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Abstract. Since the introduction of pairings over (hyper)elliptic curves
in constructive cryptographic applications, an ever increasing number
of protocols based on pairings have appeared in the literature. Software
implementations being rather slow, the study of hardware architectures
became an active research area. Beuchat et al. proposed for instance
a coprocessor which computes the characteristic three ηT pairing, from
which the Tate pairing can easily be derived, in 33 µs on a Cyclone II
FPGA. However, a final exponentiation is required to ensure a unique
output value and the authors proposed to supplement their ηT pairing
accelerator with a coprocessor for exponentiation. Thus, the challenge
consists in designing the smallest possible piece of hardware able to per-
form this task in less than 33 µs on a Cyclone II device. In this paper, we
propose a novel arithmetic operator implementing addition, cubing, and
multiplication over F397 and show that a coprocessor based on a single
such operator meets this timing constraint.

Keywords: ηT pairing, characteristic three, final exponentiation, hardware ac-
celerator, FPGA.

1 Introduction

The first introduction of Weil and Tate pairings in cryptography was due to
Menezes et al. [20] and Frey and Rück [11] who used them to attack the discrete
logarithm problem on some classes of elliptic curves defined over finite fields.
More recently, several cryptographic schemes based on those pairings have been
proposed: identity-based encryption [6], short signature [8], and efficient broad-
cast encryption [7] to mention but a few.
? This work was supported by the New Energy and Industrial Technology Development
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This article aims at computing the ηT pairing in characteristic three in the
case of supersingular elliptic curves over F3m . These curves are necessarily of
the form Eb : y2 = x3 − x + b, with b ∈ {−1, 1}. According to [3], curves over
fields of characteristic three often offer the best possible ratio between security
level and space requirements. Note that the ηT pairing easily relates to the
Tate pairing [2]. In the following, we assume that m = 97 and F397 is given as
F3[x]/(x97 + x12 + 2). This choice is currently a good trade-off between security
and computation time.

After previous works by Miller [21], Barreto et al. [3] and Galbraith et al. [12],
an efficient algorithm for the characteristic three was proposed by Duursma and
Lee [10]. That work was then extended by Kwon [19]. The introduction of the
ηT pairing by Barreto et al. [2] led to a reduction by a factor two of the number
of iterations compared to the approach by Duursma and Lee. Algorithm 1 sum-
marizes the scheme proposed by Barreto et al. and uses the following notation:
let ` > 0 be an integer relatively prime to 3m (i.e. to 3). The set Eb(F3m)[`]
groups all the points P ∈ Eb(F3m) such that `P = O, where O is the point at
infinity. Let σ and ρ ∈ F36m which satisfy σ2 = −1 and ρ3 = ρ + b. They help to
define the distortion map introduced in [3].

Algorithm 1 Computation of ηT pairing in characteristic three [2].
Input: P = (xp, yp) and Q = (xq, yq) ∈ Eb(F3m)[`]. The algorithm requires R0 and

R1 ∈ F36m , as well as r0 ∈ F3m for intermediate computations.
Output: ηT (P, Q)
1: if b = 1 then
2: yp ← −yp;
3: end if
4: r0 ← xp + xq + b;
5: R0 ← −ypr0 + yqσ + ypρ;
6: for i = 0 to (m− 1)/2 do
7: r0 ← xp + xq + b;
8: R1 ← −r2

0 + ypyqσ − r0ρ− ρ2;
9: R0 ← R0R1;

10: xp ← x
1/3
p ; yp ← y

1/3
p ;

11: xq ← x3
q; yq ← y3

q ;
12: end for
13: Return R0;

Algorithm 1 has the drawback of using inverse Frobenius maps (i.e. cube
root in characteristic three). In [5], Beuchat et al. proposed a modified ηT pairing
algorithm in characteristic three that does not require any cube root. However, to
ensure a unique output value for the ηT pairing, we have to compute RW

0 , where
W = (33m − 1)(3m + 1)(3m + 1− b3(m+1)/2) here. This operation, often referred
to as final exponentiation, requires among other things a single inversion over
F3m and multiplications over F36m (note that pairing calculation in characteristic
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two involves an inversion over F2m for final exponentiation). Pairing accelerators
described in the literature follow two distinct strategies:

– Several researchers designed coprocessors for arithmetic over F3m (or F2m)
implementing both pairing calculation and final exponentiation [17,22,23,25].
This last operation is intrinsically sequential and there is unfortunately no
parallelism at all when comes the time of inversion. It is therefore cru-
cial to embed a fast inverter to avoid impacting the overall performance
of the system. Reference [18] introduces for instance an efficient architec-
ture for Extended Euclidean Algorithm (EEA) based inversion. To our best
knowledge, the fastest coprocessor designed according to this philosophy
computes ηT (P,Q)W over the field F397 in 179µs (114µs for the pairing
calculation and 65 µs for the final exponentiation) on a Virtex-II Pro 100
Field-Programmable Gate Array (FPGA) [22].

– Consider the computation of the ηT pairing (Algorithm 1) and note that two
coefficients of R1 are null and another one is equal to −1. This observation
allowed Beuchat et al. to design an optimized multiplier over F397 which is
at the heart of a pairing accelerator computing ηT (P,Q) in 33 µs [5]. It is
worth noticing that the computation of the pairing requires 4849 clock cycles.
Since Fermat’s little theorem makes it possible to carry out inversion over
F3m by means of multiplications and cubings, ηT (P,Q)W could be computed
on such an accelerator. It seems however more attractive to supplement it
with dedicated hardware for final exponentiation.

The challenge consists in designing the smallest possible processor able to
compute a final exponentiation in less than 33 µs on a Cyclone II device. Our
architecture is based on an innovative algorithm introduced by Shirase, Takagi,
and Okamoto in [24]. We summarize this scheme in Section 2 and describe a
novel arithmetic operator performing addition, subtraction, multiplication, and
cubing over F397 (Section 3). We show that a coprocessor based on a single such
processing element allows us to meet our timing constraint. Section 4 provides
the reader with a comparison against previously published solutions.

2 Computation of the Final Exponentiation

Algorithm 2 describes a traditional way to perform final exponentiation [5].
Ronan et al. took for instance advantage of such a scheme to design their ηT

pairing accelerator [22]. Shirase et al. proposed a novel algorithm based on the
following remark [24]: let X ∈ F36m , then X33m−1 belong to the torus T2(F33m),
a set introduced in [14]. Then they showed that the arithmetic in T2 is cheaper,
hence a significant gain in term of number of operations compared to Algorithm 2
(see Table 1). Algorithm 6 describes this final exponentiation scheme. It uses
Algorithms 3 and 5.

Algorithm 3 involves an inversion over F33m . The tower field representation
allows us to substitute this operation with 12 multiplications, 11 additions, and
an inversion over F3m (see Appendix B for details). In order to keep the circuit
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Algorithm 2 Raising ηT (P,Q) to the W -th power (b = 1) [5].
Input: ηT (P, Q) ∈ F36m . Thirteen variables ui, 0 ≤ i ≤ 6, and vi, 0 ≤ i ≤ 5 belonging

to F36m store intermediate results.
Output: ηT (P, Q)W ∈ F36m

1: u0 ← ηT (P, Q);
2: for i = 1 to 5 do
3: ui ← u3m

i−1;
4: end for
5: u1 ← u2

1;
6: u4 ← u2

4;

7: v0 ← ηT (P, Q)3
(m+1)/2

;
8: for i = 1 to 4 do
9: vi ← v3m

i−1;
10: end for
11: u6 ← v0 · v1 · u3 · u4 · u5;
12: v5 ← u0 · u1 · u2 · v3 · v4;
13: Return u0 ← u6/v5;

Algorithm 3 Computation of X33m−1.
Input: X = x0 + x1σ + x2ρ + x3σρ + x4ρ

2 + x5σρ2 ∈ F∗36m .

Output: X33m−1 ∈ T2(F33m)
1: τ0 ← (x0 + x2ρ + x4ρ

2)2;
2: τ1 ← (x1 + x3ρ + x5ρ

2)2;
3: τ2 ← (x0 + x2ρ + x4ρ

2)(x1 + x3ρ + x5ρ
2);

4: Y ← (τ0 − τ1) + τ2σ

τ0 + τ1
;

5: Return Y ;

area as small as possible, we suggest to perform inversion according to Fermat’s
little theorem and Itoh and Tsujii’s work [16]. Since m = 97, inversion requires
9 multiplications and 96 cubings over F397 (Algorithm 4, see Appendix A for
a proof of correctness). Therefore, final exponentiation requires 87 multiplica-
tions, 390 cubings, and 477 additions over F397 (see Appendix B for details about
the number of operations over F397 involved in the final exponentiation). Array
multipliers processing D coefficients of an operand at each clock cycle are often
at the heart of pairing accelerators (see Section 3.2). In [5], authors suggest to
consider D = 3 coefficients and multiplication over F397 involves d 973 e = 33 clock
cycles. Since addition and cubing are rather straightforward operations, they are
carried out in a single clock cycle. Therefore, considering such parameters, final
exponentiation requires 477 + 390 + 33 · 87 = 3738 clock cycles. Note that addi-
tional clock cycles are necessary to load and store intermediate results. However,
this overhead should be smaller than 10% and a coprocessor embedding a mul-
tiplier, an adder/subtracter, as well as a cubing unit should perform this task in
less than 4200 clock cycles. It is therefore possible to supplement the ηT pairing
accelerator described in [5] (4849 clock cycles) with such a simple processing
unit.
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Algorithm 4 Inversion over F397 .
Input: a ∈ F397

Output: a−1 ∈ F397

1: y0 ← a;
2: for i = 0 to 5 do

3: zi ← y32i

i ;
4: yi+1 ← yizi;
5: end for
6: z6 ← y332

6 ;
7: y7 ← y5z6;
8: y8 ← y2

7 ;
9: y9 ← y3

8 ;
10: Return y0y9;

Algorithm 5 Computation of X3m+1 in the torus T2(F33m).
Input: X ∈ T2(F33m)
Output: X3m+1 ∈ T2(F33m)
1: z0 ← x0x4, z1 ← x1x5, z2 ← x2x4, z3 ← x3x5;
2: z4 ← (x0 + x1)(x4 − x5);
3: z5 ← x1x2, z6 ← x0x3;
4: z7 ← (x0 + x1)(x2 + x3);
5: z8 ← (x2 + x3)(x4 − x5);
6: y0 ← 1 + z0 + z1 − bz2 − bz3;
7: y1 ← z1 + z4 + bz5 − z0 − bz6;
8: y2 ← z7 − z2 − z3 − z5 − z6;
9: y3 ← z3 + z8 + bz0 − z2 − bz1 − bz4;

10: y4 ← bz2 + bz3 + bz7 − bz5 − bz6;
11: y5 ← bz3 + bz8 − bz2;
12: Return Y = (y0 + y2ρ + y4ρ

2) + (y1 + y3ρ + y5ρ
2)σ;

3 Hardware Implementation

This section describes the implementation of Algorithm 6 on a Cyclone II
EP2C35F672C6 FPGA whose smallest unit of configurable logic is called Logic
Element (LE). Each LE includes a 4-input Look-Up Table (LUT), carry logic,
and a programmable register. A Cyclone II EP2C35F672C6 device contains
for instance 33216 LEs. Readers who are not familiar with Cyclone II devices
should refer to [1] for further details. After studying addition, multiplication,
and cubing over F3m , we propose a novel arithmetic operator able to perform
these three operations and describe the architecture of a final exponentiation
coprocessor based on such a processing element.

3.1 Addition and Subtraction over F3m

Since they are performed component-wise, addition and subtraction over F3m

are rather straightforward operations. Each element of F3 is encoded by two bit
and addition modulo three on a Cyclone II FPGA requires two 4-input LUTs.
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Algorithm 6 Final exponentiation of ηT pairing [24].
Input: X = x0 + x1σ + x2ρ + x3σρ + x4ρ

2 + x5σρ2 ∈ F∗36m .

Output: X(33m−1)(3m+1)(3m+1−b3(m+1)/2)

1: Y ← X33m−1 (Algorithm 3);
2: Y ← Y 3m+1 (Algorithm 5);
3: Z ← Y ;
4: for i = 0 to (m− 1)/2 do
5: Z ← Z3;
6: end for
7: Y ← Y 3m+1 (Algorithm 5);
8: if b = 1 then
9: Return Y · (z0 − z1σ + z2ρ− z3σρ + z4ρ

2 − z5σρ2);
10: else
11: Return Y Z;
12: end if

Table 1. Comparison of final exponentiation algorithms (number of operations).

Algorithm
Additions Cubings Multiplications
over F397 over F397 over F397

Algorithm 2 1022 390 243

Algorithm 6 477 390 87

Negation over F3 is performed by multiplying an operand by two. Note that
the computation of the yi’s in Algorithm 5 involves the addition of up to six
operands. This motivates the design of the accumulator illustrated on Figure 1a.

3.2 Multiplication over F3m

Three families of algorithms allow one to compute a(x)b(x) mod f(x). In parallel-
serial schemes, a single coefficient of the multiplier a(x) is processed at each step.
This leads to small operands performing a multiplication in m steps. Parallel
multipliers compute a degree-(2m−2) polynomial and carry out a final modular
reduction. They achieve a higher throughput at the price of a larger circuit area.
By processing D coefficients of an operand at each clock cycle, array multipliers,
introduced by Song and Parhi in [26], offer a good trade-off between computation
time and circuit area and are at the heart of several pairing coprocessors (see
for instance [5, 13, 17, 22, 23, 25]). Among the many array multipliers described
in the literature (see for instance [15,25]), the one proposed by Shu, Kwon, and
Gaj [25] (Algorithm 7) is a good candidate for FPGA implementation when f(x)
is a trinomial [4]. Figure 1b illustrates the architecture of an operator process-
ing D = 3 coefficients at each clock cycle. It mainly consists of three Partial
Product Generators (PPG), three modulo f(x) reduction units, a multioperand
adder, and registers to store operands and intermediate results. Five bits make
it possible to control this operator.
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b(x)a(x)
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2
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0
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c1

Fig. 1. Arithmetic operators over F3m . (a) Addition/subtraction of two operands and
accumulation. (b) Multiplication [25] (D = 3 coefficients of a(x) processed at each
clock cycle). (c) Cubing.

In the following, we will focus on multiplication over F397 and assume
that D = 3 (i.e. multiplication requires 33 clock cycles). With such pa-
rameters, the first iteration of Algorithm 7 is defined as follows: t(x) ←
a96b(x) + (a97xb(x)) mod f(x) + (a98x

2b(x)) mod f(x). To ensure a correct
result, we have to guarantee that a97 = a98 = 0. Therefore, the shift register
stores a degree-98 polynomial whose two most significant coefficients are set to
zero.

Algorithm 7 Multiplication over F3m [25].
Input: A degree-m monic polynomial f(x) = xm + fm−1x

m−1 + . . . + f1x + f0 and
two degree-(m − 1) polynomials a(x) and b(x). A parameter D which defines the
number of coefficients of a(x) processed at each clock cycle. The algorithm requires
a degree-(m− 1) polynomial t(x) for intermediate computations.

Output: p(x) = a(x)b(x) mod f(x)
1: p(x)← 0;
2: for i from dm/De − 1 downto 0 do

3: t(x)←
D−1X
j=0

“
aDi+jx

jb(x)
”

mod f(x);

4: p(x)← t(x) + (xDp(x) mod f(x));
5: end for
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3.3 Cubing over F3m

Since we set f(x) = x97 + x12 + 2, cubing over F3m is a pretty simple arithmetic
operation: a GP/PARI program provides us with a closed formula:

b0 = a93 + a89 + a0, b1 = a65 + 2a61, b2 = a33,

b3 = a94 + a90 + a1, . . . = . . . , b94 = a96 + a92 + a88,

b95 = a64 + 2a60, b96 = a32.

(1)

The most complex operation involved in cubing is therefore the addition of three
elements belonging to F3. Recall that inversion over F397 involves successive cub-
ing operations. Since storing intermediate results in memory would be too time
consuming, our cubing unit should include a feedback mechanism to efficiently
implement Algorithm 4. Furthermore, cubing over F36m requires the computa-
tion of −y3

i , where yi ∈ F3m (see Appendix B for details). These considerations
suggest the design of the operator depicted by Figure 1c.

Place-and-Route Results. These three arithmetic operators were captured
in the VHDL language and prototyped on an Altera Cyclone II EP2C35F672C6
device. Both synthesis and place-and-route steps were performed with Quartus
II 6.0 Web Edition (Table 2). A naive solution would then consist in connecting
the outputs of these operators to the memory blocks by means of a three-input
multiplexer controlled by two bits. Such an arithmetic and logic unit (ALU)
requires 3308 Logic Elements (LEs) and final exponentiation can be carried out
within 4082 clock cycles, thus meeting our timing constraint. Cubings only occur
in inversion (Algorithm 4) and in the computation of Z (step 5 of Algorithm 6).
Due to the sequential nature of these algorithms, both multiplier and adder
remain idle at that time. The same observation can be made for additions and
multiplications: most of the time, only a single arithmetic operator is processing
data. Is it therefore possible to save hardware resources by designing an operator
able to perform addition, multiplication, and cubing over F397?

Table 2. Arithmetic operators over F397 on a Cyclone II FPGA.

Addition/ Multiplication
Cubing ALU

subtraction (D = 3)

Area [LEs] 970 1375 668 3308

Control [bits] 6 5 4 17

3.4 An Operator for Multiplication, Addition, and Cubing over F397

Consider again the closed formula for cubing over F3[x]/(x97 + x12 + 2) (Equa-
tion (1)). We can for instance write b1 = a65 + a61 + a61 and b2 = a33 + 0 + 0.
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Let us define c0(x), c1(x), and c2(x) ∈ F397 such that:

c0(x) = a93 + a65x + a33x
2 + . . . + a88x

94 + a64x
95 + a32x

96,

c1(x) = a89 + a61x + 0 · x2 + . . . + a92x
94 + a60x

95 + 0 · x96,

c2(x) = a0 + a61x + 0 · x2 + . . . + a96x
94 + a60x

95 + 0 · x96.

(2)

Then, a(x)3 = c0(x) + c1(x) + c2(x) and cubing requires the addition of three
operands as well as some wiring to compute the ci(x)’s. Remember now that our
array multiplier (Figure 1b) embeds a three-operand adder and an accumulator,
which also makes possible the implementation of addition and cubing. Further-
more, since negation over F3m consists in multiplying the operand by two, PPGs
can perform this task.

These considerations suggest the design of a three-input arithmetic operator
for addition, accumulation, cubing, and multiplication over F397 (Figure 2). In
order to compute the product a(x)b(x) mod f(x), it suffices to load a(x) in
register R0, and b(x) in registers R1 and R2. Addition and cubing are slightly
more complex and we will consider a toy example to illustrate how our operator
works. Let us assume we have to compute −a(x) + b(x) and a(x)3, where a(x),
b(x) ∈ F397 . We respectively load a(x) and b(x) in registers R2 and R1 and define
a control word stored in R0 so that d03i = 2, d03i+1 = 1, and d03i+2 = 0. We will
thus compute (2a(x)+ b(x)+0 ·a(x)) mod f(x) = (−a(x)+ b(x)) mod f(x). For
cubing, we load a(x) in both registers R1 and R2. If d03i = d03i+1 = d03i+2 = 1,
then our operator implements Equation (2) and returns a(x)3. Thus, register
R0 stores either an operand of a multiplication or a control word for up to 33
successive additions and cubings (recall that this shift register stores a degree-98
polynomial and that three coefficients are processed at each clock cycle). Place-
and-route results indicate that this processing element requires 2676 LEs instead
of 3308 LEs with the naive approach. Furthermore, this architecture allows one
to reduce the number of control bits from 17 (see Table 2) to 11.

3.5 Architecture of the Coprocessor

Figure 3 describes the architecture of our coprocessor which embeds a single
arithmetic unit performing addition, accumulation, cubing, or multiplication
over F397 . Intermediate results (194 bits) and control words for additions and
cubings (198 bits) are stored in 64 registers implemented by a dual-port RAM
(13 Cyclone II M4K memory blocks). An element of F36m returned by the ηT

pairing accelerator is sequentially loaded in the RAM. Then, a simple Finite
State Machine and a ROM generate all control signals required to perform the
final exponentiation according to Algorithm 6. Each instruction stored in the
ROM consists of four fields: a control word which specifies the functionality of
the processing element, addresses and write enable signals for both ports of the
RAM, and a counter which indicates how many times the instruction must be
repeated. Inversion over F397 involves for instance consecutive cubings (Algo-
rithm 4). This approach allows one to execute them with a single instruction.
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10: accumulation
11: multiplication

c2

c3
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00: nop
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10: accumulation
11: multiplication

00: cubing
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Fig. 2. Addition, accumulation, cubing, and multiplication over F397 .

The implementation of Algorithm 6 on this coprocessor requires 658 instruc-
tions which are executed within 4082 clock cycles. Ten control words, stored in
the dual-port RAM, manage all additions and cubings involved in the computa-
tion of the final exponentiation.

4 Results and Comparisons

Our final exponentiation coprocessor was implemented on an Altera Cyclone II
EP2C35F672C6 FPGA. According to place-and-route tools, this architecture re-
quires 2787 LEs and 21 M4K memory blocks. Since the maximum frequency is
159 MHz, an exponentiation is computed within 26µs and our timing constraint
is fully met. It is worth noticing that the inversion over F397 based on the EEA
described in [18] occupies 3422 LEs [27] and needs 2m = 194 clock cycles. Our
approach based on Fermat’s little theorem (Algorithm 4) performs the same op-
eration in 394 clock cycles. Therefore, introducing specific hardware for inversion
would double the circuit area while reducing the calculation time by only 5%.

To our best knowledge, the only ηT pairing accelerator in characteristic three
implementing final exponentiation was proposed by Ronan et al. in [22]. In order
to easily study the trade-off between calculation time and circuit area, they wrote
a C program which automatically generates a VHDL description of a processor
and its control according to the number of multipliers to be included and D. The
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Fig. 3. Architecture of the coprocessor for final exponentiation.

ALU also embeds an adder, a subtracter, a cubing unit, and an inversion unit.
The most attractive architecture contains three multipliers processing D = 8
coefficients at each clock cycle. It computes ηT (P,Q) in 114 µs and requires 65 µs
to perform final exponentiation according to Algorithm 2 on a Xilinx Virtex-II
Pro 100 FPGA (clock frequency: 70.4 MHz). This architecture requires 10000
slices of a Virtex-II Pro FPGA. Each slice of this FPGA family features two 4-
input LUTs, carry logic, wide function multiplexers, and two storage elements.
Let us assume that Xilinx design tools try to utilize both LUTs of a slice as often
as possible (i.e. area optimization). Under this hypothesis, we consider that a
slice is roughly equivalent to two LEs and our coprocessor is seven times smaller
than the one described in [22].

Recall that Algorithm 6 allows one to divide by 2.8 the number of multi-
plications over F397 (Table 1). Therefore, our coprocessor would compute final
exponentiation according to Algorithm 2 in around 26× 2.8 = 72.8 µs.

The ηT pairing accelerator described in [5] returns ηT (P,Q) in 33µs using
14895 LEs and 13 memory blocks. We can therefore estimate the total area of
a coprocessor computing ηT (P,Q)W to 18000 LEs and 34 M4K memory blocks.
Thus, with roughly the same amount of configurable logic, we should achieve
five times faster ηT pairing calculation than Ronan et. al.

5 Concluding Remarks

We proposed a novel arithmetic operator performing addition, accumulation,
cubing, and addition over F397 and designed a coprocessor able to compute the
final exponentiation of the ηT pairing in 26µs on a Cyclone II FPGA. Since
the calculation time of the ηT pairing accelerator described in [5] is 33 µs, we
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can pipeline both architectures without impacting the overall performance of
the system and our approach allows one to divide by five the calculation time
of ηT (P,Q)W compared to the best implementation reported in the open litera-
ture [22]. Since different FPGA families are involved, it is unfortunately difficult
to provide the reader with a fair area comparison. A rough estimate indicates
that our coprocessor requires the same hardware resources.

Another important result is that hardware for inversion is not necessary for
the calculation of the ηT pairing on a characteristic three elliptic curve over F397 :
our final exponentiation coprocessor meets our timing constraint with an algo-
rithm based on Fermat’s little theorem. Furthermore, the architecture proposed
in [22] computes ηT (P,Q)W in 15113 clock cycles. Since an inverter based on the
EEA saves only 200 clock cycles and that no other operation can be performed
in parallel, we believe it is not interesting to include dedicated hardware for this
operation.

The approach introduced in this paper to design our arithmetic operator of-
fers several further research topics we plan to study in the future. It would for
instance be interesting to implement the computation of both pairing and final
exponentiation with the coprocessor described in this paper. Such an architec-
ture could for instance be attractive for ASIC implementations. Another open
question is if our operator is able to carry out other functions (e.g. cube root)
or if this design methodology works for other irreducible polynomials and finite
fields. Finally, note that our processor always performs the same operation: at
each clock cycle, the content of the shift register is updated (load or shift op-
eration), and a sum of three partial products is computed. Pairing operations
could therefore be split into atomic blocks (side-channel atomicity [9]) and such
architectures could prevent simple side-channel attacks.
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A Proof of Correctness of Algorithm 4

Let a ∈ F397 . According to Fermat’s little theorem, a−1 = a397−2. Note that the
ternary representation of 397−2 is (22 . . . 22︸ ︷︷ ︸

96×

1)3. In order to prove the correctness

of Algorithm 4, it suffices to show that y9 = ak, where k = (22 . . . 22︸ ︷︷ ︸
96×

0)3:

z0 = y3
0 = a(10)3 , y1 = a(11)3 , z1 = y32

1 = a(1100)3 ,

y2 = a(1111)3 , z2 = y34

2 = a(11110000)3 , y3 = a(11111111)3 ,

z3 = y38

3 = a(

8×z}|{
1...1

8×z}|{
0...0 )3 , y4 = a(

16×z}|{
1...1 )3 , z4 = y316

4 = a(

16×z}|{
1...1

16×z}|{
0...0 )3 ,

y5 = a(

32×z}|{
1...1 )3 , z5 = y332

5 = a(

32×z}|{
1...1

32×z}|{
0...0 )3 , y6 = a(

64×z}|{
1...1 )3 ,

z6 = y332

6 = a(

64×z}|{
1...1

32×z}|{
0...0 )3 , y7 = y5z6 = a(

96×z}|{
1...1 )3 , y8 = y2

7 = a(

96×z}|{
2...2 )3 ,

y9 = y3
8 = a(

96×z}|{
2...2 0)3

Then, Algorithm 4 returns y0y9 = a(

96×︷ ︸︸ ︷
22...221)3 = a397−2.

B Arithmetic over F32m, F33m, and F36m

This Appendix summarizes classical algorithms for arithmetic over F32m , F33m ,
and F36m . Proofs of correctness of such algorithms are for instance provided
in [17]. In order to compute the number of operations over F3m , we assume that
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the ALU is able to compute aiaj , ±ai±aj and ±a3
i , where ai and aj ∈ F3m . We

consider the case where the elliptic curve is given by y2 = x3 − x + 1 (i.e. b = 1
and ρ3 = ρ + 1).

Multiplication over F32m . Let A = a0+a1σ and B = b0+b1σ, where a0, a1, b0,
and b1 ∈ F3m . The product AB = (a0b0−a1b1)+((a0+a1)(b0+b1)−a0b0−a1b1)σ
requires 3 multiplications and 5 additions (or subtractions) over F3m .

Multiplication over F33m . Assume that A = a0 + a1ρ + a2ρ
2 and B = b0 +

b1ρ+ b2ρ
2, where ai, bi ∈ F3m , 0 ≤ i ≤ 2. The product C = AB is then given by:c0

c1

c2

 =

 (a1 + a2)(b1 + b2) + a0b0 − a1b1 − a2b2

(a0 + a1)(b0 + b1) + (a1 + a2)(b1 + b2)− a0b0 + a1b1

(a0 + a2)(b0 + b2) + a1b1 − a0b0

 .

This operation requires 6 multiplications and 14 additions (or subtractions) over
F3m .

Inversion over F33m . Let A = a0 + a1ρ + a2ρ
2, where ai ∈ F3m , 0 ≤ i ≤ 2.

The inverse C of A is the given by:c0

c1

c2

 = d−1

a2
0 − (a2

1 − a2
2)− a2(a0 + a1)

−a0a1 + a2
2

a2
1 − a2

2 − a0a2

 ,

where d = a2
0(a0 − a2) + a2

1(−a0 + a1) + a2
2(−(−a0 + a1) + a2). This operation

involves 12 multiplications, 11 additions (or subtractions), and 1 inversion over
F3m .

Multiplication over F36m . Let A = a0 + a1σ︸ ︷︷ ︸
ã0

+(a2 + a3σ︸ ︷︷ ︸
ã1

)ρ + (a4ρ
2 + a5σ︸ ︷︷ ︸

ã2

)ρ2

and B = b0 + b1σ︸ ︷︷ ︸
b̃0

+(b2 + b3σ︸ ︷︷ ︸
b̃1

)ρ + (b4ρ
2 + b5σ︸ ︷︷ ︸

b̃2

)ρ2. The product C = AB is then

given by (6 multiplications and 14 additions over F32m):c̃0

c̃1

c̃2

 =

 (ã1 + ã2)(b̃1 + b̃2) + ã0b̃0 − ã1b̃1 − ã2b̃2

(ã0 + ã1)(b̃0 + b̃1) + (ã1 + ã2)(b̃1 + b̃2)− ã0b̃0 + ã1b̃1

(ã0 + ã2)(b̃0 + b̃2) + ã1b̃1 − ã0b̃0

 .

Thus, multiplication over F36m requires 18 multiplications and 58 additions (or
subtractions) over F3m .


