

FACT: A Fusion Architecture with Contract Templates

for Semantic and Syntactic Integration

R. Gamble, R. Baird
Software Engineering & Architecture Team

University of Tulsa
800 S. Tucker Drive.

Tulsa, OK 74104
gamble@utulsa.edu

L. Flagg, M. McClure
Sentar Incorporated

4900 University Square, Suite 8
Huntsville, AL 35816
lflagg@sentar.com

Abstract

Linking components with end-user requests for

processing is problematic when there are fundamental
language differences between component specifications
and how individual users state their needs. Appropriate
components may not exist, the users may not know if a
component exists until a one matching their requirements
is generated, or the users may adjust their requirements.
For complex systems governed by a community of
interest, we introduce a Fusion Architecture coupled with
Contract Templates (FACT). The Fusion Architecture
assists with syntactic and semantic unification of user
directives. Contract Templates provide a standardized
mechanism to collect heterogeneous systems within
domains of interest. Based upon specific analysis of each
component, Contract Templates attach connectors to
generate integrated systems to which queries can be
directed. A case study demonstrates how FACT enables
military analysts to direct the use of simulation software
for the experimentation of command and control
behaviors within missions.

1. Introduction

Software has advanced to the point where domain
constituents simultaneously provide and consume
information introducing an array of competing
components that can appropriately respond to meet
system goals. We define a component to be a set of
software functionalities defined through non-standardized
and often distinct semantic descriptions which are
discoverable by a community of users that are engaged to
perform a specific software-related task. Components can
be a variety of software types, including COTS, web
services, games, simulations, and legacy systems. Like
social communities, software communities of interest are
related by geographic areas, an administrative domain, or

common goals. Thus, their general identity, functionality,
and interaction can be predetermined [1]. The domain of
the community narrows the scope of components needed
to fulfill their functional requirements. However,
connecting a community to components without knowing
comprehensively the individual features and functions
expected can result in interoperability problems.

One challenge is reducing the time invested in
reviewing a component for fit, functionality, and unique
contribution to the community. The goal is for rapid,
decisive access to components, as facilitated by smooth,
seamless integration when components are dynamically
available, such as services for emergency management.
This access requires an understanding of the component
functions and the interface it offers to the community.
However, even with complete access to documentation,
API specifications, and source code, this integration
process may still be troublesome. Software developers
may describe functionality using completely different
characteristics than the community of users resulting in
mismatched semantics. Guaranteeing that the user goal
can be matched to the service results is part of the
integration comprehension that is needed.

There are often syntactic and semantic differences in
the interfaces provided by software components. A
software component may expect to be invoked in a
particular manner, may only accept certain types of input
data, or may not expose a standard set of APIs. Rarely do
software components provide all the necessary
information required to implement integration [2]. These
issues indicate that analysis efforts are best spent
accumulating the properties of software components and
bridging the gaps between their uses and styles.

Throughout the remainder of this paper we introduce
FACT and its two main technologies: a Fusion
Architecture and Contract Templates. FACT promotes
plug-and-play incorporation of new technologies with
multiple modes of operation and interaction. Emphasis is

IEEE IRI 2008, July 13-15, 2008, Las Vegas, Nevada, USA
978-1-4244-2660-7/08/$25.00 ©2008 IEEE

380

placed on integrating components with the community
using Contract Templates to determine functional
interoperability. The Fusion Architecture customizes the
community interface according to the available services
and their expressed functionality. It maintains semantic
consistency within the infrastructure, allowing refinement
by both the community and the Contract Templates as
components are introduced. An implementation of FACT
for a military community that fuses wargames for
simulation experimentation and analysis is presented.

2. Background

Integrating complex, heterogeneous components
within software architectures can be accomplished by
inserting connectors to establish seamless interaction [3,
4]. A wide variety of software connectors have been
cataloged to manage syntactic issues [5], and correct
application of connectors is required for seamless
integration. Therefore, ad hoc connector usage is not only
inefficient but also may not provide adequate linkage
between users and functions in multi-component systems.
Most research in the use of connectors is associated with
integrating components with other components, not
linking components to users. Developing custom-made
connectors for each component facilitates integration, but
disregards accepted software reuse practices. Reuse of
connectors can be beneficial to reduce customization and
maintenance issues [5]. Deeper analysis of the properties
and characteristics of software components is needed to
uncover the specific connector styles for an integration
scenario [6]. Thus, properties must be incorporated into a
connector when delivering functionality. Increased
uniformity is needed for services, tasks, and results to be
delivered to the community for viewing and comparison.

Specifications written according to Architecture
Description Languages (ADLs) can describe the overall
architecture of software components in relation to the
community and assist in determining which connectors
need to be written or applied to specific components for
integration. Expanding ADLs with information about the
structure and the state of the environment has been used
to provide users with information about optimal
configurations [7]. This research focuses on selecting
components based on performance indicators, not on the
functionality that its services provide. Frameworks have
been generated that formally define the interfaces of
multiple software components [8]. However, the goal of
these systems has been for the interchange of data
between components and has not focused on
standardizing fusion with end-users. Furthermore,
execution of the components may result in a problems
due to expectation of communication or interactivity [9].

Semantic issues arise among providers and users even
in the context of the same domain or task expectation.
Therefore, a framework is needed to semantically match
the appropriate components to a domain, community,
task, and goal by clearly defining the needs of the
community and then comparing this information to the
data (often, meta-data) given in the provider’s
specifications. Analysis must be conducted to uniformly
configure the communication expectations between
components and users. Each component expects input to
be formatted in a particular manner further requiring the
translation and management of user requests. Thus,
uniformity is essential to rapid access and information
delivery.

Ontologies formally define concepts within a domain
such that anyone interested in the domain can consistently
understand their meaning unambiguously. Ontological
specifications enable providers to express the
functionality that their software component contains so
users can understand the specific semantics attached to
that component. However, ontologies may vary in the
depth of their expressiveness. Though, ontologies have
been developed for the domain of games [10], these
specifications would provide very little semantic use to a
community that wishes to utilize commercial game
engines for military simulations since it lacks details
which would be contained within a military ontology.
Sometimes the union of one or more semantic
specifications is required for useful meaning to become
apparent. When semantics are not accounted for, they can
introduce integration problems that may not be apparent
until a system is deployed.

Traditional component integration is accomplished via
the use of established communication platforms and
connector software. The communication platform is some
form of middleware that often spans many technologies
and programming environments to address issues of
heterogeneity including: languages, connectivity,
dynamism, performance, and reliability [11]. This can
resolve some of the difficulty in component integration.
Frequently, however, the attachment of additional
connectors is necessary to link software components with
middleware [12]. Thus, an architectural understanding of
the middleware and the participating components is still
required. Furthermore, middleware does not embody
support for resolving the semantic problems associated
with components.

Typical middleware solutions focus on providing
cross-communication between multiple heterogeneous
software components. The middleware technology serves
as a communication platform linking the individual
components together. Connectors are used to link the
individual components with the middleware, and the
middleware facilitates component communications.
Communication can be established between components

381

within the same domain or between domains. Details
about linking the individual users of the community with
the components are typically left to the community to
resolve after integration has occurred. Hence, a different
architecture is needed within which a community can
engage multiple, available components to accomplish a
task. The properties of a community, the components, and
sources of information are those that:

• Contribute to the overall community tasks and
information needs

• Are stand alone & autonomous, that is, do not rely
on or expect to interact with other components that
are not part of its own infrastructure

• Require fusion to incorporate unique
characteristics, identify redundant or similar
characteristics provided by desired and fused
components, and determine real-time availability

FACT needs to place sufficient emphasis on
generating a consolidated information space such that
each user can take advantage of available components
and services as needed. It assumes that connectors are still
required but seeks to establish uniformity across them.
Thus, the goal of FACT is to resolve the semantic and
syntactic difficulties associated with linking a diverse set
of components to a community. Furthermore, the solution
should be practical and easy to develop. Our approach is
to combine connectors and an ontological foundation to
provide access to a critical mass of components, while
reducing the complexity of integration.

3. Fusion Architecture

In this section we introduce the first portion of FACT,
the Fusion Architecture. The Fusion Architecture uses
two interfaces to link users to components, resolving the
semantic and syntactic issues common to heterogeneous
software systems. Figure 1 depicts the entities within the
Fusion Architecture that are used to link multiple users to
component providers (providers hence forth) via a multi-
user interface and a fusion interface.

The multi-user interface specified by the Fusion
Architecture exposes to the user only the currently
connected component providers. Any user requests
directed through the interface are guided to one or
multiple of these providers according to their
appropriateness to achieve the user’s goal. The user may
have no knowledge of which provider was selected.

The fusion interface is used to communicate in a
loosely coupled manner with available providers. The
interface performs the actual linking between the
community of users and the specific components that
have been fused into the architecture. The key challenge
is to normalize the set of semantic properties associated
with the provider and the functionality it supplies. Once

the selection of a provider is accomplished for the user
via the multi-user interface, the Fusion Architecture uses
descriptions of each component, specified by Contract
Templates (see Section 4), to map the properties of each
provider to an internal representation understandable by
the community. Fusion calls incorporate each provider
into the architecture.

Figure 1. Fusion Architecture

The four components in Figure 1 are described as
follows. The Graphical User Interface (GUI) provides
the community with access to FACT, including the
underlying providers which have been integrated for use.
The GUI offers users the ability to input requests for
functionality by selecting particular attributes and
displaying their current dependencies. Thus, the user
interface shows the specific providers that support partial
or full user requests as directed by parameters set forth by
the GUI. Since the results displayed within the interface
must already have provider backing, the execution of the
component can immediately proceed. Thus, the Fusion
Architecture is accurately guided to select an appropriate,
available provider for execution.

The Ontology stores attributes about the community
and the specific components it uses. It contains a semantic
representative of desired properties and goals, along with
known providers. The ontology manipulates the stored
attributes to direct the end users to the desired
provider(s). For example, the ontology may hold military
simulation terminology and use it to direct an analyst to
the best fit simulation package for their experiment.
Therefore, ontology specifications within the architecture,
if used properly, can enable each provider to be
commonly expressed such that users understand the
specific features each component provides.

The Connector Library stores connectors that were
used to resolve the interoperability problems discovered
during integration. Storage includes the generic
interoperability problem resolved and the deployment
details of the connector for future reference and analysis.
This information assists in reuse connectors that are
common for the different component providers.

The Database is used for several functions. First, the
results of each user and provider interaction are stored for
review and to determine the conditions under which
components were selected in relation to user requests.

382

This allows for deeper analysis across multiple executions
of the same scenarios, as well as the historical storage of
decisions mapped to current information tasks. Second, a
library of necessary Contract Templates is stored so that
the user interface can select components based on their
characteristics and availability.

4. Contract Templates

To overcome the challenge of linking software from a
variety of external organizations and vendors, we devise
and implement reusable, customizable Contract
Templates. The primary objective of a Contract Template
is to expose the functionality of a variety of components
in a uniform intermediate language to achieve a common
abstraction. Figure 2 shows an expanded view of the
infrastructure depicting the relationship between the
specifications to the providers and the architecture.

Figure 2. Expanded Fusion Architecture

A component binds itself to a community by
instantiating a dedicated Contract Template. Each
Contract Template is separated into three distinct levels
(Figure 3): (1) the community's predefined ontology, (2)
expected user directives, and (3) end processing. Each
level is associated with and expands different sections of
the full ontology managed by the Fusion Architecture.

Level 1: Predefined Ontology
• Component Type
• Functions / Methods
• Results / Return Values

Level 2: User Directives
• Parameter values
• Command line arguments

Level 3: End Processing
• File names, Default values
• Connectors

Contract Template

Figure 3. Contract Template

The first level of the Contract Template contains
ontology information, such as component type, functions
or methods it exposes. Incorporating unique semantics for
each component allows the ontology to expand with each
fusion call. As the ontology matures, new component
providers can leverage it to describe their semantic
functionality in a way that is unique to the community

and their needs. This process affords end users with
additional details about each component which may
influence its component selection and accessibility.

Initially, the community develops an ontology related
to the application domain for which FACT is being used.
An initial set of providers are gathered. The semantic
descriptions of their functionality are collected and
compared to refine the ontology. Together the set of
specifications generate an initial Contract Template to be
used. Taking the current ontology, each provider then
refines the Contract Template, which propagates back to
the Fusion Architecture to maintain consistency. The final
ontology consolidates and classifies the information
expected by the component and its provider using its
attributes and values to fully complete the Contract
Template where information may be missing. This
process fills any gaps between the full ontology specified
by the community and the implementation details
provided by components.

As the information space of providers matures, the
ontology is updated such that the community users can
continually take advantage of all providers. The Contract
Template is easily stored as an XML document
facilitating portability, extendibility, and reuse between
providers. Figure 4 shows the initial XML document. The
XML representation initially begins with elements such
as <title> and <author>, and expands depending on
community needs.

<contractTemplate>
<title></title>
<author></author>
<description></description>
<type></type>
<modes></modes>
<selectors>

<selector type="..." />
</selectors>
<modifiers>

<modifier type="..." />
</modifiers>
<runtime></runtime>

</contractTemplate>

Figure 4. Contract Template XML

The second level relates to the user and their
employment of the Contract Template to select a
particular component for execution (stored in XML as
<selectors>). Within this level resides the user
modifiable values provided by the component (stored in
XML as <modifiers>). The community defines the set of
available selectors and modifiers which can be used
within their Contract Templates. Each component is
reviewed to determine which specific XML elements
should be stored in the contract. Ultimately this allows a
user to define a set of criteria upon which they wish to
select components, using the Contract Templates to those

383

that do not match the desired requirements. Because of
the flow-through connectivity, the GUI will only display
to the user the available selectors and modifiers given the
currently accessible components.

The last level is the end processing calls to and results
from the component. Execution details are divulged, such
as file names and invocation details, both default and
ranges of parameters, and any connectors that must be
used for communication. This information is specific to
each provider and includes the component location, an
API or method names, any support for command line
execution, and supported data formats. End processing
yields the information necessary to call connectors to
instantiate the component with the user-selected
modifications to execution information. This is where the
connector database of the Fusion Architecture is used.
Connectors are bound to Contract Templates to resolve
any syntactic or semantic differences in the calls to the
component. The complete Contract Template is stored
and made available within the Fusion Architecture so that
the GUI has real-time access to determine what is
available to the community.

5. Multi-Game Fusion

We demonstrate the effectiveness FACT within an
example community that analyzes military simulations.
Multi-Game (MG) Fusion [13] is a Java application that
has an experimentation-based authoring, execution and
analysis capability that uses FACT to integrate a variety
of military simulation software, such as wargames. For an
initial ontology, the MG-Fusion community defines a
scenario to refer to the specific simulation event that a
wargame delivers. Wargames often use different scenario
terminology (e.g., mission, operation) depending on the
domain. Providers must have predefined scenarios or an
API from which to create scenarios into order to form
their representative Contract Template.

An experiment includes one or more scenario
executions allowing the simulations to execute
consistently with changes to prescribed settings. Note that
these terms can easily be analogously defined for other
communities.

The MG-Fusion ontology is authored in the Web
Ontology Language (OWL) [14], using the information
commonly available and related to wargames. The
ontology includes 22 classifications of information and
over 80 attributes. The full specification is omitted due to
length considerations. Within the ontology, an experiment
is composed of a set of scenarios, a game engine
(wargame), a set of players with associated command
hierarchy, and a description of the artificial intelligence
used by the game. Each scenario for an experiment
correlates to a specific area (map), a designation for the

type of campaign (ground or air), and behaviors and
tasks.

For each wargame component, the Contract Template
is instantiated at level 1 directly from the ontology.
Analysis of each component ensures that the properties
defined within the ontology match those that its provider
describes in documentation and execution data. For
example, a military wargame may provide air support
within a particular mission, but that would not be
indicative of the full scope that the simulation represents
if the simulation realistically models ground troops.

The next level of the Contract Template, user
directives, appends information to the XML document
relating to the selectors and modifiers that the component
provides. After an investigation of military wargames, the
allowable list of selectors includes simulation features
such as: Air Support (air forces to support operations),
Deteriorating Operations (operations conducted under
less than optimal conditions), Fog of War (limited
information about forces), and many others (engineers,
responsiveness, supplies, weather, etc.). To represent that
the wargame supports a specific selector, the Contract
Template is updated to contain a reference to that selector
type. For example, to indicate that a component contains
attributes related to available air support, the entry
<selector type=“Air Support” /> is be added to the
contract template.

Modifiers are notated similarly. The modifiers, as
determined by the initial sampling of providers, include:
Launch Interval (the delay between the deployment of
units or weapons), Leadership (capabilities of
commanders within the simulation), Morale (overall
morale of units), Preparedness (a level of readiness), and
Sensors (existence and the information gathered from
their locations).

<contractTemplate>
<title>Tour of Duty</title>
<author>John Tiller</author>
<type>Large-Scale Ground Sim</type>
<modes>Batch, AI</modes>
<selectors>

<selector type=“Air Support" />
</selectors>
<modifiers>

<modifier type=“Leadership" />
</modifiers>
<scenarios>…</scenarios>
<runtime>

<preprocessor>apxml.exe</preprocessor>
</runtime>

</contractTemplate>
Figure 5. Tour of Duty Contract Template

To complete the Contract Template, the final level
adds wargame specific information about file names,
variable ranges, and how the specific game can be
invoked by the fusion interface. Execution and connector
information is added to the <runtime> element of the
Contract Template. For example, to indicate that a

384

wargame requires the connector “apxml.exe” the
<runtime> element is added as shown in Figure 5.

Figure 6. Selector User Interface Dialog Box

After fusion the community relies on the GUI and
Contract Template to describe attributes of the software.
The GUI presents the community with decisions for
narrowing the selection of a provider. For example, a
community user can specify the type of simulation (e.g.
"Air Mission", "Ground Mission"), and then choose the
desirable characteristics, such as "Leadership," for
selectors and modifiers. Figure 6 shows the dialog box
used by MG-Fusion to display the options. Finally, the
user is presented with a list of providers that match their
search criteria.

Since the Contract Template XML file contains the
necessary execution information, once a user has selected
a provider and parameter values, the component is
executed by automatically invoking the appropriate
connector as specified in the Contract Template, yielding
a seamless process of execution. If the community allows
MG-Fusion to choose the component, the execution is
completely transparent.

MG-Fusion has successfully generated an extensible
and reusable experimental environment to promotes plug-
and-play incorporation of new simulations. The support
for batch execution enables military analysts to carry out
complex, time-intensive experiments whose results can be
stored by MG-Fusion for further analysis.

6. Conclusion

Using different providers presents communities with a
variety of semantic and syntactic issues with no clear
solution for transparent execution. Within FACT,
interoperability problems are resolved before a
component is made available to a community. FACT has
successfully been deployed for MG-Fusion and is
currently being expanded to federated information spaces.

One drawback of FACT identified by MG-Fusion is
the manual generation of an initial ontology. When
significantly different providers are fused, the ontology
must be updated to reflect their unique features. This
process of ontology refinement can be difficult as the
specification changes rapidly. Eventually, the process

stabilizes when the Contract Template and ontology have
evolved into a cohesive format.

Acknowledgement. Special thanks to John Tiller for
providing the initial set of military wargames for
inclusion within the Fusion Architecture and for helping
develop the initial ontology used within MG-Fusion.

This material is based on research sponsored by the
Air Force Research Laboratory, under agreement number
FA8750-05-C-0210. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

7. References

[1] S. Renner, "A “Community of Interest” Approach to Data

Interoperability," Federal Database Colloquium, 2001.
[2] J. A. Stafford and A. L. Wolf, "Annotating Components to

Support Component-Based Static Analyses of Software
Systems," in Grace Hopper Celebration of Women in
Computing Hyannis, Massachusetts, 2000.

[3] L. Davis, R. Gamble, and J. Payton, "The Impact of
Component Architectures on Interoperability," Journal of
Systems and Software, 2002.

[4] N. Medvidovic, R. Gamble, and D. Rosenblum, "Towards
Software Multioperability: Bridging Heterogeneous Software
Interoperability Platforms," in Fourth International Software
Architecture Workshop (ISAW-4) Limerick, Ireland, 2000.

[5] N. R. Mehta, N. Medvidovic, and S. Phadke, "Towards a
Taxonomy of Software Connectors," in Int Conference on
Software Engineering, Limerick, Ireland, 2000.

[6] G. Jónsdóttir, "Notating Problematic Architecture
Interactions," M.S. Thesis, Department of Mathematical and
Computer Sciences: University of Tulsa, 2002.

[7] N. Arshad, D. Heimbigner, and A. L. Wolf, "Deployment
and Dynamic Reconfiguration Planning for Distributed
Software Systems," Software Quality Journal, vol. 15, pp.
265-281, 2007.

[8] G. A. Mills-Tettey, G. Johnston, L. F. Wilson, J. M. Kimpel,
and B. Xie, "The ABELS system: designing an adaptable
interface for linking simulations," Proceedings of the 2002
Winter Simulation Conference, pp. 832-840, 2002.

[9] R. Fujiomoto, "Distributed Simulation Systems," in Winter
Simulation Conference, 2003.

[10] J. P. Zagal, M. Mateas, C. Fernández-Vara, B. Hochhalter,
and N. Lichti, "Towards an Ontological Language for Game
Analysis," in Changing Views – Worlds in Play, Digital
Games Research Association (DiGRA), 2005.

[11] N. Medvidovic, E. M. Dashofy, and R. N. Taylor, "The
Role of Middleware in Architecture-Based Software
Development," International Journal of Software Engineering
and Knowledge Engineering, vol. 13, pp. 367-393, 2003.

[12] D. Flagg, R. Gamble, R. Baird, and W. Stewart, "Migrating
Application Integrations," in International Conference on
COTS-Based Software Systems , 2004.

[13] Sentar Inc., "MG-Fusion," 2008,
http://www.sentar.com/mgfusion.htm.

[14] D. L. McGuinness and F. Harmelen, "OWL Web Ontology
Language Overview," W3C, 2004,
http://www.w3.org/TR/2004/REC-owl-features-20040210/.

385

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

