Drosophila neurotrophins reveal a common mechanism for nervous system formation

Authors: Zhu, Pennack, McQuilton, Forero, Mizuguchi, Sutcliffe, Gu, Fenton and Hidalgo
Citation: PLoS Biol. 2008 Nov; 6(11): e284
  1. Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237: 1154-1162.
  2. Blum R, Konnerth A (2005) Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology 20: 70-78.
  3. Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6: 603-614.
  4. Davies AM (2003) Regulation of neuronal survival and death by extracellular signals during development. EMBO J 22: 2537-2545.
  5. Zweifel L (2005) Functions and mechanisms of retrograde neurotrophin signalling. Nat Rev Neurosci 6: 615-625.
  6. Arancio O, Chao M (2007) Neurotrophins, synaptic plasticity and dementia. Curr Opin Neurobiol 17: 325-330.
  7. Chen Z-Y, Jing D, Bath KG, Ieraci A, Khan T (2006) Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314: 140-143.
  8. Hashimoto T, Bergen SE, Nguyen QL, Xu B, Monteggia LM (2005) Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J Neuroscience 25: 372-383.
  9. Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10: 1089-1093.
  10. White K, Grether ME, Abrams JM, Young L, Farrell K (1994) Genetic control of programmed cell death in Drosophila. Science 264: 677-683.
  11. Bossing T, Udolph G, Doe CQ, Technau GM (1996) The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev Biol 179: 41-64.
  12. Schmidt H, Rickert C, Bossing T, Vef O, Urban J (1997) The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Dev Biol 189: 186-204.
  13. Rogulja-Ortmann A, Lüer K, Seibert J, Rickert C, Technau GM (2007) Programmed Cell Death in the embryonic central nervous system of Drosophila melanogaster. Development 134: 105-116.
  14. Xiong W-C, Montell C (1995) Defective glia induce neuronal apoptosis in the repo visual system of Drosophila. Neuron 14: 581-590.
  15. Campos AR, Fischbach K-F, Steller H (1992) Survival of photoreceptor neurons in the compound eye of Drosophila depends on connections with the optic ganglia. Development 114: 355-366.
  16. Dearborn R, Kunes S (2004) An axon scaffold induced by retinal axons directs glia to destinations in the Drosophila optic lobe. Development 131: 2291-2303.
  17. Fischbach K-F, Technau GM (1984) Cell degeneration in the developing optic lobes of the sine oculis and small-optic-lobes mutants of Drosophila melanogaster. Dev Biol 104: 219-239.
  18. Booth GE, Kinrade EFV, Hidalgo A (2000) Glia maintain follower neuron survival during Drosophila CNS development. Development 127: 237-244.
  19. Dong R, Jacobs JR (1997) Origin and differentiation of supernumerary midline glia in Drosophila embryos deficient for apoptosis. Dev Biol 190: 165-177.
  20. Jacobs JR (2000) The midline glia of Drosophila: a molecular genetic model for the developmental functions of glia. Prog Neurobiol 62: 475-508.
  21. Noordermeer JN, Kopczynski CC, Fetter RD, Bland KS, Chen WY (1998) Wrapper, a novel member of the Ig superfamily, is expressed by midline glia and is required for them to ensheath commissural axons in Drosophila. Neuron 29: 991-1001.
  22. Zhou L, Hashimi H, Schwartz LM, Nambu JR (1997) Programmed cell death in the Drosophila central nervous system midline.. Current biology 5: 784-790.
  23. Sonnenfeld MJ, Jacobs JR (1995) Apoptosis of the midline glia during Drosophila embryogenesis: a correlation with axon contact. Development 121: 569-578.
  24. Hidalgo A, Kinrade EFV, Georgiou M (2001) The Drosophila Neuregulin Vein maintains glial survival during axon guidance in the CNS. Dev Cell 5: 679-690.
  25. Bergmann A, Tugentman M, Shilo BZ, Steller H (2002) Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signaling. Dev Cell 2: 159-170.
  26. Stemerdink C, Jacobs JR (1997) Argos and Spitz group genes function to regulate midline glial cell number in Drosophila embryos. Development 124: 3787-3796.
  27. Learte AR, Forero MG, Hidalgo A (2008) Gliatrophic and gliatropic functions of PVR signalling during axon guidance. Glia 56: 164-176.
  28. Huang EJ, Reichardt LF (2003) TRK receptors: roles in neuronal signal transduction. Annu Rev Biochem 72: 609-642.
  29. Staniszewska I, Sariyer IK, Lecht S, Brown MC, Walsh EM (2008) Integrin alpha9 beta1 is a receptor for nerve growth factor and other neurotrophins. J Cell Sci 121: 504-513.
  30. Roux Barker P (2002) Neurotrophin signaling through the p75 neurotrophic receptor. Prog Neurobiol 67: 203-233.
  31. Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection and neural repair. Annu Rev Neurosci 24: 1217-1281.
  32. Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Ann Rev Neurosci 29: 508-538.
  33. Benito-Gutierrez E (2005) The single AmphiTrk. Development 132: 2191-2202.
  34. Bothwell M (2006) Evolution of the neurotrophin signaling system in invertebrates. Brain Behav Evol 68: 124-132.
  35. Ormond J, Hislop J, Zhao Y, Webb N, Vaillancourt F (2004) ApTrl, a Trk-like receptor, mediates serotonin-dependent ERK activation and long-term facilitation in Aplysia sensory neurons. Neuron 44: 715-728.
  36. Beck G, Munno DW, Levy Z, Dissel HM, VanMinnen J (2004) Neurotrophic activities of trk receptors conserved over 600 million years of evolution. J Neurobiology 60: 12-20.
  37. Burke RD, Angerer LM, Elphick MR, Humprey GW, Yaguchi S (2006) A genomic view of the sea urchin nervous system. Dev Biol 300: 434-460.
  38. Hallböök F, Wilson K, Thorndyke M, Olinski R (2006) Formation and evolution of the chordate neurotorphin and Trk receptor genes. Brain, Behav Evol 68: 133-144.
  39. van Kesteren RE, Fainzilber M, Hauser G, van Minnen J, Vreugdenhil E (1998) Early evolutionary origin of the neurotrophin receptor family. EMBO J 17: 2534-2542.
  40. DeLotto Y, DeLotto R (1998) Proteolytic processing of Drosophila Spätzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech Dev 72: 141-148.
  41. Mizuguchi K, Parker JS, Blundell TL, Gay NJ (1998) Getting knotted: a model for the structure and activation of Spätzle. Trends Biochem Sci 23: 239-242.
  42. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ (2001) The sequence of the human genome. Science 291: 1304-1351.
  43. Weber NR, Gangloff M, Moncrieffe MC, Hyvert Y, Imler J-L (2007) Role of the Spätzle pro-domain in the generation of an active Toll receptor ligand. J Biol Chem 282: 13522-13531.
  44. Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310: 243-257.
  45. Parker JS, Mizuguchi K, Gay NJ (2001) A family of proteins related to Spatzle, the toll receptor ligand, are encoded in the Drosophila genome. Proteins 45: 71-80.
  46. Schweigreiter R (2006) The dual nature of neurotrophins. Bioessays 28: 583-594.
  47. Hu X, Yagi Y, Tanji T, Zhou S, Ip Y (2004) Multimerization and interaction of Toll and Spatzle in Drosophila. Proc Natl Acad Sci U S A 101: 9369-9374.
  48. Ligoxigakis P, Pelte N, Hoffman JA, Reichhart JM (2002) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science: 114-116.
  49. Weber ANR, Tauszig-Delamasure S, Hoffmann JA, Lelievre E, Gascan H (2003) Binding of Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat Immunol 4: 794-800.
  50. Bergner A, Oganessyan V, Muta T, Iwanaga S, Typke D (1996) Crystal structure of a coagulogen, the clotting protein from horseshoe crab: a structural homologue of nerve growth factor. EMBO J 15: 6789-6797.
  51. Wang H, Tessier-Lavigne M (1999) En passant neurotrophic action of an intermediate axonal target in the developing mammalian CNS. Nature 401: 765-769.
  52. Morris EJ, Michaud WA, Ji JY, Moon NS, Rocco JW (2006) Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genetics 2doi:10.1371/journal.pgen.0020196.
  53. Manjon C, Sanchez-Herrero E, Suzanne M (2007) Sharp boundaries of Dpp signalling trigger local cell death required for Drosophila leg morphogenesis. Nat Cell Biol 9: 57-63.
  54. Scarabelli TM, Pasini E, Ferrari G, Ferrari M, Stephanou A (2004) Warm blood cardioplegic arrest induces mitochondrial-mediated cardiomyocyte apoptosis associated with increased urocortin expression in viable cells. J Thorac Cardiovasc Surg 128: 364-371.
  55. Stadelmann C, Lassmann H (2000) Detection of apoptosis in tissue sections. Cell Tissue Res 301: 19-31.
  56. Armstrong RC, Aja TJ, Hoang KD, Gaur S, Bai X (1997) Activation of the CED3/ICE-related protease CPP32 in cerebellar granule neurons undergoing apoptosis but not necrosis. J Neurosci 17: 553-562.
  57. Broihier HT, Skeath JB (2002) Drosophila homeodomain protein dHB9 directs neuronal fate via corepressive and cell-nonautonomous mechanisms. Neuron 35: 39-50.
  58. Odden JP, Holbrook S, Doe CQ (2002) Drosophila HB9 is expressed in a subset of motoneurons and interneurons, where it regulates gene expression and axon pathfinding. J Neurosci 22: 9143-9149.
  59. Landgraf M, Roy S, Prokop A, VijayRaghavan K, Bate M (1999) Even-skipped determines the dorsal growth of motor axons in Drosophila. Neuron 22: 43-52.
  60. Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA (1997) Abnormal cerebellar development and foliation in BDNF-/- mice reveals a role for neurotrophins in CNS patterning. Neuron 19: 269-281.
  61. Ernfors P, Lee K-F, Jaenisch R (1994) Mice lacking brain derived neurotrophic factor develop with sensory deficits. Nature 368: 147-150.
  62. Ernfors P, Lee K-F, Kucera J, Jaenisch R (1994) Lack of Neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77: 503-512.
  63. Conover JC, Erickson JT, Katz DM, Bianchi LM, Poueymirou WT (1995) Neuronal deficits, not involving motor neurons, in mice lacking BDNF and/or NT4. Nature 375: 235-241.
  64. Collette Y, Gilles A, Pontarotti P, Olive D (2003) A co-evolution perspective of the TNFSF and TNFRSF families in the immune system. Trends Immunol 24: 387-394.
  65. Jaaro H, Beck G, Conticello SG, Fainzilber M (2001) Evolving better brains: a need for neurotrophins. Trends Neurosci 24: 79-85.
  66. Chao M (2000) Trophic factors: an evolutionary cul-de-sac or door into higher neuronal function. J Neurosci Res 59: 353-355.
  67. Barde YA (1994) Neurotrophic factors: an evolutionary perspective. J Neurobiol 25: 1329-1333.
  68. Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR (2000) Comparative genomics of the eukaryotes. Science 287: 2204-2215.
  69. Inamori K, Ariki S, Kawabata S (2004) A Toll-like receptor in horseshoe crabs. Immunol Rev 198: 106-115.
  70. Kirstein M, Fariñas I (2002) Sensing life: regulation of sensory neuron survival by neurotrophins. Cell Mol Life Sci 59: 1787-1802.
  71. Wright DE, Zhou L, Kucera J, Snider WD (1997) Introduction of a neurotrophin-3 transgene into muscle selectively rescues proprioceptive neurons in mice lacking endogenous neurotrophin-3. Neuron 19: 503-517.
  72. Geddes AJ, Angka HE, Davies KA, Kablar B (2006) Subpopulations of motor and sensory neurons respond differently to brain-derived neurotrophic factor depending on the presence of skeletal muscle. Dev Dyn 235: 2175-2184.
  73. Buj-Bello A, Pinon LGP, Davies AM (1994) The survival of NGF-dependent but not BDNF-dependent cranial sensory neurons is promoted by several different neurotrophins early in their development. Development 120: 1573-1580.
  74. Enokido Y, Wyatt S, Davies AM (1999) Developmental changes in the response of trigeminal neurons to neurotrophins: influence of birthdate and the ganglion environment. Development 126: 4365-4373.
  75. Barres BA, Raff MC, Gaese F, Bartke I, Dechant G (1994) A crucial role for neurotrophin-3 in oligodendrocyte development. Nature 367: 371-375.
  76. Oppenheim RW, Yin QW, Prevette D, Yan Q (1992) Brain-derived neurotrophic factor rescues developing avain motorneurons from cell death. Nature 360: 755-757.
  77. Sendtner Holtmann B, Kolbeck R, Thoenen , Barde Y-A (1992) Brain-derived neurotrophic factor prevents the death of motorneurons in newborn rats after nerve section. Nature 360: 757-759.
  78. Henderson CE, Camu W, Mettling C, Gouin A, Poulsen K (1993) Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363: 266-270.
  79. Hofer MM, Barde Y-A (1988) Brain-derived neurotrophic factor prevents neuronal death in vivo. Nature 331: 261-262.
  80. Arenas E, Persson H (1994) Neurotrophin-3 prevents the death of adult central noradrenergic neurons in vivo. Nature 367: 368-371.
  81. Hyman C, Hofer MM, Barde Y-A, Juhasz M, Yancopoulos GD (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350: 230-232.
  82. Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294: 1945-1948.
  83. Snider WD (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77: 627-638.
  84. Minichiello L, Klein R (1996) TrkB and TrkC neurotrophin receptors cooperate in promoting survival of hippocampal and cerebellar granule neurons. Genes Dev 10: 2849-2858.
  85. Liu X, Jaenisch R (2000) Severe peripheral sensory neuron loss and modest motor neuron reduction in mice with combined deficiency of brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin4/5. Dev Dyn 218: 94-101.
  86. Alcantara S, Frisen J, del Rio JA, Soriano E, Barbacid M (1997) TrkB signaling is required for postnatal survival of CNS neurons and protects hippocampal and motorn neurons from axotomy-induced cell death. J Neurosci 17: 3623-3633.
  87. Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76: 1001-1011.
  88. Liu X, Ernfors P, Jaenisch R (1995) Sensory but not motor neuron deficits in mice lacking NT4 and BDNF. Nature 375: 238-241.
  89. Ma L, Harada T, Harada C, Romero M, Hebert JM (2002) Neurotrophin-3 is required for appropriate establishment of thalamocortical connections. Neuron 36: 623-634.
  90. Silos-Santiago I, Fagan AM, Garber M, Fritzsch B, Barbacid M (1997) Severe sensory deficits but normal CNS development in newborn mice lacking TrkB and TrkC tyrosine protein kinase receptors. Eur J Neurosci 9: 2045-2056.
  91. Altar CA, Cal N, Bliven T, Juhasz M, Conner JM (1997) Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389: 856-860.
  92. Morisato D (2001) Spätzle regulates the shape of the Dorsal gradient in the Drosophila embryo. Development 128: 2309-2319.
  93. Klein R, Smeyne RJ, Wurst W, Long LK, Auerbach BA (1993) Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75: 113-122.
  94. Oppenheim RW, Houenou LJ, Johnson JE, Lin L-FH, Li L (1995) Developing motor neurons rescued from programmed cell death and axotomy-induced cell death by GDNF. Nature 373: 344-346.
  95. Halfon MS, Hashimoto C, Keishishian H (1995) The Drosophila Toll gene functions zygotically and is necessary for proper motorneuron and muscle development. Dev Biol 169: 151-167.
  96. Landgraf M, Thor S (2006) Development of Drosophila motorneurons: specification and morphology. Semin Cell Dev Biol 17: 3-11.
  97. Landgraf M, Baylies M, Bate M (1999) Muscle founder cells regulate defasciculation and targeting of motor axons in the Drosophila embryo. Curr Biol 9: 589-596.
  98. Cash S, Chiba A, Keshishian H (1992) Alternate neuromuscular target selection following the loss of single muscle fibers in Drosophila. J Neuroscience 12: 2051-2054.
  99. Sink H, Whitington PM (1991) Early ablation of target muscles modulates the aroborisation pattern of an identified embryonic Drosophila motor axon. Development 113: 701-707.
  100. Sink H, Rehm EJ, Richstone L, Bulls YM, Goodman CS (2001) Sidestep encodes a target-derived attractant essential for motor axon guidance. Cell 105: 57-67.
  101. Landgraf M, Sanchez-Soriano N, Technau GM, Urban J, Prokop A (2003) Charting the Drosophila neuropile: a strategy for the standardised characterisation of genetically amenable neurites. Dev Biol 260: 207-225.
  102. Landgraf M, Jeffrey V, Fujioka M, Jaynes JB, Bate M (2003) Embryonic origins of the motor system: motor dendrites form a myotpic map in Drosophila. PLoS Biology 1: 221-230doi:10.1371/journal.pbio.0000041.
  103. Belluardo N, Westerblad H, Mudo G, Casabona A, Bruton J (2001) Neuromuscular junction disassembly and muscle fatigue in mice lacking neurotrophin-4. Mol Cell Neurosci 18: 56-67.
  104. Keishishian H, Broadie K, Chiba A, Bate M (1996) The Drosophila neuromuscular junction: a model system for studying synaptic development and function. Ann Rev Neurosci 19: 545-575.
  105. Collins CA, DiAntonio A (2007) Synaptic development: insights from Drosophila. Curr Opin Neurobiol 17: 35-42.
  106. Keishishian H, Kim Y-S (2004) Orchestrating development and function: retrograde BMP signaling in the Drosophila nervous system. Trends Neurosci 27: 143-147.
  107. Aberle W, Haghighi AP, Fetter RD, McCabe BD, Magalhaes TR (2002) wishful thinking encodes a BMP Type II receptor that regulates synaptic growth in Drosophila. Neuron 33: 545-558.
  108. McCabe BD, Marques G, Haghighi AP, Fetter RD, Crotty ML (2003) The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39: 241-254.
  109. Rose D, Zhu X, Kose H, Hoang B, Cho J (1997) Toll, a muscle cell surface molecule, locally inhibits synaptic initiation of the RP3 motorneuron growth cone in Drosophila. Development 124: 1561-1571.
  110. Halfon MS, Keishishian H (1998) The Toll pathway is required in the epidermis for muscle development in the Drosophila embnryo. Dev Biol 199: 164-174.
  111. Chevrel G, Hohlfeld R, Sendtner M (2006) The role of neurotrophins in muscle under physiological and pathological conditions. Muscle Nerve 33: 462-476.
  112. Sossin WS (2006) Tracking the evolution and function of the Trk superfamily of receptor tyrosine kinases. Brain Behav Evol 68: 145-156.
  113. Gangloff M, Weber ANR, Gibbard RJ, Gay NJ (2003) Evolutionary relationships, but functional differences, between the Drosophila and human Toll-like receptor families. Biochem Soc Trans 31: 659-663.
  114. Tauszig S, Jouanguy E, Hoffmann JA, Imler J-L (2000) Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc Natl Acad Sci U S A 97: 10520-10525.
  115. Means TK, Golenbock DT, Fenton MJ (2000) Structure and function of Toll-like receptor proteins. Life Sci 68: 241-258.
  116. Mattson MP, Meffert MK (2006) Roles for NF-[kappa]B in nerve cell survival, plasticity, and disease. Cell Death Differ 13: 852-860.
  117. Memet S (2006) NF-[kappa]B functions in the nervous system: from development to disease. Biochem Pharmacol 72: 1180-1195.
  118. Freudenthal R, Romano A (2000) Participation of Rel/NF-[kappa]B transcription factors in long-term memory in the crab Chasmagnathus. Brain Res 855: 274-281.
  119. Moroz LL, Edwards JR, Puthanveettil SV, Kohn AB, Ha T (2006) Neuronal transcriptome of Aplysia: neuronal compartments and circuitry. Cell 127: 1453-1467.
  120. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J (2007) Sea anemone genome reveals ancestral eumetazoan repertoire and genomic organization. Science 317: 86-84.
  121. Hemmrich G, Miller DJ, Bosch TCG (2007) The evolution of immunity: a low-life perspective. Trends Immunol 28: 449-454.
  122. Denes AS, Jekely G, Steinmetz PR, Raible F, Snyman H (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129: 277-288.
  123. Arendt D, Denes AS, Jekely G, Tessmar-Raible K (2008) The evolution of nervous system centralization. Philos Trans R Soc Lond B Biol Sci 363: 1523-1528.
  124. Coen E (1999) . The art of genes: how organisms make themselvesOxford University Press. Oxford.
  125. Jacob F (1977) Evolution and tinkering. Science 196: 1161-1166.
  126. Mizuguchi K, Deane CM, Blundell TL, Overington JP (1998) HOMSTRAD: a database of protein structure alignments for homologous families. Protein Sci 7: 2469-2471.
  127. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779-815.
Preview of Small Regulatory RNAs May Sharpen Spatial Expression Patterns
Small Regulatory RNAs May Sharpen Spatial Expression Patterns
Uploaded: Apr 29, 2008
Views: 1480
submitted by: apryl