
 
The Absolute Arithmetic Continuum and its Peircean Counterpart1 

Philip Ehrlich 

 
a continuum is a collection so vast…that in the whole 
universe of possibility there is not room for them to 
obtain their distinct identities; but they become welded 
into one another. Thus the continuum is all that is 
possible, in whatever dimension it be continuous. 
  

      Charles Sanders Peirce  
      The Logic of Relatives  
      1898a, p. 160  

 
the possibility of determining more than any given 
multitude of points…at every part of the line, makes it 
continuous…. 

                  Charles Sanders Peirce  
                  Infinitesimals  
                  1900, p. 364 

 
Introduction 

 
 In the decades bracketing the turn of the twentieth century the real number system 

was dubbed the arithmetic continuum because it was held that this number system is 

completely adequate for the analytic representation of all types of continuous phenomena. 

In accordance with this view, the geometric linear continuum is assumed to be 

isomorphic with the arithmetic continuum, the axioms of geometry being so selected to 

ensure this would be the case. In honor of Georg Cantor [1872] and Richard Dedekind 
                                                
1  Portions of this paper were presented as part of a more general talk delivered at the 
Carlsberg Academy in Copenhagen in November 2004 as part of a conference on The 
Continuum in Mathematics and Philosophy, and subsequently at the Association of 
Symbolic Logic Spring Meeting in San Francisco in March 2005, the Association of 
Symbolic Logic European Summer Meeting in Athens, Greece in August 2005, the 
Applying Peirce conference in Helsinki in June 2007, and the 13th International 
Congress of Logic, Methodology and Philosophy of Science in Beijing, China in August, 
2007. We wish to express our appreciation to the organizers of those conferences for 
providing us with those opportunities. 
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[1872], who first proposed this mathematico-philosophical thesis, the presumed 

isomorphism of the two structures is sometimes called the Cantor-Dedekind axiom. 

Given the Archimedean nature of the real number system, once this axiom is adopted we 

have the classic result of standard mathematical philosophy that infinitesimals are 

superfluous to the analysis of the structure of a continuous straight line. 2 

More than twenty years ago, however, we began to suspect that while the Cantor-

Dedekind theory succeeds in bridging the gap between the domains of arithmetic and of 

classical Euclidean geometry, it only reveals a glimpse of a far richer theory of continua 

that not only allows for infinitesimals but leads to a vast generalization of portions of 

Cantor’s theory of the infinite, a generalization that also provides a setting for Abraham 

Robinson’s infinitesimal approach to analysis [1961; 1966] as well as for the profound 

and all too often overlooked non-Cantorian theories of the infinite (and infinitesimal) 

pioneered by Giuseppe Veronese [1891; 1894], Tullio Levi-Civita [1892; 1898], David 
                                                
2   In the case of an ordered field 

! 

A,+,",<,0,1  (such as the ordered field of real numbers), 
the Archimedean axiom asserts: for all 

! 

a,b" A, if 

! 

0 < a < b , there is a positive integer 

! 

n  
such that 

! 

na > b. Since every ordered field A contains a unique isomorphic copy   

! 

!
A
 of 

the ordered field of rational numbers, an element 

! 

a  of A may be said to be infinitesimal if 

! 

a  is less than every positive member of   

! 

!
A
, and it may be said to be infinite if 

! 

a  is 
greater than every positive member of   

! 

!
A
. An ordered field is Archimedean if and only 

if it contains neither infinite nor infinitesimal elements. Non-Archimedean ordered fields, 
by contrast, contain infinite as well as non-zero infinitesimal elements, the latter being 
the multiplicative inverses of the former. 
   Following Abraham Robinson [1961, p. 434; 1966, p. 51], it has become commonplace 
to say an element of an ordered field A is finite, if it lies between two members of   

! 

!
A
. In 

accordance with this convention, the infinitesimals of A are finite. The geometer, Robin 
Hartshorne [2000, p. 159], on the other hand, calls the elements that lie between two 
members of   

! 

!
A
 finitely bounded and defines the finite elements of A to be the finitely 

bounded elements that are not infinitesimal. While there is historical precedence for each 
of these conventions, in this paper we follow the latter. 
   For a thorough discussion of the properties of ordered fields, the reader may consult 
[Lam 1980]. For the sake of convenience, however, the definition of an ordered field as 
well as the definitions of some of the other basic conceptions employed in the paper are 
collected together in the Appendix.   
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Hilbert [1899] and Hans Hahn [1907] in connection with their work on non-Archimedean 

ordered algebraic and geometric systems and by Paul du Bois-Reymond (cf. [1870-

71;1875; 1877; 1882]), Otto Stolz [1883; 1885], Felix Hausdorff [1907; 1909] and G. H. 

Hardy [1910; 1912] in connection with their work on the rate of growth of real 

functions.3 Central to the theory is J.H. Conway’s ordered field of surreal numbers 

[1976; 2001], a system of numbers containing the reals and the ordinals as well as a great 

many less familiar numbers including 

! 

"# , 

! 

" /2, 

! 

1/" , 

! 

"  and 

! 

" #$  to name only a few. 

Indeed, this particular number system, which Conway calls No, is so remarkably 

inclusive that, subject to the proviso that numbers--construed here as members of ordered 

number fields--be individually definable in terms of sets of von Neumann-Bernays-Gödel 

set theory with global choice, henceforth NBG,4 it may be said to contain all numbers 

great and small! 5 

                                                
3  For historical overviews of some of these pioneering contributions to non-Archimedean 
mathematics, see [Ehrlich 1994 (General Introduction); 1995; 2006] and the papers by 
Veronese and Poincaré in [Ehrlich 1994]. 
4  NBG is a conservative extension of ZFC (Zermelo-Fraenkel set theory with the axiom 
of choice), that is, the same statements of the language of ZFC are provable in ZFC and 
in NBG. This being the case, ZFC is consistent if and only if NBG is consistent. Unlike 
ZFC, however, NBG admits sets as well as proper classes. Throughout the text, we 
follow the standard practice of referring to sets and proper classes collectively as classes.  
    Unless otherwise specified, throughout the text it is assumed that the underlying set 
theory is NBG. In virtue of the axiom of global choice--which is equivalent to the 
assertion that all classes can be well ordered--and the axiom of foundation for classes, all 
proper classes have the same ‘cardinality’ in NBG. We will denote their ‘cardinality’ by 

! 

"
On

, On being the class of all ordinals. While the axiom of global choice plays no role in 
either the introduction of the surreal numbers or in the development of most aspects of 
the theory, it plays a crucial role in proving embedding theorems for structures that are 
proper classes including establishing (up to isomorphism) various uniqueness properties 
for the system of surreal numbers considered as a whole. 
    For a detailed discussion of NBG and its relation to ZFC, see [Fraenkel, Bar-Hillel and 
Lévy, 1973; Lévy, 1976], where NBG is referred to as 

! 

VNBC" .  
5 By “ordered number field”, we simply mean an ordered field whose elements are 
customarily called “numbers”. When we say “numbers--construed here as members of 
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  In a number of works [Ehrlich 1987; 1989; 1992; 1994; 2005; Forthcoming 1; 

Forthcoming 2], we have suggested that whereas the real number system should be 

regarded as constituting an arithmetic continuum modulo the Archimedean axiom, No 

may be regarded as a sort of absolute arithmetic continuum (modulo NBG). And, in 

[Ehrlich 2002; 2004; 2005; and, especially, Forthcoming 2] we have drawn attention to 

the unifying framework this absolute arithmetic continuum provides for the reals and the 

ordinals as well as the various other sorts of systems of numbers great and small alluded 

to above.6 In the present paper, we introduce a formal replacement for the intriguing 

extension of the classical linear continuum sketched by Charles Sanders Peirce [circa 

1897; 1898a; 1900] at the turn of the twentieth century, and point out that by limiting No 

to its substructure 

! 

No
P

 consisting of its finite and infinitesimal members (see Note 2), 

one obtains a model of this Peircean linear continuum, as we call it, whose properties 

mimic the remarkable properties of No established by the present author in [Ehrlich 

1992].7,8 In the course of so doing, we will also clarify some of the senses in which a 

                                                                                                                                            
ordered number fields”, we are not of course proposing that the term “number” should be 
limited to such numbers, but rather we are simply reporting on how we are employing the 
term in the phrase “all numbers great and small”. 
6  Some readers might find it puzzling that we have included the ordinals as members of 
ordered number fields. After all, being noncommutative, aren’t the sums and products of 
ordinals incompatible with the arithmetic of ordered fields? However, the sums and 
products of ordinals in ordered fields are not the familiar noncommutative sums and 
products of Cantor, but rather the natural sums and natural products of ordinals due to 
Hessenberg [1906] and Hausdorff [1927], respectively. For a discussion of these 
operations and further references to the literature, see [Ehrlich 2006, pp. 24-25].  
7  There is also an exact parallel between the properties of 

! 

No
P

 and the properties of No 
established in Theorem 5 of [Ehrlich 2001: p. 1239]. To prove the analog for 

! 

No
P

, 
however, would require the development of 

! 

No
P

’s structure as an s-hierarchical finitely 
bounded ordered (integral) domain, something space will not permit.  
8  Following the author’s talk at the Carlsberg Academy referred to in Note 1, John Bell 
informed the author that while he had never developed the idea, he likewise realized that 
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Peircean linear continuum, so defined, realizes some of the key characteristics envisioned 

by Peirce for his purported linear continuum as well as draw attention to some of the 

differences that exist between Perice’s intuitive conception and our proposed formal 

replacement thereof. Some of the differences point to limitations in Peirce’s intuitive 

conception while others are byproducts of the underlying set-theoretic framework which, 

in accordance with standard geometrical practice and in marked contrast with Peirce, 

treats the collection of points on a line as an actual as opposed to a potential collection.9 

Moreover, unlike Peirce, we will go beyond a largely order-theoretic exploration of 

Peircean linear continua by shedding light on the ordered algebraic structure 

! 

No
P

 inherits 

from No. Since a relational structure M is a model of absolutely continuous elementary 

Euclidean geometry if and only if M is isomorphic to a Cartesian space defined over No 

[Ehrlich 1987; Forthcoming 1: Section 14], this will reveal just how rich a system of 

                                                                                                                                            
No mirrored to some extent Peirce’s purported continuum. See [Bell 2005, p. 209: Note 
1] for a reiteration of this point. 
9  According to Peirce, whereas a continuum should be construed as a collection or an 
aggregate, it is a “potential aggregate.” Moreover,  
 

being a potential aggregate only, it does not contain any individuals at all. 
It only contains general conditions which permit the determination of 
individuals. [Peirce 1898b, p. 247]  

 
In the case of points, in particular, writes Peirce:  

We must…conceive that there are only so many points on the line as have 
been marked, or otherwise determined, upon it. Those do form a 
collection; but ever a greater collection remains determinable upon the 
line. All the determinable points cannot form a collection…the points on a 
line not yet actually determined are mere potentialities. [Peirce 1900, p. 
363] 
 

   However, as our remark in the main body of the text alludes to, since the latter part of 
the nineteenth century, when geometers embraced the ideas of Cantor, geometers have 
treated the collection of points on a line as an actual infinite collection (cf. [Hilbert 1899; 
1971; Tarski 1959; Greenberg 1993; Hartshorne 2000]). 
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numbers must be to provide length measures for the full range of segments of a straight 

line of absolutely continuous elementary Euclidean space that are finite or infinitesimal 

relative to a given unit segment.10 We will find that, whereas No may be said to exhibit 

all possible types of algebraic and set-theoretically defined order-theoretic gradations 

consistent with its structure as an ordered field, 

! 

No
P

 may be said to exhibit all possible 

types of algebraic and set-theoretically defined order-theoretic gradations consistent with 

its structure as a finitely bounded ordered (integral) domain (see Section 10). Finally, to 

help clarify the import of affixing the qualifying phrase “set-theoretically defined” to the 

expression “order-theoretic gradations”, in the Postscript we will draw attention to the 

fact that if one is willing to allow for types of order-theoretic gradations definable in 

terms of proper classes as well as sets—a possibility neither countenanced by Peirce nor 

permitted in NBG--there are distinguished extensions of No and 

! 

No
P

 that can be 

constructed in Ackermann’s set theory11 whose types of order-theoretic gradations are a 

                                                
10  The axioms for absolutely continuous elementary Euclidean geometry consist of a set 
of axioms that are collectively equivalent to Hilbert’s axioms for classical Euclidean 
geometry less the continuity axioms [Schwabhäuser, Szmielew and Tarski 1983; Ehrlich 
1997, p. 61], together with Tarski’s elementary continuity schema [Tarski 1959; Ehrlich 
1997, p. 67] and an axiom that ensures that a straight line is an absolute linear continuum 
in the sense defined above in Section 1 [Ehrlich 1987, p. 243; Forthcoming 1]. For the 
definition of a Cartesian space appropriate for the just-cited system of axioms, see 
[Ehrlich 1997, p. 62]. 
11 Ackermann’s set theory is a conservative extension of Zermelo-Fraenkel set theory 
(see Note 4) having classes as well as sets (cf. [Fraenkel, Bar-Hillel and Lévy l973, pp. 
148-153; Lévy 1976, pp. 207-212]). Following Fraenkel, Bar-Hillel and Lévy, here we 
include the axiom of foundation (for sets) among the axioms of Ackermann’s set theory. 
Since Ackermann [1956] did not do so, some authors distinguish between A and 

! 

A
", 

where by A they mean Ackermann’s original axioms (or some equivalent set thereof) and 
by 

! 

A
" they mean what we have called Ackermann’s set theory (cf. [Lévy and Vaught 

1961; Reinhardt 1970]).  
   Since 

! 

A
" is a conservative extension of ZF (Zermelo-Freankel set theory without the 

axiom of choice), it is equiconsistent with ZF; accordingly, if 

! 

A
" is consistent, it is 

consistent with both the axiom of choice and the axiom of global choice.    
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good deal more refined than those of No and 

! 

No
P

. This will also make clear why in our 

characterization of No as an absolute arithmetic continuum (modulo NBG) the qualifying 

phrase “modulo NBG” is not superfluous.  

 All of the new results are contained in the latter portions of the paper concerned 

with Peircean continua. Readers who are primarily interested in the expository aspects of 

the text may skip the proofs without serious disruption to the exposition. Since the theory 

of surreal numbers is still not as well known among philosophers and logicians as it 

deserves to be, to keep the paper relatively self-contained we will begin with a detailed 

overview of those aspects of the theory that will be appealed to in the subsequent 

discussion of Peircean linear continua and our proposed arithmetization thereof. Readers 

desiring even more detailed expositions of the relevant aspects of the theory may consult 

[Ehrlich Forthcoming 1] as well as [Ehrlich 1992; 1994 and 2001]. 

 
Part I: Absolute Continua  

 
1. The Absolute Arithmetic Continuum 

 An ordered number field is a collection of numbers, linearly ordered, whose 

elements can be added, subtracted, multiplied and divided in accordance with the 

algebraic and algebraico-order-theoretic properties familiar from the systems of rational 

and real numbers. Like the ordered field of real numbers, the ordered field of surreal 

numbers is real-closed. Following Emil Artin and Otto Schreier [1926], an ordered field 

A may be said to be real-closed if it admits no extension to a more inclusive ordered field 

that results from supplementing A with solutions to polynomial equations with 
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coefficients in A.12 Intuitively speaking, real-closed ordered fields are precisely those 

ordered fields having no holes that can be filled by algebraic means alone. Tarski [1948] 

shed important model-theoretic light on Artin and Schreier’s celebrated algebraic 

conception by showing that real-closed ordered fields are precisely the ordered fields that 

are first-order indistinguishable from the ordered field of reals. For this reason, real-

closed ordered fields are sometimes called elementary arithmetic continua. 

 Unlike the classical arithmetic continuum, the ordered field of rational numbers is 

not real-closed--it can be extended to a richer ordered field by supplementing the 

rationals with solutions to polynomial equations with rational coefficients (including, for 

example, the real-valued solution to the equation 

! 

x
2
" 2 = 0). The richest ordered field 

that can be obtained from the rationals in this fashion is (to within isomorphism) the 

ordered field of real algebraic numbers. The system of real algebraic numbers is in fact 

(up to isomorphism) the smallest real-closed ordered field containing the ordered field of 

rationals as a subfield. Among the important discoveries to emerge from the theory of 

real-closed ordered fields is that the relation the ordered field of rational numbers bears to 

the ordered field of real algebraic numbers is a special case of a far more general relation. 

In particular, by a celebrated result of Artin and Schreier [1926], every ordered field A 

has (up to isomorphism) a unique real-closure, i.e. a smallest real-closed ordered field 

containing A. If A is itself real-closed, then A is its own real-closure, otherwise the real-

closure of A is a (cardinality preserving) proper extension of A.   

                                                
12  For overviews of some of the seminal results in the theory of real-closed ordered 
fields, see [Chang and Keisler 1990, pp. 345-348] and [Lam 1980]; for the historical 
development and philosophical significance of these important structures, see [Sinaceur 
1994]. 
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Since there is a multitude of real-closed ordered fields, it is natural to inquire if, 

like   

! 

! , it is possible to distinguish No (to within isomorphism) from the remaining real-

closed ordered fields by appealing solely to its order. As Theorem 1 below shows, the 

following definition enables one to do just that.  
 

DEFINITION 1 [Ehrlich 1987]. An ordered class 

! 

A,<  will be said to be an absolute 

linear continuum if for all subsets 

! 

L  and 

! 

R of 

! 

A  where 

! 

L < R there is a 

! 

y "A such that 

! 

L < y{ } < R  (where the notation “

! 

L < R” indicates that every member of 

! 

L  precedes 

every member 

! 

R).13  
 

 The reader will notice that an absolute linear continuum cannot be a set. Indeed, 

for any ordered set 

! 

A,<  one can always find a pair of subsets 

! 

L  and 

! 

R of 

! 

A  where 

every member of 

! 

L  precedes every member 

! 

R but for which there is no member of 

! 

A  

that lies strictly between the members of 

! 

L  and the members of 

! 

R by simply selecting 

! 

L  

and 

! 

R so that 

! 

L < R and 

! 

L" R = A. Accordingly, if there are absolute linear continua in 

NBG, they must be proper classes. 

Following tradition, a totally ordered class 

! 

A,<  is said to be dense if for each 

pair of members 

! 

x  and y of 

! 

A  where 

! 

x < y , there is a 

! 

z " A such that 

! 

x < z < y . 

Extending this idea in NBG to its set-theoretic extreme, a totally ordered class 

! 

A,<  will 

be said to be absolutely dense (modulo NBG) if for each pair of nonempty subsets 

! 

X  and 

! 

Y  of 

! 

A  where 

! 

X < Y , there is a 

! 

z " A such that 

! 

X < z{ } < Y . An absolute linear 

                                                
13  In [Ehrlich 1988; 1992; 1994] and a number of other works, we refer to absolute linear 
continua as “

! 

"
On
#orderings” since they extend to proper classes Hausdorff’s [1907; 

1914] idea of an 

! 

"# $ordering of power 

! 

"#
, that is, an ordered set 

! 

A  of power !"  such 
that for all subsets 

! 

L  and 

! 

R of 

! 

A  where 

! 

L < R and 

! 

L , R <"#  there is a member of 

! 

A  
lying strictly between those of L  and those of R . The appellation “absolute linear 
continuum” was introduced in [Ehrlich Forthcoming 1].  
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continuum 

! 

A,<  is both absolutely dense in this sense and absolutely extensive in the 

sense that given any subset 

! 

X  of 

! 

A  there are members 

! 

a  and 

! 

b of 

! 

A  that are 

respectively smaller than and greater than every member of 

! 

X . In fact, since in the 

definition of an absolute linear continuum 

! 

L  and/or 

! 

R may be empty, one can readily 

show that an ordered class is an absolute linear continuum if and only if it has both of the 

just-stated properties.14 Accordingly, since every element of an ordered class must either 

lie between two of its nonempty subclasses or be greater than or less than every member 

of some (possibly empty) subclass, absolute linear continua are ordered classes having 

no order-theoretic limitations that are definable in terms of sets of standard set theory. 

  In his Contributions to the Founding of the Theory of Transfinite Numbers [1895, 

§11], Cantor provided a non-metrical characterization of a closed interval of the classical 

linear continuum and showed that a closed interval of   

! 

!  is (up to isomorphism) the 

unique such structure.15 From the latter one can readily obtain a categorical 

                                                
14  In [Ehrlich 1987, p. 243; 1992, p. 172; 1994a, p. xxvii], we described the property 
employed in the definition of an absolute linear continuum as a condition of absolute 
density. While we continue to believe this description is apt, we now believe that, at least 
for some purposes, it is more revealing to split the condition into absolute density and 
absolute extensivity, as we have done here.     
15  In his [1892; 1889], Peirce criticized Cantor’s earlier metrical characterization of a 
linear continuum [Cantor 1883 in Ewald 1996, p. 906] and offers a non-metrical 
alternative. Some recent writers on Peirce’s theory of continua, perhaps influenced by the 
just-cited papers of Peirce, write as if Cantor only introduced a metrical characterization 
(cf. [Myrvold 1995, pp. 519-524; Herron 1997, pp. 606-608]). Potter and Schields [1977, 
pp. 25, 33: Note 13], on the other hand, are aware of Cantor’s non-metrical definition 
and, based on the Peirce-Cantor correspondence, suggest that Peirce read Cantor’s 
memoir containing it in December 1900. However, whether or not Peirce actually read or 
appreciated Cantor’s non-metrical definition is not clear. By contrast, Cantor’s non-
metrical conception was made a cause célèbre by Bertrand Russell in his Principles of 
Mathematics [1903, Ch. XXXVI] and, soon thereafter, was widely discussed by E.V. 
Huntington [1917: Ch. V] and others. 
    It is perhaps also worth noting that Cantor was already in possession of a non-metrical 
characterization of a continuous series in 1887 but he did not specify the means of 
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characterization of the ordered set   

! 

!  itself. The following is the analog of the latter result 

for absolute linear continua. 

THEOREM 1. [Ehrlich 1988: Lemma 1]. 

! 

No,<  is (up to isomorphism) the unique 

absolute linear continuum.  
 

 We hasten to add that, unlike the ordered field of real numbers, the ordered field 

of surreal numbers is not characterized (up to isomorphism) as an ordered field by its 

structure as an ordered class. Indeed, there are infinitely many pairwise non-isomorphic 

ordered fields that are absolute linear continua.16 Happily, however, as we alluded to 

above, what one can prove in NBG is    
 

THEOREM 2. [Ehrlich 1988: Lemma 2]. 

! 

"No,+,#,<,0,1$  is (up to isomorphism) the unique 

real-closed ordered field that is an absolute linear continuum.  
 

 In virtue of Theorem 2, No (considered as an ordered field) is not only devoid of 

set-theoretically defined order-theoretic limitations, it is devoid of algebraic limitations as 

well; moreover, to within isomorphism, it is the unique ordered field that is devoid of 

both types of limitations or “holes”, as they might more colloquially be called. That is, 

No not only exhibits all possible types of algebraic and set-theoretically defined order-

theoretic gradations consistent with its structure as an ordered field, it is to within 

isomorphism the unique such structure that does. It is ultimately this together with a 

number of closely related results, some of which will be discussed in Section 3 below, 

                                                                                                                                            
distinguishing segments of the classical linear continuum from segments of more general 
continuous series at that time. For a discussion of these matters, see [Ehrlich 2006, pp. 
50-51]. 
16  Since every ! -saturated ordered field is an !" # ordering [see Note 13], to obtain 
such an ordered field one need only form the union of a continuous chain A!  ! < On( )  
of ordered fields whose universes are sets where A

0
 is not real-closed and A! +1  is an 

! +1-saturated elementary extension of A!  for each ! . See, for example, [Chang and 
Keisler 1990, Ch. 5] for details. 
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that underlies our contention that No may be naturally regarded as an absolute arithmetic 

continuum (modulo NBG).  

                2. Absolute Linear Continua 
 

 Before continuing our exploration of No’s structure as an absolute arithmetic 

continuum, however, we will focus our attention more narrowly on its structure as an 

ordered class. In particular, in this section we will shed further light on two other senses 

in which No, considered as an ordered class, may be said to exhibit all possible types of 

order-theoretic gradations that are individually definable in terms of sets of NBG. The 

source of additional illumination is a pair of mutually reinforcing categorical 

characterizations of absolute linear continua provided in Theorem 3 below. Unlike the 

purely order-theoretic characterizations offered in Section 1, the characterizations of 

absolute linear continua stated in Theorem 3 are of a model-theoretic nature and are 

based on the author’s extensions to proper classes of conceptions developed by Bjarni 

Jónsson [1956; 1960] and Michael Morley and Robert Vaught [1962]. The first is based 

upon 
 

DEFINITION 2 [Ehrlich 1987; 1988; 1989; 1989a; 1992]. An ordered class A is said to be 

universally extending if for each ordered subset B of A and each ordered class 

! 

" A  

extending B, there is an isomorphism 

! 

f : " A # A that is an extension of the identity map 

on B.  
 

 Intuitively speaking, A is a universally extending ordered class if every possible 

way of enriching the order-theoretic gradations of an ordered subset B of A that is 

consistent with NBG is already (isomorphically) realized as an extension of B in A (see 

Figure 1).  
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A

B

! A 

 
 

   Figure 1 

 The reader will notice that insofar as every ordered class is an extension of the 

empty ordered class, every universally extending ordered class contains an isomorphic 

copy of every ordered class. There is, however, a plethora of ordered classes that are 

inclusive in this sense that are not universally extending. However, as Theorem 3 below 

makes clear, the following definition provides the means to distinguish between the 

universally extending ordered classes and those that are “merely” universal.   
 

DEFINITION 3 [Ehrlich 1987; 1988; 1989; 1989a; 1992]. An ordered class A is said to be 

homogeneous universal if it is universal—there is an isomorphic copy of every ordered 

class in A--and it is homogeneous--every isomorphism between ordered subsets B and 

! 

" B  

of A can be extended to an automorphism of A, i.e. to an isomorphism of A onto itself 

(see Figure 2).17  

A

B ! B " # # # 

" # # # 

 
      Figure 2 

                                                
17  Since in the context of the theory of homogeneous universal relational structures, 
model theorists use the terms universal, homogeneous, and homogeneous universal in 
more general senses than they are employed here (cf. [Jónsson 1956; 1960; Morley and 
Vaught 1962]), in the model-theoretic settings of [Ehrlich 1987; 1989; 1989a; 1992] the 
terms absolutely universal, absolutely homogeneous and absolutely homogeneous 
universal were respectively employed in their steads. 
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 As we alluded to above, the relation between homogeneous universal ordered 

classes, universally extending ordered classes, and absolute linear continua is 

encapsulated by the following result.  

 
THEOREM 3 [Ehrlich 1988; 1989; 1992]. 

! 

A,<  is an absolute linear continuum if and 

only if 

! 

A,<  is a universally extending ordered class if and only if 

! 

A,<  is a 

homogeneous universal ordered class.18 

 
The reader will notice that insofar as an automorphism of A is an isomorphism 

from A onto itself, the homogeneity condition essentially ensures that any pair of 

structurally indistinguishable ordered subsets of A have structurally indistinguishable 

surroundings as well. Consequently, if one cannot distinguish structurally between a pair 

of ordered subsets considered in isolation, they remain indistinguishable when the 

structures of their surroundings are taken into account as well.  

                                                
18 It is interesting to note that an alternative version of Theorem 3 can be established 
using conceptions of homogeneous universality and universal extensibility that make no 
references to proper classes in their definiens. Call the latter conceptions s-homogeneous 
universal and s-universally extending, respectively. If A is an ordered class, then A is s-
homogeneous universal, if A is s-universal—there is an isomorphic copy of every ordered 
set in A--and A is s-homogeneous--whenever 

! 

f :B " # B  is isomorphism between ordered 
subsets of A and C is an ordered subset of A that extends B, f can be extended to an 
isomorphism 

! 

g :C " # C  where 

! 

" C  is an ordered subset of A that extends 

! 

" B . Similarly, A 
is s-universally extending, if for each ordered subset B of A and each ordered set 

! 

" A  
extending B, there is an isomorphism 

! 

f : " A # A that is an extension of the identity map 
on B. The proof of the equivalence of the s-notion and the corresponding class-notion 
employed in the main body of the text uses the axiom of global choice to show that an 
ordered proper class is the union of a chain (indexed over the class of all ordinals) of 
ordered sets.  
    Using the axiom of global choice in analogous fashions, completely analogous s-
formulations also can be obtained for Theorem 4, PC 2 and PC 5 contained in Sections 3, 
8 and 10, respectively.  
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It is perhaps also worth emphasizing that the homogeneity condition is extremely 

strong insofar as there is a veritable ubiquitous array of isomorphic copies of each 

ordered class in an absolute linear continuum. Indeed, the pervasiveness of such 

isomorphic copies only begins to become apparent when one considers the universality of 

absolute linear continua in conjunction with the fact that every open interval of an 

absolute linear continuum is itself an absolute linear continuum.19 Accordingly, given the 

ubiquity of isomorphic copies of each ordered set in an absolute linear continuum, its 

homogeneity ensures that it is as amorphous as possible with respect to isomorphic 

ordered subsets. A classical linear continuum, by contrast, is merely as amorphous as 

possible with respect to finite isomorphic ordered subsets!  

3. The Arithmetic and Absolute Arithmetic Continua:  

                                              The Reals and the Surreals 
 

 As we mentioned above, central to our contention that No may be naturally 

regarded as an absolute arithmetic continuum (modulo NBG), is the fact that in 

significant senses, that can be made precise, No may be said to exhibit all possible 

algebraic and set-theoretically defined order-theoretic gradations consistent with its 

structure as an ordered field. In this regard, No bears much the same relation to ordered 

fields that   

! 

!  bears to Archimedean ordered fields. In this section, we will shed further 

light on this relation making use of variants of the conceptions employed in Sections 1 

and 2 above. As we will later see, this relation foreshadows, to a great extent, the 

                                                
19  As was noted in Note 13, absolute linear continua are straightforward extensions for 
proper classes of the 

! 

"# $orderings of power 

! 

"#  introduced by Felix Hausdorff [1907; 
1914]. Among the properties of 

! 

"# $orderings established by Hausdorff is that every 
open interval 

! 

a,b( )  of an 

! 

"# $ordering A is isomorphic to A. His and subsequent such 
proofs naturally extend to 

! 

"
On
#orderings and, hence, to absolute linear continua. 
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corresponding relation that exists between our proposed model of Peirce’s continuum 

considered as an ordered algebraic system and its classical counterpart. 

 Mimicking the corresponding definitions for ordered classes, an ordered field 

(Archimedean ordered field) A is said to be homogeneous universal if there is an 

isomorphic copy of every ordered field (Archimedean ordered field) in A and every 

isomorphism between ordered subfields of A whose universes are sets can be extended to 

an automorphism of A; and an ordered field (Archimedean ordered field) A is said to be 

universally extending if for each ordered subfield B of A whose universe is a set and each 

ordered field (Archimedean ordered field) 

! 

" A  extending B, there is an isomorphism 

! 

f : " A # A that is an extension of the identity map on B.20 

 The following theorem further brings to the fore the intimate relation that exists 

between the classical and absolute arithmetic continua considered as inclusive ordered 

fields. 
  

THEOREM 4 [Ehrlich 1987; 1989a; 1992]. (I) The following sets of axioms constitute 

(categorical) axiomatizations of   

! 

"!,+,#,<,0,1$ ; (II) by deleting the Archimedean axiom 

from the following axiomatizations one obtains categorical axiomatizations of 

! 

"No,+,#,<,0,1$ . 
 

Axioms for ordered fields 

Archimedean axiom 

Axiom of Homogeneous Universality 

or, alternatively,                                                          }  (Continuity Axioms) 

Axiom of Universal Extensibility,  
 

                                                
20  The reader will notice that in the above two definitions implicit use is made of the fact 
that every subfield of an Archimedean ordered field is itself an Archimedean ordered 
field whose universe is a set.  
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where by the Axiom of Homogeneous Universality (Axiom of Universal Extensibility) 

we mean the assertion: The collection of numbers together with the corresponding 

relations defined on it constitutes a Homogeneous Universal (Universally Extending) 

model of the above stated axioms. 
 

 Intuitively speaking, Theorem 4 asserts that whereas   

! 

!  is (up to isomorphism) the 

unique ordered number field containing all possible types of numbers great and small 

modulo the Archimedean axiom, No is (up to isomorphism) the unique ordered number 

field containing all possible types of numbers great and small that are individually 

definable in terms of sets of NBG.21 We believe we are justified in referring to the 

Axioms of Universal Extensibility and of Homogeneous Universality as “continuity 

axioms” since in the context of the above axiomatizations they are equivalent to any of 

the more familiar continuity conditions including those due to Cantor, Dedekind and 

Hilbert. 

 Despite the revealing model-theoretic nature of the above comparative 

axiomatizations of the classical and absolute arithmetic continua, it is natural to inquire if 

it is possible to provide a comparative axiomatization that builds upon the classical 

intuition that, unlike discrete entities, continua are highly divisible. It is to such a 

comparative axiomatization that we now turn.  
 

By a cut of an ordered class 

! 

A,<  we mean an ordered pair 

! 

L,R( )  of subclasses 

of 

! 

A  such that every member of L precedes every member of R and 

! 

L" R = A. Unlike a 

Dedekind cut, where L and R are always nonempty, L and/or R may be empty. We will 

                                                
21  Another important way of lending precision to the idea that 

! 

"No,+,#,<,0,1$  is (up to 
isomorphism) the unique ordered number field containing all possible types of numbers 
great and small modulo NBG is to say that 

! 

"No,+,#,<,0,1$  is (up to isomorphism) the 
unique absolutely saturated model for the theory of real-closed ordered fields [Ehrlich 
1989]. The definition of an absolutely saturated model--a saturated model of power On--
makes use of the classical model-theoretic conception of a type of an element.    
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say that a cut 

! 

L,R( )  is definable in terms of sets, or is a set-cut, if L contains a cofinal 

subset and R contains a coinitial subset, where a subclass 

! 

Y  of an ordered class 

! 

X  is said 

to be cofinal (coinitial) with 

! 

X  if for each 

! 

x " X  there is a 

! 

y " Y  such that 

! 

y " x  

(

! 

y " x). Moreover, if B is an ordered class that extends A and 

! 

x " B, x will be said to fill 

the cut 

! 

L,R( )  of A, if 

! 

L < x{ } < R . 

 
DEFINITION 4.  Let T be a theory containing the theory of dense linear orderings. A model 

A of T will be said to be a maximally s-dense model of T if it is impossible to extend A to 

a model of T (containing an element) that fills a cut in A that is definable in terms of sets. 

The following theorem shows that when it comes to being maximally s-dense 

elementary arithmetic continua the only difference between the reals and the surreals is 

the satisfaction of the Archimedean axiom. 

 
THEOREM 5 [Ehrlich 1992]. (I) The following set of axioms constitutes a categorical 

axiomatization of   

! 

"!,+,#,<,0,1$ ; (II) by deleting the Archimedean axiom from the 

following axiomatization one obtains a categorical axiomatization of 

! 

"No,+,#,<,0,1$ . 

 
Axioms for real-closed ordered fields (Elementary Continuity Axioms) 

Archimedean axiom 

Axiom of maximal s-density (Continuity Axiom), 

where by the axiom of maximal s-density we mean the assertion: The collection of 

numbers together with the corresponding relations defined on it constitutes a maximally 

s-dense model of the above stated axioms. 

  

                4. The Surreal Numbers: A Prelude 
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 In addition to its inclusive structure as an ordered field, No has a rich hierarchical 

structure that emerges from the recursive clauses in terms of which it is defined. From the 

standpoint of Conway’s construction, this algebraico-tree-theoretic structure, or simplicity 

hierarchy, as we have called it [Ehrlich 1994a], depends upon No’s implicit structure as a 

lexicographically ordered binary tree and arises from the fact that the sums and products 

of any two members of the tree are the simplest possible elements of the tree consistent 

with No’s structure as an ordered field, it being understood that x is simpler than y just in 

case x is a predecessor of y in the tree. In [Ehrlich 1994a] the just-described simplicity 

hierarchy was brought to the fore and made part of an algebraico-tree-theoretic definition 

of No. Following a review of some of the prerequisite definitions from the theory of 

lexicographically ordered binary trees, we will introduce the surreal numbers via the 

latter approach, which structurally mirrors and substantially amplifies a binary tree-

theoretic process envisioned by Peirce whereby the points of a line could be marked off, 

thereby transforming them from potential to actual entities. It was in this process based 

on lexicographically ordered binary sequences of arbitrarily large finite length where 

Peirce claimed to find “symptoms of incipient cohesiveness…a premonition of 

continuity” [Peirce circa 1897, p. 87]. 

 
5. Lexicographically Ordered Binary Trees: Preliminary Definitions 

 A tree 

! 

"A,<
A
#  is a partially ordered class (see Appendix) such that for each 

! 

x "A, the class 

! 

y "A : y <A x{ } of predecessors of x, written 

! 

prA x( ), is a set well 

ordered by 

! 

<
A

. A maximal subclass of 

! 

A  well ordered by 

! 

<
A

 is called a branch of the 

tree. Given any two distinct elements x and 

! 

y  of 

! 

A , precisely one of the following is the 
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case: either x is a predecessor of 

! 

y  (i.e. 

! 

x <A y ), 

! 

y  is a predecessor of x (i.e. 

! 

y <A x ) or 

neither 

! 

x <A y  nor 

! 

y <A x . In the latter case, x is said to be incomparable with 

! 

y . Thus x 

is incomparable with 

! 

y  if and only if x and 

! 

y  lie on different branches of the tree. An 

initial subtree of 

! 

"A,<
A
# is a subclass 

! 

" A  of 

! 

A  with the order inherited from 

! 

<
A

 such that 

for each 

! 

x " # A , the set of predecessors of x in 

! 

" A  coincides with the set of predecessors 

of x in 

! 

A . The tree-rank of 

! 

x "A, written 

! 

"
A
(x) , is the ordinal corresponding to the well 

ordered set of predecessors of x; the 

! 

" th level of 

! 

A  is the set of all members of the tree 

having tree-rank 

! 

" ; and a root of 

! 

A  is a member of the zeroth level. If 

! 

x,y "A, then 

! 

y  is 

said to be an immediate successor of x if 

! 

x <A y  and 

! 

"A (y) = "A (x) +1; and if 

! 

(x" )" <#  is 

a chain in 

! 

A  (i.e., a subclass of 

! 

A  well ordered by 

! 

<
A

), then 

! 

y  is said to be an immediate 

successor of the chain if 

! 

x" <A y  for all 

! 

" < #  and 

! 

"A (y) is the least ordinal greater than 

the tree-ranks of the members of the chain. The length of a chain 

! 

(x" )" <#  in 

! 

A  is the 

ordinal 

! 

" . 

 A tree 

! 

"A,<
A
# is said to be binary if each member of 

! 

A  has at most two 

immediate successors and every chain in 

! 

A  of limit length has at most one immediate 

successor. If every member of 

! 

A  has two immediate successors and every chain in 

! 

A  of 

limit length (including the empty chain) has an immediate successor, then the binary tree 

! 

"A,<
A
# is said to be full. Since a full binary tree has a level for each ordinal, the universe 

! 

A  of a full binary tree 

! 

"A,<
A
# is a proper class. 

 Using the axiom of global choice (or simply the axiom of choice, if 

! 

A  is a set) a 

tree may be shown to be binary if and only if it is isomorphic to an initial subtree of the 

canonical full binary tree 

! 

B,<
B

, where B is the class of all sequences of -s and +s 
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indexed over some ordinal and 

! 

x <B y  signifies that x is a proper initial subsequence of 

! 

y  (cf. [Drake 1974, p. 216]).22  

 By an ordered tree 

! 

"A,<,<
A
# , we mean a tree 

! 

"A,<
A
# whose universe is totally 

ordered by 

! 

< . Thus, an ordered tree 

! 

"A,<,<
A
# has two orderings: a partial ordering 

! 

<
A  in 

virtue of which 

! 

"A,<
A
# is a tree and a total ordering 

! 

<  in virtue of which 

! 

"A,<# is an 

ordered class.  

 As is well known, 

! 

B,<
B

 can be totally ordered (lexicographically) in accordance 

with the definition: 

! 

(x" )" <µ <
lex B( ) (y" )" <#  if and only if  x$ = y$  for all $ <  some  %,  but  x% < y% ,   

! 

it being understood that  " < undefined < +. 
  

The resulting structure 

! 

"B,<
lex B( ),<B

#  is called the lexicographically ordered canonical 

full binary tree.  

 Figures 3-5 (below) exhibit levels 0-3 of 

! 

"B,<
lex B( ),<B

# , the level of the tree being 

indicated in Figure 3 on the right. In Figure 4 the members of the tree that are connected  
 
 
 

! 

" " " " " + " + " " + + + " " + " + + + " + + +

" " " + + " + +

" +

#

    

! 

3

2

1

0

 

         
       Figure 3  
 
                                                
22  Many authors, including Peirce [circa 1897, p. 87], employ sequences of 0s and 1s 
rather than -s and +s to represent binary trees. 
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to a given member by a strictly descending sequences of dots are the predecessors of the 

given member. And in Figure 5 the ordering of the positions of the projected sequences  

 

  

! 

" " " " " + " + " " + + + " " + " + + + " + + +

ON ON ON ON

" " " + + " + +

O N O N

" +

O N

O N

#

      

                                                                  
Figure 4 

 
 
on the line indicates the total ordering of the members of levels 0-3 in accordance with 

the lexicographical ordering. 

 

  

! 

" " " " " + " + " " + + + " " + " + + + " + + +

M M M M M M M M

M " " M M " + M M + " M M + + M

M M M M M M M M M M M M

M M M " M M M M M M + M M M

M M M M M M M M M M M M M M

M M M M M M M # M M M M M M M

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $

 

   ......_____________________________________________________________...... 

Figure  5 
 

 In the following section, after introducing the surreal numbers, we will explore 

the relation between the surreal number tree and 

! 

B,<
lex B( ),<B .  

 
6. The Surreal Number Tree  
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 Von Neumann defines an ordinal as a transitive set that is well ordered by the 

membership relation. As a result, for von Neumann, an ordinal emerges as the set of all 

of its predecessors in the long though rather trivial binary tree 

! 

On,"  of all ordinals. So, 

so example, 0 is identified with 

! 

" , 1 is identified with 

! 

"{ } = 0{ }, 2 is identified with 

! 

", "{ }{ } = 0,1{ } and so on. In our construction of surreal numbers, which generalizes 

von Neumann’s ordinal construction, each surreal number x emerges as an ordered pair 

! 

L
x
,R

x( ) of sets of surreal numbers that are predecessors of x. Although 

! 

L
x
 and 

! 

R
x
 are 

defined independently of the total ordering that will be imposed on the number tree, they 

ultimately coincide with the sets of all predecessors of x that are less than x and greater 

than x, respectively.        

 

! 

On,"  is not usually described as a binary tree since its familiar structure as a 

well ordered class is indistinguishable from its structure as a tree. In the theory of surreal 

numbers, however, one must distinguish between its binary tree structure, on the one 

hand, and its structure as a totally ordered class, on the other hand. 

 Inspired by von Neumann’s aforementioned definition of an ordinal, in [Ehrlich 

1994a, p. 242] we introduced an analogous explicit definition of a surreal number, and in 

[Ehrlich 1994a, Appendix III, p. 265; 2002a; Forthcoming 1] we introduced an inductive 

version thereof. These constructions have the virtue that they permit the development of 

the theory of ordinals within the theory of surreal numbers [Forthcoming 1]. Here, 

however, for the sake of space, we presuppose that the ordinals are already at hand and 

introduce the surreal numbers inductively using the contents of a theorem that emerges 

from the former approaches [Ehrlich Forthcoming 1; 1994a: Theorem 1.1].  
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DEFINITION 5. 

! 

","( ) is a surreal number; if 

! 

x = L
x
,R

x( ) is a surreal number, then 

! 

L
x
, x{ }" R

x( ) and 

! 

L
x
" x{ },R

x( ) are surreal numbers; moreover, if 

! 

x"{ }
" <#

 is a sequence 

of surreal numbers of infinite limit length 

! 

"  for which 

! 

xµ " L
x#
$ R

x#
 whenever 

! 

µ < " < # , then 
  

! 

L
x"" <#U , R

x"" <#U( ) is a surreal number. Nothing is a surreal number 

except in virtue of the above. By No we mean the class of surreal numbers so defined.  

 
 Intuitively speaking, a surreal number x is simpler than a surreal number y, if y 

cannot be constructed until x has already been constructed. This intuition is mirrored set-

theoretically by  

 
DEFINITION 6: A surreal number x is said to be simpler than a surreal number 

! 

y = Ly,Ry( ), written 

! 

x < s y , if 

! 

x "Ly  or 

! 

x "Ry .  

 
 At this point it is not difficult to show that 

! 

No,<
s

 is a full binary tree. In fact, the 

reader will note that 

! 

L
x
, x{ }" R

x( ) and 

! 

L
x
" x{ },R

x( ) are the immediate successors in 

! 

No,<
s

 of the surreal number x, and that 
  

! 

L
x"" <#U , R

x"" <#U( ) is the immediate 

successor in 

! 

No,<
s

 of the chain 

! 

x"  of surreal numbers indexed over the infinite limit 

ordinal 

! 

" . In fact, as it turns out, 

! 

L
x
, x{ }" R

x( ) is the immediate successor of 

! 

x  less than 

! 

x , 

! 

L
x
" x{ },R

x( ) is the immediate successor of 

! 

x  greater than 

! 

x , and 

  

! 

L
x"" <#U , R

x"" <#U( ) is always greater than the members of 
  

! 

L
x"" <#U  and less than the 

members of 
  

! 

R
x"" <#U . To lend precision to these ideas and to ideas regarding 

! 

No  

considered as a totally ordered class more generally, however, we require  
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DEFINITION 7 (The Rule of Order). For all surreal numbers 

! 

x = L
x
,R

x( ) and 

! 

y = Ly,Ry( ), 

! 

x < y  if and only if 

! 

x "Ly  or 

! 

y " Rx
 or 

! 

Rx " Ly # $. 

 The reader will note that the three cases that comprise the rule of order correspond 

to the three mutually exclusive and collectively exhaustive relations that two surreal 

numbers 

! 

x  and 

! 

y  may bear to one another when 

! 

x  is less than 

! 

y ; namely, 

! 

x  is simpler 

than 

! 

y , 

! 

y  is simpler than 

! 

x , and 

! 

x  is incomparable with 

! 

y , respectively. Using this in 

conjunction with Definitions 6 and 7, one may prove 

COROLLARY 1 [Ehrlich 1994a]. For each surreal number x,  
 

! 

x = L
s x( ),Rs x( )( )   
 

where 

! 

L
s x( ) = {a"No : a <

s
x and a < x } and 

! 

R
s x( ) = {a"No : a <

s
x and x < a } .  

 
 
 For each surreal number x there is a unique enumeration 

! 

x"( )
" <#

No
(x )

 of the 

predecessors of x well ordered by the simpler than relation. Henceforth, we refer to this 

enumeration as the genealogy of x. By the sign-expansion of x we mean the sequence 

! 

g" x( )( )
" <#No (x )

 defined by the condition: for all 

! 

" < #
No
x( ) 

   

! 

g" x( ) =
+, if x" # L

s x( )

$, if x" # R
s x( )

% 
& 
' 

( ' 
 

where 

! 

x"  is the predecessor of x having tree-rank 

! 

" .23 

                                                
23  Our definition and treatment of sign-expansions differs considerably from Conway’s 
[1976, pp. 29-30]. In Conway’s treatment, sign-expansions are defined using the ordered 
additive structure of No.   
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 It is not difficult to show that every surreal number has a sign-expansion, distinct 

surreal numbers have distinct sign-expansions, and every sequence of elements of 

! 

+,"{ }  

indexed over an ordinal is the sign-expansion of some surreal number [Ehrlich 1994a: 

Theorem 1.4]. Moreover, and more importantly, however, we have 

THEOREM 5. [Ehrlich 1994a]. 

! 

No,<,<
s

 and 

! 

B,<
lex B( ),<B

 are isomorphic as ordered 

trees, the map that sends each surreal number to its sign-expansion being the unique such 

isomorphism. 
 
 
 In virtue of Theorem 5, the theory of surreal numbers can be based just as well on 

! 

B,<
lex B( ),<B  as on 

! 

No,<,<
s , and in [Ehrlich 2001] and [Gonshor 1986] it is developed 

in just that way. Readers inspired by Peirce’s writings on continua might lean towards the 

treatment based on 

! 

B,<
lex B( ),<B

 since, as we noted earlier, it was essentially in the finite 

levels of 

! 

B,<
lex B( ),<B

 where Peirce claimed to find “a premonition of continuity”. 

Accordingly, those so inspired are free to equate 

! 

No,<,<
s  with 

! 

B,<
lex B( ),<B

 for the 

remainder of the discussion.24, 25 

                                                
24  In his discussion of the use made of binary sequences (indexed over ordinals) in 
Peirce’s treatment of infinitesimals, Timothy Herron remarks: “It is not clear, however, 
that one can embed a theory of infinitesimals inside ordinally-indexed binary expansions 
if one wants to keep all of the usual theorems of the real line true for infinitesimal and 
infinite real numbers as well. At the very least, one would have to devise a clever set of 
restrictions specifying which ordinally-indexed binary expansions are valid and which are 
not valid as numbers” [1997, p. 615]. However, as our previous remarks make clear, 
Herron is mistaken.  
25  Still another approach to the development of the theory of surreal numbers is to base it 
on the generalization of the Dedekind cut due to Cuesta Dutari [1954]--what we have 
referred to as a “cut” in the main body of the text (see Section 3). This approach, which 
uses Cuesta Dutari’s method of successively filling or adjoining cuts (see Note 32), was 
introduced by the author in 1982 (in a paper that appeared as [Ehrlich 1988]) and was 
later incorporated into [Alling and Ehrlich 1986; 1987]. For additional remarks on this 
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7. The Ordered Field of Surreal Numbers 

 Central to the algebraico-tree-theoretic development of the theory of surreal 

numbers is the following simple consequence of No’s structure as an ordered tree: if 

! 

L  

and 

! 

R are two subsets of 

! 

No  for which 

! 

L < R, there is a simplest member of 

! 

No  lying 

between the members of 

! 

L  and the members of 

! 

R [Ehrlich 2001, p. 1235]. Co-opting 

notation introduced by Conway, the simplest member of 

! 

No  lying between the members 

of 

! 

L  and the members of 

! 

R is denoted by the expression 

! 

L |R{ }. 

 It is not difficult to show that each surreal number 

! 

x  is the simplest member of 

No lying between its predecessors on the left and its predecessors on the right, i.e. 

! 

x = L
s x( ) |Rs x( ){ }. 

 Using this representation, the algebraico-tree-theoretic formulation of the central 

theorem in the theory of surreal numbers may be stated as follows. 

 
THEOREM 6 [Conway 1976; Ehrlich 2001]. 

! 

No,+,",<,<
s

 is an ordered field when 

! 

+,"  

and . are defined by recursion as follows where 

! 

x
L , 

! 

x
R , 

! 

y
L  and 

! 

y
R  are understood to 

range over the members of 

! 

L
s x( ),Rs x( ),Ls y( )  and 

! 

R
s y( ) , respectively.  

DEFINITION of 

! 

x + y  
 

! 

x + y = x
L + y,x + y

L
| x

R + y,x + y
R{ }. 

 
DEFINITION of 

! 

" x  

                                                                                                                                            
approach including the definition that transforms the structure into a lexicographically 
ordered binary tree, see [Ehrlich 1994a, p. 257]. 
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! 

"x = "x
R
|"x

L{ }. 

 
DEFINITION of 

! 

xy   
 

! 

xy = x
L
y + xy

L
" x

L
y
L
,x

R
y + xy

R
" x

R
y
R
| x

L
y + xy

R
" x

L
y
R
,x

R
y + xy

L
" x

R
y
L{ } .
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 Although the algebraico-tree-theoretic definitions of sums, products and additive 

inverses of surreal numbers are apt to appear rather cryptic to readers unfamiliar with the 

theory of surreal numbers, they have simple interpretations. To begin with, in virtue of 

the nature of the representations of 

! 

x  and 

! 

y , we have  

! 

x
L

< x < x
R  and 

! 

y
L

< y < y
R  

for all 

! 

x
L , 

! 

x
R , 

! 

y
L  and 

! 

y
R . By combining this with the routine (high school) algebra of 

ordered fields, one may readily show that in an ordered field 

! 

x + y  must lie between the 

sums on the left of 

! 

x + y  and the sums on the right of 

! 

x + y  in the above definition of 

! 

x + y  and, similarly, 

! 

xy  must lie between the arithmetical expressions on the left of 

! 

xy  

and the arithmetical expressions on the right of 

! 

xy  in the above definition of 

! 

xy  [Ehrlich, 

1994a, pp. 252-253; 2001, p. 1236; Forthcoming 1]. Accordingly, since 

! 

x + y  and 

! 

xy  

must lie between the arithmetic expressions on the left and the arithmetic expressions on 

the right in their respective recursive definitions, their definitions respectively require that 

they be the simplest member of the surreal number tree so situated. Finally, the constraint 

on additive inverses, which is a consequense of the definition of addition [Ehrlich 2001, 

                                                
26   Following convention, to enhance the readability of the definitions of 

! 

+,"  and ., the 
set-theoretic brackets that enclose the sets of “right-sided members” and the sets of “left-
sided members” have been omitted. 
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p. 1237], ensures that the portion of the surreal number tree less than 0 is an exact mirror 

image of the portion of the surreal number tree greater than 0, 0 being the simplest 

element of, as well as the unique root in, the surreal number tree. 

 Recursively defining the sums and products of members of No to be the simplest 

possible elements of No consistent with No’s intended structure as an ordered field 

ensures that the sums and products of elements of No get defined just as soon as there is 

sufficient previously defined ordered algebraico-tree theoretic information to do so. 

Moreover, as was shown in [Ehrlich 2001], this has profound implications for the 

structure of No that goes well beyond its already impressive structure as an ordered field. 

For example, it was established that much as the surreal numbers emerge from the empty 

set of surreal numbers by means of a transfinite recursion that provides an unfolding of 

the entire spectrum of numbers great and small (modulo the aforementioned provisos), 

the recursive process of defining No’s arithmetic in turn provides an unfolding of the 

entire spectrum of ordered number fields in such a way that an isomorphic copy of each 

such system either emerges as an initial subtree of No or is contained in a theoretically 

distinguished instance of such a system that is. In particular, we showed that every real-

closed ordered field is isomorphic to an initial subfield of No [Ehrlich 2001: Theorem 19, 

p. 1253]. In fact, outside of No’s ordered field of real algebraic numbers (which has no 

proper real-closed subfield), every real-closed ordered field, including No itself, is the 

union of a chain of increasingly more inclusive real-closed ordered number fields each of 

which is a proper initial subfield of No whose universe is a set, and every real-closed 

initial subfield of No, whose universe is a set, is a component of just such a chain.  
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 Although No contains an entire proper class of isomorphic copies of the ordered 

field of real numbers, only one of them is an initial subtree of No. In writings on the 

theory of surreal numbers, the latter subfield is identified as No’s subfield of real 

numbers, the set of whose members may be defined as follows  

 
DEFINITION 8. Let   

! 

! be the set of all surreal numbers having finite tree-rank and further 

let 
  

! 

! ="" L |R{ } : L,R( ) is a Dedekind gap in"{ }.27  

 Except for inessential changes, the following result regarding the structure of   

! 

!  is 

due to Conway [1976, pp. 23-25]. 
 
 
THEOREM 7.   

! 

!  (with 

! 

+,",# and 

! 

<  defined à la No) is isomorphic to the ordered field of 

real numbers defined in any of the more familiar ways,   

! 

! being No’s ring of dyadic 

rationals (i.e., rationals of the form 

! 

m /2
n  where 

! 

m  and 

! 

n  are integers); 

! 

n = 0,...,n "1 |#{ }  for each positive integer 

! 

n , 

! 

"n = # |" n "1( ),...,0{ }  for each positive 

integer 

! 

n , 

! 

0 = " |"{ }, and the remainder of the dyadics are the arithmetic means of their 

left and right predecessors of greatest tree-rank; e.g.,

! 

1
2 = 0 |1{ }. 

 In virtue of Theorem 7, the first few levels of the surreal number tree may be 

depicted as follows where, as in Figure 4, the strictly descending sequences of dots 

connect a member of the tree to its predecessors.  

 

                                                
27  A Dedekind cut 

! 

L,R( )  of an ordered class A is said to be a Dedekind gap, or simply a 
gap, if L has no greatest member and R has no least member. 
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                                                                      Figure 6 

 
 A striking feature of the system of surreal numbers is that each surreal number 

can be assigned a canonical proper name that is a reflection of its characteristic individual 

properties [Conway 1976; Ehrlich 2001, pp. 1244-1248; Forthcoming 1: Section 11]. To 

provide a sketch of how these Conway names, as we call them, are introduced we require 

a number of definitions beginning with the following classical ones applied to No. 

 Two elements 

! 

a  and 

! 

b of No are said to be Archimedean equivalent, written 

! 

a " b , if there are positive integers 

! 

m  and 

! 

n  such that 

! 

m a > b  and 

! 

n b > a ; if 

! 

a / " b  and 

! 

a < b , then we write 

! 

a << b  and 

! 

a  is said to be infinitesimal (in absolute value) 

relative to 

! 

b and 

! 

b is said to be infinite (in absolute value) relative to 

! 

a ; the class of all 

members of No that are Archimedean equivalent to some member of No is said to 

constitute an Archimedean class of No. 0, which is infinitesimal (in absolute value) 

relative to every other surreal number, is the sole surreal number that is not a member of 

an Archimedean class.  

 Following Conway, an element of No is said to be a leader if it is the simplest 

member of the positive elements of an Archimedean class of No. Every Archimedean 

class of No has a leader. One of the salient features of the class of No’s leaders is given 

by 
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THEOREM 8 [Ehrlich 2001]. The ordered subtree of No consisting of the leaders of No is 

a lexicographically ordered full binary tree and, as such, there is a unique isomorphism of 

ordered trees from the leaders of No onto No. 

 
 Relying on the just-said theorem, one can recursively define [Conway 1976, p. 

31; Ehrlich 2001, p. 1246: Definition 12] a unique appellation of the form 

! 

" y  for each 

leader in No in such a manner that 

! 

" y
<s "

x  if and only if 

! 

y <s x  for all 

! 

x,y " No . In 

effect, the definition assigns the appellation “

! 

" 0” to 1, which is the simplest leader in No, 

the appellation “

! 

"#1” to the simplest leader in No less than 

! 

" 0 , the appellation “

! 

"1” to 

the simplest leader in No greater than 

! 

" 0 , and so on (see Figure 6). Having done so, one 

may show that if 

! 

x " No # 0{ }, there is a unique   

! 

r "! # 0{ }, a unique leader 

! 

" y , and a 

unique 

! 

a" No such that 

! 

x = r" y
+ a  where 

! 

a  is infinitesimal (in absolute value) relative 

to 

! 

" y . Moreover and more importantly, by combining repeated uses of this observation 

with properties of No’s structure as an ordered tree, one may prove  

 
THEOREM 9 [Conway 1976; Ehrlich 2001]. For each surreal number 

! 

x  we can define a 

unique expression 

! 

" y#

#<$

% .r#

 

(the Conway name or normal form of 

! 

x) where 

! 

y" :" < # $ On{ } is a (possibly empty) 

descending sequence of members of 

! 

No  and 

! 

r" :" < #{ } is a sequence of members of 

  

! 

! " 0{ }. Distinct surreal numbers have distinct Conway names, and every expression of 

the above form is the Conway name of some surreal number (the Conway name of 0 

being the empty series, i.e. the unique such expession where 

! 

" = 0).  
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 Conway names provide representations of surreal numbers that are both 

perspicuous and perspicacious. 

! 

" #$  is indeed the surreal number obtained by 

subtracting 

! 

"  from 

! 

" , 

! 

"
2

 is 

! 

"  divided by 2, 

! 

1

"
 is the multiplicative inverse of 

! 

"  as well 

as the cube root of

! 

1

" 3
, 

! 

""
+".3+ 4  and 

! 

2  are the ordinal and real number respectively 

so named, and so on (where, in accordance with standard practice, 

! 

"  is written in place 

of 

! 

" 0
.# , 

! 

"
2

 is written in place of 

! 

"1
.
1

2
, 

! 

1

"
 is written in place of 

! 

"#1, and so on).  

 Making use of Conway names of surreal numbers, Figure 7 provides a slightly 

more expanded picture of the early stages of the recursive unfolding of the surreal 

number tree than that given in Figure 6 above.  

 

 
   Figure 7 

 Besides providing perspicuous and perspicacious representations of surreal 

numbers, Conway names make surreal numbers more tractable from an algebraic point of 

view. Indeed, when surreal numbers are denoted by their respective Conway names, the 

basic field operations can be performed on them much like the familiar operations on 
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polynomials, as can the familiar ordering of elements by first-differences. In particular, 

one may prove the following result where the operations 

! 

+
H

 and 

! 

"
H

 are defined on, and 

the relation 

! 

<
H

 is defined between, surreal numbers denoted by their respective Conway 

names (supplemented with “dummy” terms with zeros for coefficients to permit a 

uniform representation of all surreal numbers).   

 
THEOREM 10 [Conway 1976; Ehrlich 2001]. 

! 

"No,+
H
,#
H

<
H
,<

S
$ = "No,+,#,<,<

S
$  when 

! 

+
H

, 

! 

"
H

 and 

! 

<
H

 are defined by the following conditions where terms with zeros for 

coefficients are understood to be inserted and deleted as needed: 

 
    

! 

" y
.ay

y#No

$ +H " y
.by

y#No

$ = " y
.(ay + by

y#No

$ ), 

 

 

! 

" y
.ay

y#No

$ %H " y
.by

y#No

$ = " y
. aµb&
(µ,& )#No'No

µ + H & = y

$
( 

) 

* 
* 
* 

+ 

, 

- 
- 
- y#No

$ , 

 

! 

" y
.ay

y#No

$ <H " y
.by

y#No

$  , if 

! 

ay = by  for all   

! 

y > some  x " No and 

! 

a
x

< b
x
. 

 
 
 As we mentioned in the Introduction, by 

! 

No
P

 we mean the ordered subclass of No 

consisting of all finite and infinitesimal members of No. It is not difficult to see that 

! 

No
P
" 0{ } consists of all the members of No whose Conway names solely have exponents 

that are less than or equal to 0, those having only negative exponents being the non-zero 

infinitesimals of No.28 It is to an analysis of 

! 

No
P

 and Peircean linear continua, more 

generally, to which we now turn. 

                                                
28  On occasion, it might be advantageous to have a definition of 

! 

No
P

 at hand that makes 
no reference to No.  One way of doing this is to define the members of 

! 

No
P

 inductively 
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Part II: Peircean Continua  

 

8. Peircean Linear Continua: A Proposed Model  
 

 As the reader will recall, an ordered class is an absolute linear continuum if and 

only if it is both absolutely dense and absolutely extensive. Moreover, being absolutely 

extensive, an absolute linear continuum contains neither a cofinal nor a coinitial subset, 

where a subclass 

! 

Y  of an ordered class 

! 

X  is said to be cofinal (coinitial) with 

! 

X  if for 

each 

! 

x " X  there is a 

! 

y " Y  such that 

! 

y " x  (

! 

y " x). 

By contrast, we will say that a totally ordered class 

! 

A,<  is a Peircean linear 

continuum if it is absolutely dense and it contains an isomorphic copy of the ordered set 

of real numbers that is both cofinal and coinitial with 

! 

A,< .29 Accordingly, an ordered 

                                                                                                                                            
as follows: 

! 

","( ) is a p-surreal number; if 

! 

x = L
x
,R

x( ) is a p-surreal number, then 

! 

L
x
, x{ }" R

x( ) and 

! 

L
x
" x{ },R

x( ) are p-surreal numbers; moreover, if 

! 

x"{ }
" <#

 is a 
sequence of p-surreal numbers of infinite limit length 

! 

"  for which 

! 

xµ " L
x#
$ R

x#
 

whenever 

! 

µ < " < # , and 

! 

L
x"

=# for at most finitely many 

! 

"  and 

! 

R
x"

=# for at most 

finitely many 

! 

" , then 
  

! 

L
x"" <#U , R

x"" <#U( ) is a p-surreal number. 

! 

No
P

 is the class of all 
p-surreal numbers so defined. 
    Alternatively, if one wants to base 

! 

No
P

 on sequences of +s and –s (in harmony with 
the alternative approach to No mentioned at the end of Section 6), one can define 

! 

No
P

 as 
the class of all sequence of +s and –s (indexed over an ordinal) that neither begin with an 
infinite sequence of +s nor an infinite sequence of –s.  
 
 
 
 
 
 
29 Equivalently, one could define a totally ordered class 

! 

A,<  to be a Peircean linear 
continuum if it is absolutely dense and it contains an isomorphic copy of the ordered set 
of integers that is both cofinal and coinitial with 

! 

A,< . Plainly, the latter definition is 
implied by the definition in the main body of the text. Conversely, by two applications of 
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class 

! 

A,<  is a Peircean linear continuum if and only if it is absolutely dense and it 

contains an isomorphic copy of the ordered set of real numbers, say,   

! 

A!, such that every 

member of A lies between two members of   

! 

A!. 

Insofar as Peirce appears to have envisioned his purported linear continuum to be 

an extension of a Cantor-Dedekind linear continuum, the former of whose “nonstandard” 

points lie between pairs of members of the Cantor-Dedekind linear continuum in 

question, a Peircean linear continuum, as defined above, is compatible with this aspect of 

Peirce’s vision. 

Let 

! 

No
P
,<  be the class 

! 

No
P

 of finite and infinitesimal elements of No together 

with the order it inherits from 

! 

No,< . The relation between 

! 

No
P
,<  and Peircean linear 

continua is given by 

PC 1. 

! 

No
P
,<  is (up to isomorphism) the unique Peircean linear continuum. 

 
Proof. Plainly, since 

! 

No,<  is an absolute linear continuum, 

! 

No
P
,<  is a Peircean linear 

continuum. Accordingly, to complete the proof it suffices to show that in NBG any two 

Peircean linear continua are isomorphic. For this purpose, let 

! 

A,<
A

 and 

! 

B,<
B

 be 

Peircean linear continua, 

! 

A
0
 be an isomorphic copy of the ordered set of real numbers 

that is a cofinal and coinitial subset of 

! 

A,<
A

, 

! 

B
0
 be an isomorphic copy of the ordered 

                                                                                                                                            
absolute density one may show that the definition in the main body of the text is implied 
by the just-stated condition. Indeed, let   

! 

A!  be an isomorphic copy of the ordered set of 
integers that is both cofinal and coinitial with A. In virtue of the absolute density of A, 
there is an isomorphic copy of the ordered set of rationals, say   

! 

A! , such that 
  

! 

A! " A" " A; moreover, by a second application of the absolute density of A, there is an 
isomorphic copy of the ordered set of reals, say   

! 

A!, such that   

! 

A! " A" " A# " A  where 
the members of   

! 

A! " A"  are arbitrarily selected members of A that fill the various 
Dedekind gaps in   

! 

A! , each such gap being filled by precisely one member of   

! 

A! " A" . 
Finally, since   

! 

A!  is both cofinal and coinitial with A, so are   

! 

A!  and   

! 

A!.  
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set of real numbers that is a cofinal and coinitial subset of 

! 

B,<
B

, and 

! 

a  and 

! 

b  be well 

orderings of 

! 

A " A
0
 and 

! 

B " B
0
, respectively. The existence of 

! 

a  and 

! 

b  are guaranteed 

by the axiom of global choice. We obtain the desired surjection 

! 

F : A" B by defining a 

chain 

! 

f" " <On( ) of isomorphisms where 
  

! 

F = f""<OnU  as follows.  If 

! 

" = 0 , we let 

! 

f
0
 

be an order preserving isomorphism from 

! 

A
0
 onto 

! 

B
0
; if 

! 

" = 2# +1, we take the first 

unused element of 

! 

a , call it 

! 

a
2" +1, and let 

! 

f
2" +1 : A2" +1 = A

2" # a
2" +1{ }$ B  be the unique 

order injection extending 

! 

f
2"  that sends 

! 

a
2" +1 to the first unused element of 

! 

b  that fills 

the corresponding cut in 

! 

B
2" = f

2" A
2"( ) that 

! 

a
2" +1 fills in 

! 

A
2" ;30 if 

! 

" = 2# + 2, we take 

the first unused element of 

! 

b , call it 

! 

b
2" +2 , and let 

! 

f
2" +2 = g

2" +2

#1  where 

! 

g
2" +2 :B2" +2 = f

2" +1 A2" +1( )# b
2" +2{ }( )$ A  is the unique order injection extending 

! 

f
2" +1

#1  

that sends 

! 

b
2" +2  to the first unused element of 

! 

a , call it 

! 

a
2" +2, that fills the corresponding 

cut in 

! 

A
2" +1 that 

! 

b
2" +2  fills in 

! 

B
2" +1 = f

2" +1 A2" +1( ); and if 

! 

"  is an infinite limit ordinal, we 

let 
  

! 

f" = f##<"U . The existence of 

! 

f
0
 is evident and the existence of the 

! 

f" +1
s for all 

! 

"  is 

a simple consequence of the absolute density of Peircean linear continua.  

 
 As the epigraph dated 1898 that dons the title page of our text indicates, Peirce 

held that a continuum “is all that is possible, in whatever dimension it be continuous” or, 

to put this another way, it exhibits all possible gradations “in whatever dimension it be 

continuous”. Interestingly, however, while Peirce may have encountered Veronese’s 
                                                
30  If A is an ordered class, B is an ordered subclass of A and 

! 

a" A # B , then there is a 
unique cut 

! 

X,Y( ) of B such that 

! 

X < a{ } <Y . In this case, as was noted in Section 3, a is 
said to fill the cut 

! 

X,Y( ). Moreover, if 

! 

f :B"C  is an order-preserving isomorphism 
from B onto C, then 

! 

f X( ), f Y( )( )  is said to be the cut in C (modulo 

! 

f ) that corresponds 
to 

! 

X,Y( ) in B. 
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work on non-Archimedean geometry prior to writing the above words,31 he does not 

appear to have considered lines in his theory of continua having the property that given 

an arbitrary unit of measure there are segments of the line that are infinitely large and 

others that are infinitely small, relative to the unit of measure, i.e., the kind of lines 

investigated by Veronese [1891; 1894] and the other pioneering non-Archimedean 

geometers of Peirce’s day. Rather, he envisions his linear continuum as supplementing 

the points that lie “at a finite distance from one another” on the Cantor-Dedekind linear 

continuum with “points [that] can be at infinitesimal distances” [Peirce 1900, p. 363]. 

Indeed, as we noted earlier, Peirce appears to presuppose that an isomorphic copy of the 

Cantor-Dedekind linear continuum is both cofinal and coinitial with the linear continuum 

he has in mind. Accordingly, when Peirce tells us that a continuum “is all that is possible, 

in whatever dimension it be continuous” his words must be understood with this very real 

proviso in mind.  

The concept of absolute density provides one important sense in which Peircean 

Linear Continua are exceptionally rich in order-theoretic possibilities that are definable in 

terms of sets of NBG. Our next result sheds further light on their richness in this regard 

                                                
31  In an incomplete letter to William E. Story dated March 22, 1896, Peirce says of his 
then unpublished work New Elements of Mathematics: “It is something like Veronese’s 
Geometry, but is (I think) far deeper logically, and certainly far simpler. Nor do I directly 
go in to non-Euclidean geometry” [Peirce March 22, 1896, p. v]. Since Veronese only 
published three books on geometry prior to the date of Peirce’s letter, his Fondamenti di 
Geometria [1891], a treatise in which he develops non-Euclidean geometry and non-
Archimedean geometry, the German translation thereof [1894], and his Elementi di 
Geometria [1895], a textbook devoted to Euclidean geometry, presumably Peirce is 
referring to Veronese’s Fondamenti or its German translation. Assuming this to be the 
case, by 1896 Peirce may have been familiar with some aspects of Veronese’s 
contributions to non-Archimedean geometry.  
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by establishing the equivalence between absolute density and two revealing alternative 

conceptions.  

Let 

! 

A,<  be an ordered class. A subclass X of A will be said to bounded if there 

are 

! 

a,b"A  such that 

! 

a{ } < X < b{ }. Moreover, if whenever X is a bounded subset of A 

and B is an ordered class that extends X, there is an isomorphism from B into A that is an 

extension of the identity map on X, then 

! 

A,<  will be said to be universally extending 

with respect to bounded subsets. Furthermore, 

! 

A,<  will be said to be homogeneous 

universal with respect to bounded subsets, if it is universal with respect to bounded 

subsets--every ordered class is isomorphic to a bounded subset of 

! 

A,< --and it is 

homogeneous with respect to bounded subsets--every isomorphism between bounded 

subsets of 

! 

A,<  can be extended to an automorphism of 

! 

A,< .  

The reader will notice that insofar as every absolute linear continuum is 

absolutely extensive, every subclass X of an absolute linear continuum is bounded. This, 

of course, is not true of Peircean linear continua.  It is for this reason that for their 

characterization we have to employ the “bounded” variants of the definitions of 

universally extending ordered classes and homogeneous universal ordered classes 

employed in Section 2 in our characterizations of absolute linear continua. 

The following two simple lemmas are emplyed in the proof of the aforementioned 

equivalence theorem. The second lemma is a consequence of the first and the fact that 

every open interval 

! 

a,b( )  of an absolute linear continuum is itself an absolute linear 

continuum [see Note 19]; and the first follows from the fact that 

! 

No
P
,< , which is (up to 

isomorphism) the unique Peircean linear continuum, is a convex subclass of 

! 

No,< , 



 40 

where a subclass I of an ordered class 

! 

A,<  is said to be convex (or a segment) if every 

member of 

! 

A  that lies between two members of I is likewise a member of I.  

 
LEMMA A. A Peircean Linear Continuum is a convex subclass of an absolute linear 

continuum.  

LEMMA B. Every open interval 

! 

a,b( )  of a Peircean linear continuum is an absolute linear 

continuum. 

 
PC 2. The following are equivalent for a nontrivial ordered class 

! 

A,< : 

i.   

! 

A,<  is absolutely dense; 
 
ii. 

! 

A,<  is universally extending with respect to bounded subsets; 
  
iii. 

! 

A,<  homogeneous universal with respect to bounded subsets. 
 
  
Proof. Suppose 

! 

A,<  is absolutely dense. Further suppose X is a subset of A for which 

there are 

! 

a,b"A  such that 

! 

a{ } < X < b{ }, and let B be an ordered class that extends X. 

By Lemma B, the open interval 

! 

a,b( )  of 

! 

A,<  is an absolute linear continuum, and so, 

by Theorem 3, 

! 

a,b( )  is a universally extending ordered class, from whence it follows that 

! 

A,<  is universally extending with respect to bounded subsets. Now suppose 

! 

A,<  is 

universally extending with respect to bounded subsets. Since 

! 

A,<  is nontrivial, there 

are 

! 

a,b"A  for which 

! 

a < b. Furthermore, insofar as 

! 

a{ } <" < b{ }, the empty subset 

! 

" 

of A is bounded by 

! 

a  and 

! 

b. Accordingly, since every nonempty ordered class is 

isomorphic to an extension of the empty ordered set, every ordered class is isomorphic to 

a bounded subset of 

! 

A,<  that extends 

! 

". Now suppose 

! 

B and 

! 

" B  are bounded subsets 

of A and 

! 

f
0
 is an isomorphism from 

! 

B onto 

! 

" B . Since 

! 

B and 

! 

" B  are bounded subsets of 
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A, there are 

! 

a,b"A  such that 

! 

a{ } < B" # B < b{ } . Let 

! 

B  be a well ordering of 

! 

a,b( ) " B  

and 

! 

" B  be a well ordering of 

! 

a,b( ) " # B . To show that 

! 

f
0
 can be extended to an 

automorphism of A it suffices to show that 

! 

f
0
 can be extended to an automorphism F of 

! 

a,b( )  since such an automorphism can always be extended to an automorphism 

! 

f  of A 

by setting 

! 

f x( ) = F x( ) for 

! 

x " a,b( )  and 

! 

f x( ) = x , otherwise. The proof of the existence 

of F, the details of which are left to the reader, is essentially the same as the back and 

forth argument used above to prove that any two Peircean linear continua are isomorphic 

except that one now appeals to universal extensibility with respect to bounded subsets 

rather than to absolute density to establish the existence of the requisite members of 

! 

B  

and 

! 

" B  needed to fill the corresponding cuts in the increasingly richer subsets of 

! 

a,b( )  

that are constructed in the course of the proof. Finally, suppose 

! 

A,<  homogeneous 

universal with respect to bounded subsets, and X and Y are bounded subsets of A for 

which 

! 

X <Y . Since X and Y are bounded, there are 

! 

a,b"A  such that 

! 

a{ } < X"Y < b{ }. 

Let Z be an ordered set having universe 

! 

X" z{ }"Y  where 

! 

X < z{ } <Y . Using the 

technique of successively filling or adjoining cuts,32 one can show that such an ordered 

set exists. Moreover, since every ordered class is isomorphic to a bounded subset of 

! 

A,< , there is a bounded isomorphic copy of Z in 

! 

A,<  whose universe is given by 

! 

" X # " z { }# " Y  where 

! 

" X < " z { } < " Y  and for which there is an order preserving 

isomorphism 

! 

g : " X # " Y $ X #Y . But since 

! 

" X # " Y  and 

! 

X"Y  are bounded, it follows 

                                                
32  The technique of successively filling or adjoining cuts was introduced by Norberto 
Cuesta Dutari [1954; 1958-59] and rediscovered by Egbert Harzheim [1964]. For a good 
discussion of the method, see [Harzheim 2005, pp. 110-114].  
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from the hypothesis that g can be extended to an automorphism 

! 

" g  of 

! 

A,< . But then 

! 

X < " g " z ( ){ } < Y , which establishes the absolute density of 

! 

A,< .  

 
9. Peircean Linear Continua and Peirce’s Continuity Condition 

 
 As we have already noted, Peirce held that a continuum “is all that is possible, in 

whatever dimension it be continuous.” Moreover, as the second quotation from the title 

page of our text indicates, according to Peirce: “the possibility of determining more than 

any given multitude of points…at every part of the line, makes it continuous.” Peirce 

appears to take the notion of a “part of a line” to be sufficiently well understood, which 

seems to suggest that, following philosophical tradition, he takes the parts of a line to be 

its rays and its segments determined by pairs of distinct points. Accordingly, insofar as a 

ray contains a proper class of points if each of its nontrivial segments does, we will say 

that an ordered class satisfies Peirce’s continuity condition if every nontrivial closed 

interval of the ordered class contains a proper class of elements.33  

 Every Peircean linear continuum in our sense satisfies Peirce’s continuity 

condition. On the other hand, there is vast array of ordered classes that satisfy Peirce’s 

continuity condition that are neither Peircean linear continua in our sense nor even 

convex subclasses of absolute linear continua more generally. Indeed, despite what Peirce 

apparently believed, his continuity condition is far too weak to ensure the presence of all 

possible gradations that are individually definable in terms of sets (even when one factors 

in the aforementioned Peircean constraint regarding the cofinal and coinitial containment 

of the classical continuum). This point could be illustrated by simply pointing to the 
                                                
33  This formulation of Peirce’s continuity condition appears to be in harmony with the 
related remarks of Myrvold [1995, p. 535] and Herron [1997, pp. 608-609]. 
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existence of ordered classes that satisfy Peirce’s continuity condition that are not 

absolutely dense. However, we believe it would be more revealing to first decompose 

absolute density into two independent conditions and provide illustrations that show that 

Peirce’s continuity condition implies neither.   

For this purpose we require the following generalizations for ordered classes of 

classical concepts for ordered sets due to Hausdorff [1906; 1914, Chapter VI; also see 

Harzheim 2005, pp. 77-79]. An ordered class A will be said to have cofinal character α 

(coinitial character 

! 

"*) if 

! 

"  is the least ordinal ≤ On such that there is a cofinal 

(coinitial) subclass of A that is isomorphic with 

! 

"  (

! 

"* , where 

! 

"*  is the inverse of 

! 

" ).34 

Moreover, a gap 

! 

X,Y( ) in A (see Note 27) will be said to have character 

! 

",#*( ) if 

! 

"  is 

the cofinal character of X and 

! 

"* is the coinitial character of Y; and, in harmony with the 

terminology introduced in Section 3, the gap of will be said to be definable in terms of 

sets, or be a set-gap, if 

! 

"  and 

! 

"* are both sets. In addition, if x is a member of an ordered 

class A, then x will be said to have character 

! 

",#*( ) if 

! 

y " A : y < x{ } has cofinal 

character 

! 

"  and 

! 

y " A : x < y{ } has coinitial character 

! 

"*. Finally, by an extremal 

element of an ordered class we mean the least element or the greatest element, i.e., an 

element whose character has the form 

! 

0,"*( ) or 

! 

",0( ), respectively. 

If an element of an ordered class has an immediate successor or an immediate 

predecessor, it has character 

! 

",1( ) or 

! 

1,"( ), respectively, for some ordinal 

! 

" . Using this 

                                                
34  The inverse of an ordered class 

! 

A,<  is the ordered class 

! 

A,<
*  characterized by the 

property: 

! 

a <
*
b  whenever 

! 

b < a, for all 

! 

a,b" A. 
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together with the fact that every Dedekind cut of a nontrivial densely ordered class is 

either a gap or a continuous cut (see Appendix), it is straightforward matter to prove 

 
PC 3. For a nontrivial ordered class A the following are equivalent:  

(i) A is absolutely dense;  

(ii) A has no set-gaps and every element of A has character 

! 

On,On
*( ), 

! 

0,On
*( )  or 

! 

On,0( ) 

depending on whether it is a nonextremal element, a least element or a greatest element, 

respectively. 

 
 Since a Peircean linear continuum is a nontrivial densely ordered class having 

neither a least nor a greatest element, it follows from PC 3 that absolute density for 

Peircean linear continua is equivalent to the absence of set-gaps and the ubiquitous 

presence of elements of character 

! 

On,On
*( ). The following examples show that Peirce’s 

continuity condition is independent of each.  

 First consider the ordered subclass of No consisting of 

! 

No
P
"No

P

# where 

! 

No
P

" is 

the set of all 

! 

x " No  such that 

! 

" # n < x <" + n  for some positive integer 

! 

n . Since 

! 

No
P

" 

is a Peircean linear continuum, 

! 

No
P
"No

P

# consists of 

! 

No
P

 followed by an isomorphic 

copy of itself, and therefore satisfies Peirce’s continuity condition. On the other hand, 

! 

No
P
"No

P

# is not absolutely dense since it contains a set-gap. In particular, since the 

ordered set of non-negative integers is a cofinal subset of 

! 

No
P

 and the ordered set of 
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surreal numbers of the form …,

! 

" # n ,…, 

! 

" #1, 

! 

" # 0 ="  (where n is a non-negative 

integer) is a coinitial subset of 

! 

No
P

", 

! 

No
P
,No

P

"# 
$ 
% & 

' 
(  is gap of character 

! 

","*( ) .35 

 Next, consider the ordered subclass of No that results from supplementing 

! 

No
P
"No

P

# with 

! 

" /2. Plainly, 

! 

No
P
" # /2{ }"No

P

$ satisfies Peirce’s continuity 

condition. Nevertheless, 

! 

No
P
" # /2{ }"No

P

$ is not absolutely dense since 

! 

" /2, which 

lies between the members of 

! 

No
P

 and the members of 

! 

No
P

", has character 

! 

","*( )  in 

! 

No
P
" # /2{ }"No

P

$.36 

 As the above two examples intimate and PC 3 shows, the presence in a densely 

ordered class of a set-gap or an element having character 

! 

",#*( ) where 

! 

"  or 

! 

"  is a non-

                                                
35  Wayne Myrvold [1995, pp. 535-537] introduced an ordered class that satisfies Peirce’s 
continuity condition but likewise contains set-gaps. For example, there is a cut 

! 

X,Y( ) of 
Myrvold’s line in which 

! 

X  contains 
  

! 

n"2 : n # !+{ } as a cofinal subset and 

! 

Y  contains 

  

! 

"
n
: n # !+{ }  as a coinitial subset, where   

! 

!+  is the set of positive integers and 

! 

"  and 

! 

"2 
are a pair of infinitesimals for which 

! 

"2 is infinitesimal relative to 

! 

" . This cut, as is 
evident from the above description, is an 

! 

","*( ) -gap. 
36  The two examples presented in the main body of the text have been selected for their 
simplicity. We hasten to add, however, that more robust examples can be found. To begin 
with, in accordance with a classical result from the theory of ordered fields, every open 
interval 

! 

a,b( )  of an ordered field is order isomorphic to the given ordered field (cf. 
[Sikorski, 1948, p. 74 (iv)]). Plainly then, if A is an ordered field containing a proper 
class of members, every nontrivial convex subclass of A likewise contains a proper class 
of members. Accordingly, by limiting such an ordered field A to its substructure 

! 

A
P

 
consisting of its finite and infinitesimal members, one will obtain a structure satisfying 
Peirce’s continuity condition. Moreover, if A contains an isomorphic copy of the ordered 
field of real numbers, 

! 

A
P

will contain a copy of the reals that is both coinitial and cofinal 
with 

! 

A
P

. An example of such an 

! 

A
P

 that contains a set-gap is obtained by letting A be 
the smallest subfield of No containing No’s reals and No’s ordinals, and an instance of 
such an 

! 

A
P

 all of whose elements have characters that are sets is obtained by letting A be 
any of the ordered fields referred to in [Ehrlich 1992: Theorem 7, p. 175] other than   

! 

!  
and No.  
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zero ordinal 

! 

<On  indicates the presence of a vacancy that is definable in terms of sets. 

By such a vacancy we of course mean a pair of nonempty subsets 

! 

L  and 

! 

R where 

! 

L < R 

for which there is no 

! 

y  in the class such that 

! 

L < y{ } < R . Absolutely dense ordered 

classes, by contrast, are characterized by the complete absence of such vacancies, and in 

this technical sense their elements are “welded together” or “cemented together”, as 

Peirce picturesquely described the elements of his envisioned continuum. On the other 

hand, of course, if one allows for vacancies defined as above where either 

! 

L  or 

! 

R are of 

necessity proper classes, then absolutely dense ordered classes have a great many 

vacancies indeed (see Postscript). 

 While Peirce did not describe the welded-togetherness of the points of his linear 

continuum in terms of the absence of vacancies that are definable in terms of sets, there is 

a strong family resemblance. Peirce thought the points of his linear continuum are 

“welded together” insofar as “there is no longer any room for…inserting any more....” 

[Peirce circa 1897, p. 95], and as the definition of an absolutely dense ordered class 

makes clear, it is indeed impossible to insert any more elements into such an ordered 

class, assuming such insertions amount to filling vacancies that are defined in terms of 

sets, the only vacancies Peirce’s metaphysics would countenance. 

 It is perhaps worth adding that there is another important sense in which the 

elements of an absolutely dense ordered class, and a Peircean linear continuum in 

particular, may be said to be set-theoretically “welded together”. Namely, insofar as no 

element of an absolutely dense ordered class has character 

! 

<On , it is impossible to 

whittle down a nontrivial interval of an absolutely dense ordered class to a point by 

means of a set number of cuts that divide nontrivial intervals into pairs of nontrivial 
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subintervals. Indeed, to separate a point from a nontrivial interval by means of such 

divisions, a proper class of such cuts is always required, 37 something Peirce’s 

metaphysics would not allow!  

 
10. The Peircean Arithmetic Continuum 

 
While Peirce staunchly advocated the use of infinitesimals in the calculus and 

pictured them manipulated algebraically [Peirce 1893, pp. 128-131; 1892, p. 98], he 

never attempted to impose an ordered algebraic structure on his envisioned linear 

continuum. Be that as it may, we believe that much as it is instructive to compare   

! 

!  and 

No from an ordered-algebraic point of view, it is likewise instructive to so compare   

! 

!  

with 

! 

No
P

. When comparing   

! 

!  and 

! 

No
P

 from this perspective, it is the conception of an 

ordered (integral) domain38 that is fundamental rather than the conception of an ordered 

field, which was basic when   

! 

!  and No were the basis of comparison.  

Whereas the properties of ordered fields generalize the familiar algebraic, order-

theoretic and compatibility properties of the system of rational numbers, the properties of 

ordered domains generalize the analogous, though more general, properties of the system 

of integers. Indeed, while every ordered field is an ordered domain, there are ordered 

domains that are not ordered fields, insofar as, like the integers, they contain non-zero 

elements having no multiplicative inverse in the domain.  

Every ordered domain A contains a canonical copy of the ordered domain   

! 

! of 

integers, namely, the subdomain of all elements of A of the form 

! 

n "1
A
 where n is an 

                                                
37  This holds true whether we use the strict mathematical definition of a cut in which 
there is no overlap between the nontrivial subintervals or if we allow that the nontrivial 
subintervals overlap solely at the point of the cut. 
38  For the definition of an ordered domain, see the Appendix.  
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integer and 

! 

1
A
 is the unit element of A. Henceforth, we will refer to the elements of this 

subdomain of A as the integers of A.  Moreover, an ordered domain A will be said to be 

finitely bounded if every element of A lies between two of A’s integers. While a finitely 

bounded ordered domain may contain elements that are infinitesimal, it cannot contain 

elements that are infinitely large.39 

It is well known that an ordered field K is real-closed if and only if it satisfies the 

intermediate value theorem for polynomials (in one variable) with coefficients in K, i.e. 

the condition: if 

! 

f  is a polynomial with coefficients in K, 

! 

a,b[ ]" K  and 

! 

f a( ) " f b( ), 

then for any 

! 

d " K  between 

! 

f a( ) and 

! 

f b( ) , there is a 

! 

c  between 

! 

a  and 

! 

b such that 

! 

f c( ) = d  (cf. [Gamboa, 1987]). From a geometrical point of view, this means that if the 

graph of a polynomial with coefficients in K has points on the opposite sides of a line, 

then the portion of the graph lying between the two points intersects the given line.40  

Cherlin and Dickmann [1983] extended this idea to ordered domains more 

generally, likewise calling an ordered domain K real-closed if it satisfies the intermediate 

                                                
39  An element 

! 

a  of an ordered domain is said to be infinitesimal if 

! 

n a <1 for all positive 
integers 

! 

n , and it is said to be infinite if 

! 

a > n  for all positive integers 

! 

n . 
40 While Peirce does not appear to have investigated the intermediate value theorem, he 
likely would have appreciated its connection with the idea of continuity. In a marginal 
note to one of his essays on the continuum he observes, “it is impossible to get the idea of 
continuity without two dimensions. An oval line is continuous, because it is impossible to 
pass from the inside to the outside without passing a point of the curve” [Peirce April 
1892, p. 115]. 
    In connection with this, it is perhaps also worth mentioning that insofar as the 
intermediate value theorem fails for even polynomial functions in models of smooth 
infinitesimal analysis (SIA) (cf. [Bell 1998, pp. 105-106; 2005, p. 297]), it is by no means 
obvious that Peirce would favor (for the development of his theory) the theory of 
infinitesimals from SIA over the theory of infinitesimals employed in nonstandard 
analysis (and, of course, in No), as Herron [1997, p. 623] contends. There are other 
reasons for our doubts but we will not pursue them at this time. 
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value theorem for polynomials (in one variable) with coefficients in K. They also 

characterized this important class of ordered domains by means of the following result:  

 
(Cherlin and Dickmann, 1983: Theorem 1).  An ordered domain is real-closed if and only 

if it is a convex ordered subdomain of a real-closed ordered field. 

 
Accordingly, if K is a real-closed ordered domain, then either K is a real-closed ordered 

field or K is an ordered subdomain of a real-closed ordered field 

! 

K
"  where K is a proper 

subclass of 

! 

K
"  having the property: every member of 

! 

K
"  that lies between two members 

of K is likewise a member of K. 

As we suggested above in Section 2, the relation that exists between 

! 

No  and   

! 

!  

considered as arithmetic continua foreshadows to a great extent the corresponding 

relation that exists between our proposed model of Peirce’s continuum considered as an 

ordered algebraic system and its classical counterpart. Central to the latter relation is 

 
PC 4. Whereas   

! 

"!,+,#,<,0,1$  is (up to isomorphism) the unique finitely bounded, real-

closed ordered domain that is a Cantor-Dedekind linear continuum, 

! 

No
P
,+,",<,0,1  is (up 

to isomorphism) the unique finitely bounded, real-closed ordered domain that is a 

Peircean linear continuum.  

 
Proof.  As is well known,   

! 

!  is (up to isomorphism) the unique ordered domain that is a 

Cantor-Dedekind linear continuum. Thus, to complete the first part of the proof we need 

only note that   

! 

!  is both finitely bounded and real-closed. Now note that, by definition, 

! 

No
P

 is finitely bounded. Moreover, 

! 

No
P

 is a Peircean linear continuum. Furthermore, 

since 

! 

No
P

 is a convex ordered subdomain of the real-closed ordered field No, by the just-
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stated theorem of Cherlin and Dickmann, 

! 

No
P

 is real-closed. Now suppose A is a finitely 

bounded, real-closed ordered domain that is a Peircean linear continuum. Again by 

Cherlin and Dickmann’s theorem, A is a convex ordered subdomain of a real-closed field 

B. Suppose 

! 

a,b( )  is an open interval of A. By Lemma B (from Section 8), 

! 

a,b( )  is an 

absolute linear continuum. But then B is an absolute linear continuum insofar as every 

open interval of an ordered field is order isomorphic to the ordered field itself (see Note 

36). Therefore, since No is (up to isomorphism) the unique real-closed ordered field that 

is an absolute linear continuum, B is isomorphic to No. Consequently, A is isomorphic to 

the unique finitely bounded, convex subdomain of No; that is, A is isomorphic to 

! 

No
P

.  

 
 The next of our results that casts light on the relation between   

! 

!  and 

! 

No
P

 

considered as arithmetic continua highlights their comparative structures as inclusive 

Archimedean and non-Archimedean finitely bounded ordered domains. In its 

formulation, the notions of universally extending and homogeneous universal applied to 

Archimedean finitely bounded ordered domains and to finitely bounded ordered domains 

more generally are defined in the analogous fashion as their field-theoretic counterparts 

employed in Theorem 4.    

PC 5. (I) The following sets of axioms constitute (categorical) axiomatizations of 

  

! 

"!,+,#,<,0,1$ ; (II) by deleting the Archimedean axiom from the following axiomatizations 

one obtains categorical axiomatizations of 

! 

No
P
,+,",<,0,1 . 

 
Axioms for finitely bounded ordered domains 

Archimedean axiom 

Axiom of Homogeneous Universality                                        

or, alternatively,                                                          }  (Continuity Axioms) 
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Axiom of Universal Extensibility 

  
where by the Axiom of Homogeneous Universality (Axiom of Universal Extensibility) 

we mean the assertion: The collection of numbers together with the corresponding 

relations defined on it constitutes a Homogeneous Universal (Universally Extending) 

model of the above stated axioms.41 

 
To prepare the way for the proof of PC 5, we need a number of preliminary 

results beginning with the following simple consequence of the fact that (i) 

! 

No  is a 

homogeneous universal ordered field, and the fact that (ii) every ordered domain D 

admits (up to isomorphism) a unique extension to its ordered field of fractions and each 

embedding of D into an ordered field K has a unique extension to an embedding of the 

ordered field of fractions of D into K (cf. [Warner 1965/1990, p. 220]).  

LEMMA 0. 

! 

No
P

 is a homogeneous universal ordered domain.42  

                                                
41  In his little known paper “Continuity and the Theory of Measurement,” José Benardete 
[1968] attempts to develop a theory of “absolute continuity” that resembles, in some 
respects, Peirce’s conception. For example, Benardete envisions the possibility that his 
continuum may contains a proper class of points (albeit only potentially), each of which 
is no more than an infinitesimal distance from a point on a classical linear continuum. In 
his attempt to characterize his absolute continuum, Benardete asks, “What are the true 
axioms of continuity?” and answers, “They are the standard axioms with the 
Archimedean axiom both deleted and denied” [1968, pp. 424-425]. What Benardete 
means by the “standard axioms” he does not say thought I am not aware of any standard 
axiomatization of the classical arithmetic continuum that yields his intended result. It is 
interesting to note, however, that the above axiomatizations, which make use of 
continuity axioms that are equivalent to the classical continuity axioms in the context of 
an axiomatization of   

! 

"!,+,#,<,0,1$ , realizes Benardete’s goal without having to explicitly 
deny the Archimedean axiom. 
42  In fact, using Theorem 4 in conjunction with the above stated classical result regarding 
ordered fields of fractions, one can readily prove the following stronger  
 
THEOREM. 

! 

No,+,",<,0,1  is (up to isomorphism) both the unique universally extending 
ordered domain and the unique homogeneous universal ordered domain.  
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Also employed in our proof of PC 5 are the following three lemmas regarding 

finitely bounded ordered domains, the proof of each of which uses the stated 

corresponding classical result regarding real-closed ordered fields and Cherlin and 

Dickmann’s above stated theorem. The proof of Lemma 1 also uses the just-stated 

classical result regarding the ordered field of fractions of an ordered domain; and in the 

statement of Lemma 2, by 

! 

X[ ]
A
 we mean the ordered subfield (ordered subdomain) of an 

ordered field (ordered domain) 

! 

A  generated by a subset X of

! 

A , i.e., the least ordered 

subfield (ordered subdomain) of 

! 

A  containing the members of a subset 

! 

X  of A.  

 
LEMMA 1. If 

! 

A  is an ordered field (a finitely bounded ordered domain), there is up to 

isomorphism a least real-closed ordered field (real-closed finitely bounded ordered 

domain) extending 

! 

A--a real-closure of 

! 

A . Moreover, if 

! 

f : A" B  is an isomorphism of 

ordered fields (finitely bounded ordered domains), there is an isomorphism from a real-

closure of A onto a real closure of B that extends 

! 

f . 

 
LEMMA 2. If 

! 

A  and 

! 

" A  are real-closed ordered fields (real-closed finitely bounded 

ordered domains) where 

! 

" A # A  and 

! 

a" A # $ A , there is a least real-closed ordered 

subfield (real-closed finitely bounded ordered subdomain) of 

! 

A  containing the members 

of 

! 

" A # a{ }, henceforth written 

! 

( " A # a{ })
A . 

! 

( " A # a{ })
A , which has the same cardinality 

as 

! 

" A # a{ }, is the real-closure in 

! 

A  of  

! 

" A # a{ }[ ]
A

. 

 

                                                                                                                                            
 
See, [Ehrlich 1989, pp. 43-44 and Ehrlich 1992, p. 171: (vi)].  
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LEMMA 3. If 

! 

A , 

! 

" A  and 

! 

B are real-closed ordered fields (real-closed finitely bounded 

ordered domains) where 

! 

" A # A  and 

! 

f : " A # B is a monomorphism of ordered fields 

(ordered domains), then if 

! 

a" A # $ A  and 

! 

h : " A # a{ }$ B  is an order injection that 

extends 

! 

f , there is a unique monomorphism 

! 

g : ( " A #{a})A $ B  of ordered fields 

(ordered domains) that extends 

! 

h . 

 
Finally, we make use of the following special case for ordered domains of a 

general classical result regarding the embedding one algebraic structure into another (cf. 

[Warner 1965/1990, pp. 54-56]). 

 
ELEMENTARY OBSERVATION. If 

! 

A , 

! 

" A  and 

! 

B are ordered domains where 

! 

A " # A , and 

! 

f : A" B  is a surjection of ordered domains, there is an ordered domain 

! 

" B  where 

! 

B " # B  and a surjection 

! 

" f : " A # " B  of ordered domains extending 

! 

f . 

 
Proof of PC 5. To prove I it suffices to note that every Archimedean ordered domain is a 

finitely bounded ordered domain and the well-known fact that there is one and only one 

isomorphism of an Archimedean ordered domain into   

! 

!  [Warner 1965/1990, pp. 479-

483]. 

 The proof of II consists of three parts. First note that: (i) 

! 

No
P

 is a homogeneous 

universal finitely bounded ordered domain. Indeed, since 

! 

No
P

 a homogeneous universal 

ordered domain (Lemma 0) and since the image of every isomorphism of a finitely 

bounded ordered domain into No lies in 

! 

No
P

, 

! 

No
P

 is universal. Moreover, since every 

isomorphism between finitely bounded ordered subdomains of 

! 

No
P

 whose universes are 
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sets can be extended to an automorphism of No one obtains the requisite automorphisms 

of 

! 

No
P

 by restricting the former to 

! 

No
P

.  

Next note that: (ii) If A is a homogeneous universal finitely bounded ordered 

domain, then A is likewise a universally extending finitely bounded ordered domain. 

Indeed, suppose B is a finitely bounded ordered subdomain of A whose universe is a set 

and C is a finitely bounded ordered domain that extends B. Then there is an isomorphism 

! 

f  from C to A. Moreover, since C extends B, the image of the restriction of 

! 

f  to B is an 

isomorphic copy of B in A. Furthermore, in virtue of the homogeneity of A, there is an 

automorphism 

! 

g  of A such that 

! 

g x( ) = f x( )  for all 

! 

x " B. But then, the function 

! 

g
"1
f  is 

an isomorphism from C to A that is an extension of the identity on B; thereby proving A is 

universally extending.  

In virtue of (i) and (ii), to complete the proof of II it suffices to prove: (iii) If A is 

a universally extending finitely bounded ordered domain, then A is isomorphic to 

! 

No
P

. 

We first show: if A is a universally extending finitely bounded ordered domain, then A is 

real-closed. Let   

! 

A!  be A’s ordered domain of integers and 

! 

a  be a well ordering of 

  

! 

A " A! . Since the union of any chain of real-closed finitely bounded ordered domains is 

itself a real-closed finitely bounded ordered domain, to complete the first part of the 

proof we need only note that 
  

! 

A = A""<OnU , where 

! 

A
0
 is a real-closure of   

! 

A!  in A, 

  

! 

A" = A## <"U  if 

! 

"  is an infinite limit ordinal, and for each ordinal 

! 

" , 

! 

A"+1
 is a real-

closure in A of 

! 

A" #{a"}[ ]
A

, where 

! 

a"  is the first member of 

! 

a  not contained in 

! 

A" . The 

existence of 

! 

A
0
 and the various 

! 

A"+1
s follows from the existence of the real-closures of 
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! 

A!  and the various 

! 

A" #{a"}[ ]
A

’s (see Lemmas 1 and 2) and the fact that A is 

universally extending.  

Now let 

! 

No
P

= B, 

! 

A
0
 and 

! 

B
0
 be the real-closures in A and B of A’s and B’s 

integers, and 

! 

a  and 

! 

b  be well orderings of 

! 

A " A
0
 and 

! 

B " B
0
, respectively. We obtain 

the desired surjection 

! 

F : A" B by defining a chain 

! 

f" " <On( ) of isomorphisms where 

  

! 

F = f""<OnU  as follows.  If 

! 

" = 0 , we let 

! 

f
0
 be the unique isomorphism from 

! 

A
0
 onto 

! 

B
0
; if 

! 

" = 2# +1, we take the first unused element of 

! 

a , call it 

! 

a
2" +1, and let 

! 

f
2" +1 : A2" +1 = A

2" # a
2" +1{ }( )

A
$ B  be the unique embedding extending an order 

injection 

! 

h
2" +1 : A2" # a

2" +1{ }$ B  extending 

! 

f
2"  that sends 

! 

a
2" +1 to the first unused 

element of 

! 

b , call it 

! 

b
2" +1, that fills the corresponding cut in 

! 

B
2" = f

2" A
2"( ) that 

! 

a
2" +1 

fills in 

! 

A
2"  (see Note 30); if 

! 

" = 2# + 2, we take the first unused element of 

! 

b , call it 

! 

b
2" +2 , and let 

! 

f
2" +2 = g

2" +2

#1  where 

! 

g
2" +2 :B2" +2 = f

2" +1 A2" +1( )# b
2" +2{ }( )

B
$ A  is the 

unique embedding extending an order injection 

! 

h
2" +2 : f2" +1 A2" +1( )# b

2" +2{ }$ A  

extending 

! 

f
2" +1

#1  that sends 

! 

b
2" +2  to an unused element of 

! 

a , call it 

! 

a
2" +2, that fills the 

corresponding cut in 

! 

A
2" +1 that 

! 

b
2" +2  fills in 

! 

B
2" +1 = f

2" +1 A2" +1( ); and if 

! 

"  is an infinite 

limit ordinal, we let 
  

! 

f" = f##<"U . The existence of 

! 

f
0
 is evident; the existence of the 

! 

f
2" +1s and 

! 

f
2" +2s follow from Lemma 3, the fact that A and B are real-closed, and the 

existence of the 

! 

b
2" +1s and 

! 

a
2" +2s, respectively; the existence of the 

! 

b
2" +1s is a simple 

consequence of the absolute density of Peircean linear continua; and the existence of the 
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! 

a
2" +2s is a consequence of the aforementioned Elementary Observation and fact that B is 

universally extending.  

   
Our final result that sheds light on the relation between   

! 

!  and 

! 

No
P

 considered as 

arithmetic continua is the analog for Peircean arithmetic continua of Theorem 5. 

 
PC 6 (I) The following set of axioms constitutes a categorical axiomatization of 

  

! 

"!,+,#,<,0,1$ ; (II) by deleting the Archimedean axiom from the following axiomatization 

one obtains a categorical axiomatization of 

! 

No
P
,+,",<,0,1 . 

Axioms for real-closed finitely bounded ordered domains (Elementary Continuity 

Axioms) 

Archimedean axiom 

Axiom of maximal s-density (Continuity Axiom) 
 
 
where, as the reader will recall from the statement of Theorem 5, the axiom of maximal s-

density asserts that: The collection of numbers together with the corresponding relations 

defined on it constitutes a maximally s-dense model of the above stated axioms. 

 
Proof. Plainly, (I) follows from the classical result that   

! 

! , which is a real-closed finitely 

bounded Archimedean ordered domain, is (up to isomorphism) the unique Archimedean 

ordered domain that admits no proper extension to an Archimedean ordered domain. And 

(II) follows from the fact that 

! 

No
P

 is an absolutely dense real-closed finitely bounded 

ordered domain, and the fact that every real-closed finitely bounded ordered domain A 

that is not isomorphic to 

! 

No
P

 admits an extension to an isomorphic copy of 

! 

No
P

 that fills 
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a vacancy in A that is definable in terms of sets (see Section 9). The existence of such an 

extension is a consequence of the second part of PC 4 and the absolute density of 

! 

No
P

. 

 
Conclusion 

 
 In his Presidential Address on “Peirce’s Continuum” delivered to the Charles S. 

Peirce Sesquicentennial International Congress held at Harvard University in 1989, 

Hilary Putnam proclaimed: 

What answers to our conception of a continuum is a possibility of repeated 
division which can never be exhausted in any possible world, not even in a 
possible world in which one can complete abnumerably [i.e., non-
denumerably] infinite processes. That is what I take Peirce’s daring 
metaphysical hypothesis to be. [Putnam 1995, p. 17; Putnam 1992, p. 51]. 
 

 We suspect that what Putnam calls “Peirce’s daring metaphysical hypothesis” is 

indeed something very much like what Peirce was after. On the other hand, as we hope 

we have made clear, if Peirce thought that “the possibility of determining more than any 

given multitude of points…at every part of the line” is sufficient for characterizing his 

“daring metaphysical hypothesis,” then his “daring metaphysical hypothesis” is not 

nearly daring enough to underwrite his idea that a “continuum is all that is possible, in 

whatever dimension it be continuous,” even if we ignore the Peircean presupposition that 

the points are no more than a finite distance from one another. In fact, given that there are 

finitely bounded ordered domains that are not real-closed but which are nevertheless 

Peircean linear continua, it is doubtful that any attempt to unpack the latter solely in 

terms of divisions that arise by repeatedly taking cuts of sets of points would be adequate, 

even if “one can complete abnumerably infinite processes.” This observation is not unlike 

the late nineteenth-century realization that simple density--the set-theoretic counterpart of 
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infinite divisibility--is not sufficient to characterize continuity, even the modest sort of 

continuity required by the geometry of Euclid.43  

 What then is sufficient for characterizing the sort of continuum so daringly 

envisioned by Peirce? The central contention of this work is that, if one brings Peirce’s 

theory into harmony with the standard geometrical practices of our day (and thereby 

downplays Peirce’s commitment to the potential nature of points on a line), the most 

                                                
43 Euclid’s continuity needs reduce to the following two principles that Euclid tacitly 
employed.  
 
The Circular Continuity Principle: If a circle 

! 

C  has one point inside and one point 
outside another circle 

! 

" C , then the two circles intersect in two points. 
 
The Line-Circle Continuity Principle: If one endpoint of a segment is inside a circle and 
the other outside, then the segment intersects the circle at one point. 
 
     During the twentieth century it became clear that a model of Hilbert’s axioms for 
classical Euclidean geometry less the continuity axioms satisfies the circular continuity 
principle if and only if it satisfies the line-circle continuity principle if and only if it is 
isomorphic to a Cartesian space over a Euclidean ordered field (i.e. an ordered field in 
which every positive element is the square of some element of the field).  
     While there is little doubt Peirce would have embraced both the Circular Continuity 
Principle and the Line-Circle Continuity Principle (see Note 40), it is worth noting that 
being a Peircean linear continuum ensures the satisfaction of neither. Indeed, as is well 
known, M is a model of Hilbert’s axioms of Euclidean geometry less the continuity 
axioms if and only if M is isomorphic to a Cartesian space over a Pythagorean ordered 
field (i.e. an ordered field in which 

! 

a
2

+ b
2  is a member of the field whenever 

! 

a  and 

! 

b 
are members of the field). But there are Pythagorean ordered fields that are absolute 
linear continua but are not Euclidean. To obtain such an ordered field, one simply has to 
employ the construction described in Note 16 for the case where 

! 

A
0
 is any (of the many) 

Pythagorean ordered fields that is not Euclidean. Within the finitely bounded portion of a 
Cartesian space over such an ordered field there are segments of Peircean linear continua 
containing two points, one inside and one outside a given circle, that do not intersect the 
circle. Of course, since every real-closed field is a Euclidean ordered field, spatial 
anomalies of this sort cannot arise in the Cartesian space over No and, hence, in 
absolutely continuous elementary Euclidean geometry (see Note 10).  
    For further discussions of these geometrical matters including references to the 
relevant literature, see [Ehrlich 1997] and the section of [Ehrlich 2005] entitled Modern 
Euclidean Geometry and the Continuum. 
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natural, most compelling and theoretically most significant candidate is 

! 

No
P

--the 

Peircean counterpart of the absolute arithmetic continuum (modulo NBG). 

 
Postscript 

 As we mentioned in the Introduction, whereas the absolute arithmetic continuum 

and its Peircean counterpart may be said to exhibit all possible types of algebraic and set-

theoretically defined order-theoretic gradations consistent with their structures as an 

ordered field and a finitely bounded ordered domain, respectively, if one is willing to 

allow for algebraico-order-theoretic gradations that are definable in terms of proper 

classes as well as sets, there are ordered fields and corresponding finitely bounded 

ordered domains whose algebraico-order-theoretic gradations are even more refined still. 

Moreover, as the following examples nicely illustrate, some of these structures are highly 

distinguished to boot. 

 Let   

! 

!(No) be the class of all formal series of the form 

! 

" y# .r#
#< $

%
 

where 

! 

y" :" < # $On{ }  is a descending sequence of elements of 

! 

No  and   

! 

r" #! $ 0{ } 

for each 

! 

" < # ,   

! 

!  being the ordered field of real numbers. In addition to all the Conway 

names of surreal numbers, i.e., the members of   

! 

!(No) for which 

! 

" <On ,   

! 

!(No) 

contains a vast array of “Conway names” of “numbers” where 

! 

" =On , including  

! 

"#$

$<On

% =1+ 1

"1
+ ...+ 1

"$ + ... $ <On( ). 

Moreover, if one defines sums, products and order for members of   

! 

!(No) in same 

manner they are defined for Conway names of surreal numbers (see Section 7, Theorem 

10), then by applying straightforward adaptations of classical arguments whose roots lie 
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in the work of Hans Hahn [1907], Wolfgang Krull [1932] and Norman Alling [1962], one 

may show that   

! 

!(No) is a real-closed ordered field that is an absolute linear continuum. 

We hasten to add, however, that   

! 

!(No) has power 

! 

2
"
On , which is greater than 

! 

"
On

, the 

power of No; moreover, with the exception of the Conway names of surreal numbers, the 

members of   

! 

!(No) are not sets but proper classes! For this reason alone, in NBG one 

cannot even construct   

! 

!(No), let alone talk about the cardinal 

! 

2
"
On  or prove the above 

result. On the other hand,   

! 

!(No) can be constructed and the just-stated theorem can be 

proved in the equiconsistent set theory of Ackermann (see Note 11), where, unlike in 

NBG, besides the class 

! 

V  of all sets, there exists the power class 

! 

PV  of all subclasses of 

! 

V , the power class 

! 

PPV  of all subclasses of 

! 

PV  and so on [Lévy and Vaught 1961, p. 

1061; also see Fraenkel, Bar-Hillel and Lévy l973, p. 153 and Lévy l976, p. 212]. 

Moreover, these classes are “well-behaved” in the sense that they behave in the manner 

they would be expected to behave assuming they were sets [Lévy and Vaught 1961, p. 

1061; Lévi 1959]; in particular, if 

! 

"
On

 is the “cardinal” of 

! 

V , then 

! 

2
"
On  is indeed the 

“cardinal” of 

! 

PV . 

 In Ackermann’s set theory,   

! 

!(No) is a subclass of 

! 

PV , and by limiting   

! 

!(No) to 

its substructure consisting of its finite and infinitesimal members, one obtains a Peircean 

arithmetic continuum of power 

! 

2
"
On  that is likewise a subclass of 

! 

PV . This Peircean 

arithmetic continuum arises by filling 

! 

2
"
On  vacancies (see Section 9) in 

! 

No
P

, each of 

which corresponds to a gap in 

! 

No
P

 having character 

! 

On,
"
On( ) . Thus, while it must be 

admitted that 

! 

No
P

 has a great many “holes” indeed, none of them is definable in terms of 

sets of NBG! 
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Appendix  

 
 The concepts of partially ordered class, ordered class, ordered integral domain 

and ordered field play central roles in the text. For discussions of partially ordered classes 

and ordered classes, the reader may consult [Harzheim 2005] and [Rosenstein, 1982], and 

for the basic properties of ordered integral domains and ordered fields, the reader may 

consult [Mendelson 1973] or [Birkhoff and MacLane 1977/1997]. For the reader’s 

convenience, however, the definitions of these basic concepts are given below where 

“ordered” without the modifier “partial” always means, “totally ordered.” This 

convention is employed throughout the paper. 

 A partially ordered class is a structure 

! 

A,< , where 

! 

A  is a class and 

! 

<  is a 

binary relation on 

! 

A  that satisfies the following conditions: (i) 

! 

"xy x < y# x $ y( ) ; (ii) 

! 

"xyz x < y # y < z( )$ x < z( ).  

 An ordered class is a partially ordered class that also satisfies: (iii) 

! 

"xy x # y$ x < y % y < x( )( ) . 

 A cut of an ordered class 

! 

A,<  is an ordered pair 

! 

X,Y( ) of subclasses of 

! 

A  such 

that every member of X precedes every member of Y, and 

! 

X"Y = A . If X and Y are 

nonempty, the cut is said to be a Dedekind cut. If 

! 

X,Y( ) is a Dedekind cut, then the cut is 

said to be a gap, if X has no greatest member and Y has no least member, and it is said to 

be a continuous cut, if either X has no greatest member and Y has a least member or X has 

a greatest member and Y has no least member. A Dedekind cut that is neither a gap nor a 

continuous cut is often said to be a jump. 
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 The reader will notice that, in accordance with these definitions, partially ordered 

classes and ordered classes may be empty or contain a single element. Throughout the 

paper, such structures will be said to be trivial and partially ordered classes and ordered 

classes containing at least two members will be said to be nontrivial.    

 An ordered integral domain (or, more simply, an ordered domain) is a structure 

! 

A,+,",<,0,1 , where 

! 

A,<  is an ordered class, 

! 

0,1" A  where 

! 

0 "1, and 

! 

+  and 

! 

"  are 

commutative, associative binary operations on 

! 

A  for which the following conditions 

hold: (i) 

! 

"x x + 0 = x( ); (ii) 

! 

"x x #1= x( ) ; (iii) 

! 

"x#y x + y = 0( ); (iv) 

! 

"x"y"z x # y + z( ) = x # y( ) + x # z( )[ ]; (v) 

! 

"x"y x # 0$ y # 0( )% x & y # 0( ) ; (vi) 

! 

"x"y"z x < y# x + z < y + z( ) ; (vii) 

! 

"x"y"z x < y #0 < z( )$ x % y < y % z( ). 

 The elements 0 and 1 of 

! 

A , which more appropriately should be written 

! 

0
A
 and 

! 

1
A
, are the additive and multiplicative identities of the domain, respectively, and need not 

be the familiar numbers thus denoted. 

   An ordered field is an ordered domain that also satisfies the property: 

! 

"x x # 0$%y x & y =1( )( )[ ] .  

Thus, ordered fields are ordered domains each of whose non-zero elements has a 

multiplicative inverse. In axiomatizations of ordered fields one frequently finds condition 

(v) for ordered domains omitted since it is a consequence of the remaining axioms. 

Whereas the properties of ordered domains generalize the familiar algebraic, 

order-theoretic and compatibility properties of the system of integers, the properties of 

ordered fields generalize the analogous properties of the system of rational numbers. 

An ordered domain 

! 

A,+,",<,0,1  is said to be Archimedean if it satisfies the 

condition: for all 

! 

a,b" A, if 

! 

0 < a < b , there is a positive integer 

! 

n  such that 

! 

na > b. An 
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element 

! 

a  of A is said to be infinitesimal if 

! 

n a <1 for all positive integers 

! 

n , and it is 

said to be infinite if 

! 

a > n  for all positive integers 

! 

n . Since every ordered field A 

contains a unique isomorphic copy   

! 

!
A
 of the ordered field of rational numbers, it 

follows from the above definition of an infinitesimal that an element 

! 

a  of an ordered 

field A is infinitesimal if 

! 

"1 n < a <1 n  for all positive integers 

! 

n . An ordered domain is 

Archimedean if and only if it contains neither infinite nor infinitesimal elements. Non-

Archimedean ordered fields, by contrast, contain infinite as well as non-zero infinitesimal 

elements, the latter being the multiplicative inverses of the former. Non-Archimedean 

ordered domains always contain infinitesimal elements but need not contain infinite 

elements.  
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