Name	Common Name	Amount Collected in Lbs.
Carex vulpinoidea	Fox Sedge	82.9
Carex hyalinolepis	Thinscale Sedge	6.1
Carex frankii	Franks Sedge	0.3
Carex crus-corvi	Crowfoot sedge	1.2
Carex lupulina	Hops Sedge	0.3
Carex cristella	Crested Sedge	0.2
Scirpus atrovirens	Green Bulrush	0.1

Table #1

Study MOPMC-T-0106, BU - Collection and Evaluation of Native Cool Season Grasses and Sedges for Filter Strips

Colordifie Norres	Common	Collector	City State	Taman
Scientific Name	Common	Conector	City, State	Temp.
	Name			ACC. NO
~		D 1 0111		
Carex crus-corvi	Ravens foot	Dennis Shirk	Vienna, MO	MO-1
	sedge			
Carex grayii	Gray sedge	Dennis Shirk	Vienna, MO	MO-2
Carex atherodes	Slough Sedge	Dennis Shirk	Vienna, MO	MO-3
Carex vulpinoidea	Fox sedge	Dennis Shirk	Vienna, MO	MO-4
Michx.				
Carex vulpinoidea	Fox sedge	Kaiser &	Elsberry, MO	MO-5
Michx.	C	Henry	5,	
Carex hyalinolenis	Thinscale	Kaiser &	Elsberry, MO	MO-6
Steud	scale	Henry	21500119,1110	
Carex crus-corvi	Crowfoot	Kaiser &	Elsberry MO	MO-7
Shuttlew	sedge	Henry	Lisberry, MO	MO /
Carax hyalinolonis	Thinscale	Doul France	Albany MO	MO 8
Stoud	riniscale	r aut Fieese	Albally, MO	WIO-0
Steud.	For and an	Voicen 6	Elaborer MO	MOO
Carex vuipinoidea	Fox sedge	Kalser &	Elsberry, MO	MO-9
		Henry		NO 10
Scirpus atrovirens	Green bulrush	Kaiser &	Elsberry, MO	MO-10
		Henry		
Scirpus atrovirens	Green bulrush	Kaiser &	Elsberry, MO	MO-11
		Henry		
Carex frankii Kunth.	Franks sedge	Paul Frese	Albany, MO	MO-12
Carex lupulina Muhl.	Hop sedge	Raleigh	Warrensburg,	MO-13
		Redman	MO	
Carex grayii	Gray's sedge	Raleigh	Warrensburg,	MO-14
		Redman	MO	
Carex hyalinolepis	Thinscale	Raleigh	Warrensburg,	MO-15
Steud.	sedged.	Redman	MO	
Carex frankii Kunth	Frank's sedge	Lingwall &	Ralls Co., MO	MO-17
	U	Ellis		
Carex crus-corvi	Crowfoot	Lingwall &	Ralls Co., MO	MO-18
	sedge	Ellis		
Carex hyalinolepis	Thinscale	Lingwall &	Ralls Co. MO	MO-19
Stued	sedge	Ellis		
Carex frankii Kunth	Frank's sedge	Raleigh	Warrenshurg	MO-20
	i runic 5 souge	Redman	MO	
Chasmanthium	River oats	I Kaiser	Troy MO	MO-21
latifolium	Kiver Uats	J. IXAISCI	1109, 100	110-21
ւապօսատ				

Initial Collections

Scientific Name	Common Name	Collector	City, State	Temp. Acc. No
Chasmanthium latifolium	River oats	Travis Dinsdale	Springfield, MO	MO-22
Chasmanthium latifolium	River oats	Rodney Doolen	Puxico, MO	MO-23
Chasmanthium latifolium	River oats	J. Kaiser	Troy, MO	MO-24
Chasmanthium Latifolium	River oats	William Brouk	Benton, MO	MO-25
Carex crus-corvi Shuttlew	Ravensfoot sedge	J. Kaiser J. Henry	BK Leach Wildlife Area	MO-26
Carex shartina	Short sedge	J. Kaiser J. Henry	BK Leach Wildlife Area	MO-27
Carex	Shoreline sedge	J. Kaiser J. Henry	BK Leach Wildlife Area	MO-28
Carex hyalinoepis	Thinscale sedge	J. Kaiser J. Henry	BK Leach Wildlife Area	MO-29
Carex vulpinoidea Michx.	Fox sedge	J. Kaiser J. Henry	BK Leach Wildlife Area	MO-30
Carex crus-corvi Shuttlew	Ravensfoot sedge	J. Kaiser J. Henry	BK Leach Wildlife Area	MO-31
Carex vulpinoides Michx	Fox sedge	J. Kaiser J. Henry	BK Leach Wildlife Area	MO-32
Scipus atrovirens	Green bulrush	Aaron Jeffries	Howard Co, MO	MO-33
Carex frankii	Frank's sedge	Aaron Jeffries	Howard Co, MO	MO-34
Carex lupulina	Hop sedge	Aaron Jeffries	Howard Co, MO	MO-35
Carex shortina	Short sedge	Aaron Jeffries	Howard Co, MO	MO-36
Scirpus acutus	Hard- stemmed bulrush	Aaron Jeffries	Howard Co, MO	MO-37
Scirpus atrovirens	Green bulrush	Paul Frese	Gentry Co, MO	MO-38
Chasmanthium latifolium	River oats	Travis Dinsdale	Webster Co, MO	MO-39
<i>Carex hyalinoepis</i> Steud.	Thinscale sedge	Dave Hiatt	Martinsville, IL	IL-1

Table # 1-Study MOPMC-T-0106, BU - cont.

Scientific Name	Common Name	Collector	City, State	Temp. Acc. No
Carex lupulina Muhl.	Hop sedge	Christine Talige	Fairfield, IA	IA-1
Carex cristatella Britton	Crested sedge	Tim Meyer	Williamsburg, IA	IA-2
Carex cristatella Britton	Crested sedge	Tim Meyer	Williamsburg, IA	IA-3
Carex vulpineidea	Fox sedge	Tim Meyer	Williamsburg, IA	IA-4
Scirpus atrovirens	Green bulrush	Tim Meyer	Williamsburg, IA	IA-5
Juncus interior Weigand	Inland rush	Tim Meyer	Williamsburg, IA	IA-6
Calamagrostis Canadensis	Bluejoint	Tim Meyer	Williamsburg, IA	IA-7
Scirpus atrovirens	Green bulrush	Tim Meyer	Williamsburg, IA	IA-8
Carex normalis	Larger straw sedge	Tom Hurford	Atlantic, IA	IA-9
Carex tribuloides	Bristle bract sedge	Tom Hurford	Atlantic, IA	IA-10
Carex normalis	Larger straw sedge	Tom Hurford	Atlantic, IA	IA-11
Scirpus atrovirens	Green bulrush	Tom Hurford	Atlantic, IA	IA-12

Table 1-Study MOPMC-T-0106, BU - cont.

North		Table #
	MO-1	
Г	MQ-4	1
	1010-4	
	MO-5	MO-16 MO-13
Г	MO-10	МО-20 МО-9
Ĺ	MO-11	MO-7 10-18 MO-19 MO-15 10-6 MO-29
	MO-12	MO-17
	MO-22	MO-3 MO-36 MO-28 MO-31 MO-26 MO-35 MC-37
	MO-23	IA-8 IA-12
	MO-24	IA-9
	MO-25	IA-11
	MO-27	IA-2 IA-1
	MO-30	IA-6 IA-7
	MO-32	MO-21
	MO-39	Planted between 5/3/04 & 5/10/04
F		Each individual plot is 5 foot by 20 foot.
	IA-3	Each plant is planted 1 foot apart in a
Г	10.4	5 x 20 toot block.
	IA-4	Plots on the west side, were planted with a
Γ	IA-5	east side are made up of partial collections.
1		

Sedge, Rush, and Cool Season Grass Plot - Field #7

Study ID Co	de: MOPMC-T-0106, BU		Table #3
Collection and	d Evaluation of Native Cool	Season Grasses and Sedges for	Filter Strips
	MISSOURI COLLECTIONS		
Collection	Common Name	Scientific Name	<u># of Plants</u>
MO-1	Crowfoot Sedge	Carex crus-corvi	100 Plants
MO-3	Slough Sedge	Carex obnupta	7 plants
MO-4	Fox Sedge	Carex vulpinoidea	100 Plants
MO-5	Fox Sedge	Carex vulpinoidea	100 Plants
MO-6	Thinscale Sedge	Carex hyalinolepis	8 Plants
MO-7	Crowfoot Sedge	Carex crus-corvi	47 Plants
MO-9	Franks Sedge	Carex frankii	45 Plants
MO-10	Green Bulrush	Scirpus atrovirens	100 Plants
MO-11	Green Bulrush	Scirpus atrovirens	100 Plants
MO-12	Franks Sedge	Carex frankii	100 Plants
MO-13	Hop Sedge	Carex lupulina	25 Plants
MO-15	Thinscale Sedge	Carex hyalinolepis	3 Plants
MO-16	Franks Sedge	Carex frankii	75 Plants
MO-17	Franks Sedge	Carex frankii	76 Plants
MO-18	Crowfoot Sedge	Carex crus-corvi	11 Plants
MO-19	Thinscale Sedge	Carex hyalinolepis	3 Plants
MO-20	Franks Sedge	Carex frankii	54 Plants
MO-21	River Oats	Chasmathium latifolium	76 Plants
MO-22	River Oats	Chasmathium latifolium	100 Plants
MO-23	River Oats	Chasmathium latifolium	100 Plants
MO-24	River Oats	Chasmathium latifolium	100 Plants
MO-25	River Oats	Chasmathium latifolium	100 Plants
MO-26	Crowfoot Sedge	Carex crus-corvi	6 Plants
MO-27	Bottlebrush Sedge	Carex comosa	100 Plants
MO-28	Thinscale Sedge	Carex hyalinolepis	9 Plants
MO-29	Thinscale Sedge	Carex hyalinolepis	13 Plants
MO-30	Fox Sedge	Carex vulpinoidea	100 Plants
MO-31	Crowfoot Sedge	Carex crus-corvi	11 Plants
MO-32	Fox Sedge	Carex vulpinoidea	100 Plants
MO-35	Hop Sedge	Carex lupulina	19 Plants
MO-36	Squarrose Sedge	Carex squarrosa	6 Plants
MO-37	Hard-stemmed Sedan	(hard-stemmed bulrush)	18 Plante
10-57	Tard-Sternmed Sedge	Schoenoplectus acutus	101 141113
MO-39	River Oats	Chasmathium latifolium	100 Plants

Table 3 - cor	ntinued		
	IOWA COLLECTIONS		
Collection	Common Name	Scientific name	# of Plants
IA-1	Hop Sedge	Carex lupulina	23 Plants
IA-2	Crested Sedge	Carex cristatella	52 Plants
IA-3	Crested Sedge	Carex cristatella	100 Plants
IA-4	Fox Sedge	Carex vulpinoidea	100 Plants
IA-5	Green Bulrush	Scirpus atrovirens	100 Plants
IA-6	Inland Rush	Juncus interior	17 Plants
IA-7	Bluejoint	Calamagrostis canadensis	23 Plants
IA-9	Larger Straw Sedge	Carex normalis	76 Plants
IA-8	Green Bulrush	Scirpus atrovirens	38 Plants
IA-11	Larger Straw Sedge	Carex normalis	76 Plants
IA-12	Green Bulrush	Scirpus atrovirens	60 Plants
		<u> </u>	
Shoreline sec	esedge		
Crowfoot sed	lge is the same as ravenfoo	t sedge	

Study ID Code: MOPMC-T-0106, BU

Table #4

Collection and Evaluation of Native Cool Season Grasses and Sedges for Filter Strips

		Number of	Percent	Percent	Lodging	
Collection #	Name	Plants	Stand	Cover	(1-9 Rating)	Notes
MO-1	Crowfoot Sedge	100	100	20	1	
MO-4	Fox Sedge	100	100	20	1	
MO-5	Fox Sedge	100	100	20	1	
MO-10	Green Bulrush	100	100	15	1	
MO-11	Green Bulrush	100	100	15	1	
MO-12	Franks Sedge	100	100	25	1	
MO-22	River Oats	100	80	5	1	
MO-23	River Oats	100	100	5	1	
MO-24	River Oats	100	95	5	1	
MO-25	River Oats	100	95	5	1	
MO-27	Bottlebrush Sedge	100	100	20	1	
MO-30	Fox Sedge	100	100	15	1	
MO-32	Fox Sedge	100	100	15	1	
MO-39	River Oats	100	80	5	1	
IA-3	Crested Sedge	100	100	30	1	
IA-4	Fox Sedge	100	100	15	1	
IA-5	Green Bulrush	100	100	20	1	
MO-13	Hop Sedge	25	100	25	1	
MO-16	Franks Sedge	75	100	25	1	
MO-9	Franks Sedge	45	100	25	1	
MO-20	Franks Sedge	54	100	20	1	
MO-29	Thinscale Sedge	13	100	15	1	
MO-6	Thinscale Sedge	8	100	20	1	
MO-15	Thinscale Sedge	3	66	15	1	
MO-19	Thinscale Sedge	3	33	15	1	
MO-18	Crowfoot Sedge	11	100	15	2	
MO-7	Crowfoot Sedge	47	100	20	2	
MO-17	Franks Sedge	76	100	10	1	
MO-37	Hard-stemmed Sedge	18	100	10	1	
MO-35	Hop Sedge	20	100	20	1	
MO-26	Crowfoot Sedge	6	100	10	2	
MO-31	Crowfoot Sedge	11	100	25	1	
MO-28	Thinscale Sedge	9	100	10	1	
MO-36	Squarrose Sedge	6	85	15	1	
MO-3	Slough Sedge	7	100	15	1	
IA-12	Green Bulrush	60	100	10	1	

Sedge, Cool Season Grass, and Bulrush Evaluation DATE: <u>6/22/04</u>

Table #4 - continued

		Number of	Percent	Percent	Lodging	
Collection #	Name	Plants	Stand	Cover	(1-9 Rating)	Notes
IA-8	Green Bulrush	38	100	10	1	
IA-9	Larger Straw Sedge	76	100	20	1	
IA-11	Larger Straw Sedge	76	100	10	1	
IA-1	Hop Sedge	23	100	15	1	
IA-2	Crested Sedge	52	100	25	1	
IA-7	Bluejoint	21	92	15	1	
IA-6	Inland Rush	16	96	15	1	
MO-21	River Oats	76	95	5	1	

1-9 Rating 1 = No Lodging 9 = Severe Lodging

Study MOPMC-T-0106, BU - Collection and Evaluation of Native Cool Season Grasses and Sedges

Table #5

2005 Evaluation Averages For Each Species

Name	Collection # % Stand % Cover Lodging		Lodging	Vigor		
Bluejoint	IA-7		62.5	47.5	4	6
Bottlebrush Sedge	MO-27		100	82.5	4	6
Crested Sedge	IA-2		100	54.5	5	1
Crested Sedge	IA-3		100	85	5.5	1
Crowfoot Sedge	MO-1		100	90	3	1
Crowfoot Sedge	MO-7		100	95	4.5	2
Crowfoot Sedge	MO-18		100	90	4	2
Crowfoot Sedge	MO-26		100	90	5	3
Crowfoot Sedge	MO-31		100	95	7	2
Fox Sedge	IA-4		100	72.5	4.5	3
Fox Sedge	MO-4		99	95	5	2
Fox Sedge	MO-5		100	87.5	5	2
Fox Sedge	MO-30		100	87.5	5.5	3
Fox Sedge	MO-32		100	80	4.5	4
Franks Sedge	MO-9		100	90	3	3
Franks Sedge	MO-12		100	85	2.5	1
Franks Sedge	MO-16		100	92.5	3	3
Franks Sedge	MO-17		98.5	75	3	5
Franks Sedge	MO-20		100	85	3	3
Green Bulrush	IA-5		100	57.5	4.5	4
Green Bulrush	IA-8		100	87.5	5	4
Green Bulrush	IA-12		100	72.5	4.5	4
Green Bulrush	MO-10		99.5	52.5	3	5
Green Bulrush	MO-11		100	50	3	6
Hop Sedge	IA-1		100	92.5	7	2
Hop Sedge	MO-13		100	85	2	3
Hop Sedge	MO-35		100	90	3	2
Inland Rush	IA-6		95		3.5	4
Larger Straw Sedge	IA-9		100	95	5.5	2
Larger Straw Sedge	IA-11		100	92.5	5	1
River Oats	MO-21					9
River Oats	MO-22		70	15	1	9
River Oats	MO-23		97	25	1	9
River Oats	MO-24		95	20	1	9
River Oats	MO-25		90	20	1	9
River Oats	MO-39		85	15	1	9
Slough Sedge	MO-3		100	62.5	3.5	5

Study MOPMC-T-0106, BU - Collection and Evaluation of Native Cool Season Grasses and Sedges

Table #5 - continued

2005 Evaluation Averages For Each Species

Name	Collection #	% Stand	% Cover	Lodging	Vigor
Squarrose Sedge	MO-36	100	50	5	5
Thinscale Sedge	MO-6	100	80	4.5	1
Thinscale Sedge	MO-15	100	75	2	2
Thinscale Sedge	MO-19	100	65	2	5
Thinscale Sedge	MO-28	100	70	2	4
Thinscale Sedge	MO-29	100	77.5	1.5	2

Lodging

1 = No Lodging Severe Lodging

Vigor 1= Highly Vigorous 9= Low Vigor

Study ID Code: MOPMC-T-0310-PA, WL

Study Title – Incorporating Native Warm Season Grasses into Cool Season Pasture with Grazing Management

Study Leader: Bruckerhoff, S. B.

Introduction:

The need exists for providing quality forage during the summer dormancy period of cool season grasses. Warm season grasses can help provide this forage but loss of production during the establishment period has slowed the utilization of these species.

Problem:

The establishment period for warm season grasses is typically longer than for cool season grasses. Warm season grasses generally are not grazed the year of establishment and sometimes do not provide full production until the third growing season.

Objectives:

The objective is to evaluate alterative methods of warm season grass establishment and also pasture management of cool season and warm season species growing together. Alternative establishment methods being evaluated will decrease or eliminate the loss of production during the warm season grass establishment period.

Cooperators: Local landowners with intensive managed grazing systems.

Procedure:

Close graze the fescue pasture for one grazing season prior to seeding the species listed below. Seeding will be completed during the winter dormant period and spring using the treatments listed below.

Broadcast - winter dormant planting Drilled - spring planting Strip tilled - spring planting

Randomized complete block design with 4 replications.

Cultivars/selections of warm season grasses will be assembled and planted into cool season grass pastures. Rotational grazing will be used as a control method to set back the cool season grass and allow the warm season grass a chance to become established. Rotational grazing will also be used to balance the warm and cool season grasses to utilize production from both.

Rotational grazing with a high stocking rate will be used during the establishment year and subsequent years to enhance the development of the planted species and also utilize the forage of the original pasture.

Species composition of treatments will be determined by transecting the plots. Measure forage utilization (growth height) of species before and after grazing management. Species/cultivars to be tested:

'Rountree' Big Bluestem 'Cave-in-Rock' Switchgrass 'Aldous' Little Bluestem

Discussion:

'Rumsey' Indiangrass 'Pete' Eastern Gamagrass

2003

Fescue pasture was intensively grazed during 2002. The pasture was marked with 30' by 50' plots including five species and a check plot, three treatments, and four replications. The broadcast treatment was planted 2/13/03. The no-till treatment was planted 5/6/03 with eastern gama and switchgrass and 5/21/03 with big bluestem, little bluestem and Indiangrass. The striptill treatment plots were 50% tilled (30" wide strips) and planted the same as the no-till treatment.

The summer of 2003 had more than adequate rainfall to keep the fescue from going dormant and cattle did not keep it grazed close so all the plots were mowed twice during the summer to help control competition from the fescue. Warm season grass seedlings germinated on the tilled portion of the strip-till plots but none were found in the fescue sod. All plots were rotationally grazed until mid August and then again after November 1.

2004

The pasture was again utilized with rotational grazing but again the summer was cooler and wetter than average and the fescue expressed very little dormant period. Very few seedlings were found in any plots. This site will continue to be monitored. Another trial is scheduled for 2005.

2005

There was very little warm season grass establish in any plot of the first trial.

A second trial (Trial 2) was established at a site close to Highway W. This trial used the same planting scheme as the first trial but the grazing system had more paddocks (eight) and they were smaller with fewer cattle. Low populations (0.5 - 3.0% cover) of each species established in the strip tilled plots, but nothing was found in the other plots the establishment year.

2006

Trial 1 reverted back to primarily tall fescue with little to no warm season that was planted surviving. This was probably due to several factors. The summer of the establishment year (2003) was wetter and cooler than normal and the fescue out-competed the new seedlings and the cattle and mowing did not keep the competition controlled.

Trial 2 had some plants of each species exist but mostly in the plots that were strip tilled. The plots were grazed from 3 to 7 days depending on available forage with intervals varying between 5 to 7 weeks. The plots were grazed heavy until mid April. There was no grazing between mid August and mid October.

2007

Trial 2 (2005 planting) again had some plants of each species existing but in very small amounts and mostly in the plots that were strip tilled. Grazing was rotated between paddocks but due to a very dry summer, was more intense than prior years.

Study: MOPMC-P-0613-PA, WL

Study Title: Evaluation and Release of a Shade Tolerant Big Bluestem, *Andropogon gerardii*, L., for Silvopasture

Study Leaders: Van Sambeek, J., Wallace, D., Garrett, G., Bruckerhoff, S.

Introduction:

Big bluestem is one of the most widespread important forage grasses of the North American tallgrass prairie region. It is usually associated with one or more of the other three dominant species; Indiangrass, switchgrass, and little bluestem. Big bluestem occurs on sub-irrigated lowlands, nearly level to gently undulating glacial till plains, overflow sites, level swales and depressions, residual and glacial uplands, and stream terraces and bottomlands along rivers and tributaries. The abundant, leafy forage is palatable to all classes of livestock.

The Elsberry PMC initiated a big bluestem collection from the Ozark region (Missouri, Arkansas, and Oklahoma) in 1988 to develop an improved big bluestem that would be better adapted to this region. The collection effort resulted in an assembly of 370 big bluestem accessions and three releases, OZ70 germplasm, a selected release for forage; Refuge germplasm, a medium height selection for buffers, filters and wildlife; and OH370 germplasm, a source identified release for diversity.

Problem:

There is limited information available on species selected for forage to be primarily used for savannas and silvopasture systems throughout Missouri.

Objective:

An existing PMC big bluestem collection displays an amazing range of morphological and phonological characteristics – color, plant height, blade width, stem erectness, rust resistance, spring emergence, anthesis, etc. This collection has never been evaluated for shade attributes that might be valuable in silvopasture systems or with savanna restoration efforts. This study will select and evaluate for forage production in relation to shade tolerance.

Cooperators:

The USDA Natural Resources Conservation Service, Plant Materials Center and the University of Missouri, Columbia, Horticulture and Agroforestry Research Center, HARC.

Procedure:

Randomized complete block design with three replications, five shade levels: full sun, 30% shade, 55% shade, 78% shade with sunflecks, and 80% shade.

Twenty-two accessions of big bluestem were selected based on original collection site descriptions and phenotypic characteristics such as leaf width, and chlorophyll content. These collections came from previous work (Study 29I097G) at the Elsberry and Arkansas PMC's and were assembled in 2005 at the University of Missouri Agroforestry Center (HARC). Additional species being evaluated are eastern gamagrass, Canada wildrye, riveroats, cluster fescue, and tall fescue. Plants were started in the greenhouse and planted in replicated plots the spring 2006.

Forty-five pots for each accession were randomized within each treatment. Above ground dry weight, leaf weight, and forage quality (acid detergent fiber, neutral detergent fiber, crude protein) will be collected for each accession.

Discussion:

2005/2006

Key Findings:

All big bluestem accessions exhibited growth reductions in harvested seasonal biomass (summer plus fall harvest in 2005) under reduced light, although four accessions had produced greater biomass at 70% of full sunlight than under full sunlight (Table 1). Response of most accessions closely approximated a linear relationship between harvested biomass and percentage reduction in light from full sunlight. When fitted to the equation Y = MX + B where Y is g/pot harvested biomass and X is percent reduction from full sunlight, M approximates decrease in biomass per percent reduction in full sunlight and B approximates yield under full sun. We hypothesize the best accessions for most agroforestry practices will exhibit a compromise between relatively low values for M and relatively high values for B such as exhibited by PMC-6925, a high producing shade tolerant accession, compared to PMC-6974, an accession that did poorly under increasing shade (fig. 1). Yield data was also fitted to a second order polynomial and first derivative solved to estimate the percent of full sunlight produced maximum yields (estimated peak biomass production was at 76 % and >100% of full sunlight for PMC-6925 and PMC-6974, respectively).

Analysis of summer 2005 big bluestem biomass for forage quality showed highly significant interactions for Crude Protein (CP), Acid Detergent Fiber (ADF), and Relative Feed Value (RFV) under differing shade levels with and overall increase in CP and ADF and an overall decrease in RFV as shade levels increased (Table 2). Neutral Detergent Fiber (NDF) and Total Digestible Nutrients (TDN) also showed significant and very significant responses, respectively, to increasing shade levels.

Table 1.—Seasonal biomass production in 2005 for 21 accessions of big bluestem under five light regimes, coefficients for linear regression for each accession, and calculated percentage of full sunlight for maximum biomass yield.

State	PMC	2005 combi	ined summe	er and fall b	g/pot) under	Reg. coeff. for mx +		Max.	
of	number		five	light regim	les		b		yield
origin		Full sun	70%	45%	20%	Sunfleck	b	Х	% fs
AR	6967(02)	71	70	51	31	38	77	-0.51	>100
MO	6832(04)	85	81	67	39	32	92	-0.66	89
MO	6812(05)	75	85	61	37	44	86	-0.52	80
MO	6885(06)	96	86	79	32	42	104	-0.76	88
AR	6896(07)	94	82	73	43	50	98	-0.61	95
AR	6972(08)	88	81	78	42	52	94	-0.53	85
MO	6807(10)	91	76	64	47	46	92	-0.57	>100
AR	6974(12)	94	73	53	23	27	97	-0.89	>100
AR	6902(13)	90	80	58	32	46	94	-0.68	>100
MO	6802(14)	110	89	89	52	60	112	-0.66	>100
AR	6905(15)	88	75	67	40	45	91	-0.58	>100
OK	7049(16)	103	92	74	54	53	107	-0.65	>100
MO	6741(17)	87	93	77	52	56	96	-0.47	79
AR	6925(19)	91	96	89	65	58	100	-0.41	76
MO	6838(21)	96	96	78	45	57	105	-0.64	86
MO	6704(22)	73	67	57	37	35	77	-0.48	98
AR	6935(24)	85	64	60	26	37	86	-0.65	>100
OK	7039(25)	78	72	57	52	53	79	-0.34	>100
MO	OZ-70(26)	88	62	54	18	26	89	-0.83	>100
MO	Rountree	85	88	79	55	56	92	-0.41	78
OK	7007(29)	67	54	32	17	20	68	-0.62	>100

Figure 1.—Individual pot biomass in 2005 for shade tolerant PMC-6925 (squares) and intolerant PMC-6974 (diamonds) and fitted linear and quadratic responses as a function of full sunlight.

Table 2.– Summer 2005 forage quality mean and standard deviation (SD) averaged across 21 big bluestem (BBS) under five light regimes for percent crude protein (CP=true protein plus non-protein nitrogen), acid detergent fiber (ADF=highly indigestible fiber), neutral detergent fiber (NDF=cell wall or structural components), total digestible nutrients (TDN=111.8 + 0.95 CP - 0.36 ADF- 0.7 NDF), and relative feed value (RFV=(%DDM x %DMI)/1.29 or relative to full bloom alfalfa set at 100).

Light regime	CP ((%)	ADF (%)		NDF (%)		TND (%)		RFV	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Full sun	6.2	1.0	36.0	3.2	63.5	2.6	60.2	3.3	89.4	6.8
70 % of full sun	6.2	1.5	39.2	3.6	65.7	3.3	57.6	4.0	83.0	8.0
45 % of full sun	6.9	1.9	40.0	3.9	65.9	3.4	57.7	4.4	81.8	8.1
20% of full sun	8.7	1.9	40.8	3.0	66.4	2.4	58.9	3.9	80.2	5.9
22% sunfleck	8.3	1.9	40.2	2.8	65.6	2.5	59.3	3.8	81.9	5.7
Sign: Shade	***		***		*		**		***	
5% LSD	0.5		1.2		1.5		1.3		2.5	
Interaction sign.:	***		ns		ns		**		ns	
Shade x Acces.										

2007

Key Findings:

Analysis of 2006 forage quality data compared to 2005 results (Table 3) showed that general trends for 2006 were similar to 2005. TDN and RVF values decreased as shade levels increased; while crude protein, ADF and NDF, values increased for all combined accessions.

Table 3. Seasonal forage quality in 2005 and 2006 for combined accessions of big bluestem under four light regimes.

	СР	(%)	ADF	· (%)	NDF	r (%)	TDN (%)		RFV	
Light regime	2005 Mean	2006 Mean								
Full sun	6.2	5.0	36.0	35.6	63.5	62.9	60.2	59.7	89.4	90.4
70 % of full sun	6.2	4.4	39.2	36.2	65.7	64.0	57.6	58.2	83.0	88.4
45 % of full sun	6.9	4.3	40.0	37.7	65.9	65.3	57.7	56.6	81.8	85.0
20% of full sun	8.7	4.6	40.8	39.1	66.4	66.5	58.9	55.6	80.2	82.0
5% LSD	0.5	0.4	1.2	1.1	1.5	1.4	1.3	1.3	2.5	2.5

Substantial variation exists among the 21 big bluestem accessions for total forage production (sum of boot-stage plus fall harvest) in both 2005 and 2006 (Table 4). Both boot-stage and fall biomass yields for big bluestem plants were substantially lower in 2006 than in 2005 when the plants were first established. Examination of the root systems after the 2006 growing season indicated plants were heavily root-bound with many roots circling the inside of the 2-gallon pots. The number of days to mid-boot or late-boot (just before inflorescence emerges from the sheath of a flag leaf) showed greater variability among the big bluestem accessions during the 2006 growing season than the 2005 growing season. In addition, four accessions (PMC-6832, 6896, 6295, and 7007) in 2006 had plants that failed to flower especially at the lowest light levels.

State	PMC	2005 c	ombined	summer	and fall b	oiomass	2006 combined summer and fall biomass				
of	number	(g	/pot) und	er five lig	ght regim	les	(g/pot) under five light regimes				nes
origin		Full				Sun	Full				Sun
		sun	70%	45%	20%	fleck	sun	70%	45%	20%	fleck
AR	6967(02)	71	70	51	31	38	28	23	24	29	28
MO	6832(04)	85	81	67	39	32	38	32	26	27	31
MO	6812(05)	75	85	61	37	44	31	33	28	32	34
MO	6885(06)	96	86	79	32	42	41	45	41	27	34
AR	6896(07)	94	82	73	43	50	21	19	21	17	22
AR	6972(08)	88	81	78	42	52	19	22	31	29	24
MO	6807(10)	91	76	64	47	46	31	25	35	36	38
AR	6974(12)	94	73	53	23	27	67	56	51	42	43
AR	6902(13)	90	80	58	32	46	24	24	34	31	27
MO	6802(14)	110	89	89	52	60	58	43	49	52	50
AR	6905(15)	88	75	67	40	45	20	29	26	29	28
OK	7049(16)	103	92	74	54	53	23	33	39	46	48
MO	6741(17)	87	93	77	52	56	24	30	30	37	30
AR	6925(19)	91	96	89	65	58	31	37	45	32	43
MO	6838(21)	96	96	78	45	57	30	30	39	38	43
MO	6704(22)	73	67	57	37	35	31	35	40	39	34
AR	6935(24)	85	64	60	26	37	26	28	40	26	30
OK	7039(25)	78	72	57	52	53	29	19	24	27	22
MO	OZ70(26)	88	62	54	18	26	27	37	41	28	25
MO	Rountree	85	88	79	55	56	37	47	46	42	41
OK	7007(29)	67	54	32	17	20	30	31	33	31	32
Means		87	79	67	40	44	29	32	33	31	31

Table 4. Seasonal biomass production in 2005 and 2006 for 21 accessions of big bluestem under five light regimes with sunfleck treatment yielding 22% of full sunlight.

Study: MOPMC-P-0614-PA, WL, BF

Study Title: Evaluation and Release of Switchgrass, Panicum virgatum L.

Study Leader: Bruckerhoff, S. B.

Introduction:

Switchgrass is one of the most widespread important native forage grasses of the North American tallgrass prairie region. It is usually associated with one or more of the other three dominant species; Indiangrass, big bluestem, and little bluestem. Switchgrass occurs on subirrigated lowlands, nearly level to gently undulating glacial till plains, overflow sites, level swales and depressions, residual and glacial uplands, and stream terraces and bottomlands along rivers and tributaries. The abundant, leafy forage is palatable to all classes of livestock. This species is common in the PMC service area and a more adapted and improved variety should be able to be developed from native collections.

Switchgrass is a warm-season, perennial, native grass and grows one to two meters and rarely to three meters tall. Plants are usually green or glaucous, with numerous scaly creeping rhizomes. Culms are erect, tough and hard, sheaths glabrous; blades 10-60 centimeters long, three to 15 millimeters wide, flat glabrous, or sometimes pilose above or near the base, rarely pilose all over; panicle 15-50 centimeters long; acuminate; first glume clasping, two-thirds to three-fourths as long as the spikelet.

Problem:

The variety of switchgrass most commonly used in the PMC service area is 'Cave-In-Rock'. Its genetic origin is southern Illinois and it performs well but can develop disease problems during seed production. Some uses for switchgrass would prefer a shorter selection without giving up forage quality or quantity.

Objective:

This study will develop a Midwest genetic origin switchgrass with high forage production and quality, high seed production, and seedling vigor for pasture, hay, conservation cover and potential uses for biofuels and bioenergy.

Procedure:

Accession 9062244 was selected from collections taken for development of a low growing switchgrass for waterways (Study 29I108G) at the Elsberry PMC. This accession was selected based on high forage production (very leafy), forage quality (15.6% crude protein in mid-summer) and late maturity. The selection was increased in the greenhouse by vegetative propagation from original material and placed in a 200 plant evaluation nursery (#1). Unwanted plants were rogued and seed was collected from the remaining plants.

Plants were selected from the seed harvested from nursery #1 based on heavier seed and quick seedling emergence. A 300 plant evaluation nursery (#2) will be established and evaluated for forage quality and quantity, seed production, late maturity and plant vigor. Selected plants will be allowed to cross and this will become the breeder's block of a medium height, forage type switchgrass.

Seed harvested from selected plants in evaluation nursery #2 will be generation zero (G0) and used to establish an increase field to produce G1 seed. This planting will be evaluated and seed produced will be used for further testing.

The final selection will be in a randomized complete block with four replications and compared to released cultivars of switchgrass.

Evaluation criteria will be emergence and establishment from seed in a field situation, forage quantity and quality, biofuel quality (height, lodging, leaf:stem ratio, nitrogen, etc.) and biomass production seed production, vigor, and late maturity. Emergence, biomass and maturity evaluations will be by rod row. All other evaluations will be in plots. Plot size is three feet by six feet consisting of three rows of plants, six plants per row with one foot spacing.

The accession will be compared to Cave-In-Rock, Blackwell, Shawnee, and Kanlow. Testing for forage quality and production will be twice a year for three years, and testing for biofuel will be once a year for three years.

Discussion:

2006

Evaluation nursery #2, consisting of 400 plants was evaluated and approximately 15 percent were eliminated. The nursery will be evaluated again in 2007 and reduced to 25 to 50 percent.

2007

This study was discussed at the Three State Technical Review for the PMC in August of 2007. It was determined that another forage switchgrass was not a high priority at this time and to save the germplasm but discontinue the study.

Study ID Code: MOPMS-T-0615-WL-WO

Study Title – Direct Seeding of Woody Shrubs for Establishing Shrub Cover for Wildlife Habitat of the Following Species. False Indigo Bush, *Amorpha fruticosa*, (a native legume), American Plum, *Prunus americana*, Roughleaf Dogwood, *Cornus drummondii*, Fragrant Sumac, *Rhus aromatica*, Chokecherry *Prunus virginiana*, Arrow-wood *Viburnum dentatum*, American Hazelnut, *Corylus Americana*, (all are native woody shrubs.)

Study Leader: Kaiser, J. U.

Introduction:

The direct seeding of seed in shrub species planted for wildlife habitat are typically planted as one to three year old bare root stock. Direct seeding (planting seed of woody species rather than plants) is an alternative method of establishing woody shrub species for wildlife habitat.

Problem:

The establishment period of seedlings for wildlife habitat, especially for small size plantings for quail covey winter habitat, is challenging because of loss from wildlife damage, drought, and poor survivability of the seedling species.

Objectives:

The objective of this study is to test an establishment technique for woody species using seed rather than seedlings. Direct seeding and management techniques will be tested in three replicated plots to determine which species can adequately establish and perform by direct seeding.

Procedure:

Randomized complete block with split plots design and three replications. Each species is evaluated in its own randomized complete block.

The seedlings will be evaluated during and after the first growing season for average seedling height, vigor, density (plants/sq.ft.) and establishment techniques and weed management.

In additional growing season will be evaluated for plant density.

Evaluation Criteria-

Legume:		Planting	Seeding	Seeds/Sq.		
Species	Seeds/Lb	Date	Rate	Ft.	Plot Size	Split Plot
False	59,200	May 8,	15#	20 PLS/Sq.	30'x50'	10'x50'
indigobush		2006	PLS/acre	ft.		

Treatments between plots – Establishment Techniques

- 1) Prepared seedbed, broadcast seed and harrow.
- 2) Prepared seedbed, broadcast seed and light disk-in.
- 3) Prepared seedbed, drill seed 7.5 inch spacing
- Treatments within plots (split plot) -Weed Management
 - 1) No management (control/check)
 - 2) Mowing above canopy of developing seedlings
 - 3) Post emergent herbicides application for grass control.
 - Evaluation Criteria

Table for Woody Species

				PLOT	
	PLANTING	SEEDS/	PLOT SIZE	SEEDIN	BULK
WOODY SPECIES	DATE	POUND	45.5 X 33 FT	G RATE	SEEDS/
					SQ. FT.
Roughleaf dogwood	9-6-06	15,700	1,500 sq ft.	1# bulk	10.5
American plum	9-6-06	1,500	1,500 sq. ft.	1# bulk	1.0
Aromatic sumac	9-6-06	5,060	1,500 sq. ft.	1# bulk	3.4
Chokecherry	9-6-06	6,855	1,500 sq. ft.	1# bulk	4.6
Arrowwood	9-6-06	20,400	1,500 sq. ft.	1# bulk	13.6
American hazelnut	9-6-06	490	1,500 sq. ft.	1# bulk	0.33

Treatments between plots- Establishment techniques

1) Prepared seedbed, broadcast seed and light disk-in.

Treatments within plots (split plot)-Weed Management

- 1) No management (control/check)
- 2) Mowing above canopy of developing seedling
- 3) Post emergent herbicides application for grass control.

Plot size 33' x 45.5', (1500 sq. ft.) - Split block 33'x 15.15' (500 sq. ft.).

The seed will be collected from species from the assemblies at the Elsberry PMC, except for fragrant sumac that was provided by the Missouri Department of Conservation state tree nursery.

This management will be done for the 1st year after seeding and documented for what is applied. The releases will be compared to determine which species can perform by direct seeding under field conditions.

Discussion:

2006

False indigo bush

The evaluation blocks with the treatments and management of false indigobush were planted May 8, 2006, using a randomized split plot design, with 3 replications and 3 treatments.

Treatment 1- Broadcast and harrow in prepared seedbed. Management was a Check (No weed control), Mowed and sprayed with the herbicide Poast Plus (sethoxydim).

Treatment 2 – Broadcast and disk-in (light incorporation of seed) in a prepared seedbed. Management was a Check (No weed control), Mowed and sprayed with the herbicide Poast Plus (sethoxydim).

Treatment 3- Drilled (TruaxDrill) in a prepared seedbed. Management was a Check (No weed control), Mowed, and sprayed with the herbicide Poast Plus (sethoxydim).

After a dry spring the area received 2.25" of rain in May and 1.1" rain on June 3.

On June 6 the herbicide treatment was used; for the split plot for all three treatments of establishment. The application rate of 24 oz/acre of Poast Plus (sethoxydim) was sprayed directly over the top of the split plots. The herbicide did an excellent control on the annual grasses; however this provided a release of broadleaf species during the growing season, especially common purslane (*Portulaca oleracea*).

Mowing started on the split plots for all three treatments of establishment on 6-9-06, sequential mowing was conducted during the growing season to suppress canopy closure of annual grasses and broadleaf weeds. A total of six mowings were conducted during the growing season. The mowing height initially was three inches after planting the first month. By the end of the growing season a height of 12 inches of the stubble was remaining.

The false indigobush seedlings were evaluated at the end of the growing season for stand, density of plants/square foot, and vigor rating on a scale of 1 = Excellent and 9 = Very Poor, 0 = None. The seedlings were also measured for height in feet.

False												
Indigobush	Check			Mowed			Herbicide					
	Rating			Rating			Rating					
	and	Av.	Av.	and	Av.	Av.	and	Av.	Av.			
	Plants/	Vigor	Height	Plants/	Vigor	Height	Plants/	Vigor	Height			
Treatments	Sq Ft.	Rating	inches	Sq Ft.	Rating	inches	Sq Ft.	Rating	inches			
Broadcast/Harrow												
Rep 1	9=1/25	9'	1"	0=0/25	0	0	7=2/25	1	15"			
	sq'			sq'			sq'					
Rep 2	0=0/25	0	0	7=2/25	7	3"	5-4/25	3	10"			
- I	sq'			sq'			sq'					
Rep 3	7=3/25	7	4"	7=2/25	7	3"	1=16/25	3	12"			
-	sq'			sq'			sq'					
Disk In												
Rep 1	0=0/25	0	0	7=2/25	7	3"	3=6/25	3	8"			
_	sq'			sq'			sq'					
Rep 2	0=0/25	0	0	5=4/25	7	5"	3=7/25	5	6"			
	sq'			sq'			sq'					
Rep 3	7=2/25	7	2"	0=0/25	0	0	1=23/25	1	18"			
	sq'			sq'			sq'					
Drilled												
Rep 1	0=0/25	0	0	7=2/25	9	1"	3=6/25	3	12"			
	sq'			sq'			sq'					
Rep 2	9=1/25	7	3"	7=3/25	7	5"	1=11/25	3	8"			
	sq'			sq'			sq'					
Rep 3	5=4/25	5	5"	9=1/25	7	2"	1=18/25	3	8"			
	sa'			sa'			sa'					

The following chart explains the results during this first year growing season.

Ratings: 1=Excellent, 3=Good, 5=Fair, 7=Poor, 9=Very Poor, 0=None

Summary of Results

False Indigobush

The check treatments exhibited on average for the three replications. a very poor stand density in plants/square foot, with each treatment having at least one rep having zero plants/per square foot. Plant vigor was very poor with limited growth because of competition of annual grasses and broadleaf weeds in dense shading of the block.

The mowed treatments exhibited on average for the three replications a poor stand density in plants/square foot with poor average seedling vigor and plant height.

The herbicide treatments on average for all three replications exhibited good plants/square foot with all treatments having good vigor ratings and plant growth response.

The checks and mowed treatments were dominated with annual grasses and several broadleaf weed species. The herbicide treatment controlled the annual grasses through the growing season
with only competition from broadleaf weeds, heavy common purslane; and smartweed, however light still penetrated the canopy to aid the seedling development which is critical.

Discussion:

2007

False Indigobush Plots

Study Plan was changed in 2007 to use herbicides treatments to address broadleaf weed pressure and annual grass pressure. Mowing and no weed control were not effective in the establishment of false indigobush from seed in 2006.

The plots reps were accidentally sprayed in the wrong areas, so no replication of treatments could be evaluated for uniformity between reps. Observational notes were taken for the herbicides and were noted in the study plan folder.

Summary of Results

False indigobush will need treatments of herbicide such as Poast Plus (sethoxydim) to control annual grass competition if direct seeded; however direct seeding is not the desired method of establishment especially in fields that have weed pressure of annual grasses and multiple species of broadleaf weeds that will shade and stunt the seedlings of false indigobush.

<u>American Plum, Roughleaf Dogwood, Fragrant Sumac, Chokecherry, Arrow-wood,</u> <u>American Hazelnut</u>

The six woody species were direct seeded in the random split plots with three replications on September 6, 2006. This seeding time was selected for a warm (fall) stratification period to follow with cold (winter) stratification. The species were seeded in a prepared (disked) seedbed that had soybean residue. All species were seeded by hand using a cyclone seeder except for the American hazelnut and American plum seed that was evenly spread by hand. All plots were lightly disked to cover the seed for fall. A late fall application of Roundup (glyphosate) was applied to control winter annuals.

Discussion:

2007

<u>American Plum, Roughleaf Dogwood, Fragrant Sumac, Chokecherry, Arrow-wood,</u> <u>American Hazelnut</u>

March 26, 2007- All 3 reps of chokecherry had seedling emergence 1 inch in height. No other species emerged.

April 9, 2007- All 3 reps of chokecherry were damaged by late freeze, seedlings were 2 inches in height. All 3 reps of American Plum had emergence of 1 inch in height.

April 23, 2007- No change to chokecherry. All American Plum 3 inches in height had good seedling color.

May 22, 2007- Treatment of Poast Plus (sethoxydim) rate of 24 oz./acre had been applied in split plots for grass control. In plot observed American Plum tallest 12 inches in height, chokecherry still stunted 3 inches in height, Roughleaf Dogwood and Aromatic Sumac were each 1 inch in height. No American Hazelnut or Arrowwood observed in any reps.

June 6 2007- Treatment of mowing was applied for the split plots. Moderate to heavy foxtail developed in uncontrolled split plots and mowed plots. Sprayed plot clean of grass pressure. Some broadleaf weeds (*Conyza canadensis* marestail) developing in reps with all treatments.

June 27, 2007- Treatment of second mowing for the split plots.

September 5 2007- Completed direct seeding for 2^{nd} year of plots and reps for all 6 species to be observed in 2008.

October 12 2007- Conducted actual stem count

Summary of Results after first year of the plantings Average plants/sq. ft. and average heights for all three reps.

Control Plots- (No treatments)

1)	American Plum	1 plant/23 sq. ft. or 4.3 plants/100 sq. ft.
		Average height 12.5 inches, tallest 24 inches.
2)	Aromatic Sumac	No plants observed, heavy foxtail and clover in all 3 reps
3)	Chokecherry	No plants observed, heavy foxtail and clover in all 3 reps.
4)	Roughleaf dogwood	No plants observed, heavy foxtail and clover in all 3 reps.
5)	American Hazelnut	No plants germinated during the whole growing season,
		predation of seed over winter in all 3 reps.
6)	Arrowwood	No plants germinated during the whole growing season
		in all three reps.

Mowed Plots- Conducted two mowing treatments during the growing season to 1 foot in height.

1)	American Plum	1 plant/62.5 sq. ft. or 1.6 plants/100 sq. ft.
		Average neight 10 miches, tanest 24 miches.
2)	<u>Aromatic Sumac</u>	No plants observed, heavy foxtail and clover in all 3 reps.
3)	Chokecherry	No plants observed, heavy foxtail and clover in all 3 reps.
4)	Roughleaf dogwood	No plants observed, heavy foxtail and clover in all 3 reps.
5)	American Hazelnut	No plants germinated during the whole growing season,
		predation of seed over winter in all 3 reps.
6)	Arrowwood	No plants germinated during the whole growing season in
<i>,</i>		all three reps.

Sprayed Plots- 1 application treatment of Poast Plus (sethoxydim) rate of 24 oz./acre.

1)	American Plum	1 plant/10 sq. ft. or 10 plants/100 sq. ft.
		Average heights 15 inches, tallest 40 inches.
2)	Aromatic Sumac	1 plant /43 sq. ft. or 2.3 plants /100 sq. ft.
		Average height 5 inches, tallest 10 inches.
3)	Chokecherry	1 plant/ 215 sq.ft. or 0.5 plant/100 sq. ft.
		Average height was stunted by freeze and drought,
		tallest was 4 inches.
4)	Roughleaf dogwood	1 plant/750 sq. ft. or 0.1 plant/100 sq. ft.
		Only 2 plants counted in plots, tallest was 6 inches.
5)	American hazelnut	No plants germinated during the whole growing season,
		predation of seed over winter in all 3 reps.
6)	Arrowwood	No plants germinated during the whole growing season in
		all three reps.

Direct Seeding Study Evaluation							
Species:							
	Actual Plant Cou	nts for Replicat	ions				
American Plum							
10/12/2007	Rep 1	Rep 2		Rep 3		Ave. for the	
Date/Plot	500 sq ft	500 sq ft	Height ''	500 sq ft	Height "	3 Reps	
Control Plot	7 plants	29 plants	Ave. 14"	29 plants	Ave. 12 "	1 plant/23 sq. ft.	
	1 plant 71sq.'	1 plant/ 17 sq.'	Tallest 17 "	1 plant/ 17 sq.'	Tallest 19"	Ave. Ht 12.5 "	
Weed Pressure	Heavy Foxtail	light foxtail		light foxtail con of the	tained 13	Tallest 24 "	
				29 in one area o	f the plot		
Mowed Plot	13 plants	7 plants	Ave. 8 "	4 plants	Ave. 10	1 plant/62.5 sq.ft.	
	1 plant/ 38 sq.'	1 plant/ 71 sq.'	Tallest 16 "	1 plant/125 sq.'	Tallest 12"	Ave. Ht. 10 "	
	Heavy foxtail	light foxtail mo	derate clover	light foxtail moderate clover		Tallest 24 ''	
Sprayed Plot	62 plants	63 plants	Ave. 12"	34 plants	Ave. 12 "	1 plant/10 sq. ft.	
	1 plant/ 8 sq.'	1 plant/ 8sq.'	Tallest 16"	1plant/15 sq.'	Tallest 18"	Av. Ht. 15 "	
Grass control	Moderate Marestai	1 1 1		heavy clover		Tallest 40 ''	
					<u> </u>		
Species			1		1		
Aromatic Sumac			1		!		
10/12/2007					-		
Control Plot	No Plants observed	l heavy Foxtail P	ressure and mo	derate clover for	all three rep	28	
Mowed Plot	No Plants observed	l heavy Foxtail P	ressure and mo	derate clover for	all three rep	DS	
Sprayed Plot	17 plants	18 plants	Ave. 7 "	0 plants	None	1 plant/43 sq. ft.	
	1 plant/ 29 sq.	1 plant/28 sq.'	Tallest 10"	0 plants	None	Av. Ht. 5 "	

	Rep 1	Rep 2	ì	Rep 3		Ave. for the
	500 sq ft	500 sq ft	Height "	500 sq ft	Height "	3 Reps
Species			1			
Chokecherry						
10/12/2007			İ			
Control Plot	No Plants observed	l heavy foxtail p	ressure and mo	oderate clover fo	or all three rep	s.
Mowed Plot	No Plants observed	l heavy foxtail p	ressure and mo	oderate clover fo	or all three rep	s.
Sprayed Plot	0 plants	7 plants	Tallest 4 "	0 plants	None	1 plant/215 sq. ft.
	died from drought	1 plant/71 sq.'	effect by dro	ought		Ave. 3 "
						Tallest 4''
			1			
Species			1			
Roughleaf			1			
Dogwood						
10/12/2007						
Control Plot	No Plants observed	l heavy foxtail p	ressure and mo	oderate clover fo	or all three rep	s.
Mowed Plot	No Plants observed	l heavy foxtail p	ressure and mo	oderate clover fo	or all three rep	s.
Sprayed Plot	2 plants	0 plants		0 plants		1 Plant/750 sq. ft.
						Ave. 2 "
						Tallest 6 ''
Species						
Hazelnut	No plants germinat over winter	ed during the wl	hole growing s	eason, predation	n of seeds	
Arrowwood	No plants germinat	ed during the wl	hole growing s	season.		No Plants

Factors that had effect on first year growing season results.

- 1) Late freeze in April that effected the chokecherry species
- 2) Drought during the growing season from March to the end of October 2007 rainfall was 9 inches below normal for the study site.
- 3) Competition from the heavy grass pressure foxtail and broadleaf weeds, clover and mainly (*Conyza Canadensis*) marestail.
- 4) Marestail did not affect the American Plum in the plots sprayed for grass control, enough light was getting to the lower canopy for the development of the plum seedlings.

Again in 2007 the six woody species were direct seeded in the random split plots with three replications on September 5, 2007. The plots were seeded west of the 2006 plots using the same procedure in a prepared (disked) seedbed that had soybean residue. All species were seeded by hand using a cyclone seeder except for the American hazelnut and American plum seed that was evenly spread by hand. All plots were rolled to cover the seed for fall. A late fall application of Roundup (glyphosate) was applied to control winter annuals.

Study: MOPMC-T-0716-BF

Study Title: In-Field Weathering Effects on Biomass Yield and Biofuel Quality of Warm Season Grasses.

Study Leaders: Bruckerhoff, S., Douglas, J.

Introduction:

Dedicated energy crops grown for direct combustion or gasification to generate electricity; ethanol production for transportation fuel; or thermochemical conversion into other by products, require different biofuel quality (McLaughlin et al., 1996). For direct combustion or gasification, biofuel quality needs to have low concentration of alkali metals, especially potassium, low levels of total ash-forming materials, and higher calcium content to mitigate slagging and fouling of conventional boilers (Baxter et al., 1998, Miles et al., 1996). Conversely, for ethanol fermentation and thermochemical conversion by gasification, the biofuel quality must have low moisture, nitrogen, and ash content and a high concentration of lignocellulose in the biomass (McKendry, 2002).

Time and frequency of harvest play a major role in biofuel quality. Nitrogen and ash content of 'Alamo' switchgrass (Panicum virgatum L.), 'Highlander' eastern gamagrass (Tripsacum dactyloides [L.] L.) and caucasian bluestem (Bothriochloa baldhii [Retz.] S.T. Blake) were reduced in a single fall harvest regime compared to a two harvest regime, which consisted of an early summer and early fall harvest in Mississippi (Grabowski et al., 2004). Deferring native grass species for two years in Canada produced the greatest biomass yield with highest cellulosic content for ethanol production as compared to three and four year deferral period, which seem to favor livestock forage for beef cattle (Jefferson et al., 1999). Exposing standing biomass to natural field weathering has shown to be advantageous for achieving biofuel quality. Delaying switchgrass harvest from the fall to spring in Pennsylvania reduced moisture and mineral content to a level suitable for all biofuel conversion systems (Alder et al., 2006). However, these authors reported lower yields due to loss of leaves and panicles during the winter months, and difficulty during the harvesting operations because of the brittleness of the biomass and lodging from snowfall. In contrast, Boe and Lee (2005) found little to no difference in biomass yield in the northern Great Plains from fall to spring, but clipping height was adjusted from 10 cm in the fall to near ground level in the spring, resulting in higher yields due to heavier stems near the base of the plant.

Problem:

There is limited information available on biofuel quality and biomass yield of warm season grasses in relation to effects of weathering in the field throughout the winter.

Objective:

Cultivars/selections of warm season grasses will be compared in replicated plots to evaluate the effects of fall, winter and early spring harvest on dry matter production and biofuel quality.

Cooperators:

Steve Bruckerhoff, USDA-NRCS, Elsberry, Missouri Bill Kuenstler, USDA-NRCS, Fort Worth, Texas Jerry Lemunyon, USDA-NRCS, Fort worth, Texas Jim Kiniry, USDA-ARS, Temple, Texas Brian Baldwin, Mississippi State University, Starkville, Mississippi Ray Cragar, USDA-NRCS, Knox City, Texas Joel Douglas, USDA-NRCS, Fort Worth, Texas

Procedure:

Randomized split plot design with four replications.

Species/cultivars or selections (see list below) from appropriate sources will be planted by seed or propagules (*miscanthus*) into plots containing seven rows with 36" spacing and 20 feet long. Interior five rows will be clipped for biomass and grab samples will be taken for fuel quality estimates. Outside rows will be border rows. Plots will be planted April/May 2007. Irrigation will be applied as needed during the establishment year only. Timing and rate of fertilizer amendments will be determined at a later date.

Species/cultivars to be tested	Seeding rate(seeds/row ft#/ac
'Cave-in-rock' switchgrass	50 PLS/row ft - 2.80#PLS/ac
'Kanlow' switchgrass	50 PLS/row ft - 2.80#PLS/ac
'Rumsey' Indiangrass	50 PLS/row ft - 4.16#PLS/ac
9083274 big bluestem (MOPMC)	50 PLS/row ft - 5.03#PLS/ac
'Alamo' switchgrass	50 PLS/row ft - 2.8#PLS/ac
Miscanthus (sterile)	3 ft spacing within and between rows

Supporting evaluations

Stems or plants per row foot at end of first growing season

Harvest Treatments

A 14' 6" swath will be clipped from the center of each plot beginning at seed maturity (2008-2010) and every six weeks until spring (2009-2011).

Harvest Dates (approximate)
September 15
November 1
December 15
February 1
March 15

Biomass production and biofuel quality of N, lignin, ADF, NDF, ash (total) caloric value, Ca, Mg, S, P, K and gross energy will be determined at each harvest date.

This study is being replicated at four locations, Elsberry, Missouri; Knox City, Texas; Temple, Texas and Starkville, Mississippi.

Discussion:

2007

The study site was fallowed in 2006 using roundup and tillage. The site was then tilled and rolled in 2007 prior to establishment of the plots April 19, 2007. Preemergant chemical weed control was used after planting using atrazine on the swithgrass, plateau on the big bluestem and Indiangrass, and prowl on the miscanthus. The study was planted using a randomized split plot design with four replications. (See table #1.) The swithgrass plots encountered herbicide damage and were replanted June 4, 2007. During establishment, the plots were irrigated, weeded, and roto-tilled as needed. The plots were evaluated for first year establishment, stem counts, and a visual rating of percent stand. (See table #2.) Any segments of a row missing plants will be filled in with live plants the spring of 2008 to ensure all rows being complete.

Individual Plot

Treatment 1	36 inch spacing	
Treatment 2	Ť	
Treatment 3		
Treatment 4		21
Treatment 5		Ft

20 Ft Border Row

20 Ft Border Row

Pl	<u>ot #</u>		
1	'Cave-In-Rock'	Switchgrass	4
2	9083274	Big bluestem	5
3	'Alamo'	Switchgrass	6

4		Miscanthus
5	'Kanlow'	Switchgrass
6	'Rumsey'	Indiangrass

MOPMC-T-0716					Table #2
Biofuel Study	Establishn	nent Evaluat	ion	11/19/2007	
Cave-in-Rock switchgrass Stm ct	Rep #1	Rep#2	Rep#3	Rep #4	Ave
(Stems per row foot) row #	2 67	34	63	72	59
row #	3 48	55	61	65	57.25
row #	4 47	72	59	63	60.25
row #	5 66	93	71	51	70.25
row #	6 49	46	76	53	56
Cave-in-Rock switchgrass % Std	Rep #1	Rep#2	Rep#3	Rep #4	Ave
row #	2 100	85	92	95	93
row #	3 96	100	99	85	95
row #	4 95	100	100	95	97.5
row #	5 98	100	97	95	97.5
row #	6 99	100	95	80	93.5
Alamo switchgrass Stm ct	Rep #1	Rep#2	Rep#3	Rep #4	Ave
(Stems per row foot) row #	2 88	99	106	120	103.25
row #	3 65	58	105	104	83
row #	4 167	118	121	88	123.5
row #	5 103	64	106	61	83.5
row #	6 118	85	98	114	103.75
Alamo switchgrass % Std	Rep #1	Rep#2	Rep#3	Rep #4	Ave
row #	2 100	100	100	100	100
row #	3 100	100	100	100	100
row #	4 100	100	100	100	100
row #	5 100	100	100	95	98.75
row #	6 100	100	100	100	100
Kanlow switchgrass Stm ct	Rep #1	Rep #2	Rep #3	Rep #4	
(Stems per row foot) row #	2 91	80	77	88	84
row #	3 81	39	42	42	51
row #	4 95	19	48	78	60
row #	5 63	48	111	85	/6./5
row #	6 67	11	64	61	67.25
	D a m #4	Dam #0	Dam #0	Den #4	
Kanlow switchgrass % Std	Rep #1	Кер #2	кер #3	Rep #4	00.5
row #	2 100	95	99	100	98.5
row #	3 100	100	97	95	90 75
row #	4 100 5 100	100	99	100	39.10 09.7E
row #	6 00	100	100	90	90.10 07 75
row #	u 90	100	30	30	91.10
Pumsov Indianarass Stm of	Don #1	Pon #2	Pon #2	Pon #4	
(Stems per row foot) row #	2 83	120	08	05	101 25
	2 00 3 85	R1	90 84	106	89
10W #	d 107	72	116	76	92 75
row #	5 66	70	85	0 0⊿	81
row #	6 76	82	124	72	88 75
100 #			۲ <i>∟</i> -۲	10	55.70
			1	1	

Runsey Indiangrass % Std		Rep #1	Rep #2	Rep #3	Rep #4	
	row #2	100	100	100	100	100
	row #3	96	100	100	100	90
	row #4	100	100	100	95	08 75
	row #5	100	100	96	100	90.75
	10W #5	100	100	30	100	39
	row #o	100	100	100	100	100
Big Bluestem Stm ct		Ren #1	Ren #2	Ren #3	Ren #4	
(Stems per row foot)	row #2	21	22	23	10	21.25
	row #2	1/	12	18	18	15 5
	10w #J	14	12	10	10	10.0
	10W #4	10	1	07	24	20
	row #5		20	21	33	26
	row #o	19	13	25	22	19.75
		- ""	- "0	- "0	- ""	_
Big Bluestem % Std		Rep #1	Rep #2	Rep #3	Rep #4	
	row #2	96	80	95	75	86.5
	row #3	92	70	98	65	81.25
	row #4	90	60	93	90	83.25
	row #5	97	100	94	85	94
	row #6	98	30	98	90	79
Miscanthus Stm ct		Rep #1	Rep #2	Rep #3	Rep #4	
(Stems per Plant)	row #2	6	40	18	30	23.5
	row #3	5	28	12	20	16.25
	row #4	18	26	19	19	20.5
	row #5	43	25	34	23	31.25
	row #6	30	26	25	45	31.5
						1
Miscanthus % Std		Rep #1	Rep #2	Rep #3	Rep #4	1
	row #2	100	100	30	100	82.5
	row #3	100	100	20	100	80
	row #4	100	100	19	80	74.75
	row #5	80	100	23	40	60.75
	row #6	100	100	45	100	86.25

Study: MOPMC-P-0717-PA, WL

Study Title: Evaluation and Release of a Shade Tolerant Little Bluestem for Silvopasture

Study Leaders: Van Sambeek, J., Wallace, D., Garrett, G., Bruckerhoff, S.

Introduction:

Little bluestem is one of the most widely distributed native grasses in North America. It will grow on a wide variety of soils but is very well adapted to well-drained, medium to dry, infertile soils. The plant has excellent drought and fair shade tolerance, and fair to poor flood tolerance. Little bluestem is considered less valuable for grazing due to its tussock growth form and perceived lower forage quality. In Missouri, it is often found growing as an understory plant in open woodlands, savannas, and transitional forested areas.

The Elsberry PMC initiated a little bluestem collection from the Ozark region (Missouri, Arkansas, and Oklahoma) in 1996 to develop an improved little bluestem that would be better adapted to this region. The collection effort resulted in an assembly of 130 little bluestem accessions.

Problem:

There is limited information available on species selected for forage to be primarily used for savannas and silvopasture systems throughout Missouri.

Objective:

An existing PMC little bluestem collection displays an amazing range of morphological and phonological characteristics – color, plant height, blade width, stem erectness, rust resistance, spring emergence, anthesis, etc. This collection has never been evaluated for shade attributes that might be valuable in silvopasture systems or with savanna restoration efforts. This study will select and evaluate for forage production in relation to shade tolerance.

Cooperators:

The USDA Natural Resources Conservation Service, Plant Materials Center and the University of Missouri, Columbia, Horticulture and Agroforestry Research Center, HARC.

Procedure:

A randomized complete block design with three replications, five shade levels: full sun, 30% shade, 55% shade with sunflecks, and 80% shade will be used for the study.

Twenty-eight accessions of little bluestem are selected based on original collection site descriptions that indicated collections were associated with woodland conditions. These collections came from previous work (Study 29I141G) at the Elsberry PMC and will be assembled in 2008 at the University of Missouri Agroforestry Center (HARC). Additional varieties being evaluated are the little bluestem Northern region assembly and the bluestem Southern region assembly. Plants will be started in the greenhouse and planted in replicated plots the spring 2008.

Forty-five pots for each accession will be randomized within each treatment. Above ground dry weight, leaf weight, and forage quality (acid detergent fiber, neutral detergent fiber, crude protein) will be collected for each accession.

Discussion:

2007

Collection reports from PMC study 29I141G were reviewed and 28 accessions were selected based on woodland site descriptions (Table #1). Two selections under evaluation at the PMC and two established cultivars will also be included.

Study MO	PMC-P-0717	Table #1		
PMC Acce	essions Sele	cted For Shade T	olerance Evaluation	L
		Location	Description	
Accn No.	State Code	Soil Type	County	Site
9078847	IA-1	Gara	Clarke	Woods Edge (WE)
9078848	IA-2	Gara	Clarke	WE
9078850	IA-4	Monona	Woodbury	WE
9078852	IA-6	Hamburg	W. Pottawattamie	Woods (W)
9078858	IA-12	Haydon	Dallas	Open Woods (OW)
9078961	IA-27	Cresco	Scott	OW
9078873	IL-1	Rodman	Kane	W
9078875	IL-3	Miami Casco	Kane	OW
9078876	IL-4	Rozetta	Pike	WE
9078880	IL-8	Ashbury	Will	Ditch
9078882	IL-10	Hamburg	Henderson	W
9078887	IL-15	Bloomfield	Mason	OW
9078888	IL-16	Ava	Marion	W/G Lode
9078891	IL-19	SOGN	Calhoun	Glade
9078894	MO-1	Winnegan	Chariton	W
9078895	MO-3		Cape	
9078898	MO-6	Keswick	Putnum	OW
9078899	MO-7	Midco	Ripley	OW
9078902	MO-10	Captina	Carter	WE
9078905	MO-13	Clarksville	Butler	W (Row)
9078915	MO-23		Perry	
9078917	MO-25	Gorin	Monroe	OW
9078921	MO-29	Goss	Montgomery	
9078956	MO-64	-	Shannon	Glade
9078959	MO-67	-	Wayne	OW
9078960	MO-68	Keswick	Pike	WE
9083271			Composite Selection	(South Region)
9083317			Composite Selection	(North Region)
421553	'Aldous'	Kansas Flinthills		
421552	'Cimarron'	Eastern Kansas a	nd Oklahoma	

Study: MOPMC-T-0718-WE, WL

Study Title: Evaluation of the Flood Tolerance of Planted Oak Seedlings Derived from Different Seed Origins

Study Leader: Coggshall, M., University of Missouri Cordsiemon, R., Elsberry Plant Materials Center

Introduction:

Many plant species exhibit wide amplitude in terms of their capacity to occupy a range of positions along a hydrologic gradient. The presence or absence of a particular tree species in a bottomland hardwood forest is primarily dependent upon soil moisture gradients, stream deposition patterns, and flooding season and duration (Hodges, 1997). In the Midwestern U.S., there is considerable interest in restoring native ecosystems on former bottomland sites that are now being devoted to marginal agriculture (Kruse and Groninger, 2003). Oak seedlings are a major component of these restoration efforts

Problem:

Little is known about whole tree responses to a variety of flooding treatments for different oak seedlings used in WRP and other wetland programs.

Objective:

The specific objectives of the proposed research are: 1) to determine the effect of controlled flooding treatments, including inundation, on the survival and regrowth of planted oak seedlings in the Flood Laboratory located at the NRCS Plant Materials Center (PMC) in Elsberry, Missouri; 2) to contrast these flooding results with additional flood evaluations using planted seedlings in the Flood Tolerance Laboratory (FTL) at the Horticulture and Agroforestry Research Center (HARC) in New Franklin, Missouri; and 3) initiate a potted seedling study as a means to further expand our knowledge base of how plants respond to controlled flooding events.

Procedure:

A total of 1,746 test trees were established as 1-0 bare root seedlings in the PMC Flood Laboratory (Field #4) in May 2007. Spacing was 4' x 10'. The entire test planting covers 1.60 acres. A total of seven different oak species were planted including: bur oak (12 seedlots), chinkapin oak (2 seedlots), pin oak (6 seedlots), northern red oak (9 seedlots), shumard oak (8 seedlots), swamp white oak (27 seedlots) and white oak (25 seedlots). Each seedlot contains 18 seedlings which were established in a series of 18 single tree plots. All seedlots planted in the PMC planting were also common to the FTL planting at HARC. The experimental design for this planting is a randomized complete block design with 18 replications. Replication boundaries were defined based on slope position within the Elsberry Flood Laboratory to the extent possible.

Discussion:

2007

Collection of first year seedling survival, height and diameter data in the PMC planting will be made in the winter of 2007/2008. Flooding treatments will coincide with the natural flooding for calendar year 2007 of the Mississippi River, based upon flood stage data from the nearest river gauging station to the Elsberry planting site. Survival data will be collected immediately following the end of the first flooding period and re-growth potential. Flooding will be assessed as a function of shoot growth in the year following. This data will be contrasted with results obtained from the flood treatments that are planned in the HARC FTL, which will be initiated following the completion of the first growth flush in the spring 2008.

Study: MOPMS-T-0719-CR/RI07-016

Study Title: Critical Area Roadside Vegetation Establishment

Study Leader: Kaiser, J., Plant Materials Specialist

Introduction:

This study will be installed in Carter County, Missouri. The plant materials evaluation process will be conducted by the USDA NRCS, Elsberry Plant Materials Program, the Big Spring RC&D Program, and assistance from Missouri Department of Transportation (MODOT). Evaluation of plant materials species data will be collected in the fall and spring to analyze plant performance over time of the study. Results will be provided to MODOT and within NRCS for technology transfer for products.

Problem Statement:

Lack of permanent vegetation on roadside excavated slopes along Missouri State Highway 60 in southern Missouri has left large areas of the right-of-way unprotected from soil erosion. There is erosion occurring on large areas of slope that range from slight to severe. The silt from this erosion is leaving deposition in the drainage systems and moving it off site to areas that are within the national scenic river watershed.

This proposal will test methods to establish permanent vegetation in these areas and control the erosion.

The soils from a representative area have been tested to have very low pH (4.3) along with very low phosphorus (P) and medium to high for Potassium (K) content. The slopes are steep (2.0:1) which will not allow conventional farm equipment to be used for seedbed preparation and seeding.

With the pH so low, any nutrients applied such as N, P and K will not be available to the plants. Raising the pH to a range of 5.5 to 6.5 is critical for grasses to survive and flourish.

This means that ground limestone, hydrated lime, or pelletized hydrated lime must be applied to the slopes. The ground limestone is least expensive, but must be applied 4-6 months before planting to allow enough time for acid buffering in addition to the lime. Temporary mulch (about 1-1.5 ton/acre) will be placed after the liming operation. The temporary mulch will begin to decay, and within four-six months be ready to seed using a hydroseeder/mulcher.

Hydrated lime and pelletized hydrated lime can be a substitute to be placed at time of planting; and the buffering effect is almost immediate.

Objective:

The objective of this study is to test an establishment technique for permanent vegetation on critical area sites of constructed right-of-ways to control soil erosion. **Procedure:**

Randomized split plot complete block design with three replications. The length of the slope 80 feet (average) by 90 feet full plot width (45 foot split).

SITE 1 S=Standard MODOT Fertility and Lime

Erosion Control Techniques-consist of 90 feet full plots of the following:
Fiber/Mulch-90 feet full plot
Blanket – 90 feet full plot
Treatments Seeding Mixtures-45 feet split plots
1-MODOT Warm Season Mix
2-NRCS Critical Area Warm Season Mix

Split plots based on comparing MODOT warm season mix to NRCS Critical Area Warm season mix with 80 PLS/sq. ft. See attachment 1 for the listing of MODOT specifications and NRCS species and rates for the seeding mixture treatments.

All plots will be hydro seeded with the seeding mixes listed in amendment 1.

The 90 feet wide full plots will compare fiber mulch to blanket material, with three replications

Total six full plots; and 12 split plots for the 540 feet width by 80 feet length of slope = approx. 1 acre for treatment site 1.

June 6, 2006 Site #1 – Standard Fertility and Lime Treatment 1 – Seeding Mixtures A-MODOT Warm Season Mix B-Critical Area Warm Season Mix

Split pl	lots —										
45'	45'	45'	45'	45'	45'	45'	45'	45'	45'	45'	45'
MODOT Warm Mix	Critical Area Warm Mix	Critical Area Warm Mix	MODOT Warm Mix	Critical Area Warm Mix	MODOT Warm Mix	Critical Area Warm Mix	MODOT Warm Mix	MODOT Warm Mix	Critical Area Warm Mix	Critical area Warm Mix	MODOT Warm Mix
Fiber	mulch	Blar	nket	Fiber	mulch	Blan	ket	Fiber	mulch	Bla	nket
9	<u>ا</u> "		90'		90 ⁷	<u> </u>	<u>, "</u>		90'		90'
Full Plo	ot —										

MODOT Standard Fertilizer: Lime Applied to All of Site 1

90' Full Plots Either Fiber Mulch/Stick Plus or Blanket Material

45' Split Plots – Treatment A-MODOT Warm Season Mix Treatment B – Critical Area Warm Season Mix

Approximate Site Area: $540 \text{ ft } x \ 80 \text{ ft} = 43,200 \text{ sq. ft.}$ Approximate 1 acre in size <u>SITE 2 R=Recommended Soil Test Fertility and Lime</u> <u>Erosion Control Techniques-consist of 90 feet full plots of the following;</u> <u>Fiber/Mulch-90 feet full plot</u> <u>Blanket – 90 feet full plot</u> <u>Treatments Seeding Mixtures-45 feet Split plots</u> 1-MODOT Warm Season Mix 2-NRCS Critical Area Warm Season Mix

Split plots based on comparing MODOT warm season mix to NRCS Critical Area Warm season mix with 80 PLS/sq. ft. See attachment 1 for MODOT specifications and NRCS Critical Area species listing of species and rates for the seeding mixture treatments.

All plots will be hydro seeded with the seeding mixes listed in amendment 1.

The 90 feet wide full plots will compare fiber mulch to blanket material, with three replications.

Total 6 full plots and 12 split plots is the 540 feet width by 80 feet length of slope = approx. 1 acre for treatment site 1.

Site #2 – Recommended Fertility and Lime Treatment 2 – Mulches A-Fiber Mulch/Stick Plus B-Blanket Material

Split p	lots —										
45'	45'	45'	45'	45'	45'	45'	45'	45'	45'	45'	45'
Critical Area warm Mix	MODOT Warm Mix	Critical Area Warm Mix	MODOT Warm Mix	MODOT Warm Mix	Critical Area Warm Mix	MODOT Warm Mix	Critical Area Warm Mix	Critical Area Warm Mix	MODOT Warm Mix	Critical area Warm Mix	MODOT Warm Mix
Fiber	mulch	Blai	ıket 90'	Fiber	mulch	Bla	nket 00' -	Blan	ket 90' -	Fiber	' mulch 90'
)			\square)
Full Plo	ot —										

Recommended fertility and lime according to soils test all Site 2

- 45' Split Plots Either Critical Area Warm Season Mix or MODOT Warm Season Mix
- 90' Full Plots Treatment A Fiber Mulch/Stick Plus Treatment B – Blanket Materials

Approximate Site Area: 540 ft x 80 ft = 43,200 sq. ft.Approximate 1 acre in size **SITE 3-The Cool Season Mix**

Erosion Control Techniques-consist of 90 feet full plots of the following; Fiber/Mulch-90 feet full plot Blanket – 90 feet full plot <u>Treatments Fertilizer 45 feet split plots</u> S=Standard MODOT fertility R=Recommended fertility and lime from soil test.

See attachment 1 for the listing of MODOT cool season mix species and rates for the seeding mixture used on Site 3.

All plots will be hydro seeded with the seeding mixes listed in amendment 1.

The 90 feet wide full plots will compare fiber mulch to blanket material, with three replications

Total six full plots; and 12 split plots for the 540 width by 80 feet length of slope = approx. 1 acre for treatment site 1.

June 8, 2006 Site #3 – Cool Season Mix Treatment 1 – Fertility and Lime A-Standard MODOT B-Recommended Fertility and Lime Test

Treatment 2 – Mulch A-Fiber Mulch/Stick Plus B-Blanket Material

Split p	lots —										
45'	45'	45'	45'	45'	45'	45'	45'	45'	45'	45'	45'
l Test	·	-	l Test	-	l Test	l Test	-	l Test		l Test	r
Recommended Soil	Standard MODOT	Standard MODOT	Recommended Soil	Standard MODOT	Recommended Soil	Recommended Soil	Standard MODOT	Recommended Soil	Standard MODOT	Recommended Soil	Standard MODOT
Fiber	mulch	Fiber	Mulch	Bla	nket	Blan	ket	Fiber I	Mulch	Bla	anket
9(ر 		90 ⁷		, <u>"</u>	<u> </u>	<u>, o</u>		90 ⁷		901
ull Plo	ot —										

MODOT Cool Season Species Mix Applied to All of Site 3

45 ft. Split Plots – Treatment 1 – Fertility and Lime A – Standard MODOT B- Recommended Fertility: Lime Soil Test

90 ft Full Plots – Treatment 2 – Mulch A – Fiber Mulch/Stick Plus B – Blanket Material

Approximate Site: Area 540 ft. x 80 ft = 43,200 sq. ft. Approximately 1 acre in size <u>Amendment 1</u> Contains the species in the mixtures for site 1, 2 and 3 along with the seeding rates.

Site 1 and 2		Site 1 and 2	Site 3			
A-MODOT		B-NRCS Critical Area	Warm	MODOT Cool Season		
		Season Mixture Species	;	Mixture		
Indiangrass	8	Indiangrass	11.7	Tall fescue	80	
Big bluestem	4	Switchgrass	7.2	Annual ryegrass	10	
Little bluestem	6	Little bluestem	9.60	Perennial ryegrass	5	
Sideoats grama	4	Broomsedge	2.25	White clover	5	
Switchgrass	2	Tall dropseed	2.28	Oats	10	
Virginia or	2	Canada wildrye	10			
Canada wildrye						
Tall dropseed	0.5	Annual lespedeza	11.22			
Purple prairie	0.5	Oats	20			
clover						
Annual ryegrass	10					
Perennial ryegrass	5					
Red fescue	10					
Redtop	0.5					
Partridge pea	2					
White clover	5					
Grayheaded	0.25					
coneflower						
Black-eyed Susan	0.25					
Oats	20					

Discussion:

2007

Establishment Techniques were completed in May 2007.

Size of each three sites is approximately one acre for a total of three acres.

MODOT shaped the slope and applied hydrated lime and fertilizer rates at the time of hydro seeding according to there standard and the soil test data.

Seed was obtained according to the species and rates listed on Amendment 1. Each species mix was hydro seeded on site.

MODOT provided fiber mulch and blankets on treatment sites 1, 2 and 3, and will provide labor and material for application according to their standards for fiber blankets.

MODOT provided the seed from their specifications for the warm season mix and cool season mix for use in the treatments for the three sites.

Each plot size is 90 feet wide by average length of slope 80 feet, with three replications for a total of 540 feet for the approximate 1 acre size per site

Three sites were applied according to the experimental design.

All hydro seeded sites and treatments were completed May 2007.

FIRST YEAR RESULTS FROM 2007 Summary of Seeding Mixtures and Establishment Techniques At MODOT Sites 1, 2, and 3

Site 1 - Utilization of Fiber Mulch, Standard Fertility Recommendations and MODOT Warm Season Mixture

White clover, switchgrass, perennial rye, little bluestem and Indiangrass (refer to table 1) ranked highest in frequency of occurrence of any species in the MODOT seeding mixture with fiber mulch and a MODOT standard fertility recommendation. White clover had the highest frequency of occurrence (2.9), but the increase was not significantly greater than switchgrass or perennial rye (2.3 and 1.9). The low occurrence of cool season grasses (annual rye, oats, red fescue, redtop and Virginia wildrye) on this site may be due to the planting date. Cool season grasses and small grains are typically planted for optimal germination in the spring from March 1-April 15 and acceptable to May 15, these seedings were completed in mid-May. Warmer soil temperatures encountered in May probably contributed to the lack thereof or poor germination of cool season grasses and small grains and being able to develop an adequate root system before the summer period.

The low occurrence of partridge pea was somewhat surprising. Partridge pea is considered a pioneer species on disturbed sites, occurring frequently on the sites with low vegetative competition. Perhaps early germinating perennial grasses may have prevented partridge pea from occurring more frequently. The lack of or low occurrence of forb species may be due to seed dormancy. Natural stratification of the seed over fall and winter may provide the mechanism to break seed dormancy and increase occurrence of these species in subsequent years.

Site 1 – Utilization of Fiber Mulch, Standard Fertility and NRCS Critical Area Species Mixture

Switchgrass, little bluestem and Indiangrass (refer to table 2) were the main species in the NRCS critical area seeding mixture that occurred most frequently on this site with fiber mulch and a MODOT standard fertility recommendation. Switchgrass and little bluestem had a significantly greater occurrence than the other species in the mixture. The low occurrence of the Canada wildrye and oats is probably due to later than recommended planting date for cool season grasses

in Missouri. It is interesting to note that Canada wildrye did persist on these dry and coarse soil conditions during the summer months. The annual lespedeza did not express itself the first year; however, hard seeded legumes species such as annual lespedeza may remain dormant until next year due to dormancy imposed by seed appendages. It is anticipated that mechanically scarifying the seed will enhance germination resulting in a higher frequency of occurrence. Furthermore, it is anticipated that seed germination may be improved through natural weathering of the seed coat during fall and winter months. A greater degree of occurrence of the species is expected in subsequent years.

The lack of occurrence of broomsedge bluestem may be an anomaly due to the close resemblance of seedlings of little bluestem at the early developmental stage of the grasses. Misidentification of the two grasses would not be uncommon at the time the data was collected. Perhaps identification of the two bluestems will be easier to determine in subsequent years.

Site 1 – Utilization of Erosion Blanket, Standard Fertility and MODOT Warm Season Critical Area Seeding Mixture

Warm season native grasses were the dominating species in the mixture with switchgrass, little bluestem and Indiangrass (refer to table 3) among the most frequently occurring of all species seeded with an erosion control blanket and MODOT standard fertility. The same trend specie occurrence was also evident in the MODOT and NRCS mixtures, standard fertility and fiber mulch plantings. Low occurrence or lack thereof of annual and perennial cool season grasses, and warm season forbs and legumes can be explained by a mid-May planting date that is not conducive for cool season grass establishment, seed dormancy in grasses, forbs and legumes, and possible vegetative competition from early establishing perennial grasses. It is interesting to note that the cool season species (e.g. rye, white clover, and oats) were much less frequent using erosion blanket compared to the fiber mulch. These species could have germinated but the blanket may have trapped excess heat at the soil surface during the summer that desiccated the species due to limited moisture and drying of the soil during the summer.

Site 1 Utilization of Erosion Blanket, Standard Fertility and NRCS Warm Season Critical Area Seeding Mixture

Switchgrass, little bluestem and indiangrass (refer to table 4) were the most frequently occurring species in the NRCS mixture with the blanket protection and standard fertility. Switchgrass had a significantly higher frequency of occurrence than the other species in the mixture. A similar trend in species occurrence and frequency was encountered in the fiber mulch planting. Low occurrence or lack thereof of annual and perennial cool and warm season grasses, and warm season forbs and legumes is related to planting date and seed dormancy in grasses, forbs and legumes that restricted seed germination, and seedling mortality enforced by stressful environment beneath the erosion control blanket.

MOPMS-T-0719-CR/RI07-016 Tables 1 and 2: 3 and 4 Statistics from Site 1

MoDOT	Table 1			Table 2		
Standard						
Fertility						
<u> </u>	ΜοDOT	Fiber Mulch		NRCS	Fiber Mulch	
	Species	Means		Species	Means	
Site 1	White clover	2,9167	A*	Switchgrass	4 6667	A*
	Switchgrass	2.5107	AR	I ittle bluestem	3 6667	Δ
	Perennial rve	1 9167	ABC	Indiangrass	1 0833	R
	Little Bluestem	1.2500	BCD	Canada wildrve	0 3333	B
	Indiangrass	1.2500	BCD		0.5555	B
	Annual rye	0 5833	CD	Tall dropseed	0.1667	B
	Sideoats grama	0.5833	CD	Annual lespedeza	0.1007	B
	Partridge nea	0.3033	CD	Broomsedge	0	B
	Big bluestem	0.5555	D	Broomsedge	0	D
	Oats	0.1667	ם			
	Purple prairie clover	0.0833	ם			
	Black-eved Susan	0.0055	ם			
	Gravheaded coneflower	0	מ			
	Red fescue	0	מ			
	Red rescue	0	ם			
	Tall dropseed	0	ם			
	Virginia wildrye/Cuivre River	0	ם			
	virginia whorye/Curvie Kiver	0	D			
*Moor	k within column followed by the same	letters are not a	ignificant	t difference test at D <(0.05	
Ivical	is within column followed by the same	letters are not s	agiintean		1.05	
MoDot	Table 3			Table 4		
Standard						
Fertility	ΜοDOT	Blanket		NRCS	Blanket	
rerunty	Species	Means		Species	Means	
Site 1	Switchgrass	4 666	7 4*	Switchgrass	5 000	0 4*
Site I	L ittle bluestem	3 333	0 AB	I ittle bluestem	3 250	0 B
	Indiangrass	2 500	0 B	Indiangrass	1.500	
	Big bluestem	0.416	7 C		1.500	7 C
	Partridge pea	0.416	7 C	Canada wildrve	0.166	7 C
	Virginia wildrye Cuivre River	0.410	30	Annual lespedeza	0.100	
	Perennial rye	0.555	30	Broomsedge		
	Annual rye	0.005		Tall dropseed		
	Black aved Susan			Tan diopseed		
	Gravbaadad conaflower					
	Onte					
	Durple Drairie clover					
	Pad fascua					
	Padton					
	Sidoosts grama					
	Tall dropsood					
	White clover					
*\/	within column followed by the same	lattara ara nati	u vignificant	t difference test at D	0.05	
riviear	is wrunn column followed by the same	ieners are not s	aginnean	α unification lest at $P < 0$.03	

Site 2 Fiber Mulch Similar results to Site 1-The fertility levels for species development at this stage have not been expressed at this time.

Recommended Soil Test MODOT Warm Season Mixture

Perennial rye and little bluestem and/or broomsedge (refer to table 5) have the highest frequency of occurrence of any species in the MODOT warm seeding mixture with fiber mulch and with the recommended fertility levels from the soil test. Perennial rye had the highest frequency of occurrence (4.25) but the increase was not significantly greater than little bluestem (2.2). The cool season species were similar to Site 1; except for the perennial rye. The other cool season species, forbs and legumes did not increase in frequency of occurrence with the increase fertility levels during the initial growing season; however this can be related to other issues and not because of fertility.

Site 2 Fiber Mulch

Recommended Soil Test NRCS Critical Area Mixture

Switchgrass, little bluestem and Indiangrass were (refer to table 6) the main species in the NRCS critical area seeding mixture that occurred most frequently on this site with fiber mulch for the recommended soil test. The highest frequency was switchgrass with a mean of 4.5. All other warm season species did express occurrence in the mixture.

The cool season specie, Canada wildrye (0.4) occurred in the mixture with the fiber mulch. The warm season legume, annual lespedeza, did not occur in the sampling. This could be contributed by hard seed if no scarification of seed occurred before planting.

Site 2 Blanket

Recommended Soil Test MODOT Warm Season Mixture

Little bluestem (4.7) and switchgrass (4.7) has the highest frequency of occurrence (refer to table 7) for the warm season species in the MODOT mixture.

The cool season species, especially the perennial rye, was much less frequent in the blanket (0.5) verse in the fiber mulch (4.25). The species may have germinated but the blanket could have trapped heat at the surface during the summer that desiccated the species with limited moisture and drying of the soils during the summer. The legume specie of partridge pea was not prevalent within the mixture. The other legumes did not occur in the sampling.

Site 2 Blanket

Recommended Soil Test NRCS Critical Area Mixture

Switchgrass has the highest frequency of occurrence (4.5) [refer to table 8], comparable to the standard soil test. The other warm season specie little bluestem/broomsedge (2.8) was more frequent than the Indiangrass or other warm season species. Similar to the fiber mulch, the blanket had the same mean (0.4) for the cool season specie Canada wildrye (0.4) as did occur in the mix. The warm season legume, annual lespedeza, did not occur in the sampling. This could be contributed by hard seed if no scarification of seed occurred before planting.

Results of frequency of species were similar to the standard soil test verse the recommended soil test.

Recommen	nded					
Soil Test	TABLE 5			TABLE 6		
	MoDOT	Fiber Mulch		NRCS	Fiber Mulch	
	Species	Means		Species	Means	
Site 2	Perennial rye	4.2500	A*	Switchgrass	4.5000	A*
	Little bluestem	2.2500	AB	Little bluestem	2.8333	В
	Switchgrass	1.5833	В	Indiangrass	1.2500	С
	White clover	0.9167	В	Canada wildrye	0.4167	С
	Indiangrass	0.5833	В	Tall dropseed	0.3333	С
	Partridge pea	0.5833	В	Annual lespedeza	0	С
	Purple prairie clover	0.2500	В	Broomsedge	0	С
	Sideoats grama	0.1667	В	Oats	0	С
	Annual rye	0.0833	В			
	Big bluestem	0	В			
	Black-eyed Susan	0	В			
	Grayheaded coneflower	0	В			
	Oats	0	В			
	Red Fescue	0	В			
	Redtop	0	В			
	Tall dropseed	0	В			
	Virginia wildrye/Cuivre River	0	В			
*Mea	ns within column followed by the	same letters are	not si	ignificant difference test	at P <0.05	

MOPMS-T-0719-CR/RI07-016 Tables 5 and 6 Statistics results for Site 2

MOPMS-T-0719-CR/RI07-016 Tables 7 and 8

Recomme	nded					
Soil Test	TABLE 7			TABLE 8		
	MoDOT	Blanket		NRCS	Blanket	
	Species	Means		Species	Means	
Site 2	Little bluestem	4.6667	A*	Switchgrass	4.5000	A*
	Switchgrass	4.6667	А	Little bluestem	2.8333	В
	Indiangrass	1.3333	В	Indiangrass	1.2500	С
	Perennial rye	0.5833	В	Canada wildrye	0.4167	С
	Big bluestem	0.2500	В	Tall dropseed	0.3333	С
	Redtop	0.2500	В	Annual lespedeza	0	С
	Partridge	0.1667	В	Broomsedge	0	С
	Sideoats grama	0.0833	В	Oats	0	С
	Tall dropseed	0.0833	В			
	Annual rye	0	В			
	Black-eyed susan	0	В			
	Grayheaded coneflower	0	В			
	Oats	0	В			
	Purple prairie clover	0	В			
	Red Fescue	0	В			
	Virginia wildrye Cuivre River	0	В			
	White clover	0	В			
*Mea	ns within column followed by the	same letters are	not s	ignificant difference test	at P <0.05	

Site 3 – Cool Season Mixture, Erosion Blanket and Standard MODOT Fertility and Soil Test Recommendation

Perennial rye, tall fescue and white clover were the primary species referred to in tables 9 and 10 and occurred most frequently in the mixture when planted with the erosion control blanket. Perennial rye (9.3) and the tall fescue (8.3) were found to have a high occurrence. Soil fertility treatment had limited effect on the overall frequency of occurrence of species in the mixture (4.4 for MODOT standard fertility versus 4.8 for recommended soil test); however, this is the first year of the seeding. This mixture contained only three perennial species having a much higher seeding rate than used in Site 3 (tall fescue 80#/acre). See amendment 1 that contains the seeding rates/acre. The tall fescue appears to be better adapted for the cool season species with the blanket material than other cool season species in Site 1 and Site 2. The perennial rye was seeded at the same rate as with the warm season mixtures in Site 1 and 2

Site 3 – Cool Season Mixture, Fiber Mulch and Standard MODOT Fertility and Soil Test Recommendation

The same trend in species occurrence was found in the fiber mulch as compared to the erosion control blanket (refer to tables 11 and 12). Tall fescue provided the highest frequency of occurrence. It is interesting to note that frequency of occurrence of cool season species in the fiber mulch (1.3) was considerably less than the frequency reported for the same species planted with the erosion control blanket (4.6). Onsite visual appearance had better erosion control with blanket versus fiber mulch. The better erosion control may have enhanced species development of perennial rye, tall fescue and white clover.

Cool Season	Mix						
	TABLE 9				TABLE 10		
		Standard				Recommen	ded
	MoDOT	Fertility			MoDOT	Soil Test	
	Species	Means			Species	Means	
Site 3	Perennial rye	9.3333	A*	Site 3	Perennial rye	14.833	A*
Blanket	Tall fescue	8.3333	А		Tall fescue	5.6667	В
	White clover	4.1667	AB		White clover	3.0000	С
	Oats	0.0833	В		Annual rye	0	D
	Annual rye	0	В		Oats	0	D
*Means	within column foll	owed by the san	ne lette	ers are not sig	nificant difference test	at P <0.05	
Cool Season	Mix						
	TABLE 11				TABLE 12		
		Standard				Recommen	ded
	MoDOT	Fertility			MoDOT	Soil Test	
	Species	Means			Species	Means	
Site 3	Tall fescue	1.3333	A*	Site 3	Tall fescue	0.7500	A*
Fiber Mulch	Perennial rye	0.8333	AB		Perennial rye	0.0833	А
	White clover	0.3333	AB		White clover	0.0833	А
	Annual rye	0	В		Annual rye	0	А
	Oats	0	В		Oats	0	А
*Means	within column foll	owed by the sar	ne lett	ers are not sig	nificant difference test	at P <0.05	

Tables 9	and 10.	11	and	12	Statistics	results	for	Site	3
Tables J	anu iv,		anu .		Statistics	I Courto	101	SILC .	J

References:

- 1) The tables above contain the attachment from the spreadsheet for the statistical ranking of the species.
- 2) The amendment 1 contains the species and seeding rates that were used in Sites 1, 2 and 3.
- 3) The soil test for the sites was collected by MODOT, results of the recommended soil nutrients applied is part of MODOT records, along with there standard fertility recommendations.

Herbaceous and Woody Seed and Plant Production at the Elsberry PMC 2007

The plant and seed inventory at the Elsberry PMC is used for field plantings, special plantings, demonstration plantings, research studies and commercial release.

Name	Seed Harvested in 2006	Seed Harvested in 2007
Herbaceous Species	Bulk (Pounds)	Bulk (Pounds)
'Rountree' big bluestem	326.3	286.6
Andropogon gerardii	Foundation	Foundation
Refuge Big Bluestem (9078832)	193.2	0
Andropogon gerardii	SG1	Plot Destroyed
'Rumsey' Indiangrass	111	109.5
Sorghastrum nutans	Foundation	Foundation
'Pete' eastern gamagrass	0	0
Tripsicum dactyloides L.	Foundation	Plot Destroyed
'Cave-In-Rock' switchgrass	0	923.8
Panicum virgatum	Foundation	Foundation
'OH-370' big bluestem	221.4	0
Andropogon gerardii	SG1	SG1
<u>'OZ-70' big bluestem</u>	219.2	278.5
Andropogon gerardii	SG1	SG1
'Alexander' tick trefoil	9.3	0
Desmodium canadense	SG1	Harvested – but poor seed
Flood tolerant switchgrass	0	0
Panicum virgatum	SG1	Did Not Harvest -Reselecting
Low growing switchgrass	140.3	5.7
Panicum virgatum	SG1	SG1
'Bobwhite' soybean	0	0
Glycine spp.	Foundation	Did Not Harvest
Cuivre River Virginia Wildrye	737.8	1062.8
Elymus virginicus	SG1	SG1
Iowa Ecotype Plantings	130	12
(10 Species; 28 Plots)	Total	Total
Missouri Ecotype Plantings	209	917.9
(15 Species; 17 Plots)	Total	Total

Name:	Seed Harvested & Plant Inventory as of December 2006		Seed Harvested & Plant Inventory as of December 2007	
Woody Species	Plants	Seed Bulk (Pounds)	Plants	Seed Bulk (Pounds)
<u>'Union' tulip tree</u> Liriodendron tulipifera	0	0	0	0
American hazelnut (9083247) (Composite) Corylus americana	200	16.6	50	2.6
<u>American plum</u> (9083241) (Composite) Prunus Americana	300	101.6	250	0 Frost Burn
<u>Arrowwood</u> (9068590) (Iowa Selection) Viburnum dentatum	180	1.8	0	0
<u>'Redstone' Cornelian cherry</u> (9055585) Cornus mas	20	0	0	0
<u>Chokecherry (</u> 9083259) Prunus virginicus	0	1.2	0	0 Frost Burn
Missouri Covey False Indigo Bush Amorpha fruticosa (9083248)	230	9.8	100	0.7
Iowa Covey False Indigo Bush Amorpha fruticosa (9083249)	640	0.5	100	1.5
Illinois Covey False Indigo Bush Amorpha fruticosa (9083250)	490	0	100	7.7

Herbaceous and Woody Seed and Plant Production – continued

2007 Elsberry PMC Plant Releases

Sun Harvest Germplasm Hazelnut Northern Iowa Germplasm Horsemint Central Iowa Germplasm Horsemint

Selected Class Release Source Identified Release Source Identified Release

UNITED STATES DEPARMENT OF AGRICULTURE

NATURAL RESOURCES CONSERVATION SERVICE ELSBERRY, MISSOURI

NOTICE OF RELEASE OF SUN HARVEST GERMPLASM AMERICAN HAZELNUT

The Natural Resources Conservation Service (NRCS), U.S. Department of Agriculture announces the release of a selected class of American Hazelnut (*Corylus americana*, Walt.) for the Elsberry, Missouri Plant Materials Center (PMC) three state service area consisting of Iowa, Missouri, and Illinois.

As a selected class release, this plant will be referred to as Sun Harvest Germplasm. It has been assigned the NRCS accession number 9083247. This alternative release procedure is justified because there is a lack of available selections of American hazelnut, specifically for the three state service area.

Collection Site Information: Sun Harvest Germplasm (9083247) is comprised of six different collections from Missouri and Illinois counties. Four collections originated from the Illinois counties from Coles (9057188 and 9068528), Adams (9068562), and Iroquois (9057168) and two collections from Chariton County, Missouri (9068573 and 9068574).

Description: The following plant description was prepared using Nesom (2006) and Steyermark (1963). American hazelnut, also known as American filbert, is a native shrub or very small tree that develops a broad, round canopy. It can reach 12-15 feet tall and 15 feet wide, becoming arching and spread by suckering with age, forming colonial thickets. Main stems are straight with spreading and ascending branches. Light brown twigs are slender with numerous stiff, red-glandular hairs. The middle interior canopy will remain dense as new vertical suckers develop. Leaves form on bristly stalks and the bristles are somewhat granular. Leaves are deciduous, alternate, and broadly oval with a heart-shaped or rounded base. They can grow 2-5 inches long and up to 5 inches wide. Flowers are separate with male and female flowers on the same tree. Male flowers are pendulous catkins, 2 -5 inches long, and in clusters of two or three near branch tips, appear in the fall, but do not open until the following spring. Female flowers are enclosed in gray-brown, scaly buds that have red stigmas and styles, which protrude at the tip. The fruit is

light brown, 1-2 cm long, slightly wider than long, acorn-like nut enclosed in large, coarsely toothed leaf-like bracts American hazelnut typically flower from March - May with fruit ripening from July – September. It commonly occurs in dry or moist thickets, woodlands, and borders of woodlands, in valleys and uplands. American hazelnut is very adaptable to moist or dry, reasonably well-drained soils of variable pH and soil quality and occurs in plant hardiness zones 4 to 9 in full sun to partial shade.

Method of Selection: The six collections that make up Sun Harvest Germplasm were selected from a collection of 14 accessions of American hazelnut originating in Illinois and Missouri. They were evaluated on the basis of growth habit, canopy spread, plant height, nut production, and insect/disease resistance at the Elsberry Plant Materials Center from 1995-1998. Sun Harvest Germplasm was selected on its growth habit and growth potential for increased nut production.

Ecological Considerations and Evaluation: Sun Harvest Germplasm American hazelnut is a selection of naturally occurring germplasm and does not differ significantly in rate of spread and vigor from naturally occurring hazelnut (*Corylus americana*). Sun Harvest Germplasm American hazelnut was "O.K. to release" based on criteria in the "Worksheet for Conducting an Environmental Evaluation of NCRS Plant Releases".

Anticipated Conservation Use: Sun Harvest Germplasm American hazelnut provides excellent food and wildlife habitat, and can be used as a windbreak. It can also be incorporated in an agroforestry system due to its nut production value.

Anticipated Area of Adaptation: Although there has been no formal field plantings to test the full range of adaptation, it is anticipated that Sun Harvest Germplasm American hazelnut perform adequately throughout the three state service area of the Elsberry Plant Materials Center (Iowa, Illinois, and Missouri). All collections that make up Sun Harvest Germplasm American hazelnut were collected from northern and central Illinois and central Missouri.

Availability of Plant Materials: G1 material is being produced in limited supply by the Elsberry Plant Materials Center. For information contact USDA, NRCS, Elsberry Plant Materials Center, 2803 N. Hwy 79, Elsberry, Missouri 63343 (573 898-2012).

References:

Steyermark, J. 1963. Flora of Missouri. Iowa State University Press. Ames, IA. pp. 523-525

Nesom, G. 2006. Plant Guide American Hazelnut. USDA NRCS National Plant Data Center and the Biota of North America Program. Formerly BONAP, North Carolina Botanical Garden, University of North Carolina, Chapel Hill, North Carolina.

Prepared by: Ron Cordsiemon, USDA-NRCS Plant Materials Center, 2803 North Hwy. 79, Elsberry, Missouri 63343.

Signatures for release of: Sun Harvest Germplasm American Hazelnut (Corylus americana, Walt.)

Roger A. Hansen State Conservationist United States Department of Agriculture Natural Resources Conservation Service Columbia, Missouri

William J. Gradle

State Conservationist United States Department of Agriculture Natural Resources Conservation Service Champaign, Illinois

Kichard Van 7

Richard W. Van Klaveren State Conservationist United States Department of Agriculture Natural Resources Conservation Service Des Moines, Iowa

Diane Gelburd, Ph.D. Director **Ecological Sciences Division** United States Department of Agriculture Natural Resources Conservation Service Washington, D.C.

27/07

7/2/07 Date

Date

Release Documentation for Accession 9083247 Sun Harvest Germplasm American Hazelnut, USDA-NRCS, Elsberry Plant Materials Center - 2007

* * * * *

NRCS field office collections of hazelnut were assembled at the PMC between 1989 and 1992. (Table 1). Thirty-six accessions collected from Illinois and Missouri were stratified and placed in the greenhouse in 1993. Twenty-one accessions germinated and were grown out in two-gallon containers. These accessions were placed in a randomized complete block with eight replications. The planting was established May 3 and 4, 1994, in Field #11E on the PMC. The summer of 1994 had several significant dry spells and considerable time was spent irrigating. Many plants were stressed, lost leaves, and resprouted. Four plants in the evaluation block failed

to survive in 1994. The assembly was evaluated from 1995-1998. The following accessions were selected in 1997 as a nut production composite: 9057168 (Iroquois County, Illinois), 9057188 and 9068528 (Coles County, Illinois), 9068562 (Adams County, Illinois), and 9068573 and 9068574 both from Chariton County, Missouri. The selection criteria for these accessions are as follows: growth habit (form), canopy spread, plant height and fruit production and resistance to insect and disease.

A comparison of growth habit of 14 accessions is presented in Table 2. There were differences in growth form between accessions but the magnitude was relatively small among the accessions. When averaged over years, trees that comprised the Sun Harvest germplasm composite were uniform in growth habit, which was defined as being near rounded in its plant architecture. Canopy spread and plant height of the 14 accessions is presented in Tables 3 and 4. Accessions selected for Sun Harvest germplasm were similar in height but varied in canopy spread.

Emphasis on fruit production and resistance to insects and disease was an important characteristic during the evaluation process. Fruit production and disease and insect resistance were similar in all accessions, but the ones that made up the Sun Harvest germplasm rated average to fair nut production with satisfactory disease and insect resistance. (Table 5)

Based on the evaluation criteria, the six accessions were selected for a polycross nursery in 2003 and assigned accession 9083247 and will be recognize as Sun Harvest germplasm.

Accession Number	State or Origin	City or County
9057081	Illinois	Coles
9057082	Illinois	Coles
9057087	Illinois	Coles
9057119	Illinois	Whiteside
9057120	Illinois	Carroll
9057167	Illinois	Will
9057168	Illinois	Iroquois
9057169	Illinois	Iroquois
9057184	Illinois	Clark
9057186	Illinois	Coles
9057188	Illinois	Coles
9057192	Illinois	Montgomery
9057195	Illinois	Morgan
9068505	Illinois	Coles
9068507	Illinois	Cumberland
9068508	Illinois	Mercer
9068509	Illinois	Ogle
9068510	Illinois	Iroquois
9068511	Illinois	Effingham
9068512	Illinois	Clay

Table 1. Field Collections of American Hazelnut and Origin

Accession Number	State or Origin	City or County
9068513	Illinois	Pike
9068525	Illinois	Cumberland
9068526	Illinois	Coles
9068527	Illinois	Moultrie
9068528	Illinois	Coles
9068529	Illinois	Vermilion
9068562	Illinois	Adams
9068565	Illinois	Jo Daviess
9068585	Illinois	DeWitt
9068586	Illinois	Vermilion
9068570	Missouri	Lincoln
9068573	Missouri	Chariton
9068574	Missouri	Chariton
9068575	Illinois	Johnson

 Table 1. Field Collections of American Hazelnut and Origin continued

Table 2. Comparison of growth habit of 14 accessions of American hazelnut (*Corylus americana*, Walt.) from 1995-1998 and four year average at the USDA-NCRS Elsberry, Missouri Plant Materials Center.

Accession ^{1/}	1995	1996	1997	1998	Average
9057188	$4.25^{2/}$ ab ^{3/}	4.25 abcd	3.75 abc	4.25 abcd	4.13 abc
9068528	4.13 ab	4.38 abcd	4.38 abc	4.25 abcd	4.28 abc
9068562	3.75 b	4.88 abc	5.25 abc	3.75 bcd	4.41 abc
9068573	4.50 ab	4.25 abcd	5.00 abc	4.13 abcd	4.47 abc
9068574	6.00 a	5.25 ab	5.63 a	5.00 abc	5.47 a
9057168	5.75 ab	5.36 ab	5.75 a	5.25 ab	5.47 a
9068507	4.13 ab	3.25 cd	3.38 c	3.88 abcd	3.28 c
9068558	5.13 ab	3.88 bcd	3.50 bc	2.88 d	3.84 bc
9068586	4.75 ab	3.50 cd	4.00 abc	3.13 cd	3.84 bc
9068565	5.13 ab	4.75 abcd	5.13 abc	3.88 abcd	4.72 abc
9068525	5.63 ab	4.88 abc	4.88 abc	4.63 abcd	5.00 ab
9068508	5.63 ab	5.50 a	5.50 ab	5.00 abc	5.41 ab
9057169	5.75 ab	4.75 abcd	5.38 abc	5.88 a	5.44 a
9068510	6.13a	5.00 abc	5.50 ab	5.25 ab	5.47 a
Mean	5.05	4.56	4.79	4.37	4.66

1/ accessions highlighted were selected for polycross nursery and assigned accession number 9083247.

2/ numerical rating where 1 = rounded growth habit and 9 = least rounded growth habit.

3/ means in year and average columns followed by the same letter are not significantly different at the P<0.05.

Accession ^{1/}	1995	1996	1997	1998	
	measured in feet				
9057188	$1.09^{2/} a^{3/}$	2.80 a	4.26 a	6.05 a	
9068573	0.83 ab	2.41 ab	3.88 ab	5.66 ab	
9068562	0.68 abcd	2.16 abc	3.70 abc	5.04 abc	
9057168	0.71 abc	2.04 abc	3.01 bcd	4.48 bcde	
9068574	0.78 ab	1.99 abc	3.35 abcd	3.70 cdef	
9068528	0.43 abcd	1.88 bcd	2.66 cd	3.56 cdef	
9068508	0.65 abcd	2.21 abc	3.08 bcd	4.94 abcd	
9057169	0.58 abcd	2.06 abc	4.26 a	4.31 bcde	
9068525	0.34 abcd	1.70 bcd	3.00 bcd	3.95 cdef	
9068510	0.61 abcd	1.78 bcd	3.23 abcd	3.83 cdef	
9068558	0.56 abcd	1.65 bcd	2.55 cde	3.45 def	
9068565	0.58 abcd	1.54 cd	2.26 de	3.28 ef	
9068586	0.50 abcd	1.79 bcd	2.61 cd	3.21 ef	
9068507	0.43 abcd	1.08 d	1.41 e	2.45 f	
Mean	0.63	1.94	3.09	4.14	

Table 3. Comparison of canopy spread of 14 accessions of American hazelnut (*Corylus americana*, Walt.) from 1995-1998 at the USDA-NRCS Elsberry, Missouri Plant Materials Center.

1/ accessions highlighted were selected for polycross nursery and assigned accession number 9083247.

2/ canopy spread was determined by measuring (in feet) the average length of the canopy of plants in each replication

3/ means in columns followed by the same letter are not significantly different at the P<0.05.

Table 4. Comparison of plant height of 14 accessions of American hazelnut (*Corylus americana*, Walt.) from 1995-1998 at the USDA-NRCS Elsberry, Missouri Plant Materials Center.

Accession ^{1/}	1995	1996	1997	1998	
	measured in feet				
9057188	$2.55^{2/}$ ab ^{3/}	3.35 a	4.20 a	5.46 a	
9068573	2.74 a	3.06 ab	3.71 abc	5.34 a	
9068562	2.06 abc	2.66 abc	3.83 ab	4.94 ab	
9068574	1.76 cde	2.65 abc	3.31 abcd	4.45 abc	
9057168	1.51 cde	2.26 bcd	3.18 abcd	4.21 abcd	
9068528	1.21 de	2.08 cd	3.10 abcd	3.75 bcde	
9057169	1.55 cde	2.35 bcd	3.49 abcd	4.40 abc	
9068510	1.43 cde	2.11 cd	3.21 abcd	4.29 abcd	
9068508	1.86 bcd	2.43 abcd	3.38 abcd	4.00 abcd	
9068525	1.09 e	1.75 cd	2.86 bcde	3.77 bcde	
9068558	1.59 cde	1.81 cd	2.56 cde	3.68 bcde	
9068586	1.41 cde	2.18 bcd	2.96 bcde	3.17 cde	

	1005	1006	1007	1000
Accession	1995	1990	1997	1998
	measured in feet			
9068565	1.95 bcd	2.01 cd	2.46 de	2.84 de
9068507	1.30 de	1.63 d	1.76 e	2.33 e
Mean	1.72	2.31	3.14	4.05

Table 4. Comparison of plant height of 14 accessions - continued

1/ accessions highlighted were selected for polycross nursery and assigned accession number 9083247.

2/ plant height was determined by measuring (in feet) the average height of the plants in each replication

 3^{-1} means in columns followed by the same letter are not significantly different at the P<0.05.

Table 5. Comparison of fruit production and disease and insect resistance of 14 accessions of American hazelnut (*Corylus americana*, Walt.) for 1997 at the USDA-NRCS Elsberry, Missouri Plant Materials Center.

Accession ^{1/}	Fruit ^{2/}	Accession ^{1/}	Disease and
	Production		Insect ^{3/}
9068528	5.74^{4/} a	9057188	$3.00^{4/}$ a
9057188	5.75 a	9068573	3.18 a
9068573	6.31 a	9068528	3.19 a
9068562	6.44 a	9057168	3.25 a
9057168	7.19 a	9068562	3.31 a
9068574	8.19 a	9068574	3.68 a
9068565	5.75 a	9068525	3.11 a
9068508	5.75 a	9057169	3.13 a
9068586	5.97 a	9068558	3.28 a
9068558	6.27 a	9068586	3.35 a
9057169	6.45 a	9068508	3.37 a
9068525	7.52 a	9068510	3.50 a
9068510	7.68 a	9068565	4.06 a
9068507	7.88 a	9068507	4.08 a
Mean	6.64	Mean	3.39

1/ accessions highlighted were selected for polycross nursery and assigned accession number 9083247.

2/ fruit production numerical rating where 1 = heavy producer; 3= good producer;

5 = average producer; 7 = fair producer; 9 = poor producer and 10 = none

3/ disease and insect damage where 1 = no damage; 3 = slight damage; 5 moderate damage; 7 = severe damage.

4/ means in fruit production and disease and insect column followed by the same letters are not significantly different at P<0.05.
UNITED STATES DEPARMENT OF AGRICULTURE

NATURAL RESOURCES CONSERVATION SERVICE ELSBERRY, MISSOURI

THE IOWA ECOTYPE PROJECT AT THE UNIVERSITY OF NORTHERN IOWA CEDAR FALLS, IOWA

TALLGRASS PRAIRIE CENTER CEDAR FALLS, IOWA

And IOWA CROP IMPROVEMENT ASSOCIATION AMES, IOWA

NOTICE OF RELEASE OF NORTHERN IOWA GERMPLASM HORSEMINT (WILD BERGAMOT) SOURCE IDENTIFIED CLASS OF NATURAL GERMPLASM

The Natural Resources Conservation Service (NRCS), U.S. Department of Agriculture and the Iowa Ecotype Project at the University of Northern Iowa (UNI), Tallgrass Prairie Center (TPC), and the Iowa Crop Improvement Association (ICIA) announce the release of a source identified ecotype of horsemint (also referred to as wild bergamot), (*Monarda fistulosa*, L.) collected from the northern one-third counties in Iowa.

As a source identified release, this plant will be referred to as Northern Iowa Germplasm horsemint to document its origin. Northern Iowa Germplasm horsemint was released as a source identified type of certified seed (natural track). It has been assigned the NRCS accession number 9068678.

This alternative release procedure is justified because there are no commercial sources of horsemint collected from native sites throughout this specific region. Propagation material of specific ecotypes is needed for roadside plantings and prairie restoration and enhancement. The potential for immediate use is high.

Collection Site Information: Collections were taken from native prairie remnants within the northern section of three predetermined tiers of counties located in Iowa.

Ecotype Description: Plant description was prepared using Christiansen and Muller (1999) and Runkel and Roosa (1989). Horsemint is a native, perennial forb that grows 2 to 4 feet tall. The stems are square, branched or unbranched, and smooth. The leaves are opposite and oval with rounded bases and long tapering sharp tips; approximately 2 ½ by 1 inch. Margins are sharply toothed Both leaves and stems have a minty aroma and a gray-green color that may be tinged with purple. Flowers are a corolla purple, tubular, 5/8 inch long, two-lipped, the upper covering the stamens and style and the lower recurved. Calyx is narrow with marginal teeth, ¼ inch long,

flowering from early July to early August. Four nutlets, 1/32 inch in diameter are enclosed by the persistent calyx. Fruiting begins in late July.

Environmental Impact Assessment: Northern Iowa Germplasm horsemint is a collection of naturally occurring germplasm that has been unaltered. Northern Iowa Germplasm horsemint did not meet the assessment of a plant which could become invasive based on guidelines adopted by the NRCS Plant Materials Program (USDA-NRCS, 2000).

Anticipated Conservation Use: The potential uses of Northern Iowa Germplasm horsemint include roadside and wildlife plantings, prairie creations and restorations, landscaping, and for increasing plant diversity in prairie communities.

Potential Area of Adaptation: Horsemint is common on upland to moist prairies. It can also be found on dry prairies, Loess Hills prairies, along roadsides and in open woods (Christiansen and Muller, 1999). Horsemint is found throughout the eastern and northeastern United States and the central tallgrass prairie.

Availability of Plant Materials: G1 material is being produced in limited supply by the Elsberry Plant Materials Center and the University of Northern Iowa, Tallgrass Prairie Center. For information contact USDA, NRCS, Plant Materials Center, 2803 N. Hwy 79, Elsberry, Missouri 63343 (573 898-2012) or the TPC at the University of Northern Iowa, Cedar Falls, IA 50613-0294 (319 273-3005).

References:

Christiansen, P., and M. Muller. 1999. An Illustration Guide to Iowa Prairie Plants. Univ.of Iowa, Iowa City, Iowa. p.122.

Runkel, S. T. and D. M. Roosa. 1989. Wildflowers of the Tallgrass Prairie: The Upper Midwest. Iowa State University Press, Ames IA. pp. 216, 217.

USDA-Natural Resources Conservation Service. 2000. National Plant Materials Manual, Title 190 (Washington, D.C., U.S. Government Printing Office, June, 2000).

Prepared by:

Ron Cordsiemon, USDA NRCS Plant Materials Center, 2803 North Hwy 79, Elsberry, Missouri, 63343.

Signatures for release of:

Northern Iowa Germplasm horsemint (Monarda fistulosa L.)

Roger A. Hansen State Conservationist United States Department of Agriculture Natural Resources Conservation Service Columbia, Missouri

Kichard Van & lover

Richard Van Klaveren State Conservationist United States Department of Agriculture Natural Resources Conservation Service Des Mojnes, Iowa

mo

Daryl D. Smith Director, TPC University of Northern Iowa Cedar Falls, Iowa

silmere Aubke Eileen Wuebker

Assistant Director Iowa Crop Improvement Association Ames, Iowa

Diana Gelburd, Ph.D, Director, **Ecological Sciences Division** United States Department of Agriculture Natural Resources Conservation Service Washington, D.C.

8/13/07 Date

8/14/07 Date

8/14/07

Date

8/27/07

<u>9/11/2007</u> Date

* * * * *

UNITED STATES DEPARMENT OF AGRICULTURE

NATURAL RESOURCES CONSERVATION SERVICE ELSBERRY, MISSOURI

THE IOWA ECOTYPE PROJECT AT THE UNIVERSITY OF NORTHERN IOWA CEDAR FALLS, IOWA

TALLGRASS PRAIRIE CENTER CEDAR FALLS, IOWA

And IOWA CROP IMPROVEMENT ASSOCIATION AMES, IOWA

NOTICE OF RELEASE OF CENTRAL IOWA GERMPLASM HORSEMINT (WILD BERGAMOT) SOURCE IDENTIFIED CLASS OF NATURAL GERMPLASM

The Natural Resources Conservation Service (NRCS), U.S. Department of Agriculture and the Iowa Ecotype Project at the University of Northern Iowa (UNI), Tallgrass Prairie Center (TPC), and the Iowa Crop Improvement Association (ICIA) announce the release of a source identified ecotype of horsemint (also referred to as wild bergamot), (*Monarda fistulosa*, L.) collected from the central one-third counties in Iowa.

As a source identified release, this plant will be referred to as Central Iowa Germplasm horsemint to document its origin. Central Iowa Germplasm horsemint was released as a source identified type of certified seed (natural track). It has been assigned the NRCS accession number 9068678.

This alternative release procedure is justified because there are no commercial sources of horsemint collected from native sites throughout this specific region. Propagation material of specific ecotypes is needed for roadside plantings and prairie restoration and enhancement. The potential for immediate use is high.

Collection Site Information: Collections were taken from native prairie remnants within the central section of three predetermined tiers of counties located in Iowa.

Ecotype Description: Plant description was prepared using Christiansen and Muller (1999) and Runkel and Roosa (1989). Horsemint is a native, perennial forb that grows 2 to 4 feet tall. The stems are square, branched or unbranched, and smooth. The leaves are opposite and oval with rounded bases and long tapering sharp tips; approximately 2 ½ by 1 inch. Margins are sharply toothed and both leaves and stems have a minty aroma and a gray-green color that may be tinged with purple. Flowers are a corolla purple, tubular, 5/8 inch long, two-lipped, the upper covering the stamens and style and the lower recurved. Calyx is narrow with marginal teeth, ¼ inch long,

flowering from early July to early August. Four nutlets, 1/32 inch in diameter are enclosed by the persistent calyx. Fruiting begins in late July.

Environmental Impact Assessment: Central Iowa Germplasm horsemint is a collection of naturally occurring germplasm that has been unaltered. Central Iowa Germplasm horsemint did not meet the assessment of a plant which could become invasive based on guidelines adopted by the NRCS Plant Materials Program (USDA-NRCS, 2000).

Anticipated Conservation Use: The potential uses of Central Iowa Germplasm horsemint include roadside and wildlife plantings, prairie creations and restorations, landscaping, and for increasing plant diversity in prairie communities.

Potential Area of Adaptation: Horsemint is common on upland to moist prairies. It can also be found on dry prairies, Loess Hills prairies, along roadsides and in open woods (Christiansen and Muller, 1999). Horsemint is found throughout the eastern and northeastern United States and the central tallgrass prairie.

Availability of Plant Materials: G1 material is being produced in limited supply by the Elsberry Plant Materials Center and the University of Northern Iowa, Tallgrass Prairie Center. For information contact USDA, NRCS, Plant Materials Center, 2803 N. Hwy 79, Elsberry, Missouri 63343 (573 898-2012) or the TPC at the University of Northern Iowa, Cedar Falls, IA 50613-0294 (319 273-3005).

References:

Christiansen, P., and M. Muller. 1999. An Illustration Guide to Iowa Prairie Plants. Univ.of Iowa, Iowa City, Iowa. p.122.

Runkel, S. T. and D. M. Roosa. 1989. Wildflowers of the Tallgrass Prairie: The Upper Midwest. Iowa State University Press, Ames IA. pp. 216, 217.

USDA-Natural Resources Conservation Service. 2000. National Plant Materials Manual, Title 190 (Washington, D.C., U.S. Government Printing Office, June, 2000).

Prepared by:

Ron Cordsiemon, USDA NRCS Plant Materials Center, 2803 North Hwy 79, Elsberry, Missouri, 63343.

Signatures for release of:

Central Iowa Germplasm horsemint (Monarda fistulosa L.)

Roger A. Hansen State Conservationist United States Department of Agriculture Natural Resources Conservation Service Columbia, Missouri

ichard Van

Richard Van Klaveren State Conservationist United States Department of Agriculture Natural Resources Conservation Service

Des Moines, Iowa mth

Daryl D. Smith Director, TPC University of Northern Iowa Cedar Falls, Iowa

in Aubk Eileen Wuebker

Assistant Director Iowa Crop Improvement Association Ames, Iowa

Diana Gelburd, Ph.D,

Director, **Ecological Sciences Division** United States Department of Agriculture Natural Resources Conservation Service Washington, D.C.

8/13/07 Date

8/14/07 Date

8/14/07 Date

27/0-Date

<u>7/11/2007</u> Date

* * * * *

Releases From Elsberry Plant Materials Center						
		By Year				
			Accession	Secondary	Type of	Year of
Scientific Name	Release Name	Common Name	Number	Agency(ies)	Release	Release
Corylus americana Walt.	Sun Harvest	American hazelnut	9083247		Ν	2007
Monarda fistulosa L.	Northern Iowa	wild bergamot	9068678	UNI, IARV, IAT, ICIA	Ν	2007
Monarda fistulosa L.	Central Iowa	wild bergamot	9068679	UNI, IARV, IAT, ICIA	N	2007
				,,,		
Andropogon gerardii Vitman.	Refuge	bia bluestem	9078832		N	2006
Echinacea pallida Nutt.	Central Iowa	pale purple coneflower	9068612	UNI, IARV, IAT, ICIA	N	2006
Prunus americana	Midwest Premium	American plum	9083241		Ν	2006
		•				
	Missouri Covey					
Amorpha fruticosa L	False Indigo Bush	false indigo bush	9083248		Ν	2005
	Iowa Covey False					
Amorpha fruticosa L	Indigo Bush	false indigo bush	9083249		N	2005
	Illinois Covey					
Amorpha fruticosa L	False Indigo Bush	false indigo bush	9083250		N	2005
Andropogon gerardii	OZ-70	big bluestem	9078831		N	2004
Desmodium spp.	Northern MO	showy tick trefoil	9079012	MDC	N	2004
Ratibida pinnata, barnh.	Northern MO	grayhead coneflower	9079060	MDC	N	2004
Schizachyrium scoparium (Michx.) Nash	Southern MO	little bluestem	9079006	MDC	N	2004
Dalea purpurea	Northern Iowa	purple prairie clover	9068608	UNI, IARV, IAT, ICIA	N	2003
Panicum virgatum L.	Central Iowa	switchgrass	9068706	UNI, IARV, IAT, ICIA	N	2003
Koeleria macrantha	Central Iowa	prairie Junegrass	9068621	UNI, IARV, IAT, ICIA	N	2003
Koeleria macrantha	Northern Iowa	prairie Junegrass	9068620	UNI, IARV, IAT, ICIA	N	2003
Monarda fistulosa L.	Southern Iowa	wild bergamot	9068680	UNI, IARV, IAT, ICIA	N	2003
Liatris aspera, Michx.	Southern Iowa	rough blazing star	9068686	UNI, IARV, IAT, ICIA	N	2003
Liatris aspera, Michx.	Central Iowa	rough blazing star	9068685	UNI, IARV, IAT, ICIA	IN N	2003
Liatris aspera, Micrix.	Northern Iowa	rough blazing star	9068684	UNI, IARV, IAT, ICIA	IN	2003
	Cuivre River	Virginia wildrve	9803169	MDC	N	2002
Aster novae-angliae I	Central Iowa	New England aster	9068682	UNI JARV JAT ICIA	N	2002
Aster novae-angliae L	Northern Iowa	New England aster	9068681	UNI, IARV, IAT, ICIA	N	2002
Aster novae-angliae L	Southern Iowa	New England aster	9068683	UNI, IARV, IAT, ICIA	N	2002
Echinacea pallida Nutt.	Northern Iowa	pale purple coneflower	9068611	UNI, IARV, IAT, ICIA	N	2002
Echinacea pallida Nutt.	Southern Iowa	pale purple coneflower	9068613	UNI, IARV, IAT, ICIA	N	2002
Sporobolus compositus var. com.	Southern Iowa	tall dropseed	9062315	UNI, IARV, IAT, ICIA	N	2002
Solidago rigida L.	Southern Iowa	rigid goldenrod	9068619	UNI, IARV, IAT, ICIA	Ν	2002
Solidago rigida L.	Central Iowa	rigid goldenrod	9068618	UNI, IARV, IAT, ICIA	Ν	2002
Coreopsis palmata	Northern MO	prairie coreopsis	9079028	MDC, NAS	N	2001
Coreopsis Palmuta Nutt.	Western MO	prairie coreopsis	9079029	MDC, NAS	Ν	2001
· · ·						
Sporobolus compositus var. comp.	Northern MO	tall dropseed	9079040	MDC, NAS	Ν	2001
Liatris pycnostachya, Michx.	Western MO	prairie blazing star	9079021	MDC, NAS	N	2001
Liatris pycnostachya, Michx	Northern MO	prairie blazing star	9079020	MDC, NAS	Ν	2001
Sporobolus compositus (Poir.) Merr.	Northern Iowa	tall dropseed	9062313	UNI, IARV, IAT, ICIA	N	2000
Andropogon gerardii	Northern Iowa	big bluestem	9068614	UNI,IARV,IAT,ICIA	Ν	2000
Liatris pycnostachya, Michx	Southern Iowa	prairie blazing star	9068628	UNI, IARV, IAT, ICIA	Ν	2000
Lespedeza capitata Michx.	Northern Iowa	roundhead lespedeza	9062284	UNI, IARV, IAT, ICIA	Ν	2000

		By Year				
			Accession	Secondary	Type of	Year of
Scientific Name	Release Name	Common Name	Number	Agency(ies)	Release	Release
Andropogon gerardii Vitman	Southern Iowa	big bluestem	9068616	UNI, IARV, IAT, ICIA	Ν	1999
Schizachyrium scoparium, Michx.	Northern Iowa	little bluestem	9062319	UNI, IARV, IAT, ICIA	N	1999
Eryngium yaccifolium Michx.	Southern Iowa	rattlesnake master	9068604	UNI, IARV, IAT, ICIA	N	1999
Eryngium yaccifolium Michx.	Central Iowa	rattlesnake master	9068603	UNI, IARV, IAT, ICIA	N	1999
Schizachyrium scoparium, Michx.	Southern Iowa	little bluestem	9962321	UNI, IARV, IAT, ICIA	Ν	1999
Liatris pycnostachya, Michx	Northern Iowa	prairie blazing star	9068626	UNI, IARV, IAT, ICIA	Ν	1999
Liatris pycnostachya, Michx	Central Iowa	prairie blazing star	9068627	UNI, IARV, IAT, ICIA	N	1999
Elymus virginicus L.	Northern MO	Virginia wildrye	9079044	UMC,MDC,MODOT	N	1999
Sorghastrum nutans (L) Nash.	Northern MO	Indiangrass	9079036	UMC,MDC,MODOT	N	1999
Andropogon gerardii Vitman	Northern MO	bia bluestem	9079000	UMC.MDC.MODOT	Ν	1999
Sorghastrum nutans (L) Nash.	Western MO	Indiangrass	9079037	UMC.MDC.MODOT	Ν	1999
Schizachvrium scoparium. Michx.	Northern MO	little bluestem	9079004	UMC.MDC.MODOT	Ν	1999
				, -,		
Andropogon gerardii Vitman	Central Iowa	big bluestem	9068615	UNI,IARV,IAT,ICIA	Ν	1998
Dalea purpurea	Central Iowa	purple prairie clover	9068609	UNI,IARV,IAT,ICIA	Ν	1998
Ervngium vuccifolium Michx.	Northern Iowa	rattlesnake master	9068602	UNI.IARV.IAT.ICIA	Ν	1998
Solidago rigida L.	Northern Iowa	rigid goldenrod	9068617	UNI.IARV.IAT.ICIA	Ν	1998
Sorghastrum nutans (L.) Nash.	Southern Iowa	Indiangrass	9062318	UNI.IARV.IAT.ICIA	Ν	1998
				- , , , , -		
Andropogon gerardii Vitman.	OH-370	bia bluestem	9062323	ARPMC	Ν	1997
Cornus drummondii C.A. Mever	Corinth	roughleaf dogwood	9055632		Ν	1997
Cornus drummondii C.A. Mever	Jefferson	roughleaf dogwood	9055650		Ν	1997
Cornus drummondii C.A. Mever	Tazewell	roughleaf dogwood	9055667		Ν	1997
Cornus drummondii C.A. Mever	Nicholson	roughleaf dogwood	9055594		N	1997
Desmodium canadense L	Alexander	showy tick trefoil	9057110		N	1997
Elymus canadensis L.	Southern Iowa	Canada wildrve	9062277	UNI.IARV.IAT.ICIA	N	1997
Heliopsis helianthoides (L.) Sweet	Southern Iowa	oxeve false sunflower	9068607	UNI.IARV.IAT.ICIA	N	1997
Lespedeza capitata Michx	Southern Iowa	roundhead lespedeza	9062283	UNI, JARV, JAT, ICIA	N	1997
Liriodendron tulipifera L	Union	tulip poplar	9055584		N	1997
Schizachvrium scoparium (Michx.) Nash	Central Iowa	little bluestem	9062320	UNI.IARV.IAT.ICIA	N	1997
Heliopsis helianthoides (L.) Sweet	Northern Iowa	oxeye false sunflower	9068605	UNI,IARV,IAT,ICIA	Ν	1996
Lespedeza capitata Michx.	Central Iowa	roundhead lespedeza	9062282	UNI, IARV. IAT. ICIA	N	1996
Sorghastrum nutans (L). Nash	Central Iowa	Indiangrass	9062317	UNI.IARV.IAT.ICIA	Ν	1996
Sorghastrum nutans (I), Nash	Northern Iowa	Indiangrass	9062316	UNI.IARV.IAT.ICIA	Ν	1996
Sporobolus compositus (Poir.) Merr.	Central Iowa	tall dropseed	9062314	UNI,IARV,IAT,ICIA	Ν	1996
		•				
Bouteloua curtipendula (Michx.) Torr.	Central Iowa	sideoats grama	9062279	UNI,IARV,IAT,ICIA	N	1995
Bouteloua curtipendula (Michx.) Torr.	Northern Iowa	sideoats grama	9062278	UNI.IARV.IAT.ICIA	Ν	1995
Bouteloua curtipendula (Michx.) Torr.	Southern Iowa	sideoats grama	9062280	UNI.IARV.IAT.ICIA	Ν	1995
Elvmus canadensis L.	Northern Iowa	Canada wildrve	9062275	UNI.IARV.IAT.ICIA	Ν	1995
Heliopsis helianthoides (L.) Sweet	Central Iowa	oxeve false sunflower	9068606	UNI.IARV.IAT.ICIA	Ν	1995
Panicum virgatum L. *	Shawnee	switchgrass	591824		N	1995
Cornus mas L.	Redstone	cornelian cherry dogwood	516476		1	1991
		, , ,				
Ulmus parvifolia Jacq.	Elsmo	lace bark elm	9004438		I	1990
Andropogon gerardii Vitman.	Rountree	big bluestem	474216	MOA	Ν	1983
Sorghastrum nutans (L.) Nash.	Rumsev	Indiangrass	315747	MOA	Ν	1983
Elaeagnus umbellata Thunb.	Elsberry	autumn olive	476986		I	1979
`						
Acer ginnala Maxim.	Flame	Amur maple	483442		I	1978
Lonicera maackii Maxim	Cling Red	Amur honeysuckle	483450		I	1978
	1					
	1		1			
	1					
			1			

		By Year				
			Accession	Secondary	Type of	Year of
Scientific Name	Release Name	Common Name	Number	Agency(ies)	Release	Release
Glycine sp. L **	Bobwhite	soybean	421822	MOPMC, ARS, MOA,	I	1975
Panicum virgatum L.	Cave-In-Rock	switchgrass	469228	MOA	Ν	1974
Bromus inermis Leyss.	Elsberry	smooth brome	469227	MOA	Nat.	1954
* Drimony Agencies, ADC, Agricultural Dec	anah Camilaa, NEAI		aarah Divisian		wt Materials	
Contor: IAA-lowe Agricultural Experiment S	tation of Amor: BAI	RD=Nebraska Agricultural Res	rearch Division		int materials	5
Center, IAA=IOwa Agricultural Experiment 3	lation at Ames, FAI		ich Flograffi			
** Primary Agency: MDC-Missouri Departm	ent of Conservation		1			
Thinary Agency. MDO=Missouri Departi						
N=native releases: collected within the USA	. occurring naturally	/ in the USA. Generally refers t	o a plant whic	h occurs naturally in a p	articular	
region, state ecosystem or habitat without d	irect or indirect hum	nan activity.		,		
Nat.=naturalized releases; collected from a	population within the	e USA, but were originally intro	duced to the	USA sometime in the pa	ist.	
I=introduced; means that the original collect	ion from which the I	release was made was not fror	n within the U	SA.		

Releases From Elsberry Plant Materials Center							
Alphabetically							
			Accession	Secondary	Type of	Year of	
Scientific Name	Release Name	Common Name	Number	Agency(ies)	Release	Release	
Acer ginnala Maxim.	Flame	Amur maple	483442		I	1978	
	Missouri Covey						
Amorpha fruticosa L	False Indigo Bush	false indigo bush	9083248		Ν	2005	
· · · · · · · · · · · · · · · · · · ·							
	Iowa Covey False						
Amorpha fruticosa L	Indigo Bush	false indigo bush	9083249		Ν	2005	
	Illinois Covey						
Amorpha fruticosa L	False Indigo Bush	false indigo bush	9083250		Ν	2005	
Andropogon gerardii L.	OZ-70	big bluestem	9078831			2004	
Andropogon gerardii Vitman.	Northern Iowa	big bluestem	9068614	UNI,IARV,IAT,ICIA	Ν	2000	
Andropogon gerardii Vitman.	Southern Iowa	big bluestem	9068616	UNI, IARV, IAT, ICIA	Ν	1999	
Andropogon gerardii Vitman.	Northern MO	big bluestem	9079000	UMC,MDC,MODOT	Ν	1999	
Andropogon gerardii Vitman.	Central Iowa	big bluestem	9068615	UNI,IARV,IAT,ICIA	Ν	1998	
Andropogon gerardii Vitman.	OH-370	big bluestem	9062323	ARPMC	Ν	1997	
Andropogon gerardii Vitman.	Rountree	big bluestem	474216	MOA	N	1983	
Andropogon gerardii Vitman.	Refuge	big bluestem	9078832		N	2006	
	0						
Aster novae-angliae L.	Central Iowa	New England Aster	9068682	UNI, IARV, IAT, ICIA	N	2002	
Aster novae-angliae L.	Northern Iowa	New England Aster	9068681	UNI, IARV, IAT, ICIA	Ν	2002	
Aster novae-angliae L.	Southern Iowa	New England Aster	9068683	UNI, IARV, IAT, ICIA	N	2002	
Bouteloua curtipendula (Michx.) Torr.	Central Iowa	sideoats grama	9062279	UNI,IARV,IAT,ICIA	Ν	1995	
Bouteloua curtipendula (Michx.) Torr.	Northern Iowa	sideoats grama	9062278	UNI,IARV,IAT,ICIA	Ν	1995	
Bouteloua curtipendula (Michx.) Torr.	Southern Iowa	sideoats grama	9062280	UNI,IARV,IAT,ICIA	Ν	1995	
Bromus inermis Leyss.	Elsberry	smooth brome	469227	MOA	Nat.	1954	
Coreopsis Palmata Nutt.	Northern MO	prairie coreopsis	9079028	MDC, NAS	N	2001	
Coreopsis Palmata Nutt.	Western MO	prairie coreopsis	9079029	MDC, NAS	Ν	2001	
Cornus drummondii C.A. Meyer	Corinth	roughleaf dogwood	9055632		Ν	1997	
Cornus drummondii C.A. Meyer	Jefferson	roughleaf dogwood	9055650		Ν	1997	
Cornus drummondii C.A. Meyer	Tazewell	roughleaf dogwood	9055667		N	1997	
Cornus drummondii C.A. Meyer	Nicholson	roughleaf dogwood	9055594		Ν	1997	
Cornus mas L.	Redstone	cornelian cherry dogwood	516476		I	1991	
Corylus, americana Walt.	Sun Harvest	American hazelnut	9083247		Ν	2007	
Dalea purpurea	Northern Iowa	purple prairie clover	9068608	UNI, IARV, IAT, ICIA	N	2003	
Dalea purpurea	Central Iowa	purple prairie clover	9068609	UNI.IARV.IAT.ICIA	N	1998	
		F F F					
Desmodium spp.	Northern MO	showy tick trefoil	9079012	MDC	N	2004	
Desmodium canadense L.	Alexander	showy tick trefoil	9057110		N	1997	
Echinacea pallida Nutt.	Northern Iowa	pale purple coneflower	9068611	UNI, IARV. IAT. ICIA	N	2002	
Echinacea pallida Nutt.	Southern Iowa	pale purple coneflower	9068613	UNI, IARV, IAT, ICIA	N	2002	
Echinacea pallida Nutt.	Central Iowa	pale purple coneflower	9068612	UNI, IARV. IAT. ICIA	N	2006	
			5000012				
Elaeagnus umbellata Thunb.	Elsberrv	autumn olive	476986		1	1979	
Elymus canadensis L.	Northern Iowa	Canada wildrve	9062275	UNI.IARV.IAT.ICIA	Ν	1995	
-				, ,,			

			Accession	Secondary	Type of	Year of
Scientific Name	Release Name	Common Name	Number	Agency(ies)	Release	Release
Elvmus virainicus L.	Cuivre River	Virginia wildrve	9803169	MDC	N	2002
	Northern MO	Virginia wildrye	9079044		N	1999
			0010011			1000
Eryngium yuccifolium Michx	Southern Iowa	rattlesnake master	9068604	LINI JARV JAT ICIA	N	1000
Enyngium yuccifolium Michy	Control Jowa	rattlosnako mastor	9068603		N	1000
Enyngium yuccifolium Michx	Northorn Jowa	rattloopoko mostor	9000003		N	1009
	Northern Iowa		900002		IN	1990
Glycing sp. 1 **	Pobwbito	savhaan	101000	MODMC ARS MOA	1	1075
	BODWIIILE	Soybean	421022	WOFWIC, ARS, WOA,	1	1975
Halianaia halianthaidaa (L.) Swaat	Courth arra Janua		000007		NI	4007
Heliopsis helianthoides (L.) Sweet	Southern Iowa	oxeye false sunflower	9068607		IN N	1997
Heliopsis heliantholdes (L.) Sweet	Northern Iowa	oxeye faise sunflower	9068605		N	1996
Heliopsis heliantholdes (L.) Sweet	Central Iowa	oxeye faise sunflower	9068606	UNI,IARV,IAT,ICIA	N	1995
	0	·				
Koeleria macrantha	Central Iowa	prairie Junegrass	9068621	UNI, IARV, IAT, ICIA	N	2003
Koileria macrantha	Northern Iowa	prairie Junegrass	9068620	UNI, IARV, IAT, ICIA	N	2003
Lespedeza capitata Michx.	Northern Iowa	roundhead lespedeza	9062284	UNI, IARV, IAT, ICIA	N	2000
Lespedeza capitata Michx.	Southern Iowa	roundhead lespedeza	9062283	UNI, IARV, IAT, ICIA	N	1997
Lespedeza capitata Michx.	Central Iowa	roundhead lespedeza	9062282	UNI, IARV, IAT, ICIA	N	1996
Liatris aspera, Michx.	Southern Iowa	rough blazing star	9068686	UNI, IARV, IAT, ICIA	Ν	2003
Liatris aspera, Michx.	Central Iowa	rough blazing star	9068685	UNI, IARV, IAT, ICIA	N	2003
Liatris aspera, Michx.	Northern Iowa	rough blazing star	9068684	UNI, IARV, IAT, ICIA	Ν	2003
Liatris pycnostachya, Michx	Northern MO	prairie blazing star	9079020	MDC. NAS	N	2001
Liatris pycnostachya. Michx	Northern Iowa	prairie blazing star	9068626	UNI, IARV, IAT, ICIA	N	1999
Liatris pycnostachya. Michx	Central Iowa	prairie blazing star	9068627	UNI, IARV, IAT, ICIA	N	1999
Liatris pycnostachya, Michx.	Western MO	prairie blazing star	9079021	MDC. NAS	N	2001
			0010021	11120, 1110		2001
Liriodendron tulipifera	Union	tulin poplar	9055584		N	1997
	Official		5000004			1007
Lonicera maackii Maxim	Cling Red	Amur honevsuckle	483450		1	1078
	Oling Red	And honeysdekie	400400			1370
Manarda fiatulaaa l	Northorn Jouro	wild bergement	0000070		N	2007
Monarda fistulosa L.	Northern Iowa	wild bergamot	9068678	UNI, IARV, IAT, ICIA	N	2007
Monarda fistulosa L.	Central Iowa	wild bergamot	9068679	UNI, IARV, IAT, ICIA	N	2007
Monarda fistulosa L.	Southern Iowa	wild bergamot	9068680	UNI, IARV, IAT, ICIA	N	2003
Panicum virgatum L.	Central Iowa	switchgrass	9068706	UNI, IARV, IAT, ICIA	N	2003
Panicum virgatum L.	Cave-In-Rock	switchgrass	469228	MOA	N	1974
Panicum virgatum L. *	Shawnee	switchgrass	591824		N	1995
Prunus americana	Midwest Premium	American plum	9083241		Ν	2006
Ratibida pinnata, Barnh.	Northern MO	grayheaded coneflower	9079060	MDC	Ν	2004
•						
Schizachvrium scoparium (Michx.) Nash	Southern MO	little bluestem	9079006	MDC	N	2004
Schizachvrium scoparium (Michx.) Nash	Central Iowa	little bluestem	9062320	UNI.IARV.IAT.ICIA	N	1997
Schizachvrium scoparium, Michx.	Northern Iowa	little bluestem	9062319	UNI, IARV, IAT, ICIA	N	1999
Schizachyrium scoparium. Michx.	Southern Iowa	little bluestem	9962321	UNI, IARV, IAT, ICIA	N	1999
Schizachvrium scoparium, Michx.	Northern MO	little bluestem	9079004		N	1999
			5073004			1000
Solidado ridida I	Southern Iowa	rigid goldenrod	0068610	LINE LARVE LAT ICLA	N	2002
Solidago rigida L	Control Jowo	rigid goldenrod	0060619		N	2002
Solidago rigida L	Northorn Jowa		0000010		IN N	2002
	inormenti iowa		9000017		IN	1990
	1	1		1	1	1

			Accession	Secondary	Type of	Year of
Scientific Name	Release Name	Common Name	Number	Agency(ies)	Release	Release
Sorghastrum nutans (L) Nash.	Northern MO	Indiangrass	9079036	UMC,MDC,MODOT	N	1999
Sorghastrum nutans (L) Nash.	Western MO	Indiangrass	9079037	UMC,MDC,MODOT	N	1999
Sorghastrum nutans (L). Nash	Central Iowa	Indiangrass	9062317	UNI,IARV,IAT,ICIA	N	1996
Sorghastrum nutans (I). Nash	Northern Iowa	Indiangrass	9062316	UNI,IARV,IAT,ICIA	N	1996
Sorghastrum nutans (L.) Nash.	Southern Iowa	Indiangrass	9062318	UNI,IARV,IAT,ICIA	N	1998
Sorghastrum nutans (L.) Nash.	Rumsey	Indiangrass	315747	MOA	N	1983
Or and a loss and a situal (Dain) Man						
Sporobolus compositus (Poir.) Merr.	Northern Iowa	tall dropseed	9062313	UNI, IARV, IAT, ICIA	N	2000
Sporobolus compositus (Poir.) Merr.	Central Iowa	tall dropseed	9062314	UNI,IARV,IAT,ICIA	N	1996
Sporobolus compositus var. com.	Southern Iowa	tall dropseed	9062315	UNI, IARV, IAT, ICIA	N	2002
Sporobolus compositus var. comp.	Northern MO	tall dropseed	9079040	MDC, NAS	N	2001
Ulmus parvifolia Jacq.	Elsmo	lace bark elm	9004438		I	1990
* Primary Agencies: ARS=Agricultural Rese	arch Service; NEAF	RD=Nebraska Agricultural Resea	rch Division; N	IOPMC=Missouri Plant	Materials	
Center; IAA=Iowa Agricultural Experiment S	tation at Ames; PAF	RP=Purdue Agricultural Research	Program			
** Primary Agency: MDC=Missouri Departm	ent of Conservatior					
N=native releases; collected within the USA	, occurring naturally	in the USA. Generally refers to a	plant which c	occurs naturally in a part	icular	
region, state ecosystem or habitat without di	rect or indirect hum	an activity.				
Nat.=naturalized releases; collected from a p	population within the	e USA, but were originally introdu	ced to the US	A sometime in the past.		
		l <u> </u>				
I=introduced; means that the original collection	on from which the r	elease was made was not from w	vithin the USA	•		
						•

-Studies/Projects at the Elsberry Plant Materials Center Studies 1958 through 2007

Study/Project Number System: Initially the numbers were assigned numerically plus the year the study/project was initiated. Later a different numbering system was adopted which involved the designated state number, a letter to denote the type of project/study and finally a numerical number.

Study/ Project Number	Title	Annual Technical Rep Page Reference	
		ATR	Page
2-58	Quaker Comphrey Evaluation	1962	28
3-58	Comparison of Winter Annual Cover Crops	1962	30
6-62	Fertilizer Rate Study on Midland Bermudagrass, Cynodon dactylon	1963	47
10-59	Interseeding Cover Crops in Corn	1963	52
14-61	Evaluation of Lotus corniculatus L. Strains	1966	24
15-61	Evaluation of Bermudagrass Strains	1965	17
17-61	Black Locust, Robinia pseudoacacia L. Trials	1967	35
18-61	The Rate, Date and Method of Seeding Lespedeza daurica	1962	23
	schimadae		
19-61	Living Fence Trials	1968	26
20-61	Plants for Bank stabilization	1962	10
21-62	Evaluation of Legumes for wildlife	1962	11
23-63	Evaluation of <i>Phalaris arundinacea</i> L. 'Ioreed' Reed Canarygrass	1964	13
	Strains		
24-72	Method of Seeding Creeping Foxtail	1962	24
25-63	Advanced Evaluation of Plant Materials for Grass Waterways	1968	27
26-63	Evaluation of Japanese Pagodatree, Sophoro japonica, for Posts	1962	16
27-63	Direct Seeding vs. Transplanting Sawtooth Oak, Quercus	1964	60
	acutissima, Carruthers		
28-63	Effect of Cultural Methods on Crownvetch, Coronilla varia L., Seed	1964	64
	Production		
31-63	Lespedeza capitata Michx. – Roundhead Lespedeza Ecotype	1964	64
	Evaluation		
34-63	Cultural Methods for Seeding Grasses in woodland Pastures	1963	58
35-63	Effect of Cultural Methods on Seed Production of <i>Phalaris</i>	1964	13
	arundinacea L., 'Ioreed' Reed Canarygrass		
37-63	Forage Yields and Season of Production for Several Grasses and	1964	78
2 0.44	Legumes Clipped Bi-Weekly at Three Inches and Six Inches	10.10	• •
38-64	Advanced Evaluation of Perennial Grasses for Summer Pasture	1968	28
42-65	Establishment of Crownvetch and Trefoil in Dead Litter Mulch	1967	41
44-65	Grasses and Legumes for Goose Browse on the Clarence Cannon	1973	0
	Wildlife Refuge	Part I	8
15.55		Part 2	44
46-66	Method of Seeding Trials with 'Garrison' Creeping Foxtail	1966	26
49-69	Seed Yield of Three <i>Panicum virgatum</i> , Switchgrass Selections:	1971 De 1	-
	Mich 381; Blackwell', MI-5/14, and MI-5845, 'Cave-In-Rock'	Part 1	5
50.60	Cood Wield and Cood Detention of Four Division with the Devia	Part 2	40
50-09	Canarygrass Selections - 'Ioreed' 'Pise' 'Frontier' and 'Auburn'	19/0	12
	-100000, Kise, Fiolitier, and Aubulli	1	1

Study/	TD141	Annual Technical Report/		
Project Number	litle	Page Re	terence	
		ATR	Page	
51 C 71	Harbiaida talaranga of Naw Saading of tall Easana Dig Dhuastam	1070	55	
51-C-71	Indiangrass, and Switchgrass	1979	55	
29I052W	Growth Rate Study of European Alder on Deep Alluvial Soil	1980	4	
53-72	Growth Rate Study of Poplar (Cottonwood) On A Deep Alluvial Soil	1972		
		Part 1	7	
		Part 2	53	
54-72	Rhizome Development of Two tall Fescue, Festuca arundinacea,	1971		
	Selections: M1-6161 and M1-6162	Part 1	7	
		Part 2	54	
29A055	Evaluations of Sorghastrum nutans, Indiangrass (M1-7073), Poly-	1981	81	
	Cross Indiangrass for Leafiness, Disease-Free Characteristics and Seed Production			
56-71	Comparative Evaluation of New Lotus Accessions with Names and	1974		
	Used Varieties to Determine Potential as a Long Lived Legume in	Part 1	4	
	Three State Areas Served	Part 2	4	
291057-72	Growth Rate Study of Poplars (Cottonwood) on a Deep Alluvial Soil	1981	4	
29A058-72	Evaluation For Naming and Releasing of Elsberry Developed Big	1981	83	
	Bluestem and Indiangrass			
59-72	Sorghum Evaluation as Wildlife Game Feed	1973		
		Part 1	11	
2010 60 60		Part 2	55	
291060-69	Replacement of the American Elm Tree	1979	80	
61-72	Advanced evaluation of Meadow Foxtail, <i>Alopecurus pratensis</i> , Pl-	1973	10	
	305495, as Waterway Grass as Compared to 'Garrison' Creeping	Part 1	12	
2010/21	Foxtail, <i>Alopecurus arunainaceus</i> , the Standard for Comparison	Part 2	50	
291062J	Trees and Shrubs for Use as wildlife Food and Cover Plants	1979	11	
291063	Plants for Use in Crucal Area Stabilization	1979	21	
291064 W	Plants for Use in Londscope and Deputification	1979	23	
03-78 201066W 72	Plants for Use III Landscape and Deautification	1970	10	
291000 W - 72	Planting in Parks, Wildlife Areas and Natural Areas	1979	21	
29I067K	Trees for windbreaks	1979	29	
29A068-72	Response of Yellow Poplar to thinning	1979	67	
29A069-72	Black Cherry Demonstration	1979	70	
29A070-73	Desmodium for Wildlife Food and Cover	1979	31	
29A071-73	Evaluation for Naming and Releasing of Elsberry Developed Autumn Olive M1-6369	1978	73	
29A072-73	Evaluation of M1-4701, Lonicera maackii, Amur Honevsuckle for	1978	74	
	Naming and Releasing	1,770		
29A073G	Establishment of warm-Season Grasses with Herbicides for Weed	1979	72	
	Control. Herbicides are Not Tested or Have Label Clearance for			
	Warm-Season Grasses			
29A074M	Cover Crops in Soybeans	1984	258	
Misc.	NJ-927, <i>Eleagnus umbellata</i> , Autumn Olive for wildlife Food and	1981	101	
Study	Cover			

Study/ Project Number	Title	Annual Technical Repo Page Reference	
		ATR	Page
29A075F	Plants for Shoreline and Wetland Stabilization	1990	64
29I076G-78	Establishment of Warm Season Grasses	1981	7
Misc.	Evaluation of Cold Hardy Paspalum notatum Selections	78	76
Study			
29I077P	Evaluation of Plants for Vegetating Salt Damaged Areas	1981	11
29I078D	Field Evaluation Planting to Evaluate Species of Plants for Use on Alkali Bearing Soils in Southern Illinois	1981	19
29I079D	Field Evaluation Planting to Evaluate Species of Plants for Use on Revegetating Acid Coal Mine Spoil in Illinois (Saline County SWCD and Peabody Coal Company)	1984	25
29I080D	Field Evaluation Planting to Evaluate Species of Plants for Use in Revegetating Acid Coal Mine Spoil in Iowa (VanBuren County SWCD)	1980	56
29I081D	Field Evaluation Planting to Evaluate Species of Plants for Use in Revegetating Acid Coal Mine Spoil in Iowa (Marion County SWCD)	1980	77
29I082D	Field Evaluation Planting to Evaluate Species of Plants for Use in Revegetating Acid Coal Mine Spoil in Illinois (Fulton County SWCD and Freeman United Coal Mine)	1984	117
29I083M	Legume Cover Crop for No-Till Corn Production	1984	160
29I084G	Legumes to Enhance Fescue Pastures	1986	6
29A085S	Debearding Fluffy Native Grass Seed (Big Bluestem and Indiangrass)	1981	92
29A086L	Use of an Absorbent Polymer in Coating Native Grass Seed	1982	106
29I087D	Plants with Increased tolerance to Aluminum and Manganese	1984	192
29A088W	Cooperative Screening Study of Native and Introduced Sources of Eastern Cottonwood	2000	129
29I089V	Multiple Use Legume Assembly and Evaluation	1988	4
29I090G	No-Till Establishment of Warm-Season Grasses in Cool Season Grass Sod	1984	219
29I091G	Weed Control Treatments for Warm Season Grass Establishment	1988	7
29I092G	Perennial Grasses as Cover Crops for Use in No-Till Systems	1988	12
29I093R	Miscellaneous Grass Evaluation	2006	9
29A094M	Cover Crops in Corn, Soybeans, and Milo	1987	5
29I096F	Streambank Stabilization	1988	14
29I097G	Assembly and Evaluation of Big Bluestem, <i>Andropogon gerardii</i> , Vitman.	2007	13
29I098M	'Tinga' Tangier Pea for Soil Protection	1987	7
29I099J	Assembly and Evaluation of Roughleaf Dogwood, Cornus drummondii	1994-1998	13
29I100J	Assembly and Evaluation of Blackhaw, Viburnum prunifolium L.	1999	17
29I101J	Assembly and Evaluation of Arrowwood, Viburnum dentatum	2006	21
29A102M	Evaluation of Perennial Grass as Cover Crops for No-Till Soybeans	1990	85
29A105M	Evaluation of Winter Annual Grass for Cover Crops in No-Till Soybeans	1993	34
29I107G	Assembly and Evaluation of Eastern Gamagrass, <i>Tripsacum dactyloides</i> L.	2006	24

Study/ Project Number	Title	Annual Tech Page Re	nical Report/ ference
		ATR	Page
29I108G	Assembly and Evaluation of Low Growing Rhizomatous Switchgrass, <i>Panicum virgatum</i> L., for Use in Waterways, Filter Strips and Other Conservation Uses	2007	21
29I109W	Direct Seeding Methods of <i>Quercus</i> sp., Oaks	1993	17
29I110J	Assembly and Evaluation of Chokecherry, Prunus virginiana L.	2007	27
29A111G	Field Evaluation of Selected Perennial Grasses for Pasture Wildlife Habitat and Erosion control (Varietal Study)	1994-1998	91
29I112J	Assembly and Evaluation of Nannyberry, Viburnum lentago L.	1993	21
29I113J	Assembly and Evaluation of Serviceberry, <i>Amelanchier arborea</i> (Michx.F.) Fern.	1993	22
29I114K	Field Evaluation of Woody Plant Materials in Cooperation with Mineral area College	1993	22
29A116W	Field Evaluation of Woody Plant Materials in Cooperation with Mineral Area College	2007	29
29A117H	Intercenter Strain Trial of <i>Tripsacum dactyloides</i> L., Eastern gamagrass	1993	46
29A118G	Field Evaluation of Selected Perennial Grasses for Pasture, Wildlife Habitat and Erosion Control (Varietal Study)	1994-1998	91
29A121W	Conifer Evaluation for Windbreak Plantings	2000	137
29A122G	Evaluation of Perennial Warm-Season Grasses as Windbarriers in Southeast Missouri	1994-1998	125
29A123M	Winter Cover Crop Study for No-Till Soybeans	1993	54
29A124G	Fertility and Harvest Management of Eastern Gamagrass for Forage Production	2007	36
29I126W	Woody Columnar Collection	1993	30
29A127G	Field Evaluation of Selected Perennial Grasses for Pasture, Wildlife Habitat and Erosion Control	1994-1998	91
29A128J	<i>Cornus florida</i> L., Flowering Dogwood, Interagency Study Between Department of Interior, National Parks Service, National Capital Region and the Department of Agriculture	2006	52
29A131O	Treatment of Animal wastewaters by Constructed Wetlands	1993	66
29I132O	Miscellaneous Wetland Plant evaluation	2003	49
29I133J	Assembly and Evaluation of Gray Dogwood, Cornus racemosa	work plan no	t developed
29I134J	Assembly and Evaluation of Eastern Redcedar, <i>Juniper virginiana</i> L.	2002	55
291135J	Assembly and Evaluation of Hazelnut, <i>Corylus Americana</i> , Marsh	2007	43
291136J	Assembly and Evaluation of Wild Plum, <i>Prunus Americana</i> , Marsh.	2006	54
29A1370	Wetland Riparian Propagation, Establishment and Demonstration	2007	52
291138G	Residue Decomposition Irial	1994-1998	68
29A139G	Values Depler Evoluation	1994-1998	149
29A140W 29I141G	Assembly and Evaluation of Little Bluestem, <i>Schizachyrium</i>	2007	64
29I142G	scoparium, Michx. Production of Native Missouri Ecotypes of Grasses, Legumes and Forbs for Roadside, Critical Areas, and All Other Vegetative	2007	82
2011/13C	Seed Costing/Seed Potes	2002	120
2911450 29A14/G	Biofuel Study of Different Strains/Varieties of Switchgrass	1999	147
29A145	Wear Tolerance Demonstration of Vegetation in High Traffic Areas	2000	154

Study/ Project Number	Title	Annual Technical Repor Page Reference	
1 (011001		ATR	Page
MOPMC-P-	Assembly, Evaluation and Selection of Bur Oak, Quercus	2007	87
0001, WO,	macrocarpa, Michx.		
WL, WE			
MOPMC-P-	Assembly, Evaluation and Selection of False Indigo Bush, Amorpha	2006	127
0002, WE,	fruticosa, L.		
WL			
MOPMC-P-	Evaluation and Release of Eastern Gamagrass, Tripsacum	2006	136
003 PA,WL	dactyloides, L.		1.70
MOPMC-T-	Native Plant Identification	2005	150
0104		2007	100
MOPMC-T-	Compatibility Study Using Warm Season and Cool Season Native	2007	109
0105, PA	Grasses with Legumes and Foros	2007	110
MOPMC-1-	Collection and Evaluation of Native Cool Season Grasses and Sadges for Filter String	2007	119
MOPMC P	Evaluation and Palaasa of Big Bluestom Andronogon garardii I	2002	176
0107 PA	Evaluation and Release of Big Bluestein, Anaropogon gerurul L.	2002	170
WI			
MOPMC-T-	Testing Warm Season Grasses for Forage Quality	2006	162
0208. PA	Testing warm season Grasses for Forage Quarty	2000	102
MOPMC-T-	Evaluation and Release of <i>Paspalum</i> Species 2003	2003	156
0209, PA,			
WL			
MOPMC-T-	Incorporating Native Warm Season Grasses into Cool Season	2007	132
310-PA,WL	Pasture with Grazing Management		
MOPMC-T-	Control of Reed Canarygrass in Riparian Buffer Plantings	2006	175
0311, RI, BU			
MOPMC-T-	Testing Selected Trees for Tolerance to the Herbicide Outrider	2006	185
0412, WE,			
WL, RI			
MOPMC-P-	Evaluation and Release of a Shade Tolerant Big Bluestem,	2007	134
0613-PA, WL	Andropogon gerardii, L. for Silvopasture		
MOPMC-P-	Evaluation and Release of Switchgrass, <i>Panicum virgatum</i> L.	2007	138
0614-PA,			
WL, BF		2007	1.40
MOPMS-1-	Direct Seeding of woody Shrubs for Establishing Shrub Cover for Wildlife Hebitat of the Following Species Folge Indian Durb	2007	140
0015-	Amorpha fruticosa (a patizo logumo) Amorican Plum Prusua		
	americana Roughleaf Dogwood Corrus drummondii Fragrant		
	Sumac Rhus aromatica Chokecherry Prunus virginiang Arrow-		
	wood Viburnum dentatum. American Hazelnut Corvlus Americana		
	(all are native woody shrubs.)		

Study/ Project Number	Title	Annual Technical Report/ Page Reference		
		ATR	Page	
MOPMC-T-	In-Field Weathering Effects on Biomass Yield and Biofuel Quality	2007	147	
0716-BF	of Warm Season Grasses			
MOPMC-P-	Evaluation and Release of a Shade Tolerant Little Bluestem for	2007	152	
0717-PA, WL	Silvopasture			
MOPMC-T-	Evaluation of Flood Tolerance of Planted Oak Seedlings Derived	2007	154	
0718-WE,	from Different Seed Origins			
WL				
MOPMS-T-	Critical Area Roadside Vegetation Establishment	2007	155	
0719-				
CR/RI07-016				

Dean Tapley, Technician - Combining Fox Sedge at Big River National Wildlife Refuge, Annada, Missouri

For more information about this and other conservation plants, contact your local NRCS field office or Conservation District, or browse the Web at <u>http://Plant-Materials.nrcs.usda.gov</u> (Plant Materials) or <u>http://plants.usda.gov</u> (PLANTS database).

"The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's <u>TARGET</u> <u>Center</u> at 202-720-2600 (voice and TDD).

"To file a complaint of discrimination write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call 202-720-5964 (voice or TDD). USDA is an equal opportunity provider and employer."