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Abstract. As a first step in the larger project of charting the ontology of computer programs, we pose 
three central questions:  

 (1)  Can programs, hardware, and metaprograms be organized into a meaningful taxonomy? 
 (2) To what ontology are computer programs committed?  
 (3) What explains the proliferation of programming languages and how do they come about? 

Taking the complementary perspectives software engineering and mathematical logic, we take inven-
tory of programs and related objects and conclude that the notions of abstraction and concretization 
take a central role in this investigation. 
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1 Introduction 

We take ontology to be that line of philosophical inquiry which seeks to answer the question What 
exists? We follow Quine’s position according to which what exists is what science demands to exist. 
According to Smith  [18],  

Ontology seeks to provide a definitive and exhaustive classification of entities … including the 
types of relations by which entities are tied together. 

As a first step in the larger project of charting the ontology of computer programs, we take inventory 
of the kinds of objects and relations that, prima facie, represent the ontology to which computer sci-
ence is committed. At the focus of our investigation are computer programs, which can be broadly 
divided into programs qua static, linguistic types (scripts) and programs qua dynamic processes. We 
thus mark cÜÉzÜtÅá as that category of entities which are referred to as computer programs by most 
computer scientists and laymen alike, divided as follows: 

cÜÉzÜtÅ@fvÜ|Ñàá A-temporal entities which consist of well-formed instructions to a given class of 
digital computing machines, commonly represented as inscriptions or text files. 

cÜÉzÜtÅ@cÜÉvxááxá Temporal entities that are created by a process of executing (running) a particular 
program-script in a particular physical setting, also known as operating system processes or 
‘threads’. 

This description should only be taken as an intuitive classification of programs in the vernacu-
lar, serving as a starting point for our inquiry. Program-scripts and program-processes are examined in 
§ 2 and the respective categories are refined in the course of our investigation. 

General ontology dates back to Aristotle’s Metaphysics and to Kant’s categories, but little has 
been written on the ontology of computer programs (although consider  [18] and  [1]). In line with 
general philosophy, we take the ontological investigation of computer programs to be an exercise in 
‘conceptual engineering’ which seeks to provide answers to three central questions. We take the for-
mulation of these questions and the examination of possible answers to be the central contribution of 
this paper. 

The first question we pose is: 

Q1  Can programs, metaprograms, and hardware entities be organized into a meaningful taxonomy? 
Can well-defined differentiae between these categories be offered? In particular, can we distinguish be-
tween what is a program and what is not a program? 

We take a taxonomy to be a system of classification that can be represented as a mathematical 
graph (or possibly a tree), as demonstrated in Figure 1, each node is distinguished by using differentia 
(a distinction criterion) between two or more categories of entities. Some taxonomies begin with a 
top-level ontology, a list of upper-level categories offering an exhaustive partitioning of all entities 
under consideration, such that each top-level category is gradually refined into more specific subcate-
gories. 
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As criteria of acceptance of an ontological taxonomy, we offer the following desiderata: 

� Unified: The taxonomy should include a top-level ontology 
� Exhaustive: The taxonomy should account for computer programs of any kind 
� Definitive: Boundaries between categories should be demarcated by well-defined differentiae 
� Uniform: The taxonomy should be committed to a minimal number of differentiae, all of 

which are expressed in one language and derived from a single notion 

Our line of investigation shall begin with abstraction as a criterion of distinction. 

The second question we pose can be expressed as follows: 

Q2  To what ontology are computer programs committed? 

Quine maintains that ontological commitments are simple to observe if a theory is formulated 
in the canonical representation of the predicate calculus: 

[A] theory is committed to those and only those entities to which the bound variables of the 
theory must be capable of referring in order that the affirmations made in the theory be true. 
… “To be is to be the value of a [bound] variable.” ( [23] pp. 13–15) 

This motivates our choice of the classical predicate calculus and finite model theory for mak-
ing ontological commitments explicit. 

We distinguish our line of investigation from ontological engineering  [18], the process of en-
coding information for the purpose of knowledge extraction, reasoning, planning, and decision-
support. In information technology jargon, ontology is synonymous with the attempt to harness 
software for the axiomatization and encoding of particular domains of human knowledge (such as 
common-sense [www.cyc.com] and anatomy  [19]) as knowledge bases or data bases, thereby making it 
possible for example to discover inconsistencies in existing representations. Ontological engineering 
shall remain outside our scope. 

The popularity of ontological engineering has led to the abundance of ‘ontologies’, some of 
which were not measured against any particular criterion of acceptance  [7]. In contrast, Smith  [18] 
demands that not any collection of ‘objects and relations’ is by itself an adequate answer to Q2 (“the 
ontologist’s credo”). Quine offers the following acceptance criterion: 

Our acceptance of an ontology is … similar in principle to our acceptance of a scientific theory, 
say a system of physics: We adopt … the simplest conceptual scheme into which disordered 
fragments of raw experience can be fitted and arranged. ( [23] p. 16) 

The ontology to which computer programs are committed is thus expected to serve as a unify-
ing conceptual scheme, taking the role that the periodic table of elements plays in chemistry and ele-
mentary particles play in physics. Such an ontology must offer elementary (primitive) objects which 
cannot be reduced within the discipline and which provide adequate building-blocks for the ontology 
of the program. 

The investigation of the ontological commitments of programs led us to examine the role of 
programming languages. Observing that computer programs can be encoded in so many such lan-
guages, we pose a third question: 

Q3  Given that all turing-complete programming languages are computationally equivalent, what ex-
plains their proliferation? How do new languages come about? 

We shall examine the process of language synthesis (§ 4) and the process of concretizing a spe-
cific subset of metaprograms as an explanation to the formation and proliferation of programming 
languages. 
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Outline 

The remainder of this paper is devoted to the investigation into possible answers to the there ques-
tions we posed. In Section  2 we explore the notion of abstraction and examine a taxonomy of pro-
grams and related entities, the program abstractions taxonomy. In Section  3 we examine the nature of 
the differentiae between the categories in the program abstractions taxonomy. In Section  4 we exam-
ine concretization, the process of synthesizing program-scripts, program-processes, hardware, and lan-
guages from more abstract entities. In Section  5 we suggest that programming paradigms furnish those 
ontologies to which computer programs are committed. In Section  6 we summarize and briefly dis-
cuss the answers offered to the questions we posed. 

2 A top-level ontology 

As a first step towards a taxonomy we seek to distinguish programs from entities that are not pro-
grams, such as digital computing machines (hardware) and descriptions of programs (metaprograms). 
Our top-level ontology thus consists of three categories which can be roughly characterized as fol-
lows: 

`xàtÑÜÉzÜtÅá contains statements describing programs, such as algorithms, abstract automata, and 
software design specifications. 

cÜÉzÜtÅá   is divided into cÜÉzÜtÅ@fvÜ|Ñàá and cÜÉzÜtÅ@cÜÉvxááxá. 
[tÜwãtÜx   contains digital computing machines, such as computers belonging to the Intel 8086 

microprocessor family. 

We shall refer to this table of categories and their refinements as the program abstractions tax-
onomy, depicted in Figure 1. 

 

cÜÉzÜtÅá`xàtÑÜÉzÜtÅá [tÜwãtÜx

cÜÉzÜtÅ@fvÜ|Ñàá cÜÉzÜtÅ@cÜÉvxááxá

fÉâÜvxVÉwx `tv{|ÇxVÉwx

The 
Intension/Locality

hierarchy

cÜÉzÜtÅá`xàtÑÜÉzÜtÅá [tÜwãtÜx

cÜÉzÜtÅ@fvÜ|Ñàá cÜÉzÜtÅ@cÜÉvxááxá

fÉâÜvxVÉwx `tv{|ÇxVÉwx

The 
Intension/Locality

hierarchy

 

Figure 1. The program abstractions taxonomy 

2.1 Abstraction 
Among the arguments that computer programs pose unique philosophical questions is the observa-
tion that programs bridge between the abstract (e.g. turing automata) and the concrete (desktop com-
puters, microwave ovens). Therefore, we are led to explore in detail the notion of abstraction. 
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Ontology (n). An account of being in the abstract. (Oxford English Dictionary 1721) 

We contend that the criteria of distinction between all categories in the program abstractions 
taxonomy can be formulated as interpretations of abstraction. We take abstract to mean any combina-
tion of the following interpretations: 

A-I  Intangible, namely not concrete, physical entities. Examples for intangible entities are a turing 
automaton and the number 1. 

 A-II Generalized, as a category of entities. For example, client-server software systems and vehicle are 
more abstract than Microsoft Outlook and my bicycle. 

A-III Underspecified, such as a logic statement that contains free variables. For example, the state-
ment men are mortal is more abstract than the statement Socrates is mortal. 

A-IV Immanently meaningful to humans, in the sense such as in the following sentence: “The Pascal 
script in Table 2 is more abstract than the equivalent Intel 8086 script in Table 1.” 

 A-V It from bit [Floridi 2004], namely instances of information. 
A-VI A-temporal, in the sense that a-temporal entities are ‘timeless’ whereas temporal entities extend 

in time. 

The precise meaning of each one of these interpretations will become clear with the applica-
tion of each as a differentia (§ 3). In the remainder of this section, we examine some of the categories 
that constitute the program abstractions taxonomy. 

2.2 Programs 

In this subsection we examine the kinds of programs and the notions of programming languages, pro-
gram-scripts, and program-processes. Because program-scripts and program-processes are so intimately 
connected, they are both referred to as ‘programs’ in the vernacular. Our first task is therefore to dis-
tinguish between the two senses. 

Program-scripts 

Most programs are encoded as sequences of characters. Whether the sequence of characters s is a well-
formed computer program depends on the grammar and semantics of the programming language in 
which it is encoded. This leads us to suggest the following definition of program-scripts:  

cÜÉzÜtÅ@fvÜ|ÑàáDEF-1 The category of entities s (“s is a program”) for which there exists a programming 
language L such that s is a well-formed expression in L. 

This definition raises a difficulty since for every possible sequence of characters s, a program-
ming language can in principle be tailored to allow s. This definition thus effectively admits any pos-
sible sequence of characters. This leads us to consider compilers as a criterion of acceptance: 

cÜÉzÜtÅ@fvÜ|ÑàáDEF-2 The category of entities s (“s is a program”) for which there exists a compiler CL 
such that CL accepts s. 

However this definition raises another difficulty. It implies that scripts depend on the exis-
tence of compilers, which are commercial and market-driven artefacts, the existence (or disappearance 
of which) is subject to market forces that are immaterial to ontological investigation. Moreover, 
scripts encoded in machine language do not require the notion of a compiler. We conclude that the 
very notion of a script is contingent upon a context of a programming language. An adequate crite-
rion of acceptability requires us to explicitly formulate the programming language in which s is en-
coded. Therefore we may revise our definition as follows: 
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cÜÉzÜtÅ@fvÜ|ÑàáDEF-3 The category of entities sL (“sL is a program”) such that L is a programming lan-
guage and s is a well-formed expression in L. 

This definition raises a difficulty concerning the notion of a programming language. While it 
admits Pascal  [26] and Lisp  [17] as programming languages, we also wish to exclude formatting lan-
guages such as HTML and even more impoverished languages should not be accepted as programming 
languages in this context, such as the language of cooking recipes and similar ‘programs’. We may 
therefore try and speak of sequences of instructions to a machine. But while the question What is a 
programming language? can be reduced to the question What is a computer?, the problem remains that 
any physical object can be described as a computer in some trivial sense (2). For example, a light 
switch can be taken to be a computer, the ‘programming language’ of which consists of any word (se-
quences of characters) in the alphabet consisting of the set {ON,OFF} . Naturally, such a definition 
empties the notion of a program-script from any content since any physical object is a ‘computer’ in 
some impoverished sense. What is necessary than is some formulation of the syntactic notion of a 
programming language as the set of well-formed sequences of instructions to a non-trivial machine.  

Fortunately, we are provided with the notion of turing-completeness (e.g.,  [15]), which re-
quires a programming language to support a non-trivial set of instructions. Turing-completeness is a 
property which ensures that the notion of a programming language is sophisticated enough to warrant 
independent ontological standing for computer programs. This observation leads us to a final revision 
of our definition: 

cÜÉzÜtÅ@fvÜ|ÑàáDEF-4 The category of entities sL (“sL is a program”) such that L is a turing-complete 
programming language and s is a well-formed expression in L. 

Program-processes 

The notion of a program-process corresponds to the notion of a ‘process’ or a thread (also ‘task’, 
‘bot’) as recognized by current operating systems. For example, both the Linux and the Windows XP 
operating systems refer to program-processes as ‘processes’, lists of which are demonstrated in Figure 
2. Each program-process is a temporal entity generated by ‘executing’ or ‘running’ a particular pro-
gram-script encoded in the language of the machine that was used to execute it. When generated, the 
instructions in the executed program-script are copied into a uniquely allocated segment(s) in the 
computer’s memory (where the program-process holds instructions and data), called the process’ ‘im-
age’ (listed as ‘image name’ in Figure 2a). From that point on, the process proceeds with the execution 
of the instructions in its image.  

Each particular program-script can be used to generate many simultaneous program-processes; 
for example, the list of Windows XP program-processes in Figure 2a includes two program-processes 
generated from the program-script recorded by the name svchost.exe . 

                                                        

(2) This is the main thesis of pancomputation  [16]. 
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% ps -ag 

  PID TTY      TIME COMMAND 

 3695 tty2     0:00 /sbin/mingetty tty2 

 3696 tty3     0:00 /sbin/mingetty tty3 

 3697 tty4     0:00 /sbin/mingetty tty4 

 3700 tty5     0:00 /sbin/mingetty tty5 

 3704 tty6     0:00 /sbin/mingetty tty6 

12274 pts/2    0:00 -csh 

12365 pts/3    0:00 -csh 

 6435 pts/0    0:00 -csh 

 8058 pts/1    0:00 -csh 

 8145 pts/5    0:00 -csh 

 8202 pts/5    0:00 ps –ag 

Figure 2a. Windows XP program-processes Figure 2b. Linux 2.6.16 program-processes 

The category cÜÉzÜtÅ@cÜÉvxááxá includes simple processes, such as the process generated by 
pressing a button on a computer keyboard or in a microwave oven, the processes generated by execut-
ing the program-scripts in Table 1 and Table 2, as well as arbitrarily complex programs such as those 
involved in passing, processing, and returning a query for an Internet search engine (3).  

The first electronic computers were designed to generate and carry out the instructions of one 
program-process at a time. Contemporary operating systems allow a machine to give the appearance 
of many program-processes executing concurrently (although in fact at each clock cycle only one pro-
gram-process is using the CPU.) A program-process is uniquely identified by the operating system by 
an entry in the list of current processes that the operating system recognizes at each clock cycle. For 
example, the list of Linux program-processes in Figure 2b enumerates the process id (PID ), a unique 
identifier assigned to each program-process. 

Increasingly sophisticated hardware, distributed processing, computer networks, and open sys-
tems in particular blur the boundaries between one program-process and another. For the purpose of 
this exploratory investigation, it suffices to identify each program-process with a single execution 
thread that occupies a CPU at each point in time. 

2.3 Hardware 
Our enquiry in the notion of programming languages (4) led us to examine the notion of digital com-
puting machines. These can be assembled by a variety of technologies, the precise nature of which is 
immaterial to this discussion. What is relevant is that computing machines belong to a wide spectrum 
of simple and arbitrarily complex machines and that an ontological enquiry must establish whether 
we take [tÜwãtÜx to include light switches and abaci (definitely not), simple desk calculators (proba-

                                                        

(3) in § 3.2 we examine compilers and in § 4 the notion of compilation. 

(4) For a discussion in the ontology of programming languages see  [22]. 
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bly not), microwave ovens (unlikely), microprocessors embedded in microwave ovens (yes), and Bab-
bage's difference engine (maybe). The increasing pervasiveness of microprocessors in modern life, in-
cluding vehicles, television sets, and other gadgets, demands further examination of this category. 

Turing’s characterization of abstract automata offers a possible criterion of acceptance. It leads 
us to the following formulation to the notion of a Hardware entity: 

[tÜwãtÜxDEF-1The category of computing machines whose behaviour can be modelled by a turing 
automaton. 

Unfortunately, this definition accepts light switches and abaci since the behaviour of these en-
tities can be captured by (trivial) turing automata. Another difficulty arises from the fact that a turing 
machine is an abstract mathematical construct that includes an infinite tape which cannot by realized 
in any finite physical system, whereas in reality every computer—no matter how extensible—has ac-
cess at any point in time to a finite amount of memory. Furthermore, the modern notion of a digital 
computing machine is not restricted to those machines whose set of instructions constitute computer 
programs, a notion we have established by definition cÜÉzÜtÅ@fvÜ|ÑàáDEF-4. This requires us to revise 
our definition to include only those machines that are capable, at least in principle, of executing pro-
gram-scripts encoded in turing-complete programming languages. This leads us to revise [tÜwãtÜxDEF-1 
as follows: 

[tÜwãtÜxDEF-2 The category of computing machines whose behaviour can carry the same class of com-
putations as a universal turing automaton. 

We also observe that a [tÜwãtÜx entity can be embedded in an entity that does not belong to 
that category. Thus, the microprocessor embedded in a microwave oven is taken to be an entity in 
[tÜwãtÜx but a microwave that does not offer a turing-complete set of instructions (a microwave that 
cannot be “programmed”) is not. This should not pose us with a difficulty since the whole can be less 
computationally powerful than its parts. 

2.4 Metaprograms 

We mark `xàtÑÜÉzÜtÅá as that category of statements describing programs. Such statements include 
informal descriptions, such as the statement “The class of programs which take no input, terminate, and 
whose output is “hello world! ” (§ 3.4) , and formal specifications, such as the function factorial 
(§ 4). The software engineering and formal methods literature generally refers to metaprograms as 
software specifications. For example, software design specifications consist of constraints imposed on 
the structure or behaviour of programs, such as software metrics, and in particular descriptions in the 
literature on software design, including architectural styles  [10], design patterns  [9], and abstract data 
types  [2]. 

A definition capturing `xàtÑÜÉzÜtÅá remains outside the scope of this paper. Instead, we restrict 
our discussion to descriptions formulated in the classical predicate calculus. In (§ 3.4) we examine two 
sample metaprograms and illustrate how each metaprogram can be taken to represent a category of 
programs.  
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3 Differentiae 

We contend that the interpretations of abstraction listed in § 2.1 are the differentiae between the cate-
gories and subcategories in the program abstractions taxonomy (Figure 1). In this section we examine 
these differentiae in detail and use them to distinguish between the categories in this taxonomy. 

3.1 Program-scripts vs. program-processes 

We distinguished program-scripts from program-processes as two subcategories of cÜÉzÜtÅá. Since 
program-scripts are a-temporal and program-processes are temporal entities, the differentia between 
the categories cÜÉzÜtÅ@fvÜ|Ñàá and cÜÉzÜtÅ@cÜÉvxááxá is interpretation A-VI of abstraction. In addition, 
in § 4 we examine how a program-process is generated from a program-script and demonstrate the 
process of program process-concretization which synthesizes a machine and time-specific program-
process from a program-script (a process of concretization by interpretation A-III). Since each program-
process is generated from some program-script, the differentia between cÜÉzÜtÅ@fvÜ|Ñàá and cÜÉzÜtÅ@
cÜÉvxááxá is interpretation A-III of abstraction (underspecified vs. specific).  

3.2 Source code vs. machine code 

We observe two categories of program-scripts: scripts encoded in a machine language, the category of 
which is generally referred to as `tv{|ÇxVÉwx, and scripts encoded in a high-level programming lan-
guage, the category of which is generally referred to as fÉâÜvxVÉwx. Using concrete examples from 
each category, we demonstrate below that source code entities are more abstract than machine code 
entities by interpretations A-II (generalized) and A-IV (immanently meaningful to humans). 

Historically, machine languages (also assembly languages in the jargon) came earlier into being. 
A script encoded in a machine language consists of sequences of instructions that are directly inter-
preted by a class of digital computing machines. The class of machines for which a particular machine 
code script is meaningful can be abstracted using the notion of a machine language. Common ma-
chine-code instructions include assigning a particular number into a register (write ), recalling the 
value assigned to a register (read ), and adding the value assigned to one register to another (add ). For 
example, Table 1 depicts a sequence of instructions which, when executed on a microprocessor from 
the Intel 8086 family, prints the string “Hello, World! ” to the console. 
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Table 1. Program-script “Hello, World!” in machine code for Intel microprocessor 8086 (5,6). 

C6 06 02 00 68 
C6 06 04 00 65 
C6 06 06 00 6C 
C6 06 08 00 6C 
C6 06 0A 00 6F 
C6 06 0C 00 2C 
C6 06 0E 00 77 
C6 06 10 00 6F 
C6 06 12 00 72 
C6 06 14 00 6C 
C6 06 16 00 64 
C6 06 18 00 21  

 

Rapid technological developments led to gradual improvements in the processing power of 
digital computers by several orders of magnitude, which allowed the introduction of increasingly 
more powerful machine languages. This improvement led during the 1950s to the development of 
compilers, ushering in the next phase in the history of programming languages. A compiler is a pro-
gram-process which translates source code into machine code. We say that compilers concretize (§ 4) a 
source code into machine code. For example, a Pascal compiler for the Intel 8086 microprocessor 
family is likely to translate the source code depicted in Table 2 into the machine code depicted in 
Table 1. 

Table 2. Program-script “Hello, World!” in Pascal. 

program hello(output); 
begin 
 write('Hello, world!') 
end. 

 

Since Fortran and Lisp compilers were synthesized during the early 1950a, many different 
compilers were introduced for other high-level programming languages, including general-purpose 
languages such as Pascal and Java, Web scripting languages such as JavaScript, and protocols of com-
puter networks a such as TCP/IP. 

As a result from the variability of machine languages and from the ambiguity of the grammar 
and semantics of high-level programming language, the precise mapping from Pascal into the Intel 
8086 microprocessor family varies with the target machine’s language, the commercial compiler ven-
dor, and with the release of the compiler. For example, the C programming language defines the type 
int  as “implementation dependent”. This allows vendors of C compilers for a 16-bit microprocessor 
to represent integers in 2 bytes and vendors offering compiler for 32-bit microprocessors to represent 
integers in 4 bytes. Such differences yield different interpretations of the same program with visibly 
different behaviour. In conclusion, the mapping from source code into machine code is a one-to-many 
relation. This demonstrates that program-scripts in each high-level (compiled) programming language 

                                                        

(5) Not a complete 8086 program but the relevant extract thereof. 

(6) Produced using EMU8086, an Intel microprocessor emulator. EMU8086 is a trade mark of 
EMU8086.com. 
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represents a category of program-scripts in machine code, and that fÉâÜvxVÉwx is more abstract than 
`tv{|ÇxVÉwx by interpretation A-II of abstraction. 

Each programming languages was designed to support specific set of abstraction mechanisms, 
such as procedures, recursion, records, classes, and modules. But these are conservative extensions of 
machine languages; in other words, despite the differences between them, machine and high-level 
programming languages are computationally equivalent (turing-complete). Instead, programming lan-
guages that support these abstraction mechanisms equip the human programmer with better tools for 
conceptualizing the program. Compare for example the machine-code script in Table 1 with the Pas-
cal script in Table 2: understanding, writing, and debugging source code is easier than understanding, 
writing, and debugging machine code. Consider for example the task of changing the output of the 
script in Table 1 into “Goodbye, World!” (7). This demonstrates that source code is more immanently 
meaningful for humans than machine code and that fÉâÜvxVÉwx is more abstract than `tv{|ÇxVÉwx 
also by interpretation A-IV of abstraction. 

3.3 Hardware vs. programs 

The differentia between the categories cÜÉzÜtÅá and [tÜwãtÜx is interpretation A-I (intangible) of ab-
straction because Hardware entities are tangible whereas programs are not. Vacuum tubes, printed cir-
cuits, microprocessors, random-access memory, I/O ports, and all related circuitry are physical, ma-
terial entities which occupy specific regions of time and space. Programs do not satisfy any of these 
criteria.  

The second differentia between cÜÉzÜtÅ@fvÜ|Ñàá and [tÜwãtÜx is interpretation A-V (it-from-bit) 
of abstraction. John Wheeler  [24], the eminent evangelist of information theory (8), defines an entity x 
as an instance of information if every element of x derives its function, its meaning, its very existence 
entirely from the apparatus-elicited answers to yes-or-no questions (binary choices). In other words, x 
can be reduced to bits (hence ‘it from bit’). This is evidently true for every program-script and every 
program-process: each program, no matter how complex, has a ‘bottom’, its complete representation 
derives from a finite, discrete set of ‘binary choices’. (9) 

3.4 Metaprograms vs. Programs 

We take `xàtÑÜÉzÜtÅá to consist of formulas in the predicate calculus, each of which offers a descrip-
tion of a category of programs, such as the following: 

The class of programs which take no input, terminate, and whose output is “hello world! ” HW

The class of programs whose computational complexity is NP-complete NPC

A metaprogram can be specified as a requirement from a program. In software engineering jargon, we 
say that, for example, HW specifies the requirements from the program-scripts “Hello, World!” in In-
tel 808X (Table 1) and in Pascal (Table 2). 

`xàtÑÜÉzÜtÅá includes statements in functional specification languages  [21], such as the function 
factorial in § 4, Z and VDM, which formulate (the behaviour of) programs as mappings from input 

                                                        

(7) More generally, it is widely accepted that the ongoing ‘software crisis’  [11] is the result of lack of ab-
straction mechanisms in contemporary programming language. 

(8) who also coined the term ‘black hole’. 

(9) Although Wheeler conjectured that every physical object is also an instance of information, this conjec-
ture is yet to be corroborated. 
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into output. Software metrics and software design statements such as design principles, architectural 
styles  [10], design patterns  [9], and abstract data types are generally represented in a wide range of 
specification languages, including formal, semi-formal, and informal, textual and visual languages. 
Turner  [21] furnishes a complete theory in logic which describes how functional specifications can be 
articulated as relations in the predicate calculus. The formulation of metaprograms in the classical 
predicate calculus is demonstrated below. Further examples can be found in  [4]. 

We contend that the differentia between the categories `xàtÑÜÉzÜtÅá and cÜÉzÜtÅá is interpreta-
tion A-II of abstraction (category vs. elements thereof). To corroborate this claim, the remainder of 
this section is dedicated to demonstrate how each metaprogram can be taken to represent a category 
of program-scripts. This demonstration uses the first-order predicate calculus and finite model theory; 
it can be skipped without affecting the readability of the remainder of our discussion. 

Information hiding 

Information hiding  [25], also referred to as data abstraction or encapsulation, is a software design prin-
ciple that is supported (in one variation or another) by every object-based, object-oriented, and class-
based programming language  [3]. This principle is intended to make programs more maintainable by 
enforcing that all dependencies between modules of the program are made explicit, thereby minimiz-
ing the ‘domino effect’ (10).  

We shall restrict our discussion to programming languages containing an explicit representa-
tion of modules (in Java: classes) and procedures (in Java: methods), such that each module consists of a 
collection of procedures (also: “procedure p is a member of module m”). Let M⊂cÜÉzÜtÅ@fvÜ|Ñàá des-
ignate this set of program-scripts written in a range of modular programming languages that fall under 
this category. An example for such a program-script is the Java program Stack-J  depicted in Table 
3. 

                                                        

(10) The domino effect is an undesirable property characteristic to “fragile” software systems, demonstrated 
when small changes in one module have unexpected effects on seemingly unrelated modules. The Y2K 
problem for example was a manifestation of the domino effect and its consequences. 
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Table 3. Program-script Stack-J  in Java 1.4.2. 

package java.util; 
 
public class Stack extends Vector { 
 public  Object push(Object item) { 
  addElement(item); 
  return item; 
 } 
 public synchronized Object pop() { 
  Object obj; 
  int len = size(); 
  obj = peek(); 
  removeElementAt(len - 1); 
  return obj; 
 } 
 public synchronized Object peek() { 
  int len = size(); 
  if (len == 0) 
   throw new EmptyStackException(); 
  return elementAt(len - 1); 
 } 
 // ... 
} 

 

Information hiding mandates that each procedure is declared either as ‘public’ or as ‘private’, 
and that private procedures may only be invoked by procedures defined in the same module (namely 
the members of same module). This description is a metaprogram that can be formulated in the predi-
cate calculus as follows: 

∀x,m,p • Private(p)∧Member(p,m)∧¬Member(x,m)⇒¬Invoke(x,p)  IH

The meaning of IH can be defined model-theoretically using Tarski’s truth conditions (11). Tar-
ski’s truth condition furnishes us with a method of checking whether a program-script satisfies the 
principle of information hiding. Below, we demonstrate how IH may be taken to represent a category 
of program-scripts, and how to establish that Stack-J  is in this category. 

We may abstractly represent each program-script p∈M in mathematical logic as a finite struc-
ture, consisting of a finite collection of objects and relations amongst them. For example, taking 
modules to be Java classes and procedures to be Java methods, the finite structure representing Stack-

J , designated mStack , may consist of the following objects: 

Modules ={Stack } 

Procedures ={Stack.push , Stack.pop , Stack.peek }  

with relations such as 

Member = {(Stack.push ,Stack ),  . . . (Stack.peek ,Stack )} 

Private={}  

Invoke={} 

                                                        

(11) Note that the formulation we offer does not commit us to the axioms of Zermelo-Fraenkel’s set theory. 
Rather, we follow the conventions of semantic formulation merely for finite structures. 
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It is trivial to establish using Tarski’s truth condition that the finite structure representing 
Stack-J  semantically entails (also satisfies) IH, written 

mStack � IH 

More generally, we may express the mapping from program-scripts in M into the respective fi-
nite structure in the class of all finite structures, designated M , using the interpretation function I , 
namely 

I : M→M (1)

This permits us to use Tarski’s truth condition to conclude whether a program-script p∈M 
semantically entails a particular statement in the classical predicate calculus, ϕ, written 

I(p)�ϕ 

For instance, we say that I  maps Stack-J  to the finite structure mStack , which, given (1), 
proves that Stack-J  semantically entails information hiding, written 

I(Stack-J )� IH 

The class of program-scripts that satisfy such a statement ϕ in the context of I , written �ϕ�I , 
can be defined as follows: 

�ϕ�I � {s∈M |  I(s)�ϕ} 

For example, the class of program-scripts that satisfy the principle of information hiding, writ-
ten � IH�I , is unpacked as follows: 

� IH�I � {s∈M |  I(s)� IH} 

Thus, the metaprogram information hiding (IH) can be taken to represent that category of pro-
gram-scripts (� IH�I ) to which Stack-J  (Table 3) belongs: 

Stack-J ∈� IH�I 

Stack 

A data structure is a finite collection of objects that is generally defined by a set of operations on the 
collection. A stack  [2] is a data structure that offers three operations as follows: push(x,s)  inserts ob-
ject x into stack s, pop(s)  removes and returns the most recently ‘pushed’ object into s, and top(s)  
returns the most recently-pushed object to s. A stack of integers can be formulated as a predicate on 
any user-defined type T (in Java: class) declared in a given program as follows: 

  Stack(T) � ∀x∈N, t∈T • 
   ∃push :T×N→T, ∃pop :T→T, ∃top :T→N •  

    pop(push(x,t))=t ∧ top(push(x,t))=x 

There are infinitely-many possible program-scripts satisfying the abstract notion of a stack. In 
other words, there can be any number of types T encoded in any programming language for which 
Stack(T)  holds. 

The unary predicate Stack enables the formulation of a program description as an existential 
statement in the predicate calculus: 
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∃T •  Stack(T)  STK

The semantics of STK can be established in manner similar to IH. Let T⊂cÜÉzÜtÅ@fvÜ|Ñàá be the 
set of program-scripts which consist of explicit declarations of user-defined types, procedures, and the 
formal arguments and return types of each procedure. Each program-script in T is mapped by an in-
terpretation function J  into a finite structure consisting (among others) of a finite collection 
Types={t1,…tn} . For example, the program-script Stack-J  is likely to be mapped into a list of 
objects and relations as demonstrated in the previous subsection, except J  shall also make explicit the 
types of objects that are the formal arguments and return values of each method, thereby establishing 
that push , pop , and peek  are instances of the functions push, pop, and top in the predicate Stack, 
respectively. This confirms that J(Stack-J ) , the finite structure representing program-script 
Stack-J , semantically entails STK, and that the program-script Stack-J  is a member of the category 
represented by the statement STK: 

Stack-J ∈�STK�J 

This demonstrates that the metaprogram Stack (STK) can be taken to represent the category of 
program-scripts (�STK�J ). 

The Intension/Locality hierarchy 

Eden, Hirshfeld and Kazman  [4] (also  [5]) observe three categories of design statements (metapro-
grams) as follows: 

 1. Strategic statements (“architectural-design”), which determine global design concerns, include 
architectural styles  [10] (“The architectural style of Microsoft Outlook is Client-Server”), pro-
gramming principles (“information hiding”), component-based software engineering standards 
(CORBA, Enterprise JavaBeans), design principles (“all classes inherit possibly indirectly from 
class Object”), application frameworks, law-governed regularities, and assumptions that may 
lead to architectural mismatch; 

 2. Tactical statements (“detailed design”), which determine local concerns of limited scope, in-
clude as design patterns  [9], refactorings (“extract common base class”) and programming idi-
oms (“counted pointer can be used to manage memory”); 

 3. Implementation statements, which describe specific details of a particular program, such as 
UML class & collaboration diagrams. 

Eden et. al formulate the differentiae between Strategic, Tactical, and Implementation state-
ments using mathematical logic. The differentiae are formulated as the Locality criterion (distinguish-
ing between local vs. non-local statements) and the Intension criterion (distinguishing between inten-
sional vs. extensional statements), giving rise to the Intension/Locality hierarchy. We thus formulate 
the Intention/Locality hypothesis as follows: 

Strategic statements are non-local, tactical statements are local and intensional, and imple-
mentation statements are extensional. 

Statements in all three categories are metaprograms. The Intension criterion can be trivially 
shown to be an application of interpretation A-III (underspecification) of abstraction. The relation be-
tween the locality criterion and interpretations of abstraction and the relation between the Inten-
tion/locality hierarchy and other metaprograms remain to be examined. 
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4 Concretization 

Concretization is a process during which an entity or entities of one category are synthesized (come 
into being) from entities of a more abstract category. Below, we briefly examine five categories of 
concretization processes: synthesizing a hardware entity from a program-script (hardware synthesis), 
synthesizing a program-process from a program-script (program process-synthesis), synthesizing machine 
code from source code (compilation), synthesizing a program-script from a metaprogram (program-
ming), and synthesizing a new class of program-scripts (the programming language) from a set of 
metaprograms (language synthesis). In § 5 we also examine two examples of synthesizing a metapro-
gram from a more abstract metaprogram (software design synthesis). These examples suggest that the 
concretization process ties entities in one category in our taxonomy with entities of a more abstract 
category. This discussion shall demonstrate that concretization is a fundamental relation between enti-
ties in the ontology we examine. 

Hardware synthesis is the process of constructing a microprocessor (electronic circuit) from a 
program-script. Although such technology is yet to mature, subsets of certain hardware description 
languages (such as VHDL and Verilog®) can be converted into a particular configuration of logic gates 
and micro-circuits (12), yielding a Hardware object. But hardware description languages (HDLs) are in 
effect programming languages for a number of reasons, in particular since encodings in an HDL must 
first be interpreted as instructions for a simulator of the target class of microprocessors (13). It follows 
that encodings in HDLs are program-scripts too. We conclude that hardware synthesis can be taken 
to be a process of concretization from a cÜÉzÜtÅ@fvÜ|Ñàá entity into a [tÜwãtÜx entity by interpretation 
A-I (from intangible to tangible). 

Program process-synthesis is the process of synthesizing a program-process from a program-
script by executing or running the script. For example, when running the program-script in Table 1 
on my computer, a new program-process is generated by adding a new entry is added to the list of ac-
tive program-processes that the operating system holds and a copy of the instructions in Table 1 is 
placed in the memory of my computer, called the image of the program. In the first phase of creating 
an image, called loading, the operating system adapts the machine code (which was generated by my 
student on his computer) to the environment provided my computer, for example, by translating rela-
tive memory addresses (recorded with relation to the memory location of the first instruction in the 
program-script) into absolute memory addresses (recoded as actual memory locations in my com-
puter). Execution commences by carrying out the (copy of) the first instruction in Table 1 in the pro-
gram’s image, and proceeds from there according to the flow of the program and the values it stored. 
Observe that in each execution of Table 1, the first command line may be located in a different loca-
tion in the memory of my computer, the values stored in different locations in memory, and the in-
put supplied thereto may be different. During execution, variables take different values depending on 
any number of these factors. For self-modifying programs, even the instructions themselves can 
change. In conclusion, the process of program-process synthesis is a process of concretization from a 
`tv{|ÇxVÉwx entity into a cÜÉzÜtÅ@cÜÉvxááxá entity by interpretation A-III (underspecified to specific). 

Machine code-synthesis (compilation) is a process of synthesizing a machine-code entity from 
a source-code entity. In § 3.2 we demonstrated that a compilation of the Pascal program-script in 
Table 2 produces the program-script in Table 1, which is encoded the language of the Intel 8086 ma-
chines. It follows that compilation is a process of concretization by interpretation A-IV (immanently 
meaningful to less meaningful) and interpretation A-IV (from a category to in instance thereof) of a 
`tv{|ÇxVÉwx entity from a fÉâÜvxVÉwx entity. 

                                                        

(12) manually or even mechanistically, by a synthesizer and appropriate robots, at least in potential. 

(13) for the purpose of verification, for example. 
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Program script-synthesis (programming) is a process of encoding a program-script. In soft-
ware engineering terms, programming is generally conceived as a process whose product is a program-
script that satisfies a given set of `xàtÑÜÉzÜtÅ entities  (specifications ). Consider for example a student 
learning Pascal who is required to encode a program-script that satisfies HW (“The class of programs 
which take no input, terminate, and whose output is “hello world! ”). In § 3.4 we demonstrated that 
HW can be taken to mean the representation the category of program-scripts that satisfy it, written 
�HW�I  (for some interpretation function I ). More generally, programming is a process of concretiza-
tion by interpretation A-II of a cÜÉzÜtÅ@fvÜ|Ñàá entity from a set of `xàtÑÜÉzÜtÅá entities. 

In § 5 we demonstrate two examples of software design synthesis, a concretization process that 
yields a metaprogram that is a concretization of a more general metaprogram. 

Language synthesis 

Historically, high-level programming languages were motivated by supporting increasingly ab-
stract metaprograms, such as instruction blocks, arithmetic operations (such as the introduction of 
floating-point expressions), procedural decomposition, recursion, dynamic binding, and inheritance. 
We postulate that high-level programming languages are formed in a process of synthesis of a subcate-
gory of cÜÉzÜtÅ@fvÜ|Ñàá from of a subcategory `xàtÑÜÉzÜtÅá. Taking the process of language synthesis 
to be the process of defining and constructing a compiler for the programming language, we examine 
below the concretization of two programming languages, Java and Lisp. It is possible to demonstrate 
in a similar manner that the PROLOG programming language was synthesized from of metapro-
grams that consist of Horn clauses (with finite structures and the closed-world assumption in mind.) 

The Java programming language  [13] enforces a variation on the principle of information hid-
ing (§ 3.4). This variation, which we designate IHJ, can be axiomatized as follows: 

IH∧ IHC IHJ

where IH is defined in § 3.4 and IHC represents the additional requirement imposed by class-based pro-
gramming languages (such as Java, C++, and C#), defined as follows: 

∀m • Method(m)⇒Access(m)∧∃c • Class(c)∧Member(m,c) IHC

where Access(m)  is the predicate requiring that method m satisfies exactly one of the following: 
Public(m) , Protected (m) , or Private(m) . 

Thus, the synthesis of the Java compiler is a process of program script-synthesis, during which 
IHJ is concretized, followed by a process of program-process synthesis, during which the compiler’s 
script is executed for the purpose of translating source code into machine code. More generally, the 
formation of the Java programming language is the result of concretizing by interpretation A-II a cÜÉ@
zÜtÅ@fvÜ|Ñàá entity (the compiler’s script) from a subcategory of `xàtÑÜÉzÜtÅá entities (e.g. IHJ), which 
in turn is concretized into a cÜÉzÜtÅ@cÜÉvxááxá entity. 

The Lisp programming language was inspired by Post’s notion of recursive functions which 
McCarthy  [17] has taken to mean those mathematical functions that are defined in terms of recursion 
and functional composition. For example, the recursive function factorial is defined mathematically 
as follows: 
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0 1

n
factorial(n)

n n factorial(n )

=
= 
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More generally, many recursive functions can be characterized as follows: 
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where a and n are in N (the set of non-negative integers), f and g are unary functions from N to N.  

Scheme (a dialect of Lisp) was designed to concretize almost a literal representation of recur-
sive functions. Consider for example the Scheme concretization (Table 4) of the factorial function 
defined above. 

Table 4. Program-script factorial  in Scheme. 

( define (factorial n) 
 ( if (= n 0) 1 
  (* n (- n 1)))) 

 

The Scheme syntax is specifically designed to emphasize the definition of a Scheme procedure 
as a mathematical function (14,15). This example demonstrates that the synthesis of a compiler to the 
Lisp programming language is the process in which a cÜÉzÜtÅ@fvÜ|Ñàá entity (the compiler’s script) is 
synthesized from a subcategory of `xàtÑÜÉzÜtÅá (including entities such as R), namely a process of con-
cretization by interpretation A-II. 

We also observe that the mathematical function factorial is not equivalent to the program-
script factorial . In its set-theoretic account, the mathematical function factorial represents an 
infinite set of pairs  

factorial={(1,1!), (2,2!), (3,3!), …} 

whereas the program factorial  is a cÜÉzÜtÅ@fvÜ|Ñàá entity which, if compiled, executed, and fed 
with a certain valid non-negative integer n, may calculate the factorial of n, if the hardware, operat-
ing system, and all related services function as expected. In this sense, program-script factorial  
(Table 4) is a concretization of factorial.  

5 Ontological commitments of a program-
script 

Smith  [18] describes the ontology to which a representation is committed as those objects and rela-
tions whose existence is asserted by the representation. Considering Quine’s interpretation (§ 1), such 
ontology should provide a small number of elementary building-blocks (objects and relations) into 
which any account of the ontology of a program can be reduced. Such a conceptual scheme furnishes 
us with the ontological commitments of certain programs (Q3). 

A possible line of inquiry in the ontological commitments of program-script s is offered by ex-
amining the ontological commitments made by the programming language in which s is encoded 
 [22]. This suggests that the semantics and underlying axioms of a programming language may furnish 
us with the ontology to which all program-scripts encoded in this language are committed. Since ex-

                                                        

(14) for which reason Lisp procedures are called functions. 

(15) or, more accurately, a lambda expression. 
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plicit axiomatization of actual programming languages is not on offer, we turn to semantic theories. 
While several flavours of semantics were suggested, denotational semantics  [20] provides an attractive 
picture with semantics and ontology as close bedfellows. However, denotational semantics suggests 
that all programs are ultimately committed to set theoretic domains  [22]. Unfortunately, these do not 
offer any explanation to the variety of programming languages (Q3). Moreover, suggesting that set-
theoretic constructs are the elementary building-blocks of every program is perverse  [22], and at most 
should be taken as a reductio ad absurdum. 

Alternatively, consider the ontology offered by the notion of programming paradigms. In § 4 we 
demonstrated that the Java compiler concretizes a variation of the principle of information hiding for-
mulated as IHJ. Variables in the formula IHJ range over classes and methods, the ontology of which is 
recognized as the class-based programming (16) paradigm  [3]. Since the Java compiler enforces IHJ on any 
Java program-script, we may suggest that every Java program-script is committed to the ontology of-
fered by the class-based programming paradigm. More generally, we may argue that the answer to Q3 
is that every program-script sL encoded in language L is committed to the ontology furnished by the 
programming paradigm to which L is committed.  

This assertion however is likely to be false. Not every program in Java is indeed committed to 
the ontology of classes and methods. The reason is because, while the Java language’s syntax requires 
that all Java program-scripts have at least one class defined therein, it does not necessarily commit all 
Java program-scripts to contain a meaningful collection of classes and members. For example, a 
20,000-line Java program-script which consists of a single class is not committed to the class-based 
programming paradigm; such a program-script is only superficially structured that way, but its classes 
and the methods do not provide us with the simplest conceptual scheme to which the program-script 
is committed. For this reason, object-oriented programmers jest about how certain other program-
mers “write Fortran in every programming language”, suggesting that a program-script can be com-
mitted to a programming paradigm which is not associated with the programming language in which 
it was encoded. 

It is nonetheless evident that programming paradigms play some role in the ontological com-
mitments. To explore this role, we examine below two specific examples. We begin our investigation 
with a (simplified) description of the category of programs of email clients, which can be summarily 
characterized by the following metaprogram: 

EM  An effective representation of text and rich-text (HTML) email messages and their respective opera-
tions, encoded in a form which can be communicated between email clients and servers. 

The process of synthesizing an email client which satisfies EM is a process of program script-
synthesis—namely a process of concretization (§ 4). Let us examine two ways it can be carried out, each 
of which results in a program committed to a different ontology. 

Procedural programming 

If taken during the 1970s, programming a concretization to EM was likely to begin with the formula-
tion of the following two software design statements: 

Define one record (data structure) representing text email and a second data structure representing 
HTML emails; 

EMP1

Define the primary instruction structures (procedures), each representing a particular operation modi-
fying a particular email record. 

EMP2

                                                        

(16) commonly confused with object-oriented programming.  
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We shall refer to the conjunction of statements EMP1 and EMP2 (henceforth EMP) as a procedural 
concretization of EM. The formulation of EMP takes form as an intermediate stage in the process of 
synthesizing a program-script from EM. It describes a subcategory of the programs that are described 
by EM, that is, 

�EMP�I⊂�EM�I 

for some interpretation function I  (§ 3.4). Therefore, although both are metaprograms, EMP is a sub-
category of EM.  

EMP can be formulated in the classical predicate calculus as existential statements with vari-
ables ranging over records and procedures and relations such as procedure p modifies record r and proce-
dure p1 calls procedure p2. By Quine’s dictum (§ 1), EMP is committed to the procedural programming 
paradigm. 

EMP can naturally be programmed as a program-script in any procedural programming lan-
guage from the Algol family. Table 5 depicts the concretization of EMP in Pascal (17). 

Table 5. Program-script Email-Pascal  in Pascal 

{* Various bookkeeping here *} 
 
{*********************************************** Te xt Email: ***} 
record TextEmail is 
 subject, destinationAddress, replyToAddress: char[MAX]; 
 contents: char[MAX] 
end; 
procedure send_TextEmail... 
procedure receive_TextEmail... 
procedure edit_TextEmail... 
procedure display_TextEmail... 
 
{*********************************************** HT ML Email: ***} 
record HTMLEmail is 
 subject, destinationAddress, replyToAddress: char[MAX]; 
 contents: HTML;  
end; 
procedure send_HTMLEmail... 
procedure receive_HTMLEmail... 
procedure edit_HTMLEmail... 
procedure display_HTMLEmail... 

 

We further observe that the syntactic structure and the typesetting conventions of Pascal pro-
gram-scripts  (18) make explicit their commitment to specific objects (procedures and records) and rela-
tions (call and modify). The ontology of Email-Pascal  can further be made evident by a finite struc-
ture that explicitly captures the objects 

Procedures={send_TextEmail , … display_HTMLEmail } 

Records={TextEmail , HTMLEmail }  

                                                        

(17) In a more realistic setting, the programming concretization process will consist of several iterations in-
cluding the modification and/or fine-tuning of Email-P . 

(18) Ignoring variations on these notions that are idiosyncratic to Pascal. 
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and the binary relations  

Call={(edit_TextEmail , display_TextEmail ), …} 

Modify={(edit_TextEmail , TextEmail ), …} 

In conclusion, when a `xàtÑÜÉzÜtÅá entity (EM) is concretized into a software design statement 
that is committed to the procedural programming paradigm (EMP)¸ it lends itself naturally to a con-
cretization into a program-script (Email-Pascal ) encoded in a programming language (Pascal) that is 
committed to same programming paradigm (procedural programming). 

Class-based programming 

If taken during the 1980s, encoding a program-script concretizing EM was likely to take an altogether 
different direction, possibly leading to the formulation of the following software design statements: 

Encapsulate the data and instruction structures associated with the polymorphic class Email . EMC1

Encapsulate the data and instruction structures associated with TextEmail  in a monomorphic sub-
class of Email . 

EMC2

Encapsulate the data and instruction structures associated with HTMLEmail  in a monomorphic sub-
class of Email . 

EMC3

We shall refer to the conjunction of EMC1, EMC2, and EMC3 (henceforth EMC) as a class-based de-
sign (16) concretization of EM. The formulation of EMC takes form as an intermediate stage in the 
process of synthesizing a program-script from EM. It describes a subcategory of the programs that are 
described by EM, that is, 

�EMC�I⊂�EM�I 

As expressed in the terminology established in § 3.4, for some interpretation function I . Therefore, 
although both are metaprograms, EMC is a subcategory of EM.  

EMC can be formulated in the classical predicate calculus as existential statements ranging over 
classes and methods, and relations such as class c2 is a subclass of class c1 and method m is a member of 
class c. By Quine’s dictum (§ 1), EMC is committed to the ontology furnished by the class-based pro-
gramming paradigm. 

EMC is naturally programmed as a program-script in any class-based language. In Smalltalk-80, 
for example, a class encapsulate data and instruction structures (specifically, polymorphic classes are 
abstract classes, monomorphic classes are concrete classes) and the subclass relation is directly supported. 
Table 6 depicts the concretization of EMC in Smalltalk-80. 
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Table 6. Program-script Email-Smalltalk  in Smalltalk-80 (19). 

Object subclass: #Email 
 instanceVariableNames: subject, destinationAddress, replyToAddress 
 "methods:" 
  send ... 
  receive ... 
 
Email subclass: #TextEmail 
 instanceVariableNames: textContents 
 "methods:" 
  edit ... 
  display ... 
 
Email subclass: #HTMLEmail 
 instanceVariableNames: htmlContents 
 "methods:" 
  edit ... 
  Display ... 

 

We further observe that the syntactic structure and typesetting conventions of Smalltalk-80 
program-scripts make explicit their commitment to same objects (classes and methods) and relations (is-
subclass-of and is-member-of). The ontology of Email-Smalltalk  can further be made evident by a 
finite structure that explicitly captures the objects 

Classes={Email , TextEmail , HTMLEmail } 

Methods={Email>>send , ... HTMLEmail>>display }  

the binary relations  

Subclass={(TextEmail ,Email ), (HTMLEmail ,Email )} 

MemberOf={(Email , subject ), …} 

In conclusion, if a `xàtÑÜÉzÜtÅá entity (EM) is concretized into as a software design statement 
that is committed to the class-based programming paradigm (EMC)¸ it lends itself naturally to a con-
cretization into a program-script (Email-Smalltalk ) encoded in a programming language (Small-
talk) that is committed to same programming paradigm (class-based programming). 

 

Analysis and conclusions 

We conclude that a software design concretization is a process of concretizing an abstract metapro-
gram (EM) into a less abstract metaprogram (EMP or EMC) that is committed to a particular program-
ming paradigm (procedural or class-based). We showed that software design concretization restricts 
our interpretation of the original metaprogram (�EM�I ) into a specific subcategory of programs that 
are committed to the same ontology (�EMP�I  or �EMC�I ). It the software design metaprogram is fur-
ther concretized into a program encoded in a programming language (Pascal or Smalltalk) that is also 
committed to same ontology, the result is a program-script (Email-Pascal  or Email-Smalltalk ) 
that is evidently committed to the respective programming paradigm.  

                                                        

(19) Some Smalltalk typesetting conventions have been sacrificed for the sake of simplicity. 
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Finally, we conclude that a program-script sL encoded in language L is evidently committed to 
the ontology of the programming paradigm P if 

 1. L is committed to P; and 
 2. sL is the product of concretizing a metaprogram that is evidently committed to P (the soft-

ware design specification). 

6 Summary and discussion 

In § 1 we posed three questions, the answers to which can be summarized as follows: 

 Q1’ Programs can be distinguished from metaprograms and from hardware by the systematic ap-
plication of interpretations of abstraction as differentiae, the refinement of which leads to the 
program abstractions taxonomy (Figure 1). This taxonomy is 

� exhaustive in the sense that it accounts for all programs we characterized, including the 
distinction between program-processes and program-scripts and the distinction between 
source-code and machine code;  

� unified in the sense that the categories `xàtÑÜÉzÜtÅá, cÜÉzÜtÅá, and [tÜwãtÜx form the top-
level ontology;  

� uniform to the extent that all differentiae are interpretations of abstraction; 
� definitive to the extent that all differentiae are unambiguous, some of which were ex-

pressed in mathematical logic. 

We examined the ontological commitments of two sample program-scripts (§ 5), from which 
we concluded the following: 

 Q2’ A program-script sL encoded in programming language L is evidently committed to the ontol-
ogy furnished by the programming paradigm P if the following conditions are satisfied: 

� L is committed to P; and 
� sL is a concretization of a metaprogram committed to P. 

Our investigation in language synthesis (§ 4), in particular the process of synthesizing a compiler 
from a set of descriptions, led us to suggest the following answer to Q3: 

 Q3’ Programming languages are formed by concretizing a specific set of metaprograms. The prolif-
eration of programming languages is explained by the proliferation of possible subsets of 
`xàtÑÜÉzÜtÅá entities to choose from, the concretization of every consistent combination of 
which ultimately yields a different language. 

The questions we posed and the answers we examined are only the first step in the larger project of 
investigating the ontology of computer programs. Details of some of the arguments we examined 
were left out, the formulation of which has been merely sketched. Particular examples were analyzed 
to corroborate the answers suggested, albeit further examination must demonstrate that the evidence 
shown is not anecdotal. 

We further observe the following open questions: 

Q4  While program-processes are intangible, they are nonetheless causal objects  [6] [1]: They move 
produce pictures on computer screens and  operate machinery. How can intangible objects be 
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causal objects? Since minds are at once intangible and causal, is this the same problem as the 
mind-body problem? 

Q5  Are any of the interpretations of abstraction (A-I to A-V) equivalent? For example, can we iden-
tify generalization (A-II) with underspecification (A-III)? 

Q6  What is the differentia between software design specifications and other metaprograms? What 
is the relation to the distinction between functional and non-functional specifications? Does 
this distinction offer two subcategories of `xàtÑÜÉzÜtÅá? 

Q7  Does the distinction between Strategic, Tactical, and Implementation statements (§ 3.4) offer a 
exhaustive partitioning of `xàtÑÜÉzÜtÅá?  

Q8  Can the Locality criterion  [4] be articulated as one of the interpretations of abstraction? 
Q9  What is the precise relation between languages of metaprograms (“specification languages”) and 

programming languages? Between programming languages and Hardware specification lan-
guages? 

Q10 Can programming paradigms be fully axiomatized to make their ontologies explicit?  
Q11 What is the identity criterion for programs? How exactly are program-scripts and program-

processes distinguished from each other? Is this a syntactic, semantic, or another criterion? 
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