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Abstract— Given a set of pointsP and a query point q, the
reverse furthest neighbor (RFN) query fetches the set of points
p ∈ P such that q is their furthest neighbor among all points in
P ∪{q}. This is the monochromaticRFN (MRFN) query. Another
interesting version ofRFN query is thebichromatic reverse furthest
neighbor (BRFN) query. Given a set of pointsP , a query set
Q and a query point q ∈ Q, a BRFN query fetches the set
of points p ∈ P such that q is the furthest neighbor of p
among all points in Q. The RFN query has many interesting
applications in spatial databases and beyond. For instance, given
a large residential database (asP ) and a set of potential sites
(as Q) for building a chemical plant complex, the construction
site should be selected as the one that has the maximum number
of reverse furthest neighbors. This is an instance of theBRFN
query. This paper presents the challenges associated with such
queries and proposes efficient, R-tree based algorithms forboth
monochromatic and bichromatic versions of theRFN queries. We
analyze properties of theRFN query that differentiate it from the
widely studied reverse nearest neighbor queries and enablethe
design of novel algorithms. Our approach takes advantage ofthe
furthest Voronoi diagrams as well as the convex hulls of either
the data set P (in the MRFN case) or the query setQ (in the
BRFN case). For theBRFN queries, we also extend the analysis to
the situation when Q is large in size and becomes disk-resident.
Experiments on both synthetic and real data sets confirm the
efficiency and scalability of proposed algorithms over the brute-
force search based approach.

I. I NTRODUCTION

Spatial databases have offered a large number of appli-
cations in last decade that shape the horizon of computing
services from people’s daily life to scientific research. For
example, people rely on online map services to plan their trips;
the deployment and query processing in large sensor networks
[15] often require the design of location-aware algorithms.
Driven by these increasing number of applications, efficient
processing of important and novel query types in spatial
databases has always been a focal point.

In this work, we identify a query type that has wide
applications and requires novel algorithms for processing. For
a large data setP and any random query pointq, we are
interested in retrieving the set of points inP that takeq as
their furthest neighbors comparing to all points inP , i.e.,
collecting q’s reverse further neighbors (RFN). This problem
is referred as themonochromatic reverse furthest neighbor
(MRFN) queries. It naturally has a bichromatic version as well
(BRFN). Specifically, the query contains a set of query points
Q and one pointq ∈ Q. The goal in this case is to find the
set of pointsp ∈ P so that they all takeq as their furthest
neighborscompared to all points inQ.
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Fig. 1. An MRFN query example.

Consider the data setP in Figure 1, suppose the query
point q is p1, then its RFN includes{p6, p7, p8}. Usingp7 as
an example, visually its potential furthest neighbor is among
p1, p2 andp3. The dotted lines indicate the distances of these
candidates top7 and among themp1 is the furthest. Hence,
p7 is included in the RFN of p1. On the other hand,p5 is
not included asp5’s furthest neighbor becomesp7. This is an
instance of the MRFN query. Note that the query pointq could
be different from any existing point inP .
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Fig. 2. An BRFN query example.

The BRFN query takes a set of query points as the input.
With the same data setP , Figure 2 demonstrates the BRFN

query. The BRFN of q3 w.r.t Q in Figure 2 is{p1, p2, p4}.
Usingp2 as an illustration, its distance toq1, q2, q3 are denoted
by the dotted lines andq3 is the furthest. Similarly,q1’s BRFN

is {p3, p5, p6, p7, p8}. q2’s BRFN in this case is empty. A
careful examination will confirm that no point inP takesq2

as its furthest neighbor from points inQ.
The motivation to study the RFN queries is largely inspired

by an important query type that has been extensively studied
recently, namely, the reverse nearest neighbor queries (RNN)
[29], [20], [34], [5], [1], [35], [28], [26], [23], [33], [22],
[27]. Intuitively, an RNN query finds the set of points taking
the query point as their nearest neighbors and it also exists
in both the monochromatic and bichromatic versions. Many
applications that are behind the studies of the RNN queries
naturally have the corresponding “furthest” versions. Consider
next two examples for the MRFN and BRFN queries:

Example 1 For a large collection of points of interest in a
region, every point would like to learn the set of sites that



take itself as their furthest neighbors compared to other points
of interest. This has an implication that visitors to those sites
(i.e., its reverse furthest neighbors) are highly unlikelyto visit
this point. Ideally, it should put more efforts in advertising
itself to those sites.

Example 2 Given a database of residential sites asP and
a collection of potential locationsQ for building a chemical
plant, due to the hazardous materials that may be produced
by such a plant, we should select the location inQ that is
further away (compared to other choices inQ) from as many
residential sites as possible, i.e., the pointq ∈ Q that has the
largest number of reverse furthest neighbors inP .

The above example does not limit itself to spatial data sets,
as long as there is a similarity metric between any two objects,
the BRFN queries are applicable.

Example 3 Let P be a large set of customers andQ be a
set of business competitors offering similar products in the
market, suppose for each customerp and each competitor
q there is a distance measure reflecting the rating ofp to
q’s product. The smaller value indicates a higher preference.
For any competitor inQ, an interesting query is to discover
the customers that dislike his product the most among all
competing products in the market. This company could then
carry out specialized analysis on this group of customers to
identify potential drawbacks in its marketing strategy.

In the last example, an interesting observation is thatQ
could be large and becomes disk-resident data set as well.
As a result, the algorithm for the BRFN problem needs to
be extended to the case where bothP andQ are in external
memory.

To the best of our knowledge, both the MRFN and BRFN

have not been studied in the literature. The brute-force search
algorithms for these problems are obviously too expensive
to be of any practical use. It is worth mentioning that the
BRFN problem has been briefly examined from a theoretical
point of view recently [10]. However, large scale spatial
databases are calling for a practical, efficient algorithm for this
problem. More importantly, by taking the furthest neighbors,
the geometric nature of the RFN problems has been changed
from the RNN problems. Hence, we need to design new
algorithms to process the RFN queries more efficiently by
taking the new geometric perspectives into account.

Our Contributions. This work presents efficient algorithms
for the MRFN and BRFN problems. We identify the important
insights for the RFN problems based on the convex hulls
of either P or Q and extend the basic idea to work with
dynamic data sets as well as disk resident query groups. The
paper is organized as follows: 1) We formulate the problem
of the reverse furthest neighbors in Section II and survey the
related work in Section III; 2) We propose effective pruning
techniques based on several geometric insights to obtain two
efficient, R-tree based exact algorithms for the MRFN problem

in Section IV; In particular, we design R-tree based algorithm
to maintainP ’s convex hull dynamically so that our query
algorithms work efficiently with dynamic data sets; 3) We
present a practical and efficient R-tree based algorithm forthe
BRFN problem in Section V; 4) We discuss the generalization
to handle query groups with large size for the BRFN problem
in Section V-A; 5) We report a comprehensive experimental
study with both synthetic and real data sets in Section VI.

II. PROBLEM FORMULATION

Let P denote the spatial database ind-dimensionalEu-
clidean space. Our techniques could be easily generalized for
any metric space where the distance between points satisfies
the triangle inequality. For simplicity, we concentrate onthe
Euclidean distance where the distance between any two points
p andq is denoted by||p − q||. The furthest neighbor of any
point p w.r.t a set of pointsP is simply defined as:

Definition 1 The furthest neighbor ofp to a data setP is
defined as fn(p, P ) = p∗ s.t.p∗ ∈ P , for ∀p′ ∈ P andp′ 6= p∗,
||p∗ − p|| ≥ ||p′ − p||. Ties are broken arbitrarily.

The monochromatic RFN query is formally defined as:

Definition 2 The MRFN of q w.r.t the data setP is a set
of points from P that take q as their furthest neighbors
comparing to all points inP , i.e., MRFN (q, P )= {p|p ∈
P, fn(p, P

⋃
{q}) = q.

The bichromatic RFN query takes additionally a set of query
pointsQ as the input, and is formally defined in the follows.

Definition 3 The BRFN of q ∈ Q w.r.t the data setP and
the query setQ is a set of points fromP that takeq as their
furthest neighbors comparing to all other points inQ, i.e.,
BRFN (q, Q, P )= {p|p ∈ P, fn(p, Q) = q}.

Assume that|P | = n, |Q| = m and a page size ofB, the
brute-force search based approach for the MRFN (BRFN) prob-
lem takesO(n2) (O(mn)) time complexity withO(n2/B)
(O(n/B) if Q fits in memory or otherwiseO(mn/B)) I/Os.

Other Notations. We summarize some of our notations here.
The convex hull of a point set is defined as the smallest convex
polygon containing all points. Intuitively, the convex hull is
obtained by spanning an elastic band around the point set.
The points touched by the elastic band become the vertices
of the convex hull. We useCP to denote both the ordered
set of vertices and the convex polygon (the area enclosed by
the elastic band) for the convex hull ofP . Its meaning is
clear from the context. An ordered list of pointsp1p2 · · · ptp1

represents a convex polygon defined by line segments{p1p2,
p2p3, . . . , ptp1} with t vertices. The concepts of convex hull
and convex polygon work with any dimensiond. We also
used the furthest Voronoi diagram for a set of points (FD(P ))
and the furthest Voronoi cell for a single point w.r.t a set of
points (fvc(p, P )). The details will be defined when the related
discussion emerges.



Symbol Description
||p − q|| Euclidean distance betweenp andq
| · | Size of a set
(⊂) ⊆ Both (strict) set and geometric containment
CP (CQ) Ordered set of vertices ofP ’s (Q’s) convex hull,

also is the convex polygon ofP ’s (Q’s) convex hull
fn(p, P ) The furthest neighbor ofp in P
fvc(p, P ) The furthest Voronoi cell ofp w.r.t P
FD(P ), FD(Q) The furthest Voronoi diagram ofP (Q)
n, m |P | and |Q| respectively
p1p2 A line segment betweenp1 andp2

p1p2 · · · ptp1 The convex polygon by{p1p2, . . . , ptp1}

TABLE I

NOTATION USED.

When A ⊆ B is used with geometric objectsA and B, it
implies that all points from the area enclosed byA are part of
the points from the area enclosed byB. When⊂ is used in this
context, it further requires all points from the area enclosed
by A are inside (while not touching) the boundary edges of
B. Table I provides a quick reference to the main notations.

In this work we focuses on the two dimensional space. The
main ideas developed could be generalized to higher dimen-
sions and the details of such generalization is an interesting
problem we will look at.

III. B ACKGROUND AND RELATED WORK

R-tree [17] and its variants (R∗-tree as the representative [4])
have been the most widely deployed indexing structure for
the spatial database, or data in multi-dimensions in general.
Intuitively, R-tree is an extension of the B+-tree to higher
dimensions. Points are grouped into minimum bounding rect-
angles (MBRs) which are recursively grouped into MBRs in
higher levels of the tree. The grouping is based on data locality
and bounded by the page size. An example of the R-tree is
illustrated in Figure 3. R-tree has facilitated processingmany
important query types for spatial databases and data in multi-
dimensional space. Two important classes of queries that are
related to this work and have been extensively studied in the
literature are nearest neighbor (NN) queries and range queries.

NN search has been thoroughly studied for the Euclidean
space [24], [30], [19], [32], [21], [6], [14], [25], [18], [12]. In
the Euclidean space, R-tree demonstrates efficient algorithms
using either the depth-first [25] or the best-first [18] approach.
The main idea behind these algorithms is to utilize branch
and bound pruning techniques based on the relative distances
between a query pointq to a given MBRN . Such distances
include the mindist, the minmaxdist and the maxdist. The
mindist measures the minimum possible distance for a point
q to any point in an MBRN ; the minmaxdist measures the
lower bound on the maximum distance for a pointq to any
point in an MBRN ; and finally, the maxdist simply measures
the maximum possible distance betweenq and any point in an
MBR N . These distances are easy to compute arithmetically
given q and N . An example for these distances has been
provided in Figure 3. The principle for utilizing them to prune
the search space for NN search in R-tree is straightforward,
e.g., when an MBRNa’s mindist to q is larger than another
MBR Nb’s minmaxdist, we can safely pruneNa entirely.
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Fig. 3. The R-tree.

Another classical query type is the range query where the
goal is to return all points that are fully contained by the query
range (often as a rectangle). R-tree yields good performance
for answering range queries [8]. The basic idea is to search
all MBRs that intersect with the query range.

An interesting query type that has close relationship with
NN search was defined in [22], in which the goal is to
find the set of points fromP that take the query point
q as their nearest neighbors among all points in the data
set P . This is the monochromatic reverse nearest neighbor
query (monochromatic RNN). Due to its wide applications,
RNN queries have received considerable attention since its
appearance. In the monochromatic version [28], [26], [33],
[22], [29], [27], the state of the art is the TPL method from
[29]. TPL recursively filters the data by finding perpendicular
bisectors between the query point and its nearest object and
taking the half plane that is closer to the query point.

The bichromatic RNN also finds many applications [20],
[1], [35], [26], [22], [27]. In this case, the query takes a set
of query pointsQ and a query pointq ∈ Q. The set of points
returned fromP all takeq as their nearest neighbors w.r.t other
points inQ. The basic idea here is to use the Voronoi diagram
and find the region that corresponds to the query point.

Most of the work for the RNN queries focused on the
euclidean space. Many interesting variants have been studied.
The RNN problem in graphs and road network was studied
in [35]. Generalization to any metric space appeared in [1].
Continuous RNN was explored by [20], [31]. The RNN for
moving objects was studied in [5]. ReversekNN search
was examined by [29], [28]. Finally, the RNN for Ad-Hoc
subspaces was solved by [34].

Our work explores the unique geometric property of the
reverse furthest neighbors and proposes efficient, novel prun-
ing techniques that are suitable in this case. In particular, we
utilize the convex hull of either the data set in the case of
MRFN or the query set in the case of BRFN for pruning. Hence,
it is related with the RNN problem but based on significant
different insights.

IV. M ONOCHROMATIC REVERSEFURTHESTNEIGHBORS

We search for efficient, R-tree based algorithms for the
MRFN queries in this section. Our approaches are inspired
by the furthest Voronoi diagram and the convex hull.

A. PFC: the Progressive Furthest Cell algorithm

For a set of pointsP , the furthest Voronoi diagramof
P , denoted asFD(P ), is similar to the well-known Voronoi
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(b) Computing fvc(p1, P).

Fig. 4. FD(P ) and its derivation.

diagram [3] ofP except that the space is partitioned with the
furthest Voronoi cellsinstead of thenearest Voronoi cells.

Definition 4 For a space S, a pointp and a set of points
P (p ∈ P and P ⊆ S), a convex polygon fvc(p, P )⊆ S
is the furthest Voronoi cellof p iff: ∀ point p′ ⊆fvc(p, P ),
fn(p′, P )= p, i.e., any point inside fvc(p, P ) will take p as
its furthest neighbor inP . p′ is not necessarily a point inP .
The furthest Voronoi diagram ofP (FD(P )) is simply the
collection of furthest Voronoi cells for all points inP .

An example of the furthest Voronoi diagram on an input
spaceS : (x`, y`)×(xh, yh) is illustrated in Figure 4(a) where
fvc(pi, P ) is marked as region fvc(pi). Computing theFD(P )
can be done by modifying the algorithm for the Voronoi
diagram . To find the fvc(pi, P ), for each pointpj ∈ P and
j 6= i, the bisector line of the line segmentpipj separates
the space into two polygons and denote the one that does not
containpi as polyjij. Then fvc(pi, P ) is simply the intersection
of polyj

ij ’s for all j’s in P . The fact that polyjij is the
polygon that is further away frompi among the two polygons
(covering the whole space) partitioned by the bisector lineof
pipj straightforwardly yields the correctness of this algorithm.
Figure 4(b) illustrates this idea for computing fvc(p1, P ). One
first finds poly212 with pointp2, followed by identifying poly313.
The fvc(p1, P ) is simply the poly212

⋂
poly3

13.
An important property for theFD(P ) is that any point from

the furthest Voronoi cell ofpi takespi as its furthest neighbor
among all points inP . Formally,

Lemma 1 ∀p′ ⊆ fvc(p, P ), fn(p′, P ) = p. In addition, for
a random pointp′ in spaceS, if fn(p′, P ) = p, then p′ ⊆
fvc(p, P ).

Proof: It is immediate by the construction ofFD(P ).

By Lemma 1, for a query pointq, if we can compute the
fvc(q, P

⋃
{q}), then the RFN of q is simply those points in

P that are contained by the fvc(q, P
⋃
{q}). The challenge is

how to compute fvc(q, P
⋃
{q}) efficientlywhenP is large and

stored on the disk. Obviously, a very expensive approach is to
linear scan points inP and apply the algorithm above, then
perform a range query with the discovered furthest Voronoi
cell of q. Next, we present a progressive version of this idea,
using the help of the R-tree, where the fvc(q, P

⋃
{q}) is

computed incrementally and the points inP that are contained
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Fig. 5. PFC algorithm.

by the fvc(q, P
⋃
{q}) are also obtained progressively in one

pass.

The progressive algorithm. The detail of the progressive
furthest cell (PFC) algorithm is listed in Algorithm 1. Given
the query pointq and the R-tree index for the data setP , we
maintain a priority queueL for storing MBRs and points.
Objects in L are sorted in the decreasing order by their
minmaxdist to q. The intuition is that the points that are
further away fromq have higher chances being the RFN of q,
hence we should consider these candidates with higher priority.
Meanwhile, fvc(q, P

⋃
{q}) is initialized to the whole space

S and we also maintain two vectors.Vc stores all points that
are potentially the RFN of q and Vp stores all objects that
may disqualify false positive candidates fromVc in the post-
processing step. In the sequel, when the context is clear we
simply use fvc(q) to denoteq’s up-to-date furthest Voronoi
cell.

At each iteration, the head entrye of L is popped. Ife is
a point, we find the bisector line for the line segmentqe. As
shown in Figure 4(b), the bisector line cuts the spaceS into
two polygons and we identify the one that is further away
from q, i.e., polyeqe. The fvc(q) is updated as the intersection
of the current fvc(q) with polye

qe. Next, we determine whether
e is a potential candidate. Ife ⊆ fvc(q), thene is pushed into
Vc. Otherwise, it is discarded.

If e is an MBR, we take the current furthest Voronoi cell
of q and calculatee

⋂
fvc(q). If this is empty we pushe into

the pruning vectorVp, otherwise we retrieve each child ofe
and insert intoL the ones that do intersect with fvc(q). The
rest are pushed intoVp.

There are two insights for the PFC algorithm. The fvc(q) is
updated progressively and it always shrinks after each update.
Another critical observation (following the first observation) is
that if an MBR or a point does not intersect with the current
fvc(q), it has no chance to be contained by the final fvc(q).
Hence, we can safely claim that an entrye is not a potential
candidate as long as its intersection with the current fvc(q) is
empty. However,e cannot be disregarded if it is an MBR. The
reason is thate may contain points that could update (shrink)
fvc(q) and disqualify those potential candidates identified in
previous steps. As a result, a post-processing is required when
L becomes empty, where entries inVp are checked in sequence
and points contained by those entries will be used to update
fvc(q). Finally, all points inVc are filtered once more using
the final fvc(q).



Algorithm 1 : PFC(Queryq; R-treeT )

Initialize two empty vectorsVC andVp;1

Initialize the priority queueL with T ’s root node;2

L orders entries in decreasing order of the minmaxdist;3

Initialize fvc(q)= S;4

while L is not emptydo5

Pop the head entrye of L;6

if e is a point then7

Identify polye
qe and set fvc(q)=fvc(q)

⋂
polye

qe;8

if fvc(q) = ∅ then return ;9

if e ⊆fvc(q) then Pushe into Vc;10

else11

if e
⋂

fvc(q) is ∅ then pushe to Vp;12

else13

Let u1, . . . , uf be children MBRs of nodee;14

for i = 1, . . . , f do15

if ui∩fvc(q) 6= ∅ then16

Insert the child nodeui into L;17

else Insert the child nodeui into Vp;18

Update fvc(q) using points contained by entries inVp;19

Filter points inVc using fvc(q);20

OutputVc; return ;21

Consider the example in Figure 5, assumingp2 is first
processed and it updates fvc(q) as shown in Figure 5(a). Since
p2 is contained by fvc(q), it is added toVc. Next, the MBR
e is processed, obviouslye could not offer any possible RFN

of q as e
⋂

fvc(q) = ∅. However,e may contain points that
update fvc(q) s.t. existing candidates are disqualified. Figure
5(b)) shows thatp3 from e could update fvc(q) and prunep2.
Hence, we need to adde to Vp for post-processing step.

PFC algorithm could terminate as soon as the fvc(q) be-
comes empty (Line9 in Algorithm 1). In practice, many
points due to their geometric locations will not have a furthest
Voronoi cell in the space (this phenomena will be explained
in details in the next Section). By searching the space in
the decreasing minmaxdistfashion, for these points we could
quickly shrink their furthest Voronoi cells to empty, leading to
efficient early termination. In addition, when the query point
does have a furthest Voronoi cell, the PFC algorithm calculates
the RFN in one pass.

B. CHFC: the Convex Hull Furthest Cell algorithm

The PFC algorithm may scan a large number of points. Han-
dling the false positives from the list of potential candidates
in the post-processing step is expensive. An important lemma
introduced next will significantly reduce the cost of searching
for the RFN.

The convex hullCP for a set of pointsP is the smallest
convex polygon defined by points inP that fully containsP .
We representCP as anordered setof points that are vertices
for the convex hull ofP . For example, in Figure 6(a)CP =
{p1, p2, p3, p4, p5}. We abuse the notation ofCP a little bit
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Fig. 6. Furthest point top: Proof of Lemma 2

whenever the context is clear. It also represents the constrained
area corresponding toP ’s convex hull. SoCP also denotes the
shaded polygonp1p2p3p4p5p1 in Figure 6(a). Given a point
q, we conjecture that the furthest point fromP to q must be
found in CP . This is indeed the case.

Lemma 2 GivenP and its convex hullCP , for a pointq, let
p∗ =fn(q, P ), thenp∗ ∈ CP .

Proof: SupposeCP = {p1, . . . , ps}, then the boundary
edges forCP areE(CP ) = {p1p2, . . . , psp1}. First, we argue
that p∗ must locate on one of the boundary edges. Assume
this is not correct, as shown in Figure 6(a), thenp∗ ⊂ CP .
For bothq ⊆ CP (e.g.q1) andq 6⊆ CP (e.g.q2), the line that
extendsqp∗ from p∗ must intersect with an edge fromE(CP )
asCP is a convex. In our example, it intersect withp4p5 on a
point pe, then obviouslyqpe ≥ qp∗. Next, we can show that
the furthest pointp∗ to q from a line segmentp`pr must be
eitherp` or pr. With the help of the perpendicular line from
q to p`pr, as illustrated in Figure 6(b), this could be argued
using proofs by contradiction again. This concludes thatq∗

must belong toCP .
Using Lemma 2 in a reverse angle, we can derive that only

points inCP will have reverse furthest neighbors w.r.t the data
setP . In other words:

Lemma 3 For a data setP and a pointp ∈ P , fvc(p, P ) = ∅
if p /∈ CP . Furthermore, any pointp′ ⊂ CP (hereCp denotes
the area enclosed by the convex hull), fvc(p′, P

⋃
{p′}) = ∅.

Proof: The first claim is a special case of the second
claim, as all points fromP − CP are strictly (not on the
edges) contained by the polygon area defined byCP . Hence,
consider a random pointp′ ⊂ CP , if p′ /∈ P , updateP
to P ′ = P

⋃
{p′}. By the property of the convex hull, it

is straightforward to show thatCP ′ = CP as p′ is strictly
insideCP (see Lemma 4). This indicates thatp′ /∈ CP ′ . Now,
for any random query pointq in the spaceS, by Lemma 2,
fn(q, P ′) 6= p′ asp′ /∈ C′

P . This indicates that there is not even
a single point in the space will takep′ as its furthest neighbor
w.r.t P ′. By the definition of the furthest Voronoi diagram,
fvc(p′, P ′) = ∅.

Combining this result with Lemma 1, another way to
interpret Lemma 3 is that only the points fromCP will have
the reverse furthest neighbors for a data setP . Given a query
point q, we could view it as an insertion toP and obtain a
new data setP ∗ = P

⋃
{q}. It is critical to decide whether
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Fig. 7. CHFC algorithm.

q belongs to the set of vertices defining the convex hull of
P ∗. A good news is thatCP∗ could be computed efficiently
from CP andq alone, without looking at the rest of points in
P − CP .

Lemma 4 For a data setP and its convex hullCP , after
adding a pointq to P , if q is strictly contained byCP (q ⊂ CP ),
thenCP

⋃
{q} = CP ; otherwise,CP

⋃
{q} = CCP

⋃
{q}.

Proof: This straightforwardly follows from the definition
of the convex hull. Figure 7(a) gives its intuition.

Finally, it remains as a problem how to computeq’s furthest
Voronoi cell efficiently whenq is indeed a vertex for the
convex hull of P

⋃
{q} . An important result is stated next

that fvc(q, P ) could be computed using onlyCP .

Lemma 5 For a data setP and its convex hullCP , for a point
p ∈ CP , fvc(p, P )=fvc(p, CP ).

Proof: We use proof by contradiction. Suppose this claim
is not correct. Then there must be a pointp′ ∈ P − CP

s.t. its furthest Voronoi cell could shrink the area enclosed
by fvc(p, CP ). However, by Lemma 3, fvc(p′, P = ∅). This
completes the proof.

1) The Main Algorithm:Lemma 3, 4 and 5 (together with
Lemma 1) immediately yield an efficient algorithm for the
MRFN problem. Assuming for now that we have obtainedCP

(details will be discussed soon), given a query pointq, we
can quickly return empty ifq ⊂ CP . Otherwise, we setP ∗ =
P

⋃
{q} and computeCP∗ using only CP and q. Next, the

furthest Voronoi cell ofq in P ∗ is calculated using onlyCP∗ .
Finally, a range query using fvc(q, P ∗) is executed on the R-
tree of P to retrieve the RFN of q. This is referred as the
convex hull furthest cell (CHFC) algorithm.

Figure 7(a) demonstrates CHFC’s idea. If the query point is
q1, sinceq1 ⊂ CP , CHFC algorithm will immediately return
empty forq1’s RFN. Lemma 4 guarantees thatCP

⋃
{q1} = CP .

Then, by Lemma 3 fvc(q1, P
⋃
{q1}) = ∅. Hence, by Lemma

1, there will have no points takingq1 as their furthest neighbors
among all points inP . On the other hand, if the query point
is q2 whereq2 6⊂ CP , CHFC algorithm will obtainP

⋃
{q2}’s

convex hull by applying Lemma 4. Essentially, only points
from CP and q2 (i.e., {p1, p2, p3, p4, p5, q2}) will be used to
compute the convex hull ofP

⋃
{q2}. The updated convex

hull is simply p1p2q2p3p4p5p1. Next, sinceq2 is one of the
points in this convex hull, we need to compute its furthest
Voronoi cell and Lemma 5 achieves this using only points

Algorithm 2 : CHFC(Queryq; R-treeT )

ComputeCP with T using either the distance-priority or1

the depth-first algorithm [9];
if q ⊂ CP then return ∅;2

else3

ComputeCP∗ usingCP

⋃
{q};4

Set fvc(q, P ∗) equal to fvc(q, CP∗);5

Execute a range query using fvc(q, P ∗) on T ;6

from CP
⋃
{q2}. Finally, q2’s RFN includes all points in the

area covered by its furthest Voronoi cell as Lemma 1 states.
In this case, its RFN p9 will be successfully retrieved.

The efficiency of the CHFC algorithm is achieved in two
folds. First of all, all query points that are enclosed byCP are
extremely fast to deal with. Secondly, for the rest of query
points, computing their furthest Voronoi cells becomes much
more efficient by taking into account only the points inCP

(instead of doing this viaP ). In practice,|CP | << |P |. Of
course, this reduction in size may not always be the case. It
is fairly easy to construct examples whereP = CP , e.g.,P
only contains points on edges of a rectangle. Nevertheless,
for most real life data sets we expect that|CP | << |P | (or
at least|CP | < |P |) holds and we could storeCP in main
memory. This fact is verified in our experiments. For the case
when this is violated, i.e.,CP is still too large to be stored
in main memory, one can use the PFC algorithm or use the
approximate technique we will discuss in Section V-A.

2) Computing P’s convex hull:There are I/O efficient
algorithms for computing the convex hulls of disk-based data
sets. Specifically, convex hulls in two dimension can be com-
puted in external memory with the help of sorting in external
memory [16]. This means that we can find the convex hull
of the disk-based data setP (|P | = n) with O( n

B logM
n

MB )
I/Os for a main memory buffer withM pages, assuming the
page size isB. From a practical point of view and to deal
with data in higher dimensions, one would like to compute
the convex hull ofP using a R-tree. Fortunately, this problem
has been studied in the literature and one can apply either
the distance-priority or the depth-first algorithm from [9]. The
complete CHFC algorithm is presented in Algorithm 2.

If P is static, an obvious optimization for the CHFC algo-
rithm is to pre-computeCP and avoid the call to the distance-
priority (or depth-first) algorithm at Line1 completely. As
argued above, we assumeCP can fit into main memory in this
case, hence, any main memory convex hull algorithm could
be applied in Line4. In fact, one could apply main memory
dynamic convex hull algorithm [13] here to get an almost
logarithm computation bound.

3) Dynamically MaintainingCP : WhenP is static, CHFC
algorithm is extremely efficient after pre-computingCP once.
However, under dynamic insertion and deletion toP , CHFC
has to computeCP for every query and this could greatly de-
grade the query performance. IfP fits in main memory, recent
theoretical study has confirmed that dynamically maintaining
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the convex hull ofP could be done almost in logarithm time
[13]. The challenge is how to do this efficiently utilizing R-tree
whenP is disk-resident.

We distinguish two cases, namely, point insertion and point
deletion. Point insertion is easy to handle as suggested by the
Lemma 4, assumingCP fits in memory. The main obstacle is
when point is deleted as shown in Figure 7(b). Once again,
the easy case is when the deleted pointp is inside the convex
hull of P (p ⊂ CP ), e.g., p7 in Figure 7(b). Obviously, in
this situationCP will not be affected by the deletion. On the
other hand, when the deleted pointp is an existing vertex for
the convex hull ofP (p ∈ CP ), updatingCP is necessary. For
example, deletingp2 in Figure 7(b) will eventually lead to
addingp10 to CP .

Whenp ∈ CP is deleted, we observe that most part ofCP

is intact except for its left and right neighbors (denoted asp`

and pr). New vertices may be introduced in betweenp` and
pr. A straightforward solution is to retrieve all points, using
R-tree, contained by the polygonp`pprp` (p1p2p3p1 in Figure
7(b)) and find the local convex hull for these points in main
memory. But this could be potentially expensive (ifp`pprp`

encloses large number of points).
A better approach is to adapt the qhull algorithm [7] to R-

tree in this setting. In the qhull algorithm, it is shown that
given two verticesp` andpr in the convex hull, a vertex (if it
indeed exists) in the final convex hull that locates in between
p` and pr could be located by finding the point that has the
largest perpendicular distance top`pr. This is true for both
sides ofp`pr. Recursively applying this step, all vertices in
the final convex hull that locate in betweenp` and pr could
be identified.

In our case, we only need to search for points on one side
of the p`pr, i.e., the side that the deleted pointp locates at.
An example demonstrating this idea is shown in Figure 8(a).
When p2 is deleted, we findp` = p1 andpr = p3 from CP .
Searching along the side thatp2 locates at, the point with
the largest perpendicular distance top1p3 is p7. It is added
to CP . Next, we recursively apply the same step top1p7 and
p7p3, still only to the side thatp2 locates at. In this case,p8

will be retrieved and one more recursion usingp1p8 andp8p7

will terminate the search. The updated convex hull becomes
CP = {p1, p8, p7, p3, p4, p5}. The only puzzle left is to doing
these steps efficiently in R-tree.

Using an R-tree, our problem essentially reduce to the
following. Given a line segmentp`pr, find the point from the
R-tree that has the largest perpendicular distance top`pr and it

Algorithm 3 : MaxVP(Queryp`, pr, p; R-treeT )

Initialize the priority queueL with T ’s root node;1

L orders entries in decreasing order of their maxVdist;2

L.minVdist keeps the max minVdist among all its entries;3

while L is not emptydo4

Pop the head entrye of L;5

if e is point then return e;6

else7

for each childui of e do8

minVdistui
= ∞, maxVdistui

= −1;9

for each corner pointx of ui do10

if x and p are on the same side ofp`pr11

then
Get the perpendicular distancesx12

from x to p`pr;
sx updates minVdistui

, maxVdistui
;13

if maxVdistui
> L.minVdistthen14

Insertui into L;15

if minVdistui
> L.minVdistthen16

L.minVdist=minVdistui
;17

must locate on one specified side ofp`pr. This further reduces
to the next problem, given a line segmentp`pr, and an MBRe,
what is the maximum and minimum of the maximum possible
perpendicular distances from a point in the MBRe to the line
segmentp`pr?

Lemma 6 For an axis-parallel MBRe, both the maximum and
minimum of the maximum possible perpendicular distances
from a point in the MBRe to any line segmentp`pr are
bounded by the corner points ofe.

Proof: W.l.o.g. assume thatp`pr ande are in the positive
quadrant of the plane. Let̂c be the unit vector perpendicular
to p`pr and point to the side ofp`pr we are interested in. We
need to findx∗ = arg maxx∈e ĉT x. Note that this is a linear
program with four linear constraints, is feasible and bounded.
Hence by the fundamental theorem of Linear Programming,
one of the vertices ofe must yield the optimal solution [11].
The minimization problem can be handled similarly. A similar
problem has also been studied by [9].

With Lemma 6, it is possible to migrate the aforementioned
algorithm for the point deletion to an R-tree efficiently. Weuse
minVdist and maxVdist to denote the minimum and maximum
of the maximum possible perpendicular distance for a point
from an MBRe to a line segmentp`pr. A special note in our
setting is that minVdist and maxVdist are only bounded by
the corner points ofe that locate on the same side ofp`pr

as the deleted pointp. Consider the example in Figure 8(b),
supposep2 ∈ CP has been deleted. Its left and right neighbors
in CP arep1 andp3 respectively. First, we can safely prune all
MBRs that locate completely on the other side ofp1p3, e.g.,
e3. Next, for the rest of MBRs, we calculate their minVdist



Algorithm 4 : DynamicCH(CP , op, p; R-treeT )

if op is Insertionthen1

if p ⊂ CP then return CP ;2

else return CCP

⋃
{p};3

else if op is Deletionthen4

if p ⊂ CP then return CP ;5

else6

Find p’s left (right) neighbor,p` (pr), in CP ;7

CP : {. . . , p`, p, pr, . . .} 7−→ {. . . , p`, pr, . . .};8

Call QHullRtree(p`, pr, p, CP , T );9

/* qhull algorithm adapted to R-tree */
QHullRtree (p`, pr, p, CP ; R-treeT )10

11

Let p′ =MaxVP(p`, pr, p, T );12

if p′ = ∅ then return ;13

else14

CP : {. . . , p`, pr, . . .} 7−→ {. . . , p`, p
′, pr, . . .};15

QHullRtree(p`, p
′, p, CP , T );16

QHullRtree(p′, pr, p, CP , T );17

and maxVdist using their corner points that locate on the same
side ofp1p3 asp2. Note that we can safely prune an MBR if its
maxVdist is smaller than the minVdist of some other MBRs,
e.g.,e1 can be pruned in the presence ofe2 as the best point
from e1 cannot possibly beat at least one point frome2 (in
terms of the perpendicular distance to the query line segment).
We exploit the R-tree nodes in a priority queue that orders
entries by the decreasing maxVdist value. The search could
terminate as soon as we find one point at the head of the
queue or when the queue becomes empty. The Max-Vertical-
Point (MaxVP) algorithm is listed in details in Algorithm 3.

With these discussions, we could dynamically maintain
CP using the R-tree. This reduces the cost of the CHFC
algorithm by avoiding the call on Line1 in Algorithm 2. The
DynamicCH algorithm in Algorithm 4 summarizes our idea
presented above. We would like to point out that Algorithm 4
is presented for the two-dimensional case. For higher dimen-
sions, certain generalization must be adapted. For example,
instead of looking at one side for a segment from the convex
hull, we need to examine one side of a plane.

V. B ICHROMATIC REVERSEFURTHEST NEIGHBORS

After resolving all the difficulties for the MRFN problem
in Section IV, solving the BRFN problem becomes almost
immediate. From the discussion in Section IV, all points inP
that are contained by fvc(qi, Q) will have qi as their furthest
neighbor. This immediately implies that BRFN (q, Q, P ) =
{p ∈ P ∧ p ∈ fvc(q, Q)}. Furthermore, Lemma 5 guarantees
that fvc(q, Q)=fvc(q, CQ). For example, in Figure 9 the reverse
furthest neighbor ofq1 is {p4} which is contained in the
fvc(q1, Q) = fvc(q1, CQ). Lemma 3 indicates that only those
points in CQ will have reverse furthest neighbors. Hence, an
efficient R-tree based query algorithm for finding the RFN of

Algorithm 5 : BRFN(Queryq, Q; R-treeT )

Compute the convex hullCQ of Q;1

if q ⊂ CQ then return ∅; //q /∈ CQ2

else3

Compute fvc(q, CQ);4

Execute a range query using fvc(q, CQ) on T ;5

q1p1 p2

q3

p5

(x`, y`)

(xh, yh)

p3

e
p6

q2

p4

q4
fvc(q2)

fvc(q3)

fvc(q1)

Fig. 9. The BRFN algorithm.

q is to only check those MBRs that intersect with fvc(q, CQ)
when q ∈ CQ, e.g., in Figure 9 we need to access the MBR
e that intersects with fvc(q1) to retrieve its reverse furthest
neighbors. Ifq = q4, we can return∅ immediately. Algorithm
5 details this method.

A. Disk-Resident Query Group

One limitation with our discussions so far is the problem
of handling the query group with a massive size that do not
fit in internal memory. As we have discussed, one could use
the convex hull ofQ to reduce the number of points in the
query group. There are I/O efficient algorithms for computing
the convex hulls of disk-based data sets. In two dimensionCQ

could be found withO(m
B logM

m
MB ) I/Os [16] for a main

memory buffer withM pages, assuming the page size isB
and |Q| = m. Alternatively, if Q is indexed by R-tree, we
could simply use the algorithm from [9]. For most cases, we
expect that|CQ| � |Q|. However, one could easily construct
special cases where|CQ| = |Q|, e.g., all points inQ are
vertices of a convex polygon. To handle such special instances,
we propose to obtain an approximate convex hull ofQ using
Dudley’s approximation [36]. Dudley’s construction generates
an approximate convex hull ofQ (denote it asACQ) with
O(1/ε(d−1)/2) vertices with maximumHausdorff distanceof
ε to the convex hull ofQ. The Hausdorff distancemeasures
how far two convex polygonsS1 andS2 are from each other.
Informally, the Hausdorff distance betweenS1 and S2, is
the longest distance an adversary can force one to travel by
choosing a point in one of the two sets, from where one then
must travel to the other set. Formally, letX and Y be the
vertices ofS1 andS2 respectively, then:

dH(S1, S2) = max (sup
x∈X

inf
y∈Y

||x − y||, sup
y∈Y

inf
x∈X

||x − y||)

For fixed dimensions, this means that we can always get
an approximate convex hull ofQ with constant number of
vertices. Obviously, the smallerε is, the more accurate the
approximation is and the larger the size of the approximate



convex hull is (since Dudley’s approximation is an inner
approximation of the convex hull).

Roughly speaking, the edges of ofACQ are within ε dis-
tances from edges ofCQ. Clearly, there is a trade-off between
the approximation quality and the size ofACQ. Henceforth, for
a disk-based query groupQ, we first compute its convex hull
using the I/O efficient algorithm. IfCQ is still too large to fit
in main memory, we replaceCQ with Dudley’s approximation
and specify the size ofACQ of our choice.

The Dudley’s approximation was proposed to work with
main memory data sets [36]. For our purpose, we need to
extend it to work with external data sets. To computeACQ in
external memory, one can build an index that supports nearest
neighbor search with logarithm IOs guarantees (such as the
BBD tree[2]) onO(1/ε(d−1)/2) points scattered on the sphere
containing the convex hull ofQ and then do a scan of the
convex hull and compute the reverse nearest neighbor of each
point read fromCQ. This approach requires only linear I/Os
on CQ (excluding the I/Os to computeCQ). The following
lemma summarizes this result. The details of this approach
will appear in the full version.

Lemma 7 For a disk-based query groupQ, one could al-
ways get a query groupQ′ with sizeO(1/ε(d−1)/2) using
O(m

B logM
m

MB ) I/Os, wherem = |Q|, B is the page size
and M is the number of pages in the main memory, s.t. the
Hausdorff distance between edges inCQ′ andCQ is at mostε.

The introduction of Dudley’s approximation only creates
an additive errorε on the corresponding edges betweenCQ

and ACQ. Hence, for a query pointq and query groupQ,
if CQ is too large to fit in main memory, we calculateACQ.
If q is inside the convex polygon defined byACQ and away
from any edge of this polygon by more thanε, then it does
not have reverse furthest neighbors. Otherwise, we find the
nearest neighbor ofq in the vertices ofACQ, sayq′, and apply
algorithm 5 usingq′ andACQ. This algorithm is referred as
the A-BRFN algorithm and our experiment confirms that it
has high accuracy.

As a final note, the approximate convex hull idea could be
also applied to the CHFC algorithm for the MRFN problem in
Section IV-B whenCP is too large to fit in main memory.

VI. EXPERIMENT

All proposed algorithms have been implemented into the
widely used, disk-based spatial index library1, Standard
geometric operations, e.g. convex polygon intersection, are
provided by the CGAL library2. Finally, our I/O efficient
approximate convex hull algorithm is developed based on the
library from [36]. All experiments were executed on a Linux
machine with an Intel2GHz cpu. For both R-tree and heapfiles
the page sizeB is set to4KB.

Data sets.The real data sets were obtained from thedigi-
tal chart of the world serverwhere points define the road

1www.research.att.com/∼marioh/spatialindex/index.html
2www.cgal.org

(a) correlated bivariate (CB). (b) random clusters (R-Cluster).

Fig. 10. Different distribution types of synthetic data sets and query groups.
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Fig. 11. MRFN algorithms: cpu computation and IOs analysis.

networks from California (CA), San Francisco (SF) and USA
(US). CA also contains large number of points of interest (e.g,
restaurants, resorts). These data sets are available online 3. To
create a data set of larger size, we merge them into one data
set (denoted asMap) after normalizing each data set into the
spaceL = (0, 0) × (100000, 100000). Points in CA, SF and
US have various degrees of skew distributions in the space.
Map contains476, 578 number of points. There are three kinds
of synthetic data sets used in the experiment: uncorrelated
uniformly generated (UN) points, correlated bivariate (CB)
points and random-cluster distribution (R-Cluster) points in L.
An example of the CB and R-cluster data sets is illustrated in
Figure 10. In this work we concentrate on the two-dimensional
space. How to generalize our algorithms to higher dimensions
as well as the experiments for those are interesting extensions
to this work.

Performance measurement.For all algorithms, we measured
their performance using two metrics, namely, theCPU time
and thenumber of IOs. We would like to highlight that the
CPU time measure thepure computation costof an algorithm.
It is NOT the total execution time of the algorithm. The total
execution time is simply the CPU time plus the IO cost.
In most cases, the IO cost dominates the overall execution
time. Finally, by default1,000queries were generated for each
experiment and we report the average forone query.

A. Algorithms for theMRFN problem

Experiment Setup. For the MRFN problem, we generated
synthetic data sets whose size are equal to the size of Map
data set. The query point is randomly selected from the space
L. For brevity, only the results from the UN, R-Cluster and
Map data sets are reported.

3www.cs.fsu.edu/∼lifeifei/SpatialDataset.htm
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Fig. 12. DynamicCH algorithms: deleting vertex ofCP .

The PFC and CHFC algorithms. We first study the case
whenP is static. In this setting, we can optimize the CHFC
algorithm by pre-computingP ’s convex hull using R-tree and
storeCP for query processing. Figure 11 compares the cost
of these two algorithms against the brute-force search (BFS)
based approach. To make the comparison fair, we optimize the
BFS algorithm by terminating the search as early as possible.
For a pointp ∈ P , we first calculate its distance toq and then
calculate its distance to every other pointp′ in P . However,
whenever there is ap′ s.t. |p−p′| > |p− q|, we know for sure
that p /∈MRFN (q, P

⋃
{q}) and the BFS algorithm continues

to the next point inP . Clearly, Figure 11 indicates that both
PFC and CHFC outperform the BFS algorithm in terms of
both the CPU cost and the number of IOs. Especially, for the
dominant cost of IOs, both algorithms are at least two orders
of magnitude better.

Among the three data sets, BFS algorithm has almost
constant computation cost as well as the number of IOs. For
both the PFC and CHFC algorithms, R-Cluster data set results
in higher costs. This is easily explained by the more scattered
geometric locations of points in the R-Cluster case. When|P |
is static andCP is known, it is easy to expect that CHFC
outperforms PFC, as for a large number of query points CHFC
could be extremely efficient. This is confirmed by Figure 11.

Dynamically maintaining CP . One advantage of the PFC
algorithm is that it requires no additional effort to work
with dynamic data set. On the other hand, when insertion
and deletion of points happen inP , CHFC algorithm has to
dynamically maintainCP using Algorithm 4. Following our
discussions, insertion of points is easy to handle and the worst
case is the deletion of a pointp that happens to be one of
the vertices inCP . Section IV-B.3 discussed this problem in
details and we executed an experiment to verify the efficiency
of the DynamicCH algorithm in this worst case. For a data set
P , we first computed itsCP using the R-tree based algorithm
from [9]. Then, for each pointp in Cp, we deletedp and
computed the new convex hull forP − {p}. Note that, for
each such pointp we always started with the originalCP

andP . The average cost of maintaining the convex hull after
deleting one point inCP , in terms of both the cpu computation
and number of IOs, of our DynamicCH algorithm is shown
in Figure 12. They essentially reflect the cost of QHullRtree
algorithm based on the MaxVP algorithm when we randomly
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Fig. 13. Pruning with the convex hull ofQ.

delete one point fromCP . We repeated this experiment for
data sets of different sizes as well as different distributions.
Figure 12 clearly shows that our approach is highly effective,
with cpu computation cost at around0.2 milliseconds and IOs
lower than10. More importantly, our algorithm scales nicely
with the increase in size for the data setP . Uniform distributed
data set generates higher maintenance cost as the chance of
containing more points in the polygon areap`pprp` is higher.

Given these results, we can safely claim that CHFC is
extremely efficient in practice. Of course, there definitely
exists data sets such that dynamically maintaining the convex
hull could be expensive (p`pprp` contains large number of
points), orCP does not fit into main memory. We could use
PFC algorithm in those cases.

B. TheBRFN algorithm

Experiment Setup. For the BRFN problem, the cost of the
query depends on several critical factors. They include the
location ofQ, the range (its areaA) of Q and how points are
distributed within the range. Lastly, the size ofQ also plays a
role. Given these observations, a random query is generatedas
follows. We specify|Q| and itsA (as a percentage of the area
for the entire spaceL). Next a random location inL is selected
as the center of the query group. Three types of distributions
discussed above were used to generate|Q| number of points
within the specified area. Examples of query groups with these
distributions are given in Figure 10. In addition, we randomly
select a query pointq ∈ Q after generatingQ. We distinguish
two cases:q is randomly selected fromQ (RQ strategy) orq
is randomly selected fromCQ (RCQ

strategy).

Pruning power of CQ. Figure 13 shows that for various query
distributions,CQ could significantly reduce the size of the
query group. We plot the averages together with the5%−95%
confidence interval. ForQ = 1000, |CQ| is only about2%
of |Q|. Furthermore, the pruning power ofCQ increases (see
Figure 13(b)) for larger|Q|’s as |CQ| grows at a much slower
pace than|Q| does. Lastly, Figure 13(a) indicates that|CQ|

|Q|
is roughly a constant over the query area and UN distributed
query groups have larger|CQ| over correlated and clustered
groups. In most of our experiments, the results from the CB
and R-Cluster query groups are quite similar. Hence, we only
report the results from UN and CB query groups.

Algorithm BRFN. The BRFN algorithm (Algorithm 5) takes
advantage of the convex hull ofQ and converts the BRFN
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Fig. 14. BRFN algorithms: cpu computation and IOs analysis, Map data set.

problem into a simple range query with a convex polygon.
Figure 14 confirms its superior performance over the brute-
force search (BFS) algorithm. The BFS algorithm in the BRFN

case simply calculates the furthest neighbor among all points
in Q for each pointp ∈ P . If it is equal to q, then p is
included in the BRFN (q, Q, P ). Note that in Figure 14 all
the y-axes are plotted in the log scale. The BRFN algorithm
is in general2 to 4 orders of magnitude more efficient than
the naive approach and the gap in performance is enlarging
as |Q| increases (Figure 14(c) and 14(d)). The cost of the
BRFN algorithm does increase w.r.t the increase in the area of
the query group (Figure 14(a) and 14(b)), but it is not very
sensitive to such increases as shown in the log scale. For the
BRFN algorithm, ifq is a random point fromQ−CQ, obviously
no range query is required on the R-tree and its query cost
is tiny. Given the fact that majority of points inQ will not
be a member ofCQ (as shown by the convex hull pruning
experiments from this section), the BRFN algorithm will be
highly efficient for the case ofq ∈ Q as reflected by Figure
14. TheUN type of query groups reduces the cost of the
BRFN algorithm compared to theCB type in Figure 14, in
terms of both cpu computation and IOs. The furthest cells of
query points are distributed more evenly in theUN query
groups due to the uniformity. This indicates smaller furthest
cells than those from theCB query groups. Hence, BRFN is
more efficient on theUN type of query groups.

Finally, we observe an interesting pattern for the IOs cost
of the BRFN algorithm for query groups of different sizes. It
is in fact decreasing while|Q| increases (Figure 14(d)). Recall
that |CQ| increases much slower than|Q| does. Hence, for the
RQ strategy, the chance thatq ∈ CQ is getting smaller. This
will reduce the overall cost. On the other hand, for theRCQ

strategy, as|CQ| still contains more points when|Q| increases,
the furthest cell of an individual pointq ∈ CQ is smaller which
leads to the reduction in the query cost.

C. Query groups of large size

Experiment Setup.Concentrating on the BRFN problem, we
use the same setup as in Section VI-B, but with larger query
groups. The algorithm proposed in Section V-A for the BRFN

query has much lower cost than the brute-force search and very
good approximation qualities. For brevity those results were
omitted and we focused on reporting its query efficiency.

Approximate convex hull based algorithm.There are cases
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Fig. 15. Approximate convex hulls:A = 3%, Map data set.

where not only |Q| is large, but also|CQ|. These cases
rarely happen in practice. But it is not entirely impossible.
Efforts have been devoted in Section V-A to deal with such
scenarios when they do arise. The idea is to develop IO
efficient approximate convex hulls (ACQ). Figure 15 reports
the performance of such an approach. The algorithm we have
developed could be applied on theACQ instead of theCQ and
we denote it as A-BRFN. Our algorithm outperforms the basic
brute-force search by orders of magnitude. By treatingQ as
external memory data sets, computing its approximate convex
hull incurs a cost that is similar to the sorting in external
memory. Hence, we see an increase in terms of both cpu
computation and IOs for our algorithm when|Q| increases.

From the discussion in Section V-A, the error introduced
by the approximation is independent of|Q| and is only
determined by|ACQ|. When |ACQ| = 20, ε is 0.01 in two
dimension. Hence, our algorithm achieves excellent approxi-
mation qualities.

D. Scalability of various algorithms

Experiment Setup. Finally, we investigate the scalability of
our algorithms w.r.t the size of the data setP . We use the
same setup as in Section VI-A and VI-B, but with R-Cluster
data sets of different sizes asP .

Scalability. For the BRFN problem, we fix the query area
as A = 3% and |Q| = 1000. The CB query type is used.
Figure 16 shows the scalability of various algorithms. More
specifically, Figure 16(a) and 16(b) show the results for the
MRFN queries. Figure 16(c) and 16(d) show the results for the
BRFN queries. Note that in both Figure 16(b) and 16(d), the
number of IOs were plotted in the log scale. Compared to the
brute-force search, all of our algorithms scale nicely withthe
increase in size of|P |. When |P | = 2, 000, 000, BFS takes
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Fig. 16. Scalability: cpu computation and IOs, R-Cluster data set.

more than10, 000 IOs whereas our algorithms take from only
a few to less than100 IOs.

VII. C ONCLUSION

This paper studies the reverse furthest neighbor queries that
has many real life applications. Our work solves the RFN

queries in both monochromatic and bichromatic versions. We
present R-tree based, efficient algorithms for both MRFN and
BRFN problems with excellent pruning capability. All of our
algorithms allow dynamic updates to the data sets. Further-
more, it has been adapted to work with disk-resident query
groups in the BRFN case. Future work includes generalizing
our algorithms to higher dimensions, dealing with moving
points and continuous queries, and answering RFN queries in
a road-network or any Ad-Hoc subspaces.
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