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ABSTRACT 
 
 
 
Two models of a double cardan joint driveline are presented in this study. A simple analytical 
model is derived using a multibody dynamics formulation. Another model, which is 
implemented in a commercial multibody dynamics software application, includes non-linear 
descriptions of bearing forces in cardan joints. Both include descriptions of the flexibility of the 
intermediate shaft. These models are used in a co-simulation with a permanent magnet 
synchronous electric motor (PMSM). Mechanical and electrical non-idealities affecting to the 
dynamics of the driveline are studied.  Modeled non-idealities include unequal joint angles, 
incorrect phasing of the cardan joints, bearing clearance and current measurement error in the 
electric motor. The results obtained from two cardan shaft models are compared and a good 
agreement is obtained. The results show that the electric motor tries to correct the transmission 
error caused by the mechanical non-idealities. This in turn leads to fluctuating torque and 
undesirable dynamic loads. 
 
 
 
 
 
 

1 INTRODUCTION 

 

The cardan joint, also known as the Hooke’s joint or universal joint has been widely used in 

industrial applications and in automobile drivelines. The cardan coupling is used to connect two 

intersecting shafts, however, the angular velocity ratio of the two shafts is not constant. The 

velocity relationship is a function of the joint angle and the rotation angle of the driver. Usually, 

two cardan joints are connected in such a way that the uneven velocity ratio of the first coupling 

is cancelled out by the second. However, velocity the intermediate shaft in a double cardan joint 

driveline is not constant.   

 

Fischer and Paul [1] studied velocity ratios of a double cardan joint both analytically and 

experimentally. They found that the relative phase angle is the most important variable affecting 

to the input-output displacement relationship of the double cardan shaft. The relative phase angle 

is defined as follows: If we consider two planes, one is the plane formed by the input and 

intermediate shafts and another is formed by output and the intermediate shafts. The angle 

between these two planes is called the angle of twist. The phase angle is the angle between two 

yokes on the intermediate shafts. The relative phase angle is the difference between the phase 

angle and the angle of twist. Fischer and Paul concluded that the fluctuations in input and output 

displacements vanish when the joint angles of two joints are equal and the relative phase angle is 



 
 

3

set to zero. When the two joint angles are unequal some fluctuation will exist. However, the 

fluctuation is minimized when the relative phase angle is zero. Sheu et al. [2] studied joint 

bearing friction in the universal joints. They found that the intermediate shaft of the double 

cardan joint suffers from bending moments induced by joint friction and velocity fluctuations in 

the joints. These factors distort the linear relationship between the input and output shafts, even 

if the joint angles are equal. Fischer and de Waal [3] studied experimentally axial forces in the 

intermediate joint. They mounted strain gages on the surfaces of the yoke arms. They found that 

torque causes inward bending of the yoke arms and increasing speed causes them to bend 

outward. As a result, bending of the yoke arms causes non-negligible axial forces to the cardan 

joint. Brutti et al. [4] derived a closed form solution for the torque analysis of the double cardan 

joint. Their model included masses and mass moments of inertia of the links. The effect of 

flexibility of the intermediate shaft was studied using multibody approach. They concluded that 

within normal conditions, the effect of elasticity on the input torque is small. However, at higher 

speed, there is significant difference between the results obtained from rigid and flexible models. 

 

In this paper, dynamics of a double cardan joint is studied together with the model of permanent 

magnet synchronous motor. Two models of the double cardan joint driveline are presented and 

the results obtained from them are compared. This paper is organized as follows: in section 2 two 

different cardan shaft models are introduced. Simulation results are presented in section 3. 

Finally, summary and conclusions are drawn in section 4. 

 

2 DOUBLE CARDAN SHAFT MODELS 

 

Two models of double cardan joint driveline are presented in this section. The first one is a 

simple analytical model that can be implemented in a mathematic program, such as 

Matlab/Simulink. The second model is implemented in a commercial multibody software 

application (MSC.ADAMS) and this model includes nonlinear descriptions of the bearing forces 

in the universal joint. The intermediate shaft of the driveline is modeled as flexible in both 

models; however, the different approaches are used in these models. 
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2.1 Analytical Model of the Double Cardan Joint Driveline 
The model of a cardan driveline is shown in Figure 1. The model consists of four parts that are 

described by mass moments of inertia (Ji). Each part have one rotational degree-of-freedom (qi). 

Therefore, the vector of generalized coordinates can be written as  

[ ]1 2 3 4
Tq q q q=q  (1) 

By using Lagrange’s equation, the system equation of motion can be written as follows [5] 
T

e f+ = +qMq C λ Q Q , (2) 

where M is the mass matrix, qC  is the constraint Jacobian matrix, λ  is the vector of Lagrange 

multipliers, eQ  is the vector of elastic forces and fQ  is the vector of external forces.  
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Figure 1. Double cardan joint model. 

 

The mass matrix of the system can be written as follows 

1

2

3

4

0 0 0
0 0 0
0 0 0
0 0 0

J
J

J
J

 
 
 =
 
 
  

M . (3) 

Kinematical constraints of the Hooke joints can be written as [6] 

1 1
1 2

1

tan: tan 0
cos

qC q
β

−  
− = 

 
 (4) 

1 3
2 4

2

tan: tan 0
cos

qC q
β

−  
− = 

 
 (5) 
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The constraint Jacobian matrix is obtained by differentiating the constraint equations with 

respect to the generalized coordinates 

∂
=
∂q
CC
q

 (6) 

In this case, the constraint Jacobian matrix can be written as follows 

( )

( )

1
2 2

1 1

2
2 2

3 2

cos 1 0 0
cos cos 1 1

cos0 0 1
cos cos 1 1

q

q

β
β

β
β

 − − + =  
− 

− +  

qC  (7) 

Vector of elastic and damping forces can be written as 

( ) ( )

( ) ( )
2 3 2 3

2 3 2 3

0 0

0 0

T
e T T

T
T T

k q q k q q

c q q c q q

φ φ = − − + − + − 

 − − − + 

Q
 (8) 

where Tk  and Tc  are the torsion spring and damping constants and the angle φ  is the phase 

angle between the joints in the intermediate shaft. When the phase angle is 90°, the double 

cardan joint driveline operates as a constant velocity coupling. Physically this means that the 

angle between the yokes in the intermediate shaft is 0°. The torsion spring constant can be 

written as 

xx
T

GIk
L

=  (9) 

where G is the modulus of the rigidity of the material, xxI  and L are the torsion constant and the 

length of the shaft, respectively. 

 

Equation (2) represents the dynamic equations of the constrained system. These equations are 

nonlinear and a closed-form solution is often difficult to obtain. The equations can be solved as 

follows. First, the constraint equations are differentiated twice with respect to time [5] 

( ) 2tt t= − − −q q q qC q C C q q C q  (10) 

When the constraints are not dependent on time, Equation (10) can be written as  

( )= −q q qC q C q q  (11) 

By defining the vector cQ  as  

 ( )c = = −q q qQ C q C q q  (12) 

For a double cardan joint driveline the vector cQ  can be written as follows 
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( )
( )( )

( )
( )( )

2
1 1 1 1 1

2
2 2

1 1

2
3 3 2 2 3

2
2 2

3 2

2sin cos cos cos 1

cos cos 1 1

2sin cos cos cos 1

cos cos 1 1

c

q q q

q

q q q

q

β β

β

β β

β

 −
 
 − +
 =  − 
 − +  

Q  (13) 

Equations (2) and (12) can then be combined to one matrix equation as  
T

e f

c

  +  
=    

     

q

q

Q QqM C
QλC 0

 (14) 

The acceleration vector and the vector of Lagrange multipliers can then be solved from Equation 

(14). It must be noted that degrees of freedom in the above mentioned model could be easily 

increased by defining more parts and spring forces that connect them. By this way, more torsion 

modes could be described. This analytical model can describe the effect of unequal joint angles 

and incorrect phasing of the joints.  

 

2.2 ADAMS Model of the Double Cardan Joint Driveline 

In the ADAMS model, the input and output shafts are connected to ground with revolute joints. 

The model of the joints and modeling of flexible intermediate shaft is described in following 

sections. 

 

Model of the Universal Joint 

Mathematical models of universal joints are available in commercial multibody dynamics 

software applications. However, these joints are ideal and described using constraint equations. 

Thus, non-idealities of the joint, caused by the manufacturing errors or bearing clearance, are not 

possible to take into account. In order to model the non-idealities of the universal joint, the yokes 

and the cross are modeled separately as shown in Figure 2. The bearings between the yokes and 

the cross part are described with non-linear contact forces. 
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Figure 2. Universal joint modeled with rigid bodies and bearing forces. 

 
The contact force of a bearing is described as a cylinder-in-cylinder contact shown in Figure 3. 

The coordinate system of the bearing is defined as follows: Z-coordinate is oriented along 

bearing axis and X- and Y-coordinates are oriented in radial direction. The radial contact force 

affecting to the shaft is a function of the contact penetration and the penetration velocity and it 

can be described as follows 

( ) ( , ,0, , )
1.0 max

0.0

e
r d r d r

r
K e c step e c d C e

F
 − + ⋅

= − ⋅ 


 (15) 

where K and C are the stiffness and damping constants of the contact and e is the exponent of the 

force-deflection relationship. Radial displacement re  and velocity re  between the shaft and 

sleeve can be obtained from the displacements along X and Y axes as follows 

2 2
r x ye e e= +  (16) 

 
2 2

2 2

2
x x y y

r

x y

e e e e
e

e e

+
=

+
 (17) 

Clearance in the bearing, dc , is obtained from radiuses of the cylinders as follows 

dc R r= −  (18) 
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Figure 3. Cylinder-in-cylinder contact. 

 

To prevent a discontinuity in the damping force at contact, the damping coefficient is a cubic 

step function of the penetration. Thus, at zero penetration, the damping coefficient, C, is always 

zero. The parameter d in Equation (15) is the radial displacement re  when a maximum damping 

coefficient value is achieved. The step function approximates the Heaviside step function with 

cubic polynomials. It is continuous for first derivatives and it is defined as  

0 0
2

0 0 1 1 0 0 1

1 1

;
( , , , , ) (3 2 ) ;

;

h g g
step g g h g h h h g g g g g

h g g

≤
= + ∆ ⋅∆ − ∆ < <
 ≥

 (19) 

where 01 hhh −=∆ and 0

1 0

g gg
g g
−

∆ =
−

. The variable g is the independent variable, 0g and 1g  are 

the beginning and ending values of the step. Correspondingly, 0h  and 1h  are the initial and final 

value of the function.  

 

The radial contact forces in X and Y directions are obtained as follows 

cosx rF F θ=  (20) 

siny rF F θ=  (21) 

where the attitude angle θ  is defined as 

1tan y

x

e
e

θ −  
=  

 
 (22) 

An axial force, Fz, in the bearing is described by linear spring-damper force. The model of the 

universal joint contains three rigid bodies that are connected with four bearing forces. The joint 

module is attached to shafts with fixed joints. 
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Flexible Intermediate Shafts 

In the ADAMS model, the flexibility of the intermediate shaft is described using a floating frame 

of reference formulation [5]. In this method, a body reference frame describes rigid body motion 

and linear elastic deformation is described relative to this frame. Deformation of the body is 

described by superposition of the vibration modes that are obtained from a finite element 

solution. By using a technique described in the references [7, 8], a set of Craig-Bampton modes 

is solved in the ANSYS [9] finite element code. At first, a set of fixed interface modes and static 

correction modes are extracted from the FE-model of the part. This set of modes is then 

orthonormalized and a set of approximate free-free modes and boundary modes is obtained. 

 

Two types of intermediate shafts are used in this study, one with solid circular cross-section and 

another with hollow circular (i.e. tube) cross-section. Normally straight shafts could be modeled 

conveniently with beam elements. However, the ADAMS implementation of the floating frame 

of reference formulation uses lumped mass formulation, in which nodal inertias are neglected. 

As a result, the rotational inertias are lost when beam elements are used. That is why a solid 

circular cross-section is modeled with solid elements and a tubular cross-section is modeled with 

shell elements. By using a dense finite element mesh, the rotational inertias of the body are 

obtained with a sufficient accuracy. Finite element models of the intermediate shafts are shown 

in Figure 4. Note that a spider-web mesh of stiff beam elements is used to connect the 

attachment nodes to surrounding nodes. 

 

 
Figure 4. ANSYS finite element models of the intermediate shafts. 
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3 SIMULATION RESULTS 

 

3.1 Verification of the Analytical Double Cardan Joint Driveline Model 
The analytical double cardan joint driveline model presented in section 2.1 is verified with a 

corresponding ADAMS model, which consists of four parts that are connected with ideal 

Hooke’s joints and a spring force. Rotational inertias of the shafts are: {J1, J2, J3, J4}={1.8069e-

004, 2.0679e-004, 2.0679e-004, 0.5002} kgm2 and the torsion spring constant, kT, is 

1.5914e+004 Nm/rad. The damping constant, cT, is selected to be 1.5914e+002 Nms/rad. Motor 

torque is defined with the help of the step function (see Equation 19) as follows 

{ }10 ( ,0,0,1.5,1) ( ,1,0,3, -1)T step time step time= ⋅ +  (23) 

Simulation results are presented in Figures 5 and 6. It can be seen that the agreement between the 

Matlab/Simulink and ADAMS results is excellent. Small discrepancies in the results are 

probably caused by different types of numerical integrators. Numerical integrator types and their 

parameters are shown in Table 1. 

 

 
Figure 5. Comparison of Matlab/Simulink and ADAMS models when the joint angles are β1=17° 

and β2=15° and the phase angle is φ=90°. 
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Figure 6. Comparison of Matlab/Simulink and ADAMS models when the joint angles are β1=15° 

and β2=15° and the phase angle is φ=91°. 

 

Table 1. Numerical integration parameters. 

 Simulink ADAMS 
Integrator ode15s Gear stiff 
Maximum time step 1.0e-3 sec 1.0e-3 sec 
Error tolerance 1.0e-4 1.0e-4 
Maximum order 5 6 
 

3.2 Effect of Mechanical Non-idealities on Cardan Transmission Error 
Mechanical non-idealities of the double cardan joint driveline are studied in this section. Studied 

structure is shown in Figure 7. Two universal joints are modeled as described in section 2.2. The 

motor is driven by a velocity constraint, which could be thought as an ideal motor with unlimited 

power capacity. For that reason, a very flexible coupling is positioned between the motor and 

input shaft. 

 

Flexible Intermediate shaft

D=32 mm, L=450 mm

2β
1β

Load J=1.2 kgm2

Constant Friction 
Torque is  5 Nm

Motor J=5.8e-2 kgm2

(Driven by a velocity 
constraint)

Flexible coupling
KT=100 Nm/rad

Bearing contacts 
in universal 

joints
 

Figure 7. Cardan driveline model. 
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All parts are made of steel (E = 2.07E+11 N/m2, ν = 0.3, ρ = 7801 kg/m3). A total of 15 vibration 

modes are selected for the intermediate shaft. These modes include 6 bending modes, 6 torsion 

modes and 3 longitudinal modes. Frequencies of the selected modes range between 710 Hz and 

24.4 kHz. Contact parameters for the bearings in the universal joints are as follows: 

- Contact stiffness coefficient  K = 500 N/µm 

- Contact damping coefficient  C = 10000 Ns/mm 

- Exponent    e = 1.5 

- Ramp distance   d = 10 µm. 

The natural frequency of the lowest torsion mode of the system is 19 Hz. The effect of 

mechanical non-idealities is studied in the following cases: 

- CASE 1:  A reference case, only bearing contacts and the flexibility of the intermediate 

shaft are included. 

- CASE 2:  Misalignment between the input and output shaft is 0.5º. 

- CASE 3:  The phase angle between the yokes in the intermediate shaft is 0.5º i.e. φ = 

90.5º. 

- CASE 4:  All bearings in the universal joints have radial clearance of 20 µm. 

- CASE 5:  Unbalance mass of 50.0 g is attached in the middle of the intermediate shaft 

and at the radius of 16 mm. 

- CASE 6:  The cross part of the output universal joint has a manufacturing error. The 

centroids of the cross-pins are offset by a distance of 50 µm and, thus, cross-

pin axes do not intersect in a common point. 

- CASE 7:  Misalignment between the input and output shaft is 0.5º and the bearings have 

a radial clearance of 20 µm. 

In all cases the driveline is accelerated from 0 Hz to 15 Hz in 5 seconds and the analysis is 

continued for 5 more seconds at constant speed. Furthermore, all analyses are run with joint 

angles of 10 and 20 degrees. 

 

Difference of the rotation speed between the input and output shaft as well as driven torque are 

used as a measure of cardan driveline transmission error. Spectrum of the input-output speed 

difference in the constant speed range (5-10s) is shown in Figure 8. The spectrum of the CASE 2 

contains peaks at frequencies of even integer multiples of the rotation speed  (2X, 4X, 6X, …). 

However, the amplitudes of the higher harmonics are negligible compared to 2X vibration. For 

this reason, the amplitude of 2X vibration is selected to be a measure of cardan transmission 

error. The 2X amplitudes of speed difference in different cases are shown in Figure 9 and the 
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corresponding amplitudes of driven torque are shown in Figure 10. It can be seen that the 

unequal joint angles (CASE 2) cause the most severe vibration. Also the phasing of the joints is 

important and the second highest amplitudes are found in CASE 3. Bearing clearance in the 

universal joints increases 2X vibration, but the spectrum contains also other frequencies and the 

level of vibration is increased (see Figure 8). Unbalance of the intermediate shaft (CASE 5) and 

manufacturing error of the cross part (CASE 6) does not have any effect on torsion vibrations of 

the driveline. 

 

 
Figure 8. Spectrum of input-output speed difference in Cases 2 and 4. 
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Figure 9. Vibration amplitudes at the frequency of 30 Hz (2X). 

 

 
Figure 10. Driving torque amplitudes at the frequency of 30 Hz (2X). 

 

3.3 Co-simulations of Electrical-Mechanical System 
Results of coupled electrical-mechanical simulations are presented in this section. The electric 

motor in this study is a permanent magnet synchronous motor (PMSM). The equations of the 

motor model can be found in reference [10]. The mechanical system is a double cardan joint 

driveline with a flexible intermediate shaft. Simulations are performed both in ADAMS and 

Matlab/Simulink and the obtained results are compared. In the ADAMS model (Figure 11), the 
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PMSM drive is described as a c-coded subroutine, which is created from the Simulink model of 

the PMSM using Real-Time Workshop [11]. In the Matlab/Simulink simulations the mechanical 

system is described as presented in section 2.1. Common parameters for both models are listed in 

Table 2 and parameter variations in the simulation cases are shown in Table 3. Cases I-IV are 

analyzed in both programs, but case V is analyzed only in ADAMS, since the bearing clearance 

is not included in the analytical model of the cardan driveline. In the ADAMS model, 7 vibration 

modes are selected for the intermediate shaft. These modes include 4 bending modes, 2 torsion 

modes and 1 longitudinal mode. Frequencies of the selected modes range between 3.4 kHz and 

14.8 kHz. Contact parameters for the bearings in the universal joints are the same as listed on 

page 19. A discrete integrator is used in Simulink and Gear stiff integrator is used in the 

ADAMS. Time step for both integrators is 12.5 µs. 

 

 

Figure 11. The ADAMS model of the cardan driveline and PMSM. 

 

Table 2. Parameters used in both models.  

Moments of inertia  
{J1, J2, J3, J4} 

{0.9962, 0.0025, 
 0.0025, 23.93} kgm2 

Intermediate shaft outer diameter, 
wall thickness and length 

0.0635 m, 0.0040 m, 
0.2140 m 

Material properties of the parts:  
Young Modulus E 2.07E+011 N/m2 

Poisson’s ratio  0.3 
Density 7801 kg/m3 
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Table 3. Parameter variations in the coupled electrical-mechanical simulations.  

Simulation 
case 

Joint angle 
1β [deg] 

Joint angle  
2β [deg] 

Phase angle  
φ  [deg] 

Bearing 
clearance 

dc  [µm] 

Current 
measurement 

offset [%] 
Case I 15 17 90 0.0 0.0 
Case II 15 15 92 0.0 0.0 
Case III 15 15 90 0.0 2.0 
Case IV 15 17 92 0.0 2.0 
Case V 15 15 90 50.0 2.0 

 

The torque of the electric motor and the angular velocities of the shafts in CASE I are presented 

in Figure 12.  The results obtained from ADAMS and Simulink model are in good agreement. 

Amplitudes of the torque and velocity fluctuations are almost equal, however, some phase shift 

can be observed. In the ADAMS model, flexibility of the intermediate shaft is described with 

seven modes and the model includes also the bearing deformation. Therefore, the ADAMS 

model is more flexible than the Simulink model. The effect of nonlinear bearing forces can be 

seen in Figure 13, where the angular velocity of the motor at constant reference speed is shown. 

The angular velocity of the motor is not harmonic in the ADAMS model. The control system of 

electric motor attempts to compensate the cardan driveline error, which results in a fluctuating 

torque. 

 

 

 
Figure 12. Torque and angular velocities in the CASE I. 



 
 

17

 

 
Figure 13. Angular velocity of the motor in the CASE I. 

 

The torques of the electric motor in cases II-V are shown Figure 14 and the angular velocities of 

the shafts in the corresponding cases are shown in Appendix I. It can be seen that the current 

measurement error causes vibrations at higher frequency than the mechanical non-idealities. 

Because of that, these two excitations do not have a dynamical interaction. The effect of the 

bearing clearance on the torque vibration is small, as can be seen when comparing the results in 

cases III-V. 

 

 

 
Figure 14. Motor torques in cases II-V. 
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4 CONCLUSIONS 

 

Two models of the double cardan joint driveline are presented in this study. An analytical model 

of the driveline is derived using Lagrange’s equation and universal joint constraints are described 

using Lagrange multipliers. The flexibility of the intermediate shaft is described with two masses 

connected by a spring-damper force. Another model of the driveline is created using a 

commercial multibody system software application. This model includes descriptions of 

universal joint bearings forces and the elasticity of the intermediate shaft is described using 

vibration modes of the shaft. Simulation results between these models are compared and a good 

agreement is obtained. 

 

Coupled electrical-mechanical analysis of the driveline is performed with a model of permanent 

magnet synchronous motor (PMSM). The effect of mechanical and electrical non-idealities to the 

torsion vibration of the driveline is studied with several simulations. The non-idealities include 

non-ideal cardan joint angles, incorrect phasing of the joints, bearing clearance in the joints and 

current measurement offset. The simulation results show that the control system of the electric 

motor tries to compensate the mechanical transmission error of the double cardan joint driveline. 

This in turn leads to fluctuating torque, which could be avoided either by using a slow control 

algorithm or by taking the angular velocity of the load into account. In the studied system, the 

excitation frequencies of the mechanical and electrical systems do not coincide. However, this is 

not always the case.  
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APPENDIX I. Angular velocities of the shafts. 
 

 

 
Figure A. 1. Angular velocities of the motor in cases II-V. 

 

 

 
Figure A. 2. Angular velocities of the intermediate shaft in cases II-V. 
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Figure A. 3. Angular velocities of the load in cases II-V. 
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