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It also describes some of the common protocols used to transfer files across networks. These
topics are all large and complex subjects, and the document is only an introduction to them.
However, references to more advanced and specialised sources of information are included.
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Chapter 1

Introduction

A very important concession has been made to the Smithsonian Institution by the
Directors of the Associated Transatlantic Cable Companies, who have agreed to
transmit gratuitously between Europe and the United States, a limited number of
short messages on astronomical subjects. Under this arrangement two telegrams
have already been received from the United States by the Astronomer Royal,
who on his part has undertaken, at the request of Dr. Henry, Secretary of the
Smithsonian Institution, to forward from Europe any message announcing an
important astronomical discovery. The Directors of the Associated Companies
have consented that ten messages, of ten words each, may be sent free over the
cables annually. This liberal concession on the part of the Directors cannot be
too highly appreciated by astronomers generally, and especially by the Fellows of
this Society.

In conformity with this agreement the Astronomer Royal will be prepared to
forward any important astronomical message, limited to ten words, which may
be sent to him for this purpose from the principal European astronomers.

Royal Observatory, Greenwich,
April 8, 1873.

The above note appeared in the Monthly Notices of the Royal Astronomical Society for 1873,
only a few years after the inauguration of the first reliable transatlantic cable in 1866. Though
anonymous, it was presumably inserted on the authority of the Astronomer Royal, Sir George
Airy. The first message transmitted under the agreement reported the discovery of the 129th
minor planet, subsequently named Antigone, by Dr. H.C.F. Peters of Clinton, New York[1].

Telecommunications capacity has increased enormously since the 1870s. Computer networks
are now commonplace and the ubiquitous Internet spans the globe. Nonetheless computer
networking remains an arcane subject, often appearing both mysterious and problematic.
Further the performance of the networks can often appear poor and idiosyncratic.

Many areas of science, engineering and medicine now routinely move large volumes of data
between distant locations. Examples might include the routine transfer of the previous night’s
observations made with a telescope located on a remote mountain site to its home institution
for processing and analysis, video conferencing and interactive remote imaging. The first
example simply involves copying the remote data in a timely fashion without errors. The
other examples are interactive and so it is also important that the data are transferred in
close to real time. These requirements have been apparent for some time, but have been
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exacerbated by the recent e-Science and Grid initiatives, which are largely about distributed
resources and high-throughput applications communicating over large distances.

A consequence of applications which generate substantial network traffic becoming more
common is that computer networks are no longer the sole preserve of network experts. Rather,
the developers and users of these applications often need to have some understanding of the
networks over which their applications communicate. This document is aimed at such people.
It is an introduction to computer networks and to ways of obtaining good performance from
them. It covers:

• the basics of computer networks,

• how to monitor their performance,

• simple techniques to improve their performance.

It also describes some of the common protocols used to transfer files across networks. These
topics are all large and complex subjects, and the document is only an introduction to them.
However, references to more advanced and specialised sources of information are included.
No previous experience of computer networking is assumed. The structure of the document
is as follows:

Chapter 2 introduces the technologies which underlie computer networks,

Chapter 3 introduces techniques for monitoring network performance,

Chapter 4 describes some techniques for obtaining good network performance,

Chapter 5 discusses some of the common file transfer protocols,

Chapter 6 concludes the document with a discussion.

1.1 Further Reading

This report is not a textbook on computer networks, though Chapter 2 is a primer. If more
detail is required numerous text books are available. Some which we have found useful are:

Computer Networks by A.S. Tanenbaum, 2003[2],

Computer Networks by P.J. Irving, 2003[3],

TCP/IP Illustrated Volume 1 by R.W. Stevens, 1994[4],

TCP/IP Network Administration by C. Hunt, 2002[5].

Tanenbaum’s and Irving’s books are both introductions to networking, though they have con-
trasting strengths. Tanenbaum’s is a standard text: thorough, authoritative, comprehensive
and recently revised. Irving’s is similarly recent but much shorter: it is short enough to read
completely, which Tanenbaum’s, in practice, is not. One way to use them is to read either
Irving or the first chapter of Tanenbaum for an introduction and then refer to subsequent
chapters of Tanenbaum for areas that are particularly relevant or interesting.
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Stevens’ book specifically covers the TCP/IP protocol used by the Internet. Hunt’s is a
practical guide to setting up and running a TCP/IP network and is aimed at system ad-
ministrators. Both contain much useful material and again their first chapters are good
introductions.

A more idiosyncratic choice is Where Wizards Stay Up Late by K. Hafner and M. Lyon[6].
It is a history of the early development of the Internet written in an accessible, non-technical
style. Though not directly relevant to the capabilities and performance of modern networks
it makes fascinating reading.

The first Networks for Non-Networkers workshop was held at University College London
during July 2004 and a second was held at the National e-Science Centre (NeSC) in Edinburgh
a year later. The Web site associated with this series of workshops1 contains much relevant
information.

1.2 Internet Standards or RFCs

Various Internet Standards documents will be mentioned in this report. These standards
are usually issued in the RFC (‘Request For Comments’) series (the name is something of
a misnomer and the RFCs are actually standards documents which are largely immutable).
Appendix A explains how to obtain copies of these documents and gives a brief description
of the bodies responsible for developing Internet standards. You should be aware, however,
that RFCs are standard documents; they usually contain detailed specifications of technical
standards and are often not for the faint-hearted.

1.3 Jargon

Computer networking is a field particularly replete with impenetrable jargon and acronyms.
Fortunately a number of useful glossaries are available, including:

Wikipedia http://www.wikipedia.org
Webopedia http://www.webopedia.com
whatIs http://whatis.com

You should beware that much networking jargon is ambiguous: a given term will often have
different meanings in different circumstances. Also, often several different terms are used to
mean the same thing.

One point of nomenclature is worth mentioning because it presents a trap for the unwary
newcomer. The size of both physical memory and storage is usually quoted as some multiple
of bytes: Megabytes, Gigabytes or whatever. Conversely, network transmission speeds are
often given in multiples of bits per second: Megabits per second, Gigabits per second etc.
Unfortunately the same abbreviations are used for multiples of both bytes and bits. For
example, both ‘MB/sec’ and ‘Mb/sec’ can both be used for either ‘Megabyte per second’ or
‘Megabits per second’. ‘B’ is perhaps more common for ‘bytes’ and ‘b’ for ‘bits’, but neither
usage is a de jure or de facto standard, and both are common. Another common usage is
‘Mbps’ which is always interpreted as ‘Megabits per second’. In any event, you must exercise
care to extract the required meaning.

1See URL: http://gridmon.dl.ac.uk/nfnn/
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In this document the words ‘byte’ and ‘bit’ will always be included in transfer speeds, for ex-
ample, ‘Mbyte/sec’, in order to avoid any ambiguity. However, other documents use different
conventions. Finally, and at the risk of stating the obvious, because a byte comprises eight
bits, for the purposes of ‘back of the envelope’ approximations one unit can be converted to
the other by shifting the decimal point one place in the appropriate direction.

In older literature transmission speeds were often specified as a number of ‘baud’ or a ‘baud
rate’ given. The baud is a unit inherited from telegraphy, where it has been used since its
introduction at the International Telegraph Conference of 1927. It is named after the early
French pioneer of telegraphy J.M.E. Baudot (1845-1903). Strictly speaking the baud rate is
the number of electronic state changes per second. It does not correspond to the number
of bits per second because each state change can correspond to more than one bit of data.
Nonetheless it was often used incorrectly to mean the number of bits per second. The term
is now obsolete and should be avoided in favour of explicitly specifying the number of bits or
bytes per second, which is unambiguous.

In some older network documents the term ‘octet’ is used instead of ‘byte’. This usage was
adopted because some of the early network software was developed on computers that did
not have eight-bit bytes, such as the DEC-10. The eight-bit byte is now ubiquitous, so ‘octet’
is superfluous and ‘byte’ should be used. However, the meaning can be different in other
(human) languages. For example, ‘octet’ is simply the French word for ‘byte’.

A final caution concerns the use of SI prefixes such as ‘Mega’ or ‘Giga’ etc. The proper SI
usage of ‘Mega’ is, of course, to denote a factor of 1,000,000 or 106. However, when being
used to describe the storage capacity of memory or disk it is often used (incorrectly) to
denote a factor of 1,048,576 or 220, which is a convenient power of two close to the correct
SI factor. Conversely, when specifying transmission speeds the prefixes are usually used with
their correct SI meaning.
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Chapter 2

A Network Primer

Net. Any thing reticulated or decussated at equal distances, with interstices
between the intersections.

Dictionary of the English Language,
Samuel Johnson, 1755.

This chapter is a primer which introduces some of the basic features of computer networks. It
assumes no prior knowledge of the subject. It is not, however, a textbook; for more detailed
discussions see, inter alia, the books by Tanenbaum[2] and Irving[3]. Various definitions of
the term ‘computer network’ are possible, but here we shall use: ‘a set of transmission paths,
interconnected at nodes’ which link a group of autonomous computers (a definition which
is not so far removed from Dr Johnson’s definition of a net, above). That is, the group of
computers, though able to function on their own, are also capable of exchanging messages
and information through the network linking them. Further, this network comprises not just
simple links between machines, down which messages pass, but also nodes where two or more
links meet (see Figure 2.1). Further the nodes can control down which outgoing path an
incoming message will be forwarded. Such networks are now ubiquitous. However, it was not
always so: early computers existed largely in isolation and it was only possible to communicate
with them via a directly-connected console or printer. Attempts to inter-connect them came
later.

Figure 2.1: The definition of a computer network: a set of transmission paths,
interconnected at nodes
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Computer networks exist on various scales, from links between machines in the same room
up through wiring connecting the machines in a building or campus to regional, national and
global networks. Various media are used to carry the communications signals: copper wire,
fibre-optic cables and wireless or radio transmissions etc. Similarly, the network connecting
an organisation’s computers might be owned and managed by the organisation itself (typically
in small-scale networks linking machines in a room or building) or capacity can be rented
from a firm providing telecommunications services (typically in wider area networks). Also
the signals can be carried in bespoke cables designed for computer communication, or they
can utilise conventional telephone lines designed to carry speech, though this is now much less
common than it used to be. Indeed the opposite is true; nearly all long-distance telephone
traffic is now digitised.

Attenuation
Impulse noise
Thermal noise
Cross-talk
Inter-modulation noise
Radiation
Radio frequency interference
Signal reflection

Table 2.1: Common effects causing signal degradation along a transmission line
(after Irving[3], pp35-36)

Irrespective of the medium used, any signal transmitted is subject to various types of degra-
dation, simply because of the underlying physics. Table 2.1 lists some common effects, though
the details are not germane here. The books by Tanenbaum and Irving give details and Strand
et al.[7] discuss the effects present in optical fibres. Further, the properties of the different
media vary enormously, and fibre-optic cables, in particular, allow signals to be transmitted
over long distances with remarkably little loss. Even so, over long distances analogue signals
need to be amplified. Digital signals can also be amplified, but alternatively they can be
periodically decoded and regenerated, which is preferable because the process can be made
essentially lossless, whereas simple amplification will necessarily also amplify the noise.

Similarly the machine receiving the signal needs to check for transmission errors. Such checks
are performed by including redundant, derived, information in the transmission which can
then be re-derived from the signal received and the values compared. Conceptually these
checks are similar to simple ‘parity checks’, though in practice more sophisticated techniques
such as cyclic redundancy checks (CRC) are used. Also, long transmissions are split into
manage-ably-sized chunks or packets, each of which can be sent, checked, acknowledged and,
if necessary, resent separately. If transmissions were not split up in this way then a single
error could cause an entire, potentially long, transmission to be resent. Note that in this brief
discussion there is already emerging the notion of a protocol between the two computers;
they must agree on: the way in which bit patterns are to be encoded as signals, the signals
for the start and end of a packet, the way that error checking information is to be included
in the packet etc.

So far we have only considered communication along a single wire linking two machines. Real
networks, of course, contain multiple machines, any of which can require to communicate
with each other. Conceptually there are (at least) two types of mechanisms by which any
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two machines in a multiple-machine network can communicate with each other: circuit
switching and packet switching. In circuit switching a dedicated circuit or ‘connection’ is
created (or nailed-up) when communication between the two machines is initiated, remains
in place while the message is passed and is relinquished (or torn down) when the transmission
has finished. Whilst the message is being transmitted the two machines have sole use of this
circuit. Circuit switching was used in early telephone systems.

In packet switching every machine on the network has an address which identifies it uniquely.
When a message is transmitted the address of the machine to which the message is directed
is included in each of its packets. The sending machine emits the addressed packets onto the
network, where they are passed and forwarded until they reach their intended recipient. The
postal service is a reasonable analogy for this process. Packet switching is now ubiquitous
in computer networks and some of its ramifications are discussed in the following section.
In the early days of computer networks packets in packet-switched networks were also called
datagrams, by analogy with telegrams, though this term is now little used.

A final concept which is worth mentioning is multiplexing, which entails combining signals
for transmission over a shared medium. Two variants are common: frequency domain
multiplexing (FDM) and time domain multiplexing (TDM). In FDM several indepen-
dent signals are transmitted at different wavelengths. FDM is often used where the medium
is fibre-optic cables or radio transmission. Ultimately the physics of the detectors, receivers
and transmission medium put limitations on the number of independent signals which can
be used. In TDM the various inputs simply take turns to transmit down the medium. TDM
is often used when the medium is copper cable.

The capacity of a network is usually expressed in terms of the data transfer rate. The
data transfer rate between two points on a network is simply the number of bits or bytes
which can be transferred from the first point to the second in a given time interval. It is
usually measured in (Kilo, Mega or Giga) bits or bytes per second. Synonyms are the data
rate, throughput or bandwidth. However, the term ‘bandwidth’ will be avoided in this
document because it also has an alternative meaning concerning the range of frequencies
which can be used to transit a signal along a channel (see above). This alternative meaning
is also, of course, closer to the term’s normal use in the physical sciences.

2.1 Types of Network

There is no generally agreed taxonomy for classifying computer networks. However, two dis-
tinct properties are important: transmission technology and scale. Transmission technology
can be broadly divided into two types: broadcast and switched.

In a broadcast network all the machines on the network are connected by a single, continuous
communications channel (sometimes called a bus or backbone). A packet emitted by any of
the machines propagates through the bus and is received by every machine on the network.
The receiving machines will ignore the packet unless its destination address matches their own
address. (Broadcast networks usually have special arrangements for sending simultaneous
messages to either multiple machines or all machines. These features are respectively called
multicasting and broadcasting.)

Broadcast networks are essentially a shared channel, meaning that only one device can trans-
mit at a time. Consequently, broadcast networks are only suitable for situations in which
traffic loads are expected to be light. The advantage of broadcast networks however is that
their wiring costs are very low and their routing very simple.
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Conversely, in switched networks data are routed to their destination via a sequence of
point-to-point, that is node-to-node, links (see Figure 2.2). Unless the source and des-
tination of traffic happen to be adjacent, network traffic will pass through one or more
intermediate nodes during its journey. By definition, circuit and packet switched networks
are both also point-to-point networks.

Figure 2.2: Point-to-point links

Many topologies are possible for point-to-point networks, though usually they will be linked
in an incomplete mesh where each node is linked to some, but not all, of the other nodes in
the network. Thus there will often be multiple routes from the source to destination, and
whilst techniques for routing traffic expeditiously are important, multiple routes provide a
level of redundancy. This property is a key advantage of switched networks.

The unit of currency in packet switched networks is, of course, the packet. Packets arriving
at one point are stored temporarily before being forwarded to the next point in the route,
hence the name store and forward networks (or ‘hot potato’ networks).

Packet switching is used in computer networks because it works well in networks with heavy
traffic flow: nodes can interleave packets from end-hosts and other nodes to achieve better
utilisation of network capacity than dedicated circuit-switched connections. However, there
are, of course, also disadvantages. The process of storing packets upon arrival, selecting an
outgoing link based on routing information, and retrieving the packet for retransmission on
the selected link adds delays to the overall transmission time. This delay is exacerbated
by the need to place packets in queues during periods of heavy loading. Node delay and
queueing delay both have severe implications for network performance. Additionally the
required networking software is complex and the provision of multiple routes significantly
increases the importance of routing strategy.

Though there are many exceptions, small, local networks are often broadcast, whereas larger,
more geographically dispersed ones are often switched. An alternative classification of net-
works is by scale. In this case they are usually divided into LANs, MANs and WANs.

LANs (Local Area Networks) typically link the computers in a single building or cam-
pus. They are usually privately owned. That is, the network cabling and kit is owned
and managed by the same organisation which owns the the computers which the net-
work is linking and which occupies the building that they are in. Ethernet is a popular
technology for LANs. Early versions of Ethernet broadcast on a bus, though modern
versions are usually switched (through a central switch). However, conceptually Ether-
net is still a bus rather than a collection of point-to-point links.
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Various topologies are possible and two are shown in Figure 2.3.

MANs (Metropolitan Area Networks) are larger versions of LANs. Typically they link
several distinct sites dispersed around a city. They may be privately owned or they
may be implemented using network capacity rented from a telecommunications service
provider. Early MANs used technologies similar to LANs, but now they often use
technologies more akin to WANs (below).

WANs (Wide Area Networks) span a wide geographical area, typically a country or con-
tinent. They are almost invariably operated by a telecommunications service provider
rather than being owned by an end user. Rather, an end user’s individual machine,
or more likely his LAN or MAN, will have a connection to the WAN. The backbone
of the familiar Internet is basically a collection of linked WANs. WANs are usually
point-to-point networks.

Figure 2.3: LAN topologies: (a) is a simple bus and (b) a ring (from Tanenbaum[2] p17)

In the terminology of WANs, an end-user’s computer which is connected to the WAN is called
a host or end-system. The hosts on a WAN are connected by a subnet or communication
subnet (this usage of ‘subnet’ is different from, and not be confused with, an ‘IP subnet,’
which is described in Section 2.5.3, below). The subnet, in turn, usually consists of two types
of components: links and routers. The links (also called transmission lines, circuits,
channels or trunks) are simply the cables or other media connecting the routers. The
routers (also called packet switching nodes) are specialised computers and each will be
connected to two or more transmission links. When an incoming packet arrives at a router
from a transmission link the router will choose one of its other transmission links onto which
to dispatch the packet.

A typical topology is shown in Figure 2.4. Each of the hosts is connected to a local LAN,
which is also connected to one of the routers on the WAN. A router which is also connected
to an external network, such as a LAN or another WAN is also called a gateway (though
sometimes this term is reserved for a link between two networks which use different protocols
and hence which is translating between these protocols) or a bridge (though this term too
is also used in other contexts). A packet emitted by one of the hosts in Figure 2.4 traverses
the local LAN to its gateway, passes on to the subnet and is passed between routers until
it reaches the gateway of the destination LAN, where it passes into the LAN and on to the
desired destination host. Note that the packets comprising a message will not necessarily all

9



travel by the same route. Nor will they necessarily arrive in the correct order; the destination
host must accept them as they arrive and reassemble the message correctly.

Figure 2.4: A typical WAN (from Tanenbaum[2] p19)

Subnets usually have irregular topologies, similar to (though, in practice more complicated
than) the one in Figure 2.4. Though Figure 2.4 shows only a single subnet, WANs will often
have gateways to other WANs, forming a network which spans the globe. Also there is often
an informal, irregular hierarchy of more local routers connecting to higher-capacity regional
routers for transmitting longer-distance traffic and these regional routers in turn connect to
national and international ones.

If the network is lightly used then when a packet arrives at a router it can immediately
be processed (by checking its destination address) and dispatched down the appropriate
transmission line (though this processing will take a finite time, of course). However, if the
network is busy then packets might arrive faster than the router can process them. Thus,
incoming packets must be placed in a queue and await their turn to be processed. An
important consequence of this arrangement is that the transmission time for a packet to
travel from one host to another is not merely the sum of the time that it spends propagating
through the transmission lines that it traverses, but also includes the time that it spends
sitting in the queues of the routers which it visits en route. In practice, in busy networks
packets usually spend more time waiting in router queues or being processed by routers than
they do in transit along fibres. Similarly routing information is important in order to ensure
that routers direct packets on an efficient route through the network rather than sending
them on a circuitous detour. Indeed, it is conceivable that not all the packets in a given
message will travel by the same route.

In modern networks, particularly in the context of the Internet, a gateway connecting a LAN
to a MAN or WAN will often be protected by a firewall. The usual purpose of a firewall is
to protect the LAN from unwelcome external intrusions, such as hackers trying to probe the
system prior to attempting unauthorised access. Tanenbaum[2] (p776) memorably describes
firewalls as ‘just a modern adaptation of that old medieval security standby: digging a deep
moat around your castle. This design forced everyone entering or leaving the castle to pass
over a single drawbridge, where they could be inspected by the I/O police.’ In this analogy
the gateway is the drawbridge and the firewall is the detachment of guards who stand on
it, checking the authorisation of everyone attempting to pass in (or out). Firewalls are
configurable. A firewall might examine every packet in detail, though often they do not.
Many will inspect only packets which are attempting to initiate a connection. Other packets
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may be allowed through without check, or simply be checked to establish that they belong to
a previously established connection. The important point here is that firewalls are not ‘magic
bullets’ which protect against all intrusions. Rather, they will give the protection that they
are designed and configured to give.

Firewalls can also be used to police outgoing traffic. This function can help to prevent
unauthorised access by your users to banned services or machines, can force certain types of
traffic through another machine (for example, preventing out-bound HTTP access on port
80, thus forcing users to go through a proxy server machine) and can help stop the spread of
propagating infections such as viruses.

There is likely to be a firewall superintending the traffic passing through the gateway to
your site. For extra protection, each machine at your site could also operate its own firewall,
such as iptables in Linux[8]. Firewalls are notorious amongst users for preventing services,
particularly uncommon ones, from working (though arguably the obloquy should be directed
at the vendors of operating systems for releasing systems whose default state leaves them
wide open to external attack). Firewalls will often block whole ranges of port numbers which
are not usually used. Thus, a service which uses such a blocked port will fail. (A port in
this context is simply a ‘doorway’ or address which a program uses to read from or write to
a hardware network interface. Typically such ports are identified by a sequence number of
port number.)

Finally, a note about the addresses used to identify hosts. Clearly it would be impossible to
maintain a comprehensive list of all the addresses of all the (millions) of hosts available on
all the WANs spanning the globe. Rather, a hierarchical scheme is used. Telephone numbers
provide a good analogy. In order to ring the National e-Science Centre in Edinburgh from
overseas the number to dial is:

00 44 131 650 9833

The initial 00 directs the local telephone exchange to route the call to an international
exchange; 44 routes the call to the UK; the 131 to Edinburgh; 650 to the local exchange and
9833 to the NeSC’s reception desk. With this scheme a local exchange in, for example, rural
New Zealand, can handle the call by simply knowing that 00 is the code for international
calls. Though the technical details are different, network addresses work on a similar principle.
Network addressing is discussed in further detail in Section 2.5, below.

2.2 Network Protocols

In order to communicate across a network a source and destination host, and any intermediate
routers, must agree on a common interpretation of signals (or protocol). Such protocols are
both complex and fundamental to the operation of computer networks.

2.2.1 Protocol stack

Hosts attached to a network usually have utility programs which provide a user with the
familiar network applications, such as e-mail, file transfer and access to the Web. These
application programs, in turn, invoke libraries of standard network software in order to access
the network. At its lowest level (that is, closest to the hardware) this network software is
creating and receiving traffic on the network: constructing and emitting packets etc, and at
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the hardware level, even setting voltages. At its highest level it interacts with the end-user
programs, such as a file transfer application, in terms of the ‘high level’ operations which the
program understands, such as opening, writing and closing files. The software between the
highest and lowest levels is complex and in order to manage this complexity it is conventionally
divided into a number of layers. The higher layers deal with the abstractions and concepts
that are familiar to users (such as reading and writing files) and the lower layers become
successively less abstract and closer to manipulating individual packets on the network. Each
layer communicates only with the layers immediately above and below it (with the obvious
exception of the top and bottom layers which respectively talk to the end-user application
and the physical network) and they do so through a well-defined interface or protocol.
The collection of protocols defining the various interfaces between all the layers is called
the protocol stack. The advantages of this approach are fairly obvious. Components of
distributed systems can be developed independently, for various hardware platforms, perhaps
using different programming languages. Also the decomposition into separate layers allows
the layers themselves to be developed, tested and, indeed replaced, individually.

When a network application (such as file transfer) runs on a host, information starts in the
application program, passes ‘down’ through the layers of the network software, crosses the
network and ascends through the corresponding layers of network software on the destination
computer (see Figure 2.5). However, each layer in the protocol is an abstraction, which gives
the impression that the layer is communicating with the corresponding layer on the destina-
tion machine (these corresponding layers are called peers). As an analogy of the way that
the stacks work, imagine that a Portuguese businessman in Lisbon wishes to exchange a letter
with an Estonian colleague in Tallinn and neither speaks the other’s language. They cannot
find a Portuguese to Estonian translator, so each employs an English translator instead. The
Portuguese businessman dictates his letter which is duly translated into English. A secretary
working for the translator posts the translated letter to Tallinn where the reverse process
occurs: a secretary dealing with the incoming post arranges for the letter to be translated so
it can then be read by the Estonian businessman. Note how the lower layers can be substi-
tuting without affecting the higher ones: the letter might be e-mailed or faxed rather than
being sent by post, or it might be translated into French rather than English.

Most network systems adopt some-such layered approach (though the lower layers might be
implemented in hardware rather than software). However, two sets of protocol standards are
particularly important: The OSI Seven Layer Model and TCP/IP. The OSI (Open Systems
Interconnection) Seven Layer Model was developed during the 1980s by the International
Standards Organisation (ISO) and so is also known as the ISO Seven Layer Model. Unsur-
prisingly, it consists of seven layers, each with a defined function (see Figure 2.6). The details
are not germane here, other than to note that layers one to three deal with the physical
network, layers five to seven are network independent, and layer four acts as an interface
between the two. The OSI model is intended as a reference model. It specifies the function
of each layer, but not the precise services and protocols to be used by each layer. ISO has
produced additional standards for all the layers, but these are not part of the reference model
itself.

The OSI reference model was intended as a ‘blueprint’ against which real network protocols
would be developed, and by the end of the 1980s it looked likely to assume this central role.
However, subsequently its importance has dwindled, though many of the concepts which
it introduced remain important. Rather, what actually happened was that the TCP/IP
protocol, which is used by the Internet, has become ubiquitous. TCP/IP is described briefly
in Section 2.3, below (see also Figure 2.6). Both the OSI and TCP/IP models are complex
topics which the discussion here can merely adumbrate; at least one book has been written
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Figure 2.5: Layers, protocols and interfaces in network software (from Tanenbaum[2], p27)
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which merely compares them[9]. For further information Sections 1.3 and 1.4 of Tanenbaum[2]
(pp26-49) are a good place to start.

Figure 2.6: The layers of the OSI (left) and TCP/IP (right) models (from
Tanenbaum[2], p43). The corresponding layers in the two models are horizon-
tally aligned. The correspondence is not perfect, and the layers themselves are,
in a sense, abstractions. In the TCP/IP model the internet layer is also called the
network layer and the host-to-network layer is also variously known as the link,
data-link or network interface layer

2.2.2 Connectionless and connection-orientated services

Packet-switched networks are inherently connectionless in that there is no direct, dedicated
connection between the source and destination hosts, and each packet travels independently
from one to the other. If the protocol by which a layer in the network stack is accessed
reflects this behaviour it is said to offer a connectionless or datagram service. A higher
layer accessing a connectionless service must typically ensure that incoming packets are re-
assembled in the correct order and perform its own checks to ensure that all the packets have
arrived.

Conversely, a layer can offer a connection-oriented or virtual circuit service. Here the
layer is mimicking a direct connection, such as a telephone line, and includes code which auto-
matically checks that dispatched packets have arrived, resends lost packets etc. The OSI and
TCP/IP protocols provide connectionless and connection-oriented services at different layers
in their stacks. The OSI transport layer protocol is only connection-oriented whereas TCP/IP
transport offers both connection-oriented and connectionless alternatives. Conversely, OSI
offers both options in the network layer whereas TCP/IP has only a connectionless network
layer (see Table 2.2).

14



OSI TCP/IP
Connection- Connection- Connection- Connection-

Layer less oriented less oriented
Transport • • •
Network • • •

Table 2.2: Connectionless and connection-oriented services in various layers of the
OSI and TCP/IP models

2.2.3 Datagrams, packets and PDUs

A datagram is defined in RFC 1594[10] as ‘a self-contained, independent entity of data
carrying sufficient information to be routed from the source to the destination computer
without reliance on earlier exchanges between this source and destination computer and the
transporting network.’ Datagrams need to be self-contained and able to propagate without
reliance on earlier exchanges because they are used by connectionless services.

A packet is simply the unit of data transmitted from a source to a destination on a packet-
switched network, such as the Internet.

The ubiquity of the Internet means that ‘datagram’ and ‘packet’ are now largely interchange-
able terms for the message units handled by the IP protocol (layer three) in the TCP/IP
Internet protocol stack (see Section 2.3, below).

A PDU (Protocol Data Unit) is simply a unit of data passed across a network. Although
the term can be used to refer to a unit of data at any of the OSI model’s seven layers, its
use implies a specific layer of the model and a specific protocol, for example ‘Ethernet PDU
(layer two).’

2.3 TCP/IP

TCP/IP is the protocol used by the global Internet. It originated in the US ARPANET in
the 1970s, though it is now much evolved and revised. Ultimately TCP/IP is controlled by
the Internet Society (ISOC), though much of the work is delegated to subsidiary Boards and
Task Forces (see Appendix A). Like the OSI reference model, TCP/IP is a layered protocol
and it has four layers (see Figure 2.6). Briefly, the function of each layer is as follows.

Link or Host-to-network handles the hardware-specific details of interfacing to the phys-
ical communications channel,

Network or Internet handles the movement of packets around the network. For example,
routing is handled here,

Transport provides a flow of data from the source to the destination host, for use by the
application layer above,

Application comprises the specific functionality of each application, such as file transfer,
remote login, electronic mail, etc.
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On Unix systems the application layer usually executes as a user process whereas the lower
layers are part of the operating system kernel. The TCP/IP protocol does not prescribe this
structure but it is a common arrangement.

The acronym TCP/IP is constructed from ‘Transmission Control Protocol’ (corresponding
to the transport layer) and ‘Internet Protocol’ (corresponding to the Internet layer). An
alternative name is the Internet Protocol Suite. Indeed, TCP/IP is something of a mis-
nomer because there are rather more protocols involved than just TCP and IP. Figure 2.7
shows some of them, arranged by layer. Some brief details are given below, but first, some
important points to note about TCP/IP are:

• The TCP/IP protocols (which occur at OSI layers three, four and seven) layer on top
of ‘something else’ (OSI layers one and two). A wide variety of technologies can be
used to provide layers one and two without affecting the TCP/IP superstructure.

• The IP protocol (see below) at OSI layer three handles inter-networking, that is com-
munication between networks. Routing is central to IP and routers can sit between
networks, which might employ different technologies (that is, implementations for OSI
layers one and two). It is the resulting flexibility to inter-connect disparate networks
which makes the global Internet possible.

Figure 2.7: Some of the TCP/IP protocols, arranged by layer (from Stevens[4], p6)

Transport layer There are two important, but very different protocols for the transport
layer: TCP and UDP.
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TCP (Transmission Control Protocol) provides a reliable connection-oriented service
for the complete transfer of messages from the source to the destination host. It
handles not just dividing the outgoing messages into packets and transmitting
them but also ensures that received packets are acknowledged, lost packets resent
etc. TCP is used in applications where it is important that a message arrives
complete and intact, such as file transfer, electronic mail or accessing Web pages.
Such examples are, of course, the common applications for which networks are
used. See Stevens[4], Chapter 17, pp223-228 and subsequent chapters for further
details. TCP was originally defined in RFC 793[11] in 1981 and has been tweaked
endlessly ever since.

UDP (User Datagram Protocol) is a much simpler protocol than TCP. The message
is simply split up into packets and the packets dispatched from a source to a des-
tination host. No acknowledgement that packets have been received is returned
and there is no guarantee that all (or any) of the packets arrived. If an applica-
tion using UDP requires any reliability then it must be included in the code in
the application layer. On first consideration UDP might appear much less useful
than TCP. However, there are applications, such as streaming video (as used in
video conferences), where it is either inappropriate or impossible to re-send lost
packets and it more important to keep on transmitting a steady stream of new
packets. Further, the absence of acknowledgements and checks permits packets to
be transmitted at a higher rate. See Stevens[4], Chapter 11, pp143-168 for further
details. UDP is defined in RFC 768[12].
Note that the packets in a UDP stream are less obviously related to each other
than those in a TCP stream. Consequently it is more difficult for firewalls to
properly handle UDP than TCP and hence it is often preferable to use the latter
for transfer over a WAN.

Though a considerable over-simplification, it might be useful to think of the difference
between TCP and UDP as being that TCP is suitable for applications where it is more
important that all the packets arrive than that they arrive quickly, whereas UDP is
suitable for cases where it is more important that (most of the) packets arrive quickly
than they all arrive.

Network or internet layer IP is the main protocol of the network layer, though the ICMP
and IGMP protocols are also important.

IP (Internet Protocol) is the principal protocol of the network layer. It is used by both
TCP and UDP (above) and hence by most network applications. Further, ICMP
and IGMP messages (below) are transmitted as IP packets.
IP defines a datagram delivery service which is connectionless and unreliable. A
datagram service is always connectionless because it maintains no state informa-
tion about successive packets in a message: each is handled entirely independently
of its peers. Further, the IP protocol is unreliable in that though it makes best
efforts to deliver packets it gives no guarantees. It does, however, include a simple
error handling mechanism: if a router detects that it has lost a packet due to some
misadventure, such as its input queue filling up, it will attempt to send an ICMP
packet (below) back to the source host. If a connection-oriented and reliable ser-
vice is required then this must be implemented above IP (and this, of course, is the
function of TCP, above). See Stevens[4], Chapter 3, pp33-51 for further details.
IP is defined in RFC 791[13].
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ICMP (Internet Control Message Protocol) communicates error messages and similar
information between routers and hosts. ICMP messages are usually processed in
the network or transport layers, though some will cause error conditions to be
reported to user processes. See Stevens[4], Chapter 6, pp69-83 for further details.
ICMP is defined in RFC 792[14].

IGMP (Internet Group Management Protocol) is a rather more specialised protocol
which is used for multicasting a UDP datagram to multiple hosts (recall that
multicasting is the process of sending the same packet simultaneously to multiple
recipients). See Stevens[4], Chapter 13, pp179-186 for further details. IGMP is
defined in RFC 1112[15].

Link or host-to-network layer ARP (Address Resolution Protocol) and RARP (Reverse
Address Resolution Protocol) are specialised protocols used to interface to some types
of network. See Stevens[4], Chapters 4, pp53-64 and 5, pp65-68 respectively.

2.4 Internetworks and the Internet

Multiple networks connected via gateways or bridges are said to form an internetwork. An
internet (note the lower-case ‘i’) is any network that communicates using TCP/IP, or more
precisely the Internet Protocol Suite. Such a network might be; simply two linked machines,
an isolated LAN or a more complex network with routers. The Internet (with an upper-case
‘I’) is the collection of all the linked hosts and networks which communicate using TCP/IP.
TCP/IP is now ubiquitous and millions of hosts are linked via a collection of networks which
span the globe.

2.5 Addressing

As mentioned earlier, every computer attached to a network has a unique address, that is, a
sequence of bits, which differs from the address of every other computer and which identifies
it. In a broadcast network, such as Ethernet, the computer monitors the network bus and, if
well-behaved, should only ingest packets which match its own address. In a routed network,
routers examine packets and use the packets’ address to direct them on the next stage of
their journey, rather in the manner of a sorting office in a postal service. It is commonplace
to speak of a computer’s address. However, strictly speaking, it is a computer’s interface
to the network which has a unique address. If a computer has two network interfaces (for
example because it is connected to two networks), each interface will have its own unique
address. There are two types of addressing mechanism:

• physical addressing,

• logical addressing,

which are briefly discussed separately below.
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2.5.1 Physical addressing

A physical address is part of the computer’s hardware and will not normally change. It is
usually programmed into firmware on a Media Access Control (MAC) unit (and hence is
referred to as the MAC address), which itself is usually part of a Network Interface Card
(NIC). Consequently if you swap the NIC on a computer its MAC address will change. Early
versions of Ethernet could have either 16 or 48 bit addresses, though now only 48 bit versions
are likely to be encountered. Indeed, recent enhancements to the Ethernet standard are
defined solely in terms of 48 bit addresses. Physical addressing works for LANs, but does not
scale to larger networks with millions of hosts. In this latter case logical addressing is used.

2.5.2 Logical addressing

Logical addressing offers the following advantages:

• it allows address to be retained when the hardware changes,

• it allows the demarcation of the network into subsidiary networks,

• it provides a structure or hierarchy to the addresses.

The last two points allow addresses to be grouped hierarchically, in the manner of telephone
networks or postal systems, as described above, and provides the flexibility necessary in the
global Internet with its millions of hosts in a state of constant flux.

Internet addresses are managed and assigned by the Internet Corporation for Assigned Names
and Numbers (ICANN).1 The ICANN delegates given address ranges to regional and national
authorities which, in turn, allocate ranges to ISPs and other institutions. In this document
such ranges of addresses will be called licences (because the recipient organisation is licenced
to allocate the addresses within its given range).

All IP addresses are 32 bits (4 bytes) long. They are usually represented (for human con-
sumption) using a dotted decimal notation where each of the bytes is shown as a decimal
number (which, necessarily, must be in the range 0 to 255). An example might be:

195.194.14.17

Over the years the way that address ranges have been allocated within the IP address space
has evolved.

Classful addressing

For several decades after the introduction of the IP protocol (before, say, the early 1990s),
licences were awarded in one of five classes A to E. This scheme is no longer used, but is
often still referred to and so is worth mentioning. Classes D and E were special and are
not discussed further here. Classes A to C were used for different sizes of organisation. The
classes differed in:

• the number of licences which could be issued in each class,
1See URL: http://www.icann.org/
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• the number of individual addresses available in each licence.

The first byte of the IP address contains information to identify the class (and also part of
the common base address for the licence). briefly:

Class A The licence address is contained in the first byte of the IP address, thus leaving
three bytes for individual addresses. For historical reasons this type of licence was only
issued to some American universities.

Class B The licence address is contained in the first two bytes of the IP address, thus
leaving two bytes for individual addresses. This type of licence was used for larger
organisations.

Class C The licence address is contained in the first three bytes of the IP address, thus
leaving one byte for individual addresses. This type of licence was used for smaller
organisations.

Table 2.3 shows the number of licences which can be issued in each class and the number of
individual addresses available with each type of licence.

Class Licences Addresses
A 128 16.3× 106

B 16,384 64× 103

C 2× 106 256

Table 2.3: Details of class A, B and C licences. The ‘Licences’ column lists the
total number of licences which can be issued in each class. The ‘Addresses’ column
gives the number of individual addresses available within each licence.

Classless range allocation

The Internet has grown beyond the wildest expectations of its original designers. As the
number of hosts increases free addresses are becoming increasingly scarce. Classful addressing
wastes many addresses. Many organisations need a class B licence rather than a class C one
because they have (or think they will soon have) more than 256 computers, but they do
not have anything like 64,000 (see Table 2.3), and hence will not use most of the addresses
allocated to them.

Classless interdomain routing (CIDR) is an interim solution to this problem which has
been used since about 1993. The basic idea is to allocate addresses in variable-sized blocks,
suitable for the expected needs of the licensee and without regard to classes. Consequently
the licence addresses no longer lie on byte boundaries. Basically CIDR is a trade-off which
makes better use of the available address space, but at the expense of additional complexity
and processing time when computing routing information.
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2.5.3 IP subnets

IP subnets are a way of further subdividing the addresses allocated to a licence in classful
addressing (above). In class A and B licences there are many addresses available within
each licence (see Table 2.3). An organisation with a class A or B licence will usually run its
own LAN, and LANs often become inefficient when the number of hosts that they contain
becomes large (in the case of Ethernet this is true of both the original simple bus topologies
and modern switched Ethernet).

What is required is a way of sub-dividing the addresses within a licence, so that each packet
need be broadcast only on the appropriate sub-network. Consider a university with a class
A or B licence. Typically it will have distinct Ethernet LANs for each department or faculty.
When an external packet arrives at the university’s gateway a mechanism is needed to route
it to the appropriate departmental Ethernet. IP subnets provide this facility.

Importantly, though individual machines are externally visible, any IP subnet hierarchy is
invisible outside the organisation operating the licence. External routers do not need to
know anything about any IP subnets which the destination organisation might be using.
Organisations are free to set up and use their own IP subnets without fearing consequences
for external users. Consequently IP subnets do not require any external licencing or policing.

In basic classful addressing (above) the 32 bits of an IP address are divided into:

• the base address for the licence (16 bits for class B),

• the individual host address (16 bits for class B).

IP subnets modify this scheme slightly by allocating a specified number of bits, immediately
following the base address, to identify the subnet. Following the subnet address, the remaining
bits identify the individual host within the subnet. Thus, in basic classful addressing, an
address comprises:

licence base address + individual host address

and in an IP subnet an address comprises:

licence base address + subnet address + individual host address

To return to the earlier example, when a packet enters the university gateway, the IP subnet
address is examined and the packet routed to the appropriate departmental Ethernet.

In basic classful addressing, the number of bits allocated for the base address is fixed for
each type of licence. Conversely, in an IP subnet the number of bits allocated for the subnet
address can vary. Consequently, a subnet mask is used to indicate which bits belong to the
base or subnet address and which to the host address. The subnet mask is 4 bytes long, like
the IP address. The values of bits in a subnet mask are interpreted as follows:

• a ‘1’ indicates that the corresponding bit in the IP address (to which the mask is being
applied) is part of the base or IP subnet address,

• a ‘0’ indicates that the corresponding bit in the IP address is part of the individual host
address.
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Two notations are in use for subnet masks. One is the same dotted decimal notation used
for IP addresses, for example 255.255.252.0. The other is ‘/x ’ where x is the number of bits
in the base and subnet addresses, for example if a total of 22 bits were so used, the subnet
mask would be written ‘/22.’

Consider the example (adapted from Tanenbaum) where a university was using a mask 22
bits long. The first subnet might start at 130.50.4.1 and with this length of mask can contain
1024 addresses (minus a couple that are reserved for special purposes). The second will start
at 130.50.8.1, the third at 130.50.12.1 etc. Writing out the binary addresses makes it clear
why this is the case:

Mask 11111111 11111111 111111|00 00000000 or /22
Subnet 1 10000010 00110010 000001|00 00000001 or 130.50.4.1
Subnet 2 10000010 00110010 000010|00 00000001 or 130.50.8.1
Subnet 3 10000010 00110010 000011|00 00000001 or 130.50.12.1

Here the vertical bar (‘|’) is indicating the boundary between the subnet address and the
individual host address. For further details of IP subnets see Tanenbaum[2] pp438-441.

2.6 IPv4 and IPv6

The current version of the IP protocol is version 4, so-called IPv4. IPv4 is in widespread use
and is implied in the rest of this document. However, it has a number of problems, most
notably, though not only, the increasing scarcity of free addresses. A new version of the IP
protocol which addresses these problems, IPv6, has been developed and is coming into use.
(IPv5 was an experimental protocol for real-time streaming which was not widely used.)

Work on IPv6 started in 1990. Though the protocols are now defined, take-up has been
patchy. The transition seems likely to continue for some years and might never be complete.
Though IPv6 is usually spoken of as tackling the shortage of free addresses (which problem
it solves), it also addressed a number of other issues, including, inter alia, reducing the size
of routing tables, simplifying the protocol, providing better security and aiding multicasting.

In general IPv6 is not compatible with IPv4. However, it is compatible with many of the
other TCP/IP protocols, including TCP, UDP, ICMP and IGMP, albeit sometimes with
small modifications, usually to accommodate larger addresses. For further information see
Tanenbaum[2] (pp464-473) or Loshin[16]. IPv6 is defined in RFCs 2460 to 2466[17].

2.7 National Research and Education Networks

Most countries have a National Research and Education Network (NREN) to carry
traffic between their universities, higher education establishments and research institutes.
Such academic networks are provided to support research and other academic activities.
Typically they will be linked to both the NRENs of other countries and the wider Internet. In
the UK the NREN is SuperJANET and it is operated by UKERNA. The principal European
NRENs are listed in Table 2.4 and the capacities of some of their backbones are shown in
Table 2.5. There is also a pan-European network linking the individual national networks
which is described briefly below.
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NREN Country URL
http://

ARIADNET (GRNET) Greece www.grnet.gr/index.php?language=en
ARNES Slovenia www.arnes.si/english/
CESNET Czech Republic www.ces.net/
DFN Germany www.dfn.de/content/en/enhome/
FCCN Portugal www.fccn.pt/
GARR Italy www.garr.net/
HEAnet Ireland www.heanet.ie/
HUNGARNET Hungary www.hungarnet.hu/
NORDUnet Nordic Countries www.nordu.net/
RedIRIS Spain www.rediris.es/
RENATER France www.renater.fr/
RESTENA Luxembourg www.restena.lu/restena/
SURFnet Netherlands www.surfnet.nl/en/
SWITCH Switzerland www.switch.ch/
UKERNA/JANET United Kingdom www.ukerna.ac.uk/

Table 2.4: The principal European NRENs. Strictly speaking the
NRENs listed here are the shareholders in DANTE (except that for le-
gal reasons the shareholder in the United Kingdom is the Higher Ed-
ucation Funding Council for England). The partners in NORDUnet
are Denmark, Finland, Iceland, Norway and Sweden. For a more
extensive list see URL: http://www.garr.it/garreuropa/nrn-engl.shtml.
Also, TERENA publishes an annual compendium of NRENs; see URL:
http://www.terena.nl/compendium/

NREN Country Capacity Expected
(Gbit/sec) Increase

GÉANT pan-European 10 -
RENATER France 2.4 4
DFN Germany 2.4 2
GARR Italy 2.5 4
UKERNA/JANET United Kingdom 1-10 1

Table 2.5: Capacities of some European academic networks. The ‘Expected In-
crease’ column shows the factor by which the capacity is expected to have in-
creased by 2006 (and is taken from the TERENA annual compendium of NRENs)
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2.8 Pan-European Networking

Since the early 1990s there has been a series of pan-European networks. These networks have
been funded jointly by the individual NRENs and the European Commission. In chronological
order they were:

EuropaNET
TEN-34
TEN-1552

GÉANT

GÉANT is the most recent and has superseded the earlier ones. GÉANT is managed by a
company called DANTE. In addition the TERENA association promotes European academic
networking. GÉANT, DANTE and TERENA are discussed briefly below.

DANTE (Delivery of Advanced Network Technology to Europe)3 is a small firm based in
Cambridge whose purpose is to plan, build and operate pan-European research net-
works. It was founded in 1993 by a consortium of NRENs (the current list is shown
in Table 2.4) and was established as a limited liability company and a ‘not for profit’
organisation. DANTE currently manages GÉANT and previously ran the earlier pan-
European networks. It is also involved in a number of similar activities.

GÉANT is the international network connecting the national research networks of European
countries4. It is funded jointly by twenty-six NRENs and the European Commission and
is managed by DANTE. GÉANT is a five-year project which became fully operational
on 1 December 2001. GÉANT serves some 3500 higher education institutions in 32
countries. There are nine circuits at the core of GÉANT which operate at speeds of 10
Gbit/sec, with a further eleven others which run at 2.5 Gbit/sec (see Figure 2.8). It
also provides a 12 Gbit/sec connection to North America and 2.5 Gbit/sec to Japan.

GÉANT was originally due to finish in October 2004. However, because of its success
and in order to permit a smooth succession to its successor, GÉANT-2, it was extended
until the end of June 2005. GÉANT-2 was funded by the European Commission in
September 2004 and has now superceded GÉANT. It will run until September 2008.
In addition to a conventional packet switched network it will also provide some circuit
switched connections of the sort discussed in Section 2.8.1, below.

TERENA (Trans-European Research and Education Networking Association)5 exists in
order ‘to promote and participate in the development of a high quality international
information and telecommunications infrastructure for the benefit of research and ed-
ucation’, as laid down in its statutes. Its members include most European NRENs
and a few from further afield. It was founded in 1994 from a merger of the earlier
organisations Réseaux Associés pour la Recherche Européenne (RARE) and European
Academic and Research Network (EARN). It has a secretariat based in Amsterdam.

TERENA promotes the development of academic networks by pursuing activities in
four categories: encouraging new activities, a technical programme, knowledge transfer

2See URL: http://www.dante.net/ten-155/
3See URL: http://www.dante.net/
4See URL: http://www.dante.net/geant/
5See URL: http://www.terena.nl/
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and promoting the interests of its members. In particular, it coordinates a number of
Special Interest Area groups and projects, organises conferences and workshops and
publishes reports and other documents.

2.8.1 Experimental circuit-switched networks

Tanenbaum[2] (p415) has remarked that ‘Despite the fact that many people in the Internet
community have an intense dislike for connection-oriented networking, the idea seems to
keep coming back.’ A case in point is that many areas of research in science, medicine
and engineering now require high data transfer rates between widely separated sites. Often
substantial volumes of data will need to be moved between fixed end hosts over periods of
hours or days. These requirements are difficult to meet using conventional packet-switched
networks. Rather, they seem better suited to circuit-switched networks. Here a dedicated
connection or circuit is established between two end hosts for the duration of the transfer.
Briefly, all the packets then pass along the same, pre-configured path, thus avoiding the
overheads of routing each packet individually. Circuit-switched networks can offer both higher
transfer rates and more predictable behaviour.

Several NRENs have collaborated to create the Global Lambda Infrastructure facility (GLIF),6

an experimental testbed to pioneer the use of circuit-switched networks. The founding part-
ners were StarLight7 in the US, NetherLight8 in The Netherlands and CANARIE9 in Canada.
The UK has joined this collaboration through its new optical research network UKLight.10.
The ESLEA (Exploitation of Switched Light Paths for e-Science Applications) Project11 is
pioneering the use of UKLight for real scientific work with applications in particle physics,
radio astronomy, high-performance computing and medicine.

GLIF and its constituent networks are intended for experimental work rather than production
systems. However, it is expected that production circuit-switched services will become avail-
able in due course. They are, for example, likely to be available in SuperJANET5, GÉANT-2,
the next generation of the US back-bone and other networks.

6See URL: http://www.glif.is
7See URL: http://www.startap.net/starlight/
8See URL: http://www.netherlight.net/info/home.jsp
9See URL: http://www.canarie.ca/

10See URL: http://www.uklight.ac.uk/
11See URL: http://www.eslea.uklight.ac.uk/
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Figure 2.8: The topology of the GÉANT network in April 2004
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Chapter 3

Performance Monitoring

In her The Secrets of Rue St. Roche[18] Janet Morgan tells the remarkable tale of a British
spy-ring which operated in occupied Luxembourg during the closing months of the Great
War. The agents recruited to the ring mostly comprised station masters and other railway
employees who reported on the movement of German troop trains as they passed through
the marshalling yards of the Grand Duchy en route to the front. The agents were trained
to recognise unit insignia, differentiate different types of field-piece and count ammunition
wagons. The information that they returned proved invaluable. What the agents were doing,
apart from risking their lives, was monitoring the traffic on the Luxembourg railway network.
Such monitoring of networks is commonplace, and is limited to neither railways nor wartime.
It can have a number of purposes, ranging from determining the type of traffic and its
destination (as here) to estimating the volume of traffic and predicting the performance of
the network. Computer networks are no exception and there are various techniques and tools
for monitoring their performance. This chapter is a brief introduction to these topics.

Before discussing network monitoring a few general remarks about network performance
are probably in order. At first sight packet switched networks might seem a contrapted,
ramshackle way to organise a high-speed network. The packets comprising a message are
injected into the network and then meander through it, possibly by differing routes, and
perhaps tarrying in the input queues of the various routers that they pass through along the
way, before finally arriving at their destination where they are re-assembled into the original
message. Compare this arrangement to circuit switching, where a direct circuit is established
between the host and destination, through which packets simply pass unhindered and in
order. In fact, a high data transfer rate was not one of the prime requirements which drove
the development of packet switched networks. The idea of packet switching was developed by
Paul Baran of the Rand Corporation in the early 1960s. He was working on communications
systems for military bases which could survive a nuclear war. The prime requirement of
such systems was that they should continue to function when parts of the network were not
operational (having, literally, been blown up). This work led to the US ARPANET in the
1970s, which ultimately evolved into the present Internet. The idea of packet switching was
also developed independently by Donald Davies of the National Physical Laboratory in the
UK, but the modern Internet descends from ARPANET (see Hafner and Lyon[6] for a very
readable account of these developments). Packet switching’s robustness, flexibility and lack
of a requirement for a centralised control are the features which made it suitable for use in
rugged military communications systems, and these same features have led to its subsequent
civilian success. However, it is important to remember that the technique was not originally
designed to optimise the data transfer rate.
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There is an apparent contradiction that WANs are often perceived to be slower than LANs,
even though a local building or campus LAN usually has a lower capacity than a major trunk
transmission line of a regional, national or inter-national network WAN. Part of the problem,
of course, is that the WAN is shared with many more users than the LAN. However, this
explanation is not the whole story: often traffic on the WAN will be light and the bottleneck
will occur somewhere between the router terminating the trunk line and the user’s end host.
That is, the delay is in the ‘last mile’ to the user’s machine. Finally, any firewall between two
end hosts which are performing a transfer can affect the transfer rate. A firewall must examine
every packet which it receives and check that the packet satisfies a potentially complex set
of criteria before it allows the packet to pass. A firewall will usually run on a fast machine,
but it can still potentially affect the transfer rate achieved.

Much of the rest of this chapter is based on Fundamentals of Internet Measurement: A
Tutorial by N. Brownlee and C. Loosely[19]. This useful document can be consulted for
further details of the techniques and tools described.

Perhaps surprisingly, there are some RFCs specifying metrics for network monitoring. These
standards are developed and over-seen by the IETF IP Performance Metrics (IPPM) working
group.1 The basic standard is RFC 2330 Framework for IP Performance Metrics, but there
are also a number of others[20].

For specifically GRID network monitoring there is an analogous working group, the GGF
(Global GRID Forum) Network Measurements Working Group (NMWG).2 This group has
recently produced A Hierarchy of Network Performance Characteristics for Grid Applications
and Services[21] which provides information to the GRID community about the current
practice for measuring network performance. The NMWG work is at an earlier stage than
that of the IPPM.

3.1 Types of Measurement

This section discusses the types of measurement which can be made in order to assess network
performance. It also introduces several common metrics which have been developed for
measuring network performance. Some of the different ways in which network performance
might be measured are as follows.

Passive or active monitoring? In passive monitoring the traffic at some point in the net-
work is simply monitored; perhaps the rate at which packets flow through a router or
gateway is measured. The pertinent feature of passive monitoring is that it does not
alter the operation or state of the network in any way. Ideally every packet flowing past
the observation post should be monitored, though in practice it might be necessary to
use a subset, perhaps every nth. In active monitoring, by comparison, test packets
are injected into the network in order to measure some aspect of its performance. For
example, a test packet might be dispatched to a remote host in order to measure the
time taken until a return package is received acknowledging that it has arrived. Such
test packets necessarily perturb the network and if injected in sufficient numbers might
alter its performance (and degrade it for other users).

Measure at one point or many? In order to get an overall view of the flow of data
through a network it is tempting to measure it at a set of representative points. How-
ever, this approach is often a mistake: it is can be difficult to correlate or visualise the

1See URL: http://www.ietf.org/html.charters/ippm-charter.html
2See URL: http://nmwg.internet2.edu
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results. Rather, it is better to measure the traffic between two hosts by measuring the
flow at points of ingress to, and egress from, the network, rather than internally within
it.

Network or application performance? There are (at least) two approaches to measuring
the performance of a network. One measures the performance of the network directly,
either passively or by injecting test packets. The other involves running a test appli-
cation program to perform some specified task (the obvious example is to transfer a
file) and timing how long it takes to complete. These two approaches are measuring
quite different things: one is measuring the behaviour of packets on the network, the
other the behaviour of an application which involves using the network. Further, the
two types of measurement are not equivalent: the performance of applications (such as
file transfer) cannot easily be predicted by measuring the network performance and nor
can the network performance be deduced by measuring the performance of applications.
The IPPM’s performance metrics[20] were developed, in part, to clarify the difference
between measurements of network and application performance.

3.2 Common Metrics

A number of metrics are used to measure network performance. Some of the more common
ones are listed in Table 3.1 and briefly described below. The discussion here follows the usage
adopted by the IPPM; other interpretations may be encountered in the literature.

latency
jitter
packet loss
throughput
link utilisation
availability and reliability

Table 3.1: Common network performance metrics

Latency In common usage latency is the time that something takes to happen. In many
kinds of network communication, once a packet has been dispatched nothing seems
to happen until the sending host receives an acknowledgement packet indicating that
the original packet reached its destination. Thus, a common measure of latency is the
round trip time, the time between dispatch of a packet and receipt of an acknowl-
edgement that it has reached its destination. It is also possible to make more complex
latency measurements, perhaps timing the outward and return journeys separately or
timing the individual hops between routers, though this is less common.

The common round trip time measure of latency comprises not just the time that the
original packet and its acknowledgement spend travelling down transmission lines and
waiting in the queues of routers, but also the time that the remote host takes to process
the incoming packet and generate the acknowledgement. Because the time which elapses
whilst the remote host performs this processing is not necessarily negligible the latency
is a somewhat crude measure of network performance. Nonetheless it is widely used. In
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order to minimise the processing time on the remote host a method implemented within
the TCP/IP stack should be used (but note that this behaviour is already different to
that of an application program using the network, which would require the processing
to ascend all the way through the stack). Ping (see Section 3.3) is often used for this
process.

Latency can vary for a number of reasons, including:

• a lightly loaded destination host will respond more quickly than a heavily loaded
one,

• if the network is lightly loaded then the packets will spend less time in router
queues,

• the route by which the packets travel between the source and destination hosts
might change if the network configuration changes.

Variations can occur on a wide range of time-scales. Short-term variations are called
jitter (below).

Jitter Short-term variation in the rate at which packets travel across a network is called
jitter. Variation in the time it takes packets to reach their destination is delay jitter.
The corresponding variation in the latency is latency jitter.

Packet loss Packet loss is the fraction (usually expressed as a percentage) of packets dis-
patched to a given destination host during some time interval for which an acknowl-
edgement is never received. Such packets are referred to as being lost. There are
a number of causes of lost packets. There may be hardware faults en route, or the
packets might become corrupted by accumulating noise. However, such occurrences are
relatively rare. A more common cause is packets being deliberately dropped from the
queues of busy routers. Router queues are necessarily of finite size. If such a queue is
full and packets are still arriving then some packets must be dropped. There are two
alternatives. Packets can be dropped from the end of the queue, which favours appli-
cations which already have packets queued, or packets can be dropped from random
locations in the queue, which distributes the losses more equitably amongst the various
applications with packets queued. The latter technique is known as random early
detection (RED).

For applications which rely on all the packets in a message being transmitted correctly
(such as file transfer) the higher levels in the protocol stack must check that all the
packets dispatched have arrived correctly and re-send any which were lost. The TCP
protocol provides these features. Conversely, there are other sorts of applications, such
as streaming video or video-conferencing, which can tolerate some packet loss and where
there is little point in re-sending lost packets (indeed they may no longer be available),
Such applications will usually use the UDP protocol (see Section 2.3, above).

An additional important point is that a small fraction of lost (and resent) packets
is part of the normal operation of TCP. It uses the fraction of lost packets to gauge
its transmission rate: if the fraction becomes large then the transmitting host will
reduce the rate at which it dispatches packets (on the assumption that they are being
lost because the queue of some router in the path is filling up). Further, the default
behaviour is ‘conservative’: if the loss rate goes up the dispatch rate will be substantially
reduced and a long time allowed to elapse before any attempt it made to increase it
again. This behaviour is ‘benign’ in the sense that it mitigates against one application
hogging the network to the detriment of others, but it has implications for performance
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(see Section 4.1 for a more detailed discussion). Finally, whilst a small packet loss rate
is part of the normal operation of the network there are limits to the fraction of packet
loss which is sustainable. As a rule of thumb, a network with a packet loss of 5-15% is
severely congested, and one with a higher rate is likely to be unusable for most practical
purposes.

Throughput Throughput is the rate at which data flow past some measurement point in
the network. It can be measured in bits/sec, bytes/sec or packets/sec. It usually refers
to all the traffic flowing past the measurement point, though it is possible to measure
just a subset, perhaps just the Web traffic or the packets bound for a given destination.
There are, however, a number of subtleties to throughput.

Firstly, the number of bytes transmitted across the network by an application, for
example during a file transfer, is not the same as the number of bytes ultimately received
by the application. There are overheads involved in splitting the file into packets: each
packet must include its destination address and other control information. Also any
lost packets will generate extra traffic when they are resent. The actual transfer rate
across the network, including header overheads and resent packets, is sometimes called
the wire rate.

A given link will have a maximum throughput or capacity which it can provide and
usually this capacity must be shared between several users. It is useful to distinguish
between:

capacity the throughput of which the link is capable,

utilised capacity the current traffic load excluding your traffic,

available capacity the remaining capacity, which is available to you. That is:

available capacity = capacity − utilised capacity (3.1)

In a route with multiple hops the hop with the smallest available capacity is called
the tight link,

achievable capacity is the fraction of the available capacity which you can utilise.
Usually it is not possible to utilise the entire available capacity because of limita-
tions with the transmission protocol and end hosts.

Finally, throughput is measured by counting the traffic over an interval and care must
be exercised to ensure that the interval chosen is appropriate. A long interval will
average out transient bursts and lulls in traffic. A shorter interval will record these
temporary effects, even if they are not important in the context of the measurement.

Link utilisation Link utilisation is used in the context of a link to an external network
which is supplied by a telecommunications service provider. The link connecting the
remote network to the gateway on the local LAN or MAN will have a maximum data
rate, the access rate. The link utilisation is then simply the throughput (above)
divided by the access rate and expressed as a percentage.

For some types of link the service provider might quote a committed information
rate (CIR) rather than an access rate. In this case some traffic in excess of the CIR
is permitted, but only for short periods. Here the link utilisation should be computed
from the CIR rather than the access rate.
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Availability and reliability Availability and reliability are not strictly IPPM metrics,
though they are closely related. The availability is the fraction of time during a given
period when the network is unavailable. Such periods of unavailability are called out-
ages. Though this definition is unambiguous it is an over-simplification. Depending on
the use to which the network is being put, frequent short outages might be more (or
less) disruptive than one long one. The mean time between failures and mean time
to repair, which have the obvious meanings, help to distinguish these cases. Also, the
availability of ‘the network’ is not the same as the availability of a given remote host
accessed through the network.

Reliability is related to both availability and packet loss. It is the frequency with which
packets get corrupted, as distinct from being lost (the former happens because of either
a malfunction in the network or transmission noise, the latter typically because a router
queue fills up). But note that when calculating the packet loss (above) it is conventional
to include corrupted packets as well as lost ones.

3.3 Simple Tools

Numerous tools are available for measuring network performance, and they vary greatly in
approach, scope and applicability. A few simple ones, specifically ping, traceroute, pathchar,
pchar and iperf, will be briefly described in this section and the following section will introduce
the more modern ones. Usually the simple tools are run by a user on his own machine.3 They
measure the latency and packet loss (see above) to a specified destination host and work by
sending test packets to that host.

The tools usually emit a special type of packet, an ICMP echo request packet (see
Section 2.3), often colloquially referred to as a ping packet (after the simplest of the tools,
below). In order for the tools to work the destination host must be configured to reply to
ping packets. In the early days of the Internet, when security was less of a concern, most
sites would pass and respond to ping packets, so you could simply run the tools. However,
nowadays system administrators tend to regard ping packets as intrusive and unwelcome, and
configure their hosts not to acknowledge them. Similarly, firewalls are often configured not to
permit their passage. In case of difficulty you will need to contact the system administrator
of your destination host and attempt to persuade him to enable acknowledgement of ping
packets. Section 3.3.1, below, gives some hints on how a firewall should be configured to pass
ping packets.

A further caveat is that these tools establish that the destination host is reachable and willing
to acknowledge ping packets. They do not establish that the host offers other services, such
as file transfer. Also, it is tempting to select a router as the destination because routers
should always acknowledge ping packets. However, routers will often process ping packets
at low priority, leading to high round trip times. A final note of caution is that the tools
should be used sparingly and with discretion. If used unwisely they can flood the network
with packets, to the detriment of other users.

Because of firewall, and other, problems, if all you want to do is to confirm that a remote
TCP server is available the simplest approach might be to telnet to it on its own port, for
example:

telnet www.roe.ac.uk 80
3Alternatively, versions of ping, traceroute and other useful tools can be conveniently run from URL:

http://www.all-nettools.com/toolbox
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If all is well a message such as the following will appear:

Trying 192.108.120.192...
Connected to spider.roe.ac.uk (192.108.120.192).
Escape character is ’^]’.

and you can quit by hitting the return key.

PING clapton.nesc.ed.ac.uk (129.215.30.12): 56 data bytes
64 bytes from 129.215.30.12: icmp_seq=0 ttl=249 time=1.5 ms
64 bytes from 129.215.30.12: icmp_seq=1 ttl=249 time=1.3 ms
64 bytes from 129.215.30.12: icmp_seq=2 ttl=249 time=1.4 ms
64 bytes from 129.215.30.12: icmp_seq=3 ttl=249 time=2.2 ms
64 bytes from 129.215.30.12: icmp_seq=4 ttl=249 time=1.3 ms
64 bytes from 129.215.30.12: icmp_seq=5 ttl=249 time=1.2 ms
64 bytes from 129.215.30.12: icmp_seq=6 ttl=249 time=2.1 ms
64 bytes from 129.215.30.12: icmp_seq=7 ttl=249 time=1.9 ms
64 bytes from 129.215.30.12: icmp_seq=8 ttl=249 time=2.1 ms

--- clapton.nesc.ed.ac.uk ping statistics ---
9 packets transmitted, 9 packets received, 0% packet loss
round-trip min/avg/max = 1.2/1.6/2.2 ms

Figure 3.1: Unix ping output. Ping continues to run until it is interrupted,
typically by <ctrl-c> on a Unix system. The final summary statistics are then
displayed

Ping Ping is a utility intended for determining the availability of a destination host. It runs
on the user’s own machine and sends ping packets (above) to the specified destination
host. The destination host acknowledges by returning a ping packet and ping displays
the round trip time. Ping is the simplest of the tools and allows you to determine
whether a destination host is reachable. Ping is available for a variety of platforms. On
Unix it is usually supplied as part of the operating system. The Unix version reports
the following information (see the summary at the bottom of Figure 3.1):

• the name of the destination host (clapton.nesc.ed.ac.uk in the example),

• a count of the packets transmitted,

• a count of the packets received back,

• the packet loss, expressed as a percentage,

• the minimum, average and maximum round trip time.

There are important caveats to using ping. Specifically, there are circumstances where
ping will respond when the remote server is hanging or processes on the server are not
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running. Conversely, as mentioned above, ping might fail to obtain a response when all
is well because ping traffic is being blocked by a firewall en route.

Ping was written by Michael Muuss in 1983. The name comes from the sound of a
returned sonar pulse. An acronym (Packet InterNet Groper) was coined later. For
further information see the appropriate man page or Stevens[4] Chapter 7, pp85-96.

Traceroute Traceroute is similar to ping in that the user specifies a destination host and
it sends packets to that host, receives acknowledgements back and displays the results.
Also like ping it is usually supplied as part of the operating system. However, unlike
ping it produces a hop-by-hop listing of each router that the packets pass through en
route to their destination and displays the latency for each hop. It only shows the
hops on the outward leg of the journey, not the return hops. Since it is inherent to the
way that packet-switching works that each router knows only the address of the next
router to which it should direct a packet, rather than the full path, it is surprising that
traceroute can work at all. The algorithm that it uses has famously been described as a
‘cool hack’ and is beyond the scope of this document. Traceroute is a common diagnostic
tool which is particularly useful for determining why a remote host is not responding
to ping. It was written by Van Jacobsen around 1987. For further information see the
appropriate man page or Stevens[4] Chapter 8, pp97-110.

Pathchar, pchar and iperf There are number of utilities broadly similar to traceroute but
which are more concerned with measuring throughput than establishing a route. Three
useful ones are pathchar, pchar and iperf. Pathchar4 was developed to assist in diag-
nosing network congestion problems. It measures the data transfer rate, delay, average
queue and loss rate for every hop from the user’s machine to the chosen destination
host. It was written by Van Jacobsen, the author of traceroute. Pchar5 provides similar
functionality and is based on the same algorithms. It was written by Bruce Mah. Some
example output from pchar is shown in Figure 3.2.

Iperf6 is also a tool for measuring the available TCP bandwidth to a destination host.
It allows various TCP parameters and UDP datagrams to be tuned. It reports the
available bandwidth, delay jitter and datagram loss. Unlike the other tools it requires
software to be installed on the destination as well as the source host. It was developed
by Ajay Tirumala and colleagues at the National Laboratory for Applied Network
Research, San Diego Supercomputer Center.

3.3.1 Firewall configuration for ping, traceroute and pchar

Often firewalls will block the traffic generated by ping and traceroute. The traffic could be
blocked by either a local firewall protecting your source host (which is swallowing outgoing
packets) and/or by a remote firewall protecting the destination host (which is swallowing
incoming packets). If you find that traffic is being blocked you will need to persuade whoever
is responsible for the appropriate firewall to change its rules to allow access. Building Internet
Firewalls by E.D. Zwicky, S. Cooper and D.B. Chapman[22] gives the following advice about
allowing ping and traceroute traffic:

4See URL: http://www.caida.org/tools/utilities/others/pathchar/
5See URL: http://www.kitchenlab.org/www/bmah/Software/pchar/
6See URL: http://dast.nlanr.net/Projects/iperf/
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pchar to grus.jb.man.ac.uk (130.88.24.231) using UDP/IPv4
Using raw socket input
Packet size increments from 32 to 1500 by 32
46 test(s) per repetition
32 repetition(s) per hop
0: 192.108.120.198 (grendel12.roe.ac.uk)

Partial loss: 292 / 1472 (19%)
Partial char: rtt = 0.079436 ms, (b = 0.000165 ms/B), r2 = 0.999861

stddev rtt = 0.000361, stddev b = 0.000000
Partial queueing: avg = 0.000038 ms (232 bytes)
Hop char: rtt = 0.079436 ms, bw = 48517.401423 Kbps
Hop queueing: avg = 0.000038 ms (232 bytes)

1: 192.108.120.254 (teine.roe.ac.uk)
Partial loss: 0 / 1472 (0%)
Partial char: rtt = 0.554800 ms, (b = 0.000272 ms/B), r2 = 0.999015

stddev rtt = 0.001042, stddev b = 0.000001
Partial queueing: avg = 0.000116 ms (954 bytes)
Hop char: rtt = 0.475364 ms, bw = 74436.428087 Kbps
Hop queueing: avg = 0.000078 ms (722 bytes)

2: 192.108.120.14 (eastman.roe.ac.uk)
Partial loss: 0 / 1472 (0%)
Partial char: rtt = 0.374863 ms, (b = 0.000359 ms/B), r2 = 0.998957

stddev rtt = 0.001413, stddev b = 0.000002
Partial queueing: avg = 0.000733 ms (8078 bytes)
Hop char: rtt = --.--- ms, bw = 92310.976695 Kbps
Hop queueing: avg = 0.000617 ms (7124 bytes)

...

11: 194.66.21.241 (gw-uom.mcc.ac.uk)
Partial loss: 0 / 1472 (0%)
Partial char: rtt = 7.060438 ms, (b = 0.000502 ms/B), r2 = 0.998086

stddev rtt = 0.002677, stddev b = 0.000003
Partial queueing: avg = 0.000182 ms (50091 bytes)
Hop char: rtt = 0.743205 ms, bw = 97985.081673 Kbps
Hop queueing: avg = -0.000049 ms (0 bytes)

12: 194.66.25.38 (gw-jodrell.netnw.net.uk)
Partial loss: 0 / 1472 (0%)
Partial char: rtt = 7.256724 ms, (b = 0.000772 ms/B), r2 = 0.997328

stddev rtt = 0.005193, stddev b = 0.000006
Partial queueing: avg = 0.000164 ms (50091 bytes)
Hop char: rtt = 0.196286 ms, bw = 29658.348766 Kbps
Hop queueing: avg = -0.000018 ms (0 bytes)

13: 130.88.24.231 (grus.jb.man.ac.uk)
Path length: 13 hops
Path char: rtt = 7.256724 ms r2 = 0.997328
Path bottleneck: 29658.348766 Kbps
Path pipe: 26902 bytes
Path queueing: average = 0.000164 ms (50091 bytes)
Start time: Fri Nov 12 13:00:01 2004
End time: Fri Nov 12 14:33:17 2004

Figure 3.2: Example output showing a pchar probe from the Royal Observatory
Edinburgh to the Jodrell Bank Observatory in Cheshire. Statistics are shown for
each hop along the route and final statistics for the entire route are given. Some
intermediate hops have been removed for clarity
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There are few risks for outbound ping or traceroute, and those risks can be avoided
by using them without hostname resolution. Inbound ping and traceroute, how-
ever, pose significant risks. ping, in particular, is a frequent basis for denial of
service attacks. ping and traceroute can both be used to determine which hosts
at your site exist, as a preliminary step to attacking them. For this reason, many
sites either prevent or limit the relevant packets inbound (p57).

Below are some hints, mostly also from Zwicky, Cooper and Chapman[22] (pp647-652) about
the traffic which should be allowed.

ping

outbound (i.e. to ping a remote host) allow ICMP echo request packets outbound
and ICMP echo response packets inbound.

inbound (i.e. to allow a local host to be pinged from without) allow ICMP echo
request packets inbound and ICMP echo response packets outbound.

If possible a maximum size of accepted ICMP echo request packets should be specified.
Limiting the inbound size is a defence against some kinds of denial service attacks;
limiting the outbound size is a politeness to remote systems.

traceroute

outbound (i.e. to tracreoute to a remote host) allow the UDP and ICMP packets con-
structed by traceroute outbound and the appropriate ICMP packets (particularly
‘time to live exceeded’ and ‘service unavailable’) inbound.

inbound (i.e. to allow a local host to be the destination of a remote traceroute)
allow the UDP and ICMP packets constructed by traceroute inbound and the
appropriate ICMP packets (as above) outbound.

The ability to emit and receive these packets might be restricted to the computers on
which traceroute needs to be run, in order to limit the variety of UDP packets allowed
through the firewall. UDP packets can be used in various sorts of denial of service
attacks. The considerations for ICMP packets are as for ping, above.

Traceroute uses a number of UDP port numbers in its probes. The range used in a
given probe is:

base + hops− 1

Where base is the lowest port number used. The default is 33434, but this can be
overridden using the -p option. hops is the number of hops from the source to the
destination. The default maximum number of hops permitted in a given run is 30,
though this can be overridden with the -m option. It is possible to get from the Royal
Observatory Edinburgh to the Joint Astronomy Centre in Hawaii in 20-odd hops. The
range of ports used must be open for outbound traffic from the source host. However,
traceroute requires that nothing on the destination host is listening on these ports, so
that an ICMP ‘port unreachable’ packet will be returned to terminate the probe.

pchar The requirements for pchar are similar to those for traceroute, above. However, the
default base for the UDP port range is 32768, and the option to override the default
is -P. Like traceroute, the default maximum number of hops is 30, but the option to
override it is -H.
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3.3.2 Hints on using pchar

The following list gives a few hints on using pchar.

1. pchar has a ‘tiny traceroute’ mode in which it emulates traceroute and traces out the
route to the destination host. This mode is useful to check that you can establish a
route to the destination. It is invoked by:

pchar -M trout destination-host

The -M flag specifies pchar’s mode of operation and the trout option corresponds to
the ‘tiny traceroute’ mode.

2. In order to generate measurements which are statistically reliable, pchar makes multiple
probes at each hop along its route. Consequently it can take a significant time to
complete; perhaps tens of minutes, or even longer for intercontinental probes. When
making an initial test it is often useful to override some of the defaults in order to
generate less reliable results more quickly. This procedure is useful to check that you
have the required access along the entire route and are not, for example, encountering
firewall problems at one end or the other (it is possible for pchar to complete successfully
in its ‘tiny tracreoute’ mode, above, but still generate errors in its normal mode). Two
alternative invocations of this sort are:

pchar -R 2 destination-host
pchar -m 93 destination-host

Pchar sends probes using packets of different sizes and for each size of packet the probes
are repeated a number of times. The -R flag specifies the number of times probes using
a given packet size are repeated. The default if the flag is omitted is 32, so specifying
a value of 2 should speed up operation by a factor of 16 (but will yield results that
are much less statistically significant). The -m flag specifies the maximum size of probe
packet sent, in bytes. Again, setting a low value should speed up the operation of
pchar. Note however, that setting the value of this flag will sometimes result in error
conditions being returned by remote hosts, particularly from sites overseas.

3. Thus, often a series of probes to a given destination host will start with a probe using
the -M trout option to establish that the route is available, followed by a quick probe
using, for example, the -R 2 option to check that none of the necessary traffic is blocked.
Finally there will be a series of probes to measure the network capacity to the chosen
destination. Often for these latter probes it will be adequate to run pchar without
overriding any of its defaults.

4. Sometimes some of the quantities listed in the pchar output will be shown as zero or
a row of dashes (or in early versions of pchar they may contain negative values). Such
values do not necessarily indicate that anything is amiss. The pchar FAQ advises that
these values are artefacts of the analysis that pchar performs on the measurements that
it gathers. They can be caused by:

• excessive packet loss along a link,

• variations in the amount of time taken for routers to process packets,

• transient changes in network conditions for hops that have been previously mea-
sured.
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3.4 Modern Tools

The traditional tools can be somewhat difficult to use, with arcane command-line options
and obscure output. In recent years a number of new tools have been developed which are
more user-friendly and comprehensible to people who are not network experts. Typically
these modern tools will be driven from a GUI, though this GUI may be invoking standard
tools ‘behind the scenes.’ The tools attempt to conduct a dialogue with the user in terms
which he understands, such as which sites are available, what services they offer and what
throughput can be expected. A typical example is the SURFNet Detective7 (see Figure 3.3).
It attempts to test:

• connectivity,

• multicasting,

• TCP throughput.

Beneath the GUI it is actually using ping, traceroute and iperf. SURFNet Detective com-
municates with servers in the Dutch SURFNet, so it is of limited usefulness outside Holland.
Nonetheless, it is typical of the more modern tools.

3.5 Network Monitoring and Weather Maps

Most organisations responsible for running wide-area networks routinely monitor network
performance and collect and analyse the resulting data. Often these data are made publicly
available, so that users can check network performance. An example is the Netsight8 facility
provided by UKERNA to give access to performance data about JANET.

Rather than (or as well as) presenting the results as tables and charts a more recent approach
is to display network performance data as a ‘weather map.’ Such maps typically show a
more-or-less schematic map of the sites in a network, with a graphical representation of the
performance between them[23]. An example is the Internet Traffic Report.9

A number of projects are developing suites of software for network monitoring. Often the
approach will be to write scripts which run simple tools such as ping, traceroute and iperf
(see Section 3.3 above) and collect and analyse the results. Perhaps the most relevant of
these projects is GridMon,10 which is based at the Daresbury Laboratory. It is funded by the
UK DTI (Department of Trade and Industry) and is associated with the European DataGrid
Project. GridMon is developing a toolkit of applications for monitoring network performance.
In practice these applications are mostly about measuring generic network performance rather
than being specifically tailored for GRID applications. The first version of the toolkit has
been deployed at most of the UK e-Science centres11 and it is hoped to deploy subsequent
versions more widely. The GridMon software is installed at the host sites, from where it
makes a series of probes every half hour. The results are collected, analysed and presented
as a series of graphs and statistics available from a public Web page.

7See URL: http://detective.surfnet.nl/en/index en.html
8See URL: http://www.ja.net/services/network-services/netsight/
9See URL: http://www.internettrafficreport.com/main.htm

10See URL: http://gridmon.dl.ac.uk/
11See URL: http://www.nesc.ac.uk/centres
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Figure 3.3: SURFNet Detective
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3.6 Additional Tools

Many more tools are available than the few mentioned here. Inevitably some are more useful
than others. Extensive lists are maintained by:

CAIDA (Co-operative Association for Internet Data Analysis):
http://www.caida.org/tools/

SLAC (Stanford Linear ACcelerator):
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
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Chapter 4

Obtaining Good Network
Performance

Harpists spend 90 percent of their lives tuning their harps and 10 percent playing
out of tune.

Igor Stravinsky.

This chapter introduces some techniques which can be adopted in order to improve the
performance of applications that transfer data across the Internet. Much of the material is
based on the talk by Brian Tierney at the second Networks for Non-Networkers workshop
(see Section 1.1). Further details are given in his recent article TCP Tuning and Network
Troubleshooting [24].

A wide range of approaches to improving performance are possible, from adjusting TCP/IP
tuning parameters to considerations to be borne in mind when buying the hardware on
which the applications are to run. Obviously, these various approaches will be applicable in
different circumstances. However, before describing them it is sensible to outline the TCP
congestion control algorithm because it affects the behaviour of the network and hence the
steps to improve network performance. As a rough benchmark of the performance which can
be achieved with conventional, but modern hardware, and some network tuning, but without
resorting to special techniques, transfer rates of 20 - 50 Mbyte/sec should be possible across
JANET within the UK[25].

4.1 TCP Congestion Control

As mentioned briefly in Chapter 2, TCP automatically adjusts the rate at which it emits
packets in order to avoid congestion in the network. Furthermore, its behaviour is deliber-
ately ‘conservative’ or ‘benign’: if an application detects that it is exceeding the capacity of
the network it will substantially reduce its transmission rate in order to avoid affecting the
performance of other users. The complete congestion control behaviour of TCP is complex,
but it is useful to have at least an outline understanding of it.

TCP uses lost packets to control its transmission rate. If packets are not being lost it assumes
that there is spare capacity and attempts to increase the transmission rate. If they are lost it
assumes that this is because of congestion and decreases the rate. The underlying assumption
here is that the sole cause of losing packets is packets being discarded from the queues of
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busy routers and none are lost due to being corrupted during transmission. This assumption
is reasonable for modern fibre-optic networks (but certainly is not true for wireless networks).

In TCP an acknowledgement is returned for every packet sent. However, clearly the source
host does not wait for every packet to be acknowledged before emitting the next (which
really would lead to really poor performance). Rather it has a window of n packets which
are allowed to be in transit simultaneously. It will not emit packet n + 1 until at least one
acknowledgement is received, nor emit n+2 until there is a second acknowledgement etc. An
important consequence of this approach is that the speed with which TCP can respond to
changes in networks depends on the round trip time.

Ideally the window size should be set to correspond to the smaller of the rates at which the
source can emit and the destination receive packets. If it is smaller than either then both
machines will spend some time idle while packets propagate through the network. The size
of the window is set to the minimum of:

• a receive buffer specified by the destination host,

• the source host’s estimate of the network capacity, the so-called congestion window.

The receive buffer is simply related to the rate at which the destination host thinks that it
can process incoming packets. When a transfer starts the congestion window is initially set
deliberately small. As the transfer proceeds it is modified:

• if no congestion is detected (that is, no packets are lost) it is increased by a constant
amount,

• if congestion is detected (that is, one or more packets are lost) it is halved.

This algorithm is known as AIMD (Additive Increase, Multiplicative Decrease) and is il-
lustrated in Figure 4.1. This description is something of a simplification; see Tanenbaum[2]
pp547-549. for further details.

Figure 4.1: Congestion control in TCP/IP using the AIMD (Additive Increase,
Multiplicative Decrease) algorithm

Some of the consequences are immediately clear. As soon as a packet is lost the window
size is halved. The rate at which it will increase depends on the round trip time (nothing
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will happen until acknowledgements are received). This behaviour is particularly acute for
high-capacity, long-distance WANs and is exacerbated because the rate at which the window
is increased will often be unnecessarily low. The optimal size for the congestion window is
the bandwidth delay product (BDP) for the link. BDP is described in the following section.

4.2 Bandwidth Delay Product and Network Performance

The bandwidth delay product (BDP) is defined as:

BDP = bandwidth× delay (4.1)

where the delay is simply the travel time for a packet to travel across the link from the
source to destination host. For a symmetric path the delay will be half the round trip time
(RTT). In order to fully use capacity of the link the number of bytes which must be kept
simultaneously in transit across the link is equal to the BDP.

The BDP becomes a large number for so-called ‘long fat pipes’: high-capacity, long distance
links such as those found in an inter-continental WAN. In this case both the terms of which
the BDP is a product are large numbers. High BDP links have two consequences for the
performance of TCP.

• If the congestion window or receive buffer are smaller than the BDP then the full
capacity of the link will not be used.

• If packets are lost then TCP will take a long time to recover. TCP can only respond
on a time-scale of the round trip time (typically twice the delay) and because of the
AIMD algorithm each increase can only be a small step. Round trip times of less than
10 msec in the UK and 150 msec across the Atlantic are typical (see also Table 4.1).
The practical upshot is that it can take tens of minutes for a transatlantic transfer to
recover from a single instance of congestion.

Path Round trip Light travel
time (msec) time (msec)

LAN 1 -
Within the UK < 10 3.6
UK to Europe 15-30 6.1
UK to North America ≈ 150 42.4

Table 4.1: Typical round trip times. The rightmost column shows the correspond-
ing round trip time for light in vacuo (the internal UK entry corresponds to the
distance from London to Edinburgh, the European entry to London to Berlin and
the transatlantic one to London to Chicago)

43



4.3 TCP Tuning Parameters

The standard TCP implementations come with a set of ‘tuning parameters’, such as the
receive buffer size mentioned in Section 4.1. The default values of these parameters with which
TCP implementations are usually shipped have not changed for some years and are usually
un-necessarily small for modern networks and computers. Many TCP installations continue
to use these inappropriate default settings, and significant performance improvements can
often be obtained simply by setting the parameters to appropriate values.

Table 4.2 lists the various parameters for a Linux system and shows the default and some
suggested values. There will be equivalent parameters for other variants of Unix. Simply
adopting the improved values will probably yield some improvement in performance. How-
ever, ideally you should calculate and set values appropriate for the capacity of the link
that you are using. The individual parameters are described in the documentation usually
included with Linux systems[26].

Parameter Default Suggested
/proc/sys/net/ipv4/tcp timestamps 1 1
/proc/sys/net/ipv4/tcp window scaling 1 1
/proc/sys/net/ipv4/tcp sack 1 1
/proc/sys/net/core/wmem max 65535 8388608
/proc/sys/net/core/rmem max 65535 8388608
/proc/sys/net/ipv4/tcp rmem 4096 4096

87380 87380
174760 4194304

/proc/sys/net/ipv4/tcp wmem 4096 4096
16384 65536
131072 4194304

/proc/sys/net/ipv4/tcp mem 48128 4194304
48640 4194304
49152 4194304

Table 4.2: Default and suggested TCP parameters

Finally, if you are using the SCP file transfer utility (see Section 5.3) then the transfer rate
may be limited by SCP/SSH’s own static internal buffers, which are unaffected by changing
the TCP tuning parameters. A patch for SCP/SSH is available to overcome this limitation;
see Section 5.3.2 for details.

4.3.1 Calculating the buffer size

The TCP socket send and receive buffer sizes should both be set to:

2× BDP (4.2)

or equivalently (because the RTT is in practice twice the delay):

bandwidth× RTT (4.3)

44



It is important to use a reasonably correct value. If the buffers are too small the TCP window
will never fully open. If they are too large the source can swamp the destination causing TCP
to decrease its transfer rate. Thus values should ideally be calculated specifically for each
link and, in particular, different values are likely to be required for a WAN and the local
LAN. However, the chosen value does not need to be precise: approximate values within a
factor of two or three are usually adequate. Table 4.3 lists some buffer sizes for typical links.

Path Round trip Throughput Buffer size
time (msec) (Mbit/sec) (Mbyte)

Within the UK 5 1000 0.625
UK to Europe 25 500 1.56
UK to North America 150 500 9.4
UK to Japan 260 150 4.9

Table 4.3: Optimal TCP send and receive buffer sizes for various paths

4.3.2 Examining and setting the parameters

On Linux systems the parameters look like the names of files but are actually operating
system end points. Ordinary users can usually display them, but setting them normally
requires a system administrator’s privileges (and is best done by someone with a system
administrator’s expertise). The values of individual parameters can be displayed either with
cat, for example:

cat /proc/sys/net/core/wmem max

or with the sysctl command:

/sbin/sysctl net/core/wmem max

Their values can also be set by using sysctl:

/sbin/sysctl -w net/core/wmem max=8388608

For further details see the sysctl man page. The parameters which should be set to your
calculated value for the TCP buffer size are:

/proc/sys/net/core/wmem max
/proc/sys/net/core/rmem max

and the final values of:

/proc/sys/net/ipv4/tcp rmem
/proc/sys/net/ipv4/tcp wmem
/proc/sys/net/ipv4/tcp mem
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An alternative way to change the values is to add entries of the form shown in Figure 4.2 to
file:

/etc/sysctl.conf

and type:

/sbin/sysctl -p

# increase TCP max buffer size
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
# increase Linux autotuning TCP buffer limits
# min, default, and max number of bytes to use
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216

Figure 4.2: Example fragment of /etc/sysctl.conf file for setting TCP tuning
parameters

4.3.3 Checklist

This section gives a brief checklist of the steps involved in resetting the TCP tuning buffers
to values suitable for your transfers.

1. Run and time a representative set of transfers in order to estimate the basic transfer
rate that you are getting before attempting to tune the system. You will probably want
to run several transfers at different times of the day etc.

2. Use pchar (see Section 3.3) to determine the bandwidth and round trip time (RTT)
of your route. Again you will probably want to run several pchar probes at different
times of the day to get representative results. The bandwidth and RTT can be simply
determined from the pchar output:

• RTT is read from the summary statistics at the end of the pchar output,
• the bandwidth might be the ‘path bottleneck’ given at the end of the pchar output.

However, if the value corresponds to the first or last hops you might want to ignore
these values and choose the next smallest bandwidth from amongst the remaining
hops.

3. Calculate the required buffer size, which is the bandwidth, RTT product (see Equa-
tion 4.3).

4. Set the appropriate tuning parameters to this size, as described in Section 4.3.2.

5. If you are using SCP ensure that you are using the high-performance patch (see Sec-
tion 5.3.2).

6. Repeat the set of tests run in step 1 and review the improvement in performance.
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4.4 Parallel Streams

TCP simulates a connection-oriented virtual circuit (or stream) between the source and
destination hosts on top of the connectionless IP layer. Parallel streams are a way of obtaining
improved performance by simply simultaneously opening several separate streams between
the end hosts and sharing the transfer between these streams.

The advantage of parallel streams is that, unlike setting tuning parameters, which require
system administrator privilege, they require no special privileges, and so are available to
ordinary users. FTP Accelerators (see Section 5.6) use parallel streams. Running several
SCP sessions simultaneously will also create a corresponding number of parallel streams.

Each extra stream puts an additional load on the CPU, and ultimately all the available CPU
time will be being used. Adding further streams will not improve the transfer rate. You
will need to experiment to determine the number of streams which give the best compromise
between CPU loading and overall throughput for your route and end hosts. Usually this
number will be less than ten, and adding more streams yields diminishing returns.

4.5 TCP Implementations

There are various implementations of the standard TCP protocol:

TCP Tahoe
TCP Reno
TCP NewReno
TCP Sack

Tahoe and Reno are now obsolete and should be avoided. NewReno and Sack are still current
and are to be preferred.

4.5.1 Selective acknowledgements

Selective acknowledgements (or ‘sacks’) are an optimisation of TCP which make it much more
robust to multiple packet losses within a single window. They are available in the standard
implementation Sack (as its name implies). Note, however, that on an uncongested Gigabit
network they can actually degrade performance. On Linux systems they can be disabled by:

/sbin/sysctl -w net.ipv4.tcp sack=0

4.5.2 Fast TCP implementations

There are several ‘fast’ implementations of TCP which aim to give improved performance.
They work by modifying or replacing the AIMD algorithm and all are currently to some degree
experimental. However, they still operate on standard TCP packets and so can usually inter-
operate with standard TCP implementations. These fast implementations can often give
significantly improved performance, though they are usually less stable and predictable than
standard TCP. Also, they can sometimes have a deleterious effect on other traffic on the
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network. Before experimenting with them you should ensure that you have permission to use
them over your entire network. The fast implementations currently available are:1

Scalable TCP (STCP)2

High Speed TCP3

Fast TCP4

TCP Westwood+

TCP Westwood+ is available as part of the Linux kernel 2.6.6. To invoke it set:

/sbin/sysctl -w /proc/sys/net/ipv4/tcp westwood=1

In addition Falk et al.[27] have described the Explicit Control Protocol (XCP). Unlike the
above fast TCP implementation, XCP requires modifications to any routers through which
its traffic passes, thus making it more difficult to deploy. Falk et al. also briefly, but usefully,
review the other fast implementations and He et al.[28] have recently reviewed the protocols
and various related applications (such as GridFTP; see Section 5.4).

4.5.3 Packet size

In modern, reliable networks it is feasible to use packets larger than the standard 64 Kbytes.
Such packets are called jumboframes or jumbograms. Larger packets include more data
per packet, so fewer packets need be transmitted, thus reducing the overheads associated
with handling packets and improving performance.

4.6 Choosing Hardware

Obtaining good network performance is not simply a matter of tuning an existing setup or
choosing suitable software. Clearly, the hardware used will also determine the performance
available. Hardware considerations are mostly beyond the scope of this document, though a
few brief remarks follow.

When planning new systems and projects the network throughput required should be con-
sidered from the outset and appropriate hardware bought. The performance of the overall
system will be determined not just by the computers acting as the end hosts but also by the
disks attached to these computers and the LANs connecting them. Users, even ones running
their own projects, are unlikely to be able to affect the purchase of MANs and WANs. They
are, however, likely to be able to choose their own end hosts and might be able to influence
the provision of the local LAN. Better performance is usually obtained by using modern
hardware.

1For a comparison see URL:
http://www-iepm.slac.stanford.edu/monitoring/bulk/tcpstacks/summary.html

2See URL: http://www-lce.eng.cam.ac.uk/~ctk21/scalable/
3See URL: http://www.icir.org/floyd/hstcp.html
4See URL: http://netlab.caltech.edu/FAST/
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4.6.1 Host computer

When choosing a host computer the straightforward CPU speed, though important, is not
the only quantity to consider. In order to achieve high data transfer rates some desirable
features are as follows.

• The Network Interface Cards (NICs) should be well designed. Ones which use the
advanced PCI (Peripheral Component Interconnect) commands will allow efficient use
of memory. Also the NIC drivers should be well written.

• Data crosses the memory bus at least 3 times, so the CPU-Memory bandwidth is
important, as well as PCI bandwidth.

• Use motherboards with multiple 64 bit PCI-X buses to separate the data transfers.
Also, a 32 bit 33 MHz bus is too slow for Gigabit transfer rates; a 64 bit 33 MHz bus
will be more than 80% used.

• To sustain Gigabit transfer rates fast CPU rates are needed. Typically, for a 1 Gbit/sec
transfer the processor speed should be no less than 3 GHz.

4.6.2 Disks

Disk I/O speeds are much slower than CPU speeds, and in some applications that are reading
or writing large quantities of data to or from disk they can be the limiting factor. In these
cases expedients such as ‘disk striping’ (that is, splitting the contents of a file across different
disk volumes) might improve performance.

4.6.3 LAN

The performance of the LAN connecting the hosts to the network is also obviously important.
The total volume of traffic to be carried on the LAN should be considered, not just the traffic
generated by any single project. When planning new projects which will make extensive use
of the LAN the advice of the network administrators responsible for it should be sought at
the outset. It is often prudent to build a LAN from good quality components. Such kit might
be somewhat more expensive, but it will often have fewer lost packets and hence give better
performance.

4.7 Further Information

A useful recent article on TCP tuning is Brian Tierney’s TCP Tuning and Network Trou-
bleshooting [24]. Also numerous sites are available which give hints on network tuning. Some
useful ones are listed below.

GridMon Project:
http://gridmon.dl.ac.uk/tcp tuning.html

Lawrence Berkeley National Laboratory:
http://dsd.lbl.gov/TCP-tuning/TCP-tuning.html
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Pittsburgh Supercomputing Center:
http://www.psc.edu/networking/perf tune.html

Stanford Linear Accelerator:
http://www-iepm.slac.stanford.edu/monitoring/bulk/fast/
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Chapter 5

File Transfer Protocols

Come, all young men of learning good,
A warning take by me.
I’ll have you quit night walking
And shun bad company;
I’ll have you quit night walking
Or else you’ll rue the day,
And you will be transported
And go to Botany Bay.

Botany Bay,
Anonymous English folk-song, early nineteenth century,
collected early in the twentieth century by Cecil Sharp.

An important use of computer networks is to transfer files and similar types of data. Such
usage is sometimes referred to as bulk data transfer to distinguish it from more interactive
types of usage. The size of the files transferred can vary enormously, from a few bytes to
Gigabytes or Terabytes. The routine transfer of large files is becoming increasingly common.
Various file transfer protocols are available to move these data. Typically the protocols
operate on top of the TCP/IP stack. In addition to giving different transfer speeds they
will usually also offer different features and provide different levels of security and reliability.
This chapter briefly introduces some of the more common transfer protocols and looks at
techniques for improving their performance. Numerous different file transfer protocols are
available. Some which are either common or are particularly suitable for transferring large
amounts of data are listed in Table 5.1 and briefly discussed below. However, first the
desiderata for a file transfer protocol are summarised.

5.1 Desiderata for a File Transfer Protocol

Some features which are usually desirable in a file transfer protocol are that it should be:

• reliable,

• efficient,

• secure,
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Protocol URL
FTP -
SCP http://www.openssh.com/ (OpenSSH)
GridFTP http://www.globus.org/ (Globus home page)
BBFTP http://doc.in2p3.fr/bbftp/
BitTorrent http://bittorrent.com/

Table 5.1: File transfer protocols

• able to support third party transfer.

The first two criteria are largely self-evident. The protocol should be reliable and robust:
it should deliver the data in their entirety and uncorrupted. If it fails to do so it should
unfailingly and unambiguously report an error message. The protocol should be efficient: it
should deliver the data in a timely fashion. The requirement to support third party transfers is
perhaps slightly less obvious. It is useful, for example, when a ‘master’ process is transferring
a file from one remote machine to another.

The level of security required will bear some discussion. Control information directing the
transfer, in particular usernames and passwords, should always be encrypted during transfer
to deter hackers. Whether or not it is necessary to encrypt the data themselves whilst they
are in transit depends on circumstances. In an academic research environment many data
are public and clearly there is no need to encrypt these. Also, it is debatable whether it is
worth encrypting some sorts of data which are notionally private, such as new experimental
results to which access is restricted to the original investigators for a proprietary period. The
difficulty of clandestinely finding and capturing such data whilst they are in flight and then
subsequently interpreting them in a scientifically meaningful fashion makes the chances of
piracy negligible. The situation is different for some sorts of financial data, where there can
be sufficient incentive to eavesdrop on network traffic. Similarly, encryption may be required
on some sorts of data for legal reasons, for example, medical records or population census
details. Finally, this discussion has been entirely concerned with whether it is necessary to
encrypt data during transit; unauthorised access to files on disk should be prevented.

5.2 FTP

FTP (File Transfer Protocol) is the standard method of transferring files across the Internet.
It is defined in RFC 959[29]. FTP is ubiquitous and long-established, indeed its antecedents
go back to the early days of ARPANET. However there are problems with it; specifically it
is not secure. It uses separate TCP/IP streams to transfer commands and data and neither
of them is encrypted, so passwords, for example, are sent as simple ASCII text. Nonetheless
any replacement for FTP will need to provide many of its familiar and useful features. See
Stevens[4], Chapter 27, pp419-439 for further details.
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5.3 SCP

SCP (Secure Copy) is part of the SSH (Secure Shell) suite (see, for example, Barrett and
Silverman[30] or the FAQ maintained by S. Acheson1). SSH is not a shell in the conventional
Unix sense. Rather, it is a set of commands to provide secure, reliable access to remote
systems. It provides modern replacements for traditional remote login and file transfer com-
mands such as TELNET and FTP (above) or the Unix ‘r-commands’ such as rsh, rlogin
and rcp. SCP is simply the function in SSH for copying remote files.

The SSH suite provides authentication, encryption, compression and reliability. That is, it in-
cludes modern authentication techniques to verify that the user is allowed to access the remote
resources. Both command information (including passwords) and the file contents themselves
are encrypted before being transmitted over the network. Encrypting the command informa-
tion is necessary for security. However, encrypting the file contents during transfer is often
overkill (though there are certainly circumstances where it is justified) and, moreover, will
impose a performance overhead. There are also options to compress the file during transfer.
Finally, SSH guarantees that in the absence of an error report the file contents will be copied
correctly.

There are actually two SSH protocols: SSH-1 and SSH-2, the second having been introduced
to fix a number of problems and limitations in the first. The original SSH software was
developed by Tatu Ylönen of the Helsinki University of Technology in 1995, and the SSH-1
protocol, released in the same year, essentially documented the behaviour of this program.
The SSH-2 protocol followed in 1996. Various products, both commercial and free, which
implement one or other of the protocols are now available for various platforms. One which
is in widespread use is OpenSSH2 which supports both protocols. SSH-1 is not as safe as
SSH-2, though it is usually considered more configurable.

OpenSSH is entirely suitable for small and medium-sized data transfers. However, it has its
own internal static transfer buffers which are unaffected by setting the TCP tuning parameters
(as described in Section 4.3). Consequently these buffers can become a bottleneck in an end-
host which has been tuned for a high BDP (bandwidth delay product) route. Consequently,
OpenSSH/SCP is unsuitable for high-volume data transfers across such routes. If you need
to use OpenSSH/SCP to transfer an extensive amount of data over a high BDP route there
are two alternatives:

• use multiple streams (see Section 4.4) by running several SCP sessions simultaneously.
This approach requires that the data to be transferred can be split up into a number
of constituent files (at least one per stream),

• alternatively, the HPN-SSH patch for OpenSSH eliminates the problem by allowing the
latter’s buffers to be defined dynamically at run time. HPN-SSH is described briefly in
Section 5.3.2, below.

5.3.1 Hints on using the encryption and compression options

Several encryption techniques, offering varying degrees of security, are available, and SSH-1
and SSH-2 offer different alternatives. The ones available in OpenSSH on Linux are listed

1See URL: http://www.employees.org/~satch/ssh/faq/ This FAQ has links to draft IETF RFCs de-
scribing the SSH protocols.

2See URL: http://www.openssh.com/
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in Table 5.2. For SSH-1 the degree of compression, if required, is expressed as a digit in
the range 1 to 9. The interpretation of this scale is identical to that used by gzip. A value
of 1 indicates the quickest to compute but least effective level of compression. A value of 9
specifies the most effective but slowest to compute level of compression. For SSH-2 only one
level of compression is available and it is either on or off. It corresponds to SSH-1 level 6.

SSH-1 blowfish
3des

SSH-2 aes128-cbc
3des-cbc
blowfish-cbc
cast128-cbc
arcfour
aes192-cbc
aes256-cbc

Table 5.2: Encryption techniques available in OpenSSH on Linux

The encryption technique is specified with the -c flag. Compression is requested using the
-C switch and the level is specified by passing the CompressionLevel using the -o flag. So,
for example, to use SSH-1 with blowfish encryption and a compression level of 5 you would
specify:

scp -1 -c blowfish -C -oCompressionLevel=5 source-file destination-file

The -1 flag specifies SSH-1. If the -C switch is omitted the file is transmitted without com-
pression. The compression level may be specified for SSH-2, but will have no effect. Note
that these options, and in particular the -C switch, are different in implementations other
than OpenSSH. Also, in OpenSSH the defaults can vary depending on which version of Linux
is being used and on settings made by the system administrator during installation. Com-
pression reduces the volume of data which needs to be copied across the network but requires
additional processing time on the source and destination hosts to perform the compression
and subsequent decompression. The conventional wisdom is that compression is useful over
modem lines and other slow connections, but with fast connections it will make no difference,
or might even slow down the transfer.

In experiments with using OpenSSH over a WAN we found that:

• 3des-cbc (SSH-2) is significantly, and 3des (SSH-1) is substantially, slower than the
other options,

• blowfish (SSH-1) is marginally slower,

• there is little difference between the speed of the other encryption methods,

• In SSH-1 the compression level made little difference to the speed. The only exception
was with blowfish (SSH-1) encryption where high compression did indeed slow it down.

These results were found on a particular combination of hosts, LAN and WAN and are not
necessarily generally applicable.
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5.3.2 High Performance Network SSH

High Performance Network SSH (HPN-SSH)3 is a patch for OpenSSH which allows the lat-
ter’s internal transfer buffer to be defined dynamically at run time rather than statically.
Consequently, the buffers can be adjusted, for example to values suitable for high BDP links.

HPN-SSH was developed by Chris Rapier and Michael Stevens. It is fully inter-operable with
other SSH servers. HPN-SSH clients should retrieve data from non-HPN-SSH servers at a
higher rate than basic OpenSSH clients. Similarly, HPN-SSH servers should be able to upload
data from non-HPN-SSH clients at a faster rate than basic OpenSSH servers. However, these
results are only achieved if the hosts are running a properly tuned TCP stack (see Section 4.3).

HPN-SSH is available as a patch which is applied to the OpenSSH source files.

5.4 GridFTP

GridFTP[31] was developed by the Globus Project.4 It is specifically intended for use in
scientific ‘data grid’ applications which typically need to move large amounts of data. It at-
tempts to retain many of the advantages of traditional FTP whilst avoiding its shortcomings.
Specifically, it provides the following features.

Automatic setting of TCP buffer/window sizes TCP implementations typically include
a number of internal buffers and windows. Often their default settings are unnecessarily
small for modern networks, leading to poor performance (see Section 4.3). The values
can be changed manually, but this is tricky and error prone and often is not done.
GridFTP attempts to set suitable values automatically.

Parallel transfer Typically a single TCP stream will use only a fraction of the available
data transfer rate. Thus it is often possible to improve performance by using multiple
streams (and FTP accelerators attempt to do this; see Section 5.6, below). GridFTP
includes support for multiple streams.

Third-party control of transfer GridFTP includes third-party control of transfer. That
is, the transfer can be initiated and controlled by processes running on neither the
source nor destination hosts. This feature is useful, for example, for accessing large
datasets which might be replicated at several different locations, or in circumstances
where a ‘master’ process is copying data from one remote machine to another.

Partial file transfer GridFTP is able to transfer only a specified fraction of a file. This
feature is useful in the common case where only a fragment of a large file is required.

Security GridFTP includes modern authentication features and provides secure file transfer.

Reliable Data Transport Clearly it is important that a file transfer protocol should be
reliable and provide automatic, internal features for re-sending lost or corrupt packets.
Standard FTP includes such features and they are also included in GridFTP.

GridFTP is a relatively new protocol and there are still some problems with it. It is not
yet widely available and the software which implements it can be tricky to install. These

3See URL: http://www.psc.edu/networking/projects/hpn-ssh/
4The URL for the Globus Project home page is http://www.globus.org/
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problems are likely to diminish with time. Its security features require that any user has
acquired an ‘e-Science certificate’ from some recognised authority. Currently this process is
something of an unusual chore. However, use of these certificates seems set to increase and
acquiring them is likely to become increasingly routine.

5.4.1 GridFTP and firewalls

GridFTP uses an unusual range of port numbers which might be blocked by any intervening
firewall. It uses port 2811 as a control channel and allocates for itself a range of ports for
transferring data. Fortunately this range can be specified when GridFTP is invoked. In order
to use GridFTP through a firewall you will need to:

1. ensure that port 2811 is open,

2. agree with the firewall administrator a range of ports to be used for data transfer,
perhaps 40000-45000,

3. specify this range when you run GridFTP.

5.5 BbFTP

BbFTP is file transfer software developed by Gilles Farrache at the IN2P3 Computing Centre5

in Lyons. It was written for transferring data from the Babar experiment between SLAC in
California and IN2P3. It is available from the CNRS6 in Paris. BbFTP implements its own
transfer protocol which is optimised for large files (greater than 2 Gbyte). In particular it
implements the specification for big transfer windows in RFC 1323[32] and uses multiple file
transfer streams. It is particularly intended for transferring large volumes of data across a
loaded WAN and so is suitable for use in scientific ‘data grid’ applications. The main features
of bbFTP are:

• username and password are encoded at the connection,

• SSH and Certificate authentication modules,

• multi-stream transfer,

• big windows (as defined in RFC 1323),

• on-the-fly data compression,

• automatic retry,

• customisable time-outs,

• transfer simulation,

• integrated authentication with the AFS distributed file system,

• interface to the RFIO remote file access protocol.
5See URL: http://cc.in2p3.fr/
6See URL: http://doc.in2p3.fr/bbftp/
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Dan Schrager of the Weizmann Institute has developed BBftpPRO,7 an enhancement to
bbFTP which allows it to operate more easily over firewalls.

Unlike FTP and SSH, bbFTP is unlikely to be ready installed on a system. In order to use it
it is necessary to first install a client and server on the two machines between which files are
to be transferred. Normally the server will be installed on the machine where the files reside
and the client on the one to which they are to be copied. However, files can be ‘pushed’ as
well as ‘pulled,’ so the client and server can be installed as desired.

The usage of bbFTP is less interactive than that of SSH or FTP, perhaps unsurprisingly
given that it is intended for copying large files. The operations to be performed by a bbFTP
client are usually specified by configuration and control files. In particular the control file
contains a series of entries comprising commands specifying the operations to be performed.
Figure 5.1 shows a simple control file. The commands for copying files, changing local and
remote directories etc. are similar to the corresponding FTP ones.

setnbstream 3
setoption nocreatedir
df /home/acd
get /home/acd/timetest/testfiles/acbit.fit /home/acdscratch/

Figure 5.1: Example bbFTP control file

The server to be used can be specified on the command-line when the client is invoked.
Alternatively, it can be included in with the file specifications given in the control file using
a URL-like mechanism (a so-called ‘TURL’). Security in bbFTP can be provided by either
SSH or certificate based mechanisms. Consequently, it is possible to use bbFTP without first
obtaining a certificate. BbFTP obtains good performance both by using parallel streams (in
a manner similar to an FTP accelerator, see Section 5.6, below) and by using a big transfer
window, as prescribed in RFC 1323. The number of parallel streams can be specified in the
configuration or control files.

5.5.1 Hints on installing and using bbFTP

1. If OpenSSL8 is not already available on your system it might be necessary to obtain
and install it before installing the bbFTP server. It is not necessary to install OpenSSL
before installing the bbFTP client.

2. By default the installation procedures for both the client and server attempt to put
their files in system directories. If you do not have the privilege to write to these
directories it is possible to specify an alternative location to the configure script run
prior to installation:

./configure --prefix=chosen-directory

7See URL: http://www.weizmann.ac.il/physics/linux farm/bbftp PRO.html
8See URL: http://www.openssl.org/
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3. The server demon writes its messages to the system log file:

/var/log/daemon.log

However, inspecting this file can be problematic as you might find that you do not have
the necessary privileges.

4. In order to permit bbFTP to operate, any firewalls protecting either the client or server
hosts should be configured to allow both incoming and outgoing traffic on a range of
ports upwards of 5020. In practice ports 5020 to 5040 should be adequate. The client
host should permit such traffic from the server and vice versa.

5. BbFTP is intended for transferring large files across a WAN, not for moving small files
across a LAN. Indeed, caution should be exercised in using it to copy files across a
LAN. In tests performed at the Royal Observatory Edinburgh the interface of the host
running the bbFTP server regularly hung when more than one parallel stream was used
to copy files across the local Ethernet.

5.6 FTP Accelerators

The FTP protocol works by copying data down a TCP stream from a source to a destina-
tion host. Typically such streams will (deliberately) use just a fraction of the available data
transfer rate. Clearly it is possible to improve the transfer rate by using multiple streams
(see Section 4.4). A number of utilities are available which provide this functionality; some
are commercial products, others are free. These tools are usually called FTP accelerators.
They piggy-back on top of standard FTP software and usually require no additional system
software to be installed on either the source or destination hosts. They can significantly
improve the transfer rate. However, because the number of streams available is finite some
system administrators consider their use to be anti-socially hogging resources. Conversely,
some resources, such as popular Web sites, are replicated (or mirrored) at several geo-
graphically dispersed sites. Some accelerators provide the additional feature of being able to
simultaneously retrieve different segments of a resource from several such sites. Such simul-
taneous retrieval from multiple sites is often considered less anti-social than using multiple
connections to a single site.

An additional consideration is that, because of the facilities provided by the host operating
system, many accelerators will initially write multiple files, one per stream. Once the retrieval
is complete they will concatenate these files into one final copy of the original. The consequent
shuffling of bytes on disk might obviate the advantage of the multiple retrieval. However, on
Unix there is a trick which allows files to be written beyond their notional end-of-file mark.
This trick allows multiple streams to be written directly into their correct place in a single
destination file, thus avoiding any subsequent shuffling of bytes. The Axel accelerator9 by
Wilmer van der Gaast uses this technique.

5.7 Peer-to-Peer Protocols and BitTorrent

The protocols discussed previously in this chapter essentially operated using a client-server
model: files reside on servers from whence clients can retrieve copies of them. Accelerators

9See URL: http://wilmer.gaast.net/main.php/axel.html
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which retrieve segments of a file from multiple servers modify this model somewhat by having
a single client access multiple servers. So-called peer-to-peer protocols have emerged as a
novel alternative to this approach. A recent example, which has become quite widely used,
is BitTorrent[33].10

In outline BitTorrent works as follows. A group of clients, or more accurately peers, all wish
to obtain a copy of a file. This file is conceptually divided into a number of segments, which
can be retrieved individually (and, when assembled, constitute the whole). Every peer must
be prepared to supply, or upload, segments to other peers, as well as retrieving segments. A
central server, called a tracker, keeps track of which peers have copies of which segments (but
does not itself serve segments). Initially at least one peer, called the seed, must have a copy
of the whole file. The other peers will typically initially have none of the file. The retrieval
starts with each peer retrieving segments from the seed, but crucially each peer will retrieve
different segments. Once each peer has a few segments the peers start retrieving from each
other rather than from the seed, with the tracker keeping track of which-has-what. Because
segments are being retrieved from multiple sites it is possible to achieve better performance
than if all copies were retrieved from a single server.

BitTorrent, and similar protocols, are really intended for down-loading static files which are
sufficiently popular that many users require copies of them. A common, but different, case
is where a user, having created a bespoke file (in which only he is interested) on a remote
host, wishes to retrieve a local copy. Neither peer-to-peer techniques such as BitTorrent nor
more conventional accelerators retrieving from multiple sites are immediately suited to this
case (though an accelerator being used to retrieve from a single origin using multiple streams
may still yield a significant improvement).

10See URL: http://bittorrent.com/ and also the FAQ at URL: http://dessent.net/btfaq/
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Chapter 6

Discussion

We’ve all seen the error messages: NFS server not responding; unable to locate
server; please check the server name and try again; no route to host; host un-
reachable. As fallible as our desk-top computers seem to be, somehow adding a
network to the mix seems to make things break even faster than before.

Core Jini,
W. Keith Edwards, 1999.

This final chapter brings together some of the strands from earlier chapters of the docu-
ment. It summarises some simple, practical steps which you can take now to improve the
performance of applications which transfer data across the networks.

Obtaining good network performance is not simply a matter of tuning an existing setup or
choosing suitable software. Rather, the network throughput required should be considered
when specifying new computer systems and appropriate hardware bought. The performance
of the LAN connecting the local computers to the wider MAN and WANs is also crucial, as
is the performance and configuration of any firewall. Better performance is usually obtained
by using modern hardware. Section 4.6 includes some specific suggestions about choosing
computer hardware to give good network performance.

As a user you are unlikely to be able to solve all your network problems yourself. It will
be necessary to liaise with your local and campus-wide network support staff, and it is
advantageous to cultivate contacts with them. Also, they should be involved, from an early
stage, in the planning for any new projects which will make substantial use of the networks
and informed of the anticipated volume of traffic. Though these points might seem obvious
they can often be overlooked. A list of ‘ten questions’ which you should try to answer before
making heavy use of the network is given in Section 6.1, below.

The wide area networks are mostly empty and usually reasonably well-configured. Currently
their capacity is adequate, and even transatlantic links do not appear to be a bottleneck. They
are unlikely to be the cause of any problems which you encounter. Rather, most problems
occur reasonably close to either the source or destination host; the ‘last mile’ problem. With
perfectly ordinary, but modern, hardware and using the sort of simple tuning techniques
mentioned in Section 4.3, but without resorting to more specialised techniques such as fast
TCP stacks, it should be possible to obtain a transfer rate of 20 - 50 Mbyte/sec across JANET
in the UK (see Chapter 4). There are a number of reasons why this transfer rate night not
be achieved. Whilst it is difficult to generalise, some of the likely causes of poor performance
are, in decreasing order of likelihood:
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1. the end host hardware,

2. the application software (as distinct from the TCP/IP stack) running on the end hosts,

3. some local network limitation,

4. a firewall,

5. and only finally the WAN connecting the end hosts.

For example, in experiments between the Royal Observatory Edinburgh and the Jodrell
Bank Observatory in Cheshire performed during 2004, the available rate was, at best, about
10 Mbyte/sec, well below the performance which should have been available. However, the
bottleneck was in the final hop to the destination host in the Jodrell Bank LAN. This result
is typical; the bottleneck is usually at or close to either the source or destination host.

The default values of the TCP tuning parameters are often inappropriate for modern comput-
ers and WANs. Improving the tuning should allow you to make better use of a partly-empty
WAN, and as a first step to obtaining good performance it is always worth setting the tuning
parameters to more suitable values.

It is sensible to run a series of representative tests before embarking on a major programme
of transfers. Typically such tests might consist of running both example transfers and pchar
probes over the route. Pchar should reveal any bottlenecks, though what remedial action will
be possible depends on where the problem lies. In some cases it might be necessary to upgrade
local equipment. Nowadays it is almost never possible to simply run pchar successfully, and
it will probably be necessary to negotiate with local and remote network staff to allow pchar’s
traffic through firewalls.

The tests that you run should use a representative set of data. The behaviour of the protocols
and applications will depend, to an extent, on the number of files transferred and their size
distributions, as well as on the total number of bytes copied. File compression is usually
more efficient on one large file than on many small ones. Firewalls are potentially one cause
of anomalously slow performance, and sometimes simply changing the order of firewall rules
can lead to improved performance. Try to ensure that the rules are as few and simple as
possible. Rules are processed sequentially, so the rules applying to high-volume traffic should
be placed towards the start of the list.

FTP is a familiar and robust mechanism for transferring files. However, it does not employ
encryption, even for control information such as usernames and passwords. Encryption is
often not necessary on academic or scientific data, though there are certainly cases where it
is needed. However, the absence of encryption on usernames and passwords is potentially
a security problem with FTP, and caution should be exercised in using it. FTP accelera-
tors, such as Axel, can provide significant improvements in performance, but should be used
benignly, so as not to affect the performance of other users. You should check with the ad-
ministrators of the remote host before undertaking a major programme using an accelerator.
If using an accelerator produces no improvement it is worth checking that multiple streams
are permitted by the remote FTP site.

SCP is a modern, secure mechanism for copying files and is generally to be preferred over FTP.
It encrypts both the control information (such as passwords) and the file content, though the
latter is often not necessary in a scientific or academic context. SCP is part of the SSH
suite and there are two SSH protocols: SSH-1 and SSH-2. The latter is usually considered
the more secure. Though SCP is efficient and reliable, there is a specific problem using the
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OpenSSH implementation over high bandwidth delay product (BDP) routes (‘long fat pipes’).
OpenSSH/SCP has its own internal transfer buffers which are static and unaffected by any
TCP tuning that has been done to the end hosts. The consequence is that though SCP is
suitable for transferring small and medium amounts of data over high BDP routes, it is not
suitable for sending large volumes of data over such routes.

If you need to use OpenSSH/SCP to transfer a large amount of data over a high BDP route
you should obtain and install the HPN-SSH patch, which solves the problem. Alternatively,
you can use several concurrent SCP sessions to transfer different sections of the data simul-
taneously over separate streams.

SSH has several encryption and compression options. For OpenSSH the 3des-cbc (SSH-2),
3des (SSH-1) encryption options seem slower than the other options, and blowfish (SSH-1) is
slightly slower, but there is little to choose between the remaining alternatives (see Table 5.2
for a list). SCP supports optional compression, and it is usually worth using, though whether
this is so depends on the details of the files being copied and the route used. The level of
compression used in SSH-1 does not make much difference. Lower values may be preferable,
though again this will vary depending on the characteristics of the transfer.

BbFTP and similar modern protocols offer advantages similar to SCP in terms of security
and compression. However, they also offer higher transfer rates through the use of multiple
streams, big windows and automatic TCP tuning. Note, however, that bbFTP is intended
for copying large files (say, greater than 2 Gbyte) over a WAN. It is not intended for copying
small files or copying files over a LAN.

If none of the simple transfer protocols gives adequate performance, it is possible to exper-
iment with one of the fast TCP stacks. However, you should be aware (and beware) that
you are entering a specialised and complex area. Before using these stacks it is necessary to
obtain permission to run them over the entire route.

6.1 Ten Easy Questions

This section is adapted, with permission, from Robin Tasker’s ‘Ten Easy Network Questions’
– So You Think You Know Your Network [34]. It is aimed at people running or implementing
the network aspects of projects which are going to make heavy use of the network. It was
written for the GridPPP project, but is widely applicable. Whilst intended to be brief and
light-hearted it provides a challenge whose purpose is to ensure that you really understand
your local network and, just as importantly, you know who to speak to when things go wrong
or you need to find out additional information. If you want to drive your network hard you
need to know this stuff!

Answer the following questions using you skill and judgement. Conferring with your local and
Institutional network support staff is allowed. Actually it is encouraged! Share your answers
with your colleagues.

1. Provide the names and contact details of your local (Departmental) and Institutional
network support staff.

2. Provide details of the responsibilities, together with the demarcation of those responsi-
bilities, of your local (Departmental) and Institutional network support staff.

3. What is a Regional Network Operator (RNO), and why does it matter to you?
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4. What is SuperJANET4? And, more importantly, what is SuperJANET5?

5. Draw a simple diagram showing your local (Departmental) network and sufficient of
your Institutional network such that you can trace a line from your end-system to the
connection from your Institute’s network into the RNO infrastructure.

6. On the diagram produced in answer to question 5, show the capacity of each link in
the network and provide a note against each link of its contention ratio (briefly, the
number of other users with whom you might have to share it).
(Hint: just how many 100 Mbit/sec links are being fed into that 1 Gbit/sec uplink?)

7. On the diagram produced in answer to question 5, colour and distinguish the switches
and routers and for each device provide a note of its backplane capability.
(Hint: just how many (frames per second|packets per second) can the backplane shift?)

8. What is the average and peak traffic flow between your local (Departmental) network
and the Institutional network?

What is the average and peak traffic flow between your Institutional network and the
RNO?

What is the total capacity of your Institutional connection to the RNO?

What are the upgrade plans for your local (Departmental) network, your Institutional
network and the network run by the RNO?

9. Do you implement Information Systems (IS) Security? Does your Institute implement
IS Security?

Do you implement firewalls? Does your Institute implement firewalls?

On the diagram produced in answer to question 5 colour in the firewall(s) and any other
security devices.

Provide information on how changes are made to the rule set of each firewall.

Provide a note on the capacity of each firewall. Include what happens when this capacity
is exceeded.

10. What is the best performance you can achieve from your end-system to an equivalent
system located in some geographically remote (but friendly!) Institute?

For your end-system:

• Do you understand the kernel, the bus structure, the NIC and the disk system?

• Do you understand TCP tuning and what it can do for you?

• Do you understand your application and what it can do to your performance?

Conclusions (and Answers)

We hope that with the completion of this exercise you will have a clearer understanding of
the components of the network that affect your work (or at least the local portion of it; there
will be similar complexity at the destination Institute). Furthermore, that you have pieced
together the end-to-end path upon which you are reliant, and better understand the many
issues that affect performance. Most of all we hope you have built up a set of contacts who
can help you to make your network work for you.

And as for the answers?
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Well, they are probably out of date already, so keep talking.

The ten questions were originally intended for use in the GridPP Project. The answers
provided by its participating sites can be seen at:

http://wiki.gridpp.ac.uk/wiki/GridPP Answers to 10 Easy Network Questions
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Appendix A

The Internet Standardisation
Process

The Internet is famously the most successful, best functioning and largest anarchy that there
has ever been, a circumstance which is not without a certain amount of irony given its origins
in military command and control systems. However, some controls are needed, particularly
for the development and approval of the standards which allow the Internet to function, such
as TCP/IP.

A.1 Standardisation Bodies

There are ultimately four groups responsible for developing and maintaining the Internet
standards.

ISOC (Internet Society)1 is a professional society to facilitate, support and promote the
evolution and growth of the Internet.

IAB (Internet Architecture Board)2 is the technical oversight and coordination body for
Internet standards. In particular it provides architectural oversight of the Internet
standardisation process and is the body to which appeals against decisions taken during
this process can be made. It also appoints the RFC editor (below). It is chartered as
both as a committee of the IETF (below) and as an advisory body of the ISOC.

IETF (Internet Engineering Task Force)3 develops the specifications that become Internet
standards. The actual technical work of the IETF is done in numerous working groups.
The IETF is concerned with developing practical, usable standards for deployment in
the short-term, rather than long-term research. Architectural oversight of the IETF is
provided by the IAB (above).

IRTF (Internet Research Task Force)4 complements the IETF by pursuing long-term re-
search projects. Like the IETF, architectural oversight is provided by the IAB.

1See URL: http://www.isoc.org/
2See URL: http://www.iab.org/
3See URL: http://www.ietf.org/
4See URL: http://www.irtf.org/
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A.2 RFCs

All the Internet standards are issued as so-called RFCs (Requests for Comments), a term
which originated in the early days of the Internet and is something of a misnomer. Once an
RFC is agreed and published it is an Internet standard and its contents are largely immutable.
Each RFC has a unique sequence number which is assigned chronologically.

A.2.1 Obtaining RFCs

All RFCs are publicly available on-line. There are a number of ways to access them. Perhaps
the simplest is via the Web. To obtain RFC xxxx access URL:

http://www.ietf.org/rfc/rfcxxxx.txt

For example RFC 793 is available at:

http://www.ietf.org/rfc/rfc793.txt

To obtain a complete listing of the various ways of accessing RFCs send an e-mail message
as follows:

To: rfc-info@isi.edu
Subject: getting rfcs
Contents: help: ways to get rfcs

It might take a while for a reply to arrive. There is an index of RFCs at:

http://www.ietf.org/iesg/1rfc index.txt

It is important to check the index before starting to make serious use of an RFC because the
RFCs are evolving. Some become obsolete, replacements are approved etc. The index always
indicates RFCs which have newer replacements and updates. For further details see either:

http://www.ietf.org/rfc
http://www.rfc-editor.org/
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