Auton Robot (2006) 20:165-177
DOI 10.1007/s10514-006-6475-7

Multimode locomotion via SuperBot reconfigurable robots

Wei-Min Shen - Maks Krivokon - Harris Chiu -
Jacob Everist - Michael Rubenstein -
Jagadesh Venkatesh

Published online: 22 April 2006
(© Springer Science + Business Media, LLC 2006

Abstract One of the most challenging issues for a self-
sustaining robotic system is how to use its limited resources
to accomplish a large variety of tasks. The scope of such
tasks could include transportation, exploration, construc-
tion, inspection, maintenance, in-sifu resource utilization,
and support for astronauts. This paper proposes a modular
and reconfigurable solution for this challenge by allowing
a robot to support multiple modes of locomotion and select
the appropriate mode for the task at hand. This solution re-
lies on robots that are made of reconfigurable modules. Each
locomotion mode consists of a set of characteristics for the
environment type, speed, turning-ability, energy-efficiency,
and recoverability from failures. This paper demonstrates a
solution using the SuperBot robot that combines advantages
from M-TRAN, CONRO, ATRON, and other chain-based
and lattice-based robots. At the present, a single real Super-
Bot module can move, turn, sidewind, maneuver, and travel
on batteries up to 500 m on carpet in an office environment.
In physics-based simulation, SuperBot modules can perform
multimodal locomotions such as snake, caterpillar, insect,
spider, rolling track, H-walker, etc. It can move at speeds of
up to 1.0 m/s on flat terrain using less than 6 W per module,
and climb slopes of no less 40 degrees.

Keywords Modular - Multifunctional and
Self-reconfigurable robots - Space robots - Multimode gaits

W.-M. Shen (<) - M. Krivokon - H. Chiu - J. Everist -
M. Rubenstein - J. Venkatesh

Information Sciences Institute and Computer Science
Department, University of Southern California

1. Introduction

Multimode locomotion is an essential ability for any self-
sustaining robotic system. Many tasks, such as transporta-
tion, assembly, and exploration, require a robot to travel
through terrains that may not be fully characterized ahead of
time. In such cases, a robot must use different moving modes
in different environments. For example, a robot must “climb”
if it is to go up a slope, must “run” if it is to cover more dis-
tance with less energy, must “balance” if the terrain is rugged
and uneven, and must “get up on its feet” if it fell down by
mistake. We call such an ability multimode locomotion.

To support multimode locomotion, a robot must have at
least four capabilities. First, it must be able to perform dif-
ferent locomotion modes. Second, it must be able to recover
from unexpected locomotion failures. Third, it must be able
to shift from one mode to another. Finally, it must be able to
choose the correct mode for the correct environment. This
paper will focus on the first and the second topic and we will
leave the third and fourth for a future paper. Specifically,
this paper is to propose a concept and a system for how a
single robot system can perform as many locomotion modes
as possible (run, climb, fly, jump, reach, crawl, etc.).

It is a great challenge for a single robot to achieve mul-
timode locomotion because the robot must simultaneously
satisfy two competing and even conflicting criteria. On the
one hand, the robot must be as general as possible so that
it can deal with many types of environments and difficult
tasks. On the other hand, the robot must be as specialized
as possible so that it can achieve goals (such as speed and
distance) with greater efficiency.

Over the past decades, it has been shown to be very hard
for a conventional robotic system to achieve both criteria,
since in such systems optimization of one criterion inevitably
leads to deterioration of the other. For example, improving

) Springer

166

Auton Robot (2006) 20:165-177

efficiency of locomotion on particular terrain type leads to
decreased efficiency on other terrain types and therefore low-
ers the generality of the robot.

Reconfigurable and modular robotic systems provide a
new approach to this challenge and allow simultaneous op-
timization on both criteria. Generality is inherent in design
of such systems because modules can form different con-
figurations. Thus, improvements in individual modules con-
tribute to efficiency of all configurations and behaviors, while
improvements in a particular configuration/behavior do not
affect negatively on other configurations/behaviors.

This paper demonstrates a case study of multimode loco-
motion with a reconfigurable modular robot called SuperBot.
The SuperBot robot demonstrates a diverse set of locomotion
modes, which will enable the robot to traverse in different
types of environment with non-deteriorating efficiency. The
advantages of SuperBot modules include the integrated ca-
pability of chain-based and lattice-based robots, the full set
of locomotion primitives (moving and turning) of any single
module, the maneuverability and reconfigurability from any
initial configuration with single or multiple modules, and the
recoverability from unexpected failures in unknown environ-
ments. It also uses a totally distributed control method for
locomotion and reconfiguration that is capable of support-
ing arbitrary reconfiguration of modules from one mode to
another.

The multimode locomotion of SuperBot is demonstrated
in both real world and simulation. In reality, a single Super-
Bot module can move, turn, sidewind, maneuver with other
gaits, and travel on batteries up to 500 m on carpet in an
office environment. In physics-based simulation, SuperBot
modules can support many different locomotion modes (such
as rolling track, snake, caterpillar, insect, spider, H-walker,
etc.). Some of these modes are energy-efficient (less than
6 W per module), some can recover from falling down on
unknown terrain, and others can move at speeds up to 1.0 m/s
on flat terrain or climb slopes that are no less than 40 degrees.

The rest of the paper is organized as follows. Section 2
describes the related work on multimode locomotion. Sec-
tion 3 presents the design of SuperBot modules. Section 4
describes the physics-based simulation in detail. Section 5
presents a set of multimode locomotions and describes their
characteristics. Section 6 concludes the paper with future
work and acknowledgements.

2. Related work

Existing reconfigurable robots can be classified into two
general categories: the lattice-based and the chain-based re-
configurable robots. The distinct mechanical feature of a
lattice-based robot is that a module is designed to reach only
its adjacent modules. Examples of such robots include 3D

2 Springer

Fracta (Moruta et al., 1998), Molecule (Kotay et al., 1998), I-
Cubes (Unsal et al., 2001), ATRON (Jorgensen et al., 2004),
Molecube (Lipson et al., 2005), etc. Such a design makes re-
configuration simple but relies on an assumption that neigh-
boring modules are always aligned and docking can be done
without alignment. For locomotion, such a robot will “flow”
its modules on top of each other and several algorithms have
been demonstrated in simulation (Butler et al., 2002). How-
ever, the assumption for automatic-alignment may not be
always true in reality. Two neighboring modules may not be
able to dock because uncertainties among modules in a large
configuration could accumulate and become large enough
to prevent neighboring modules from docking to each other
without active alignment. Similarly, the flow-style locomo-
tion may face the same problem when the size and distribu-
tion of obstacles in the environment do not match the lattice
grid of the robot. Furthermore, the flow-style locomotion
is extremely slow and inefficient because the movement of
the robot is accomplished as a side effect of many dock-
ing and undocking between modules. For example, for a
robot of N modules in a snake configuration to move for-
ward for a distance of one module, it would require N + 2
docking/undocking operations. Because of these reasons, the
flow-style movement for lattice-based robots is not yet prac-
tical at the present time.

On the other hand, the chain-based modules have me-
chanical features that are designed to support efficient gaits
and offer flexible reconfigurations. Each module can bend its
body to form shapes with arbitrary angles and align modules
to dock. The alignment of docking would require modules
to have sensors and to control their movements based on
the sensor information. Chain-based modules are also ef-
ficient for locomotion because the modules can bend their
shapes to accomplish movement. For example, modules in
a snake-shaped robot can bend themselves in coordination
to move. Many such locomotion modes have already been
demonstrated. A PolyBot (Yim et al., 2003) rolling track can
run for 500 m on batteries and can climb stairs and fences;
a M-TRAN robot (Kamimura et al., 2003) can move as a
rolling track, H-walker, snake, caterpillar, and others; and a
CONRO robot (Shen et al., 2002) can move as snake, cater-
pillar, insect, spiders, and others.

Although many case studies in locomotion for chain-
based robots are already in place, no systematic study of
locomotion modes has been done before. As a result, no ex-
isting reconfigurable robot possesses all the necessary fea-
tures that would allow a robot to move in an arbitrary con-
figuration. For example, a M-TRAN robot cannot turn if its
current configuration does not contain any “helper” mod-
ules. A Polybot robot cannot survive a dynamic reconfigu-
ration without reloading software. A CONRO robot cannot
bend its module flexibly into a 180° U-shape, and as a re-
sult, it requires more modules to perform certain locomotion

Auton Robot (2006) 20:165-177

167

Connector (left)

N

Connector (up) l

Connector (front)

Connector (down)

Fig.1 The mechanical design of a SuperBot module

modes (such as rolling tracks) than other robots. In addition
to the above disadvantage, most existing robots cannot re-
cover from unexpected failures without reconfiguration. For
example, if a rolling track of M-TRAN, Polybot, or CONRO
modules falls down, it will not be able to stand up and run
again without rearranging their configuration.

3. The design of SuperBot modules

The SuperBot modules described in this paper integrate the
necessary features from both M-TRAN and CONRO to ac-
complish multimode locomotion. Shown in Fig. 1, each Su-
perBot module has three joints. The middle joint can me-
chanically rotate continuously in both directions (currently
it is limited by the electronic wires going through the joint),
and the two joints at the end can each rotate 4 90°, re-
spectively. The three joints provide enough flexibility for
a single SuperBot module to act as a gimbal mechanism,
enabling a module to change its shape dynamically and per-

Fig.2 Module shape changing
(M-module and C-module) and
connectors

Connector (back)

h""'"--..
Connector (right) M"“

form locomotion and change its moving directions without
any external assistance.

Shown in Fig. 2, a single SuperBot module can change its
shape dynamically to provide the needed flexibility for the
multimode locomotion and self-reconfiguration. For exam-
ple, by rotating the middle joint for 90°, a single SuperBot
module can transform itself into a M-TRAN shape (called
“M-module”) or a CONRO shape (called “C-module”), re-
spectively. Also shown in Fig. 2, each SuperBot module has
six reconfigurable connectors on the six surfaces of the two
linked cubes to allow connections in any of the six directions
in 3D (front, back, left, right, up, and down). The design
requirements for these connectors include being genderless
so that any connector can dock to any other connector (such
a connector is also necessary for modules to dock with het-
erogeneous devices and tools that use the same connector),
strong mechanical endurance, power sharing, communica-
tion, dock guidance, single-side release mechanism, and re-
liability in rough environments. At the present time, the con-
nectors shown in Fig. 2 are still primitive and require manual

Q Springer

168

Auton Robot (2006) 20:165-177

docking and de-docking, thus all reconfigurations in this pa-
per are done by hand. The details of the connector design
and performance will be described in a separate paper.

Different from all existing reconfigurable modules,
a single SuperBot module can perform many different
gaits (e.g., caterpillar, sidewinder, push-and-pull, etc.) and
turn and flip without any external help. For example, a
M-module can move as a “caterpillar” by bending itself
into a U-shape and then straightening out and perform this
process repeatedly. A C-module can change its moving
directions by twisting its two end joints in rhythm, and
move sideways by performing a “sidewinder” movement. It
can also flip back from side to side to change its orientation
relative to the gravity field. Movies of these movements can
be found at the website http://www.isi.edu/robots/superbot.
With such locomotion abilities, a single SuperBot module
is a miniature robot by itself and can move around and
search for other modules to join and form big robots. If a
module is connected to a thruster with sufficient thrust and
flexible controllability, it can be made to fly in micro-gravity
environments for space applications.

SuperBot modules are designed to be multifunctional
and form robots that have many different configurations and
functionalities. Figure 3 shows some example configurations
formed by multiple modules. Different configurations can
provide different functions. For example, one configuration
may be suitable for tool using, while another may be
used for transportation. When a long chain configuration

Fig. 3 SuperBot configurations
and their potential functions

(possibly with several branches) can serve as a crane to
lift objects with remote control. A configuration with legs
and limbs can climb slopes that are too steep for wheeled
robots. A rolling track or wheel-like configuration can move
efficiently on flat terrain with minor obstacles.

Since the modules can reconnect among themselves, they
can be packaged in a way that is appropriate for transporta-
tion. Once at the destination, they can separate and scatter
themselves to conduct search in a large area, and then later
come back and join together to form different shapes for
different tasks. In the same spirit, modules can also recharge
their batteries by first communicating with a recharging sta-
tion, then going to the station and connecting for recharging.
In addition, the modules can interact with humans to detect
and recover from unexpected failures in their configurations.
For space applications, they can be used as structural com-
ponents of a landing vehicle to planetary surfaces. They then
become an useful tool for loading and unloading or a set of
agile autonomous rovers for other surface operations.

4. Physics-based simulation

A physically accurate simulation of robotic systems pro-
vides a very efficient way of prototyping and verifi-
cation of control algorithms, hardware design, and ex-
ploring system deployment scenarios. It can also be
used to verify the feasibility of system behaviors using

9 Springer

Auton Robot (2006) 20:165-177

169

realistic morphology, body mass and torque specifications for
SEervos.

For SuperBot, we have developed the Galina simulator
to create modules and testing environments as realistically
as possible. It contains collision detection and rigid body
dynamics algorithms for SuperBot modules. It is built upon
an existing open source implementation of rigid body dy-
namics, the Open Dynamics Engine (ODE), and we have
tailored it for the SuperBot robot. ODE was selected for
its popular open-source physics simulation API, its online
simulation of rigid body dynamics, and its ability to de-
fine wide variety of experimental environments and actuated
models.

ODE engine is very flexible in many respects. It allows
user to control many parameters of simulation, such as grav-
ity, Constraint Mixing Force, Error Reduction Parameter,
etc. ODE also does not have any fixed system of measure-
ment units, and therefore accommodates systems of different
scales and ratios that could be more appropriate for a partic-
ular setup. This flexibility however makes it quite difficult
to come up with a set of parameters that result in stable and
adequate simulation environment. We have spent consider-
able time testing different combinations of these settings and
used the experience to produce a tuned simulation that mod-
els most accurately the possible real settings for SuperBot
behaviors. One example of such subtle simulation setting
is definition of friction direction. By default the direction
of friction force that is applied to every body on contact is
not defined and therefore is arbitrary. However, this setting
produced inconsistent locomotion results for a simple chain
configuration of SuperBot modules. Being unconstrained,
the direction of friction was chosen by the engine in arbi-
trary manner, which led to “turning” effects in a caterpillar
movement that was supposed to be straight. These prob-
lems led us to explicitly determine and define direction of
friction force based on contact information for each body,
and it resulted in consistent results for caterpillar and other
locomotion behaviors.

In order to implement multifunctional behaviors of the
SuperBot system in simulation, the morphology of Super-
Bot modules had to be described in a form compatible with
the ODE API. For the purposes of better performance and
stability, the model of SuperBot was simplified to a set of
standard geometrical primitives (such as spheres and cubes)
connected by three degrees of freedom, which were defined
as powered joints. This simplification of changing odd shapes
into standard shapes was necessary to make simulation scal-
able (collision detection with odd shapes are very expensive
in ODE). Since some behaviors we planned to implement
needed a large number of modules and adding more bodies
and degrees of freedom to the simulated environment affects
the performance in a polynomial fashion, we needed simple
shapes for large simulations.

The created geometric morphology model was assigned
dynamic properties that correspond to SuperBot design spec-
ifications. Masses for each body part were assigned values
estimated by mechanical engineers. Degrees of freedom were
limited by maximum torque and speed available from spec-
ifications of servomotors selected to be deployed in each
SuperBot module. To ensure proper interaction of modules
with the simulated environment, friction coefficients were
set to values estimated for materials to be used for module
manufacturing and possible surface materials.

To be capable of producing behaviors with different func-
tionalities, SuperBot modules should be able to dock to each
other forming different complex configuration shapes. In de-
sign specification, SuperBot module has three docking faces
on each side and a docking mechanism that allows consid-
erable tolerance in unknown angle when docking. In the
simulated environment, the docking capability of SuperBot
was implemented in the form of two features. One is the abil-
ity of two modules to be attached to each other and maintain
the relative positions fixed. This was implemented using a
fixed joint that is created, connecting two sides of differ-
ent modules. The second feature is dynamic docking of two
modules when distance and approach angle errors between
their corresponding faces are less than predefined values.
This feature had to be implemented in the form of an ad-
ditional level of collision detection. Space around the dock
faces of each module is simulated to be a virtual sphere body
that can collide with other similar spheres. When collision is
detected, distance and angle between the two faces is com-
puted and compared to error margins. If computed errors are
small enough, a docking event is registered and necessary
simulation changes are introduced before next simulation
step: Namely, a fixed joint is created between correspond-
ing bodies and their docking pseudo spheres are disabled for
collision detection process.

To perform certain functions successfully, a SuperBot
configuration needs the capability of acquiring some
information about itself and its environment. In a real
SuperBot module, this is achieved through sensors. The
most important and simple sensor that is required for almost
all behaviors is the servo position sensor. It is used in many
cases to make decisions if the action is done or which action
should be selected next. In a simulated environment, this
sensor is easily implemented through accessing the current
state of the powered joint and retrieving the angle parameter.
Another sensor that is used often for dynamic locomotion
and detecting abnormal configuration position is a gravity
sensor. Real SuperBot modules are equipped with a three
dimensional accelerometer, readings of which will be accu-
mulated over some time and filtered to determine direction
of gravity. For the purposes of this paper, we did not simulate
noise that is present in real accelerometer readings that
comes from such factors as movement of the module itself,

) Springer

170

Auton Robot (2006) 20:165-177

collisions with other modules, etc. Thus, in the simulated
SuperBot model, the gravity sensor is simplified to a three
dimensional vector in the frame of reference of the module.

The core of every SuperBot behavior is the distributed
control algorithm that determines how modules coordinate
their actions to perform behavior functionality. In reality,
the configuration of SuperBot modules is a distributed sys-
tem that has n independent processors running the same
control program and exchanging messages through the in-
frared or other sensors placed on the dock faces. However
the physics-based simulation runs only on one computer and
executes control programs for each simulated module along
with solving the dynamics equations. Thus, to achieve realis-
tic results, the simulation environment has to emulate concur-
rent execution of control programs for different modules and
the resulting communication issues. Ideally this emulation
should be micro-processor specific, namely the simulation
time of execution for a particular program instruction should
be equivalent to the real time it takes for SuperBot pro-
cessors to process that instruction. This approach however
introduces another level of simulation fidelity, and therefore,
considerable overhead. We have decided to follow a simpler
route and use concurrency mechanisms provided by the oper-
ating system—namely threads—to emulate simultaneously
running modules. Each simulated SuperBot control program
has its own independent thread of execution which runs in an
infinite loop. The physics simulation engine spawns all the
SuperBot threads in the setup routine and then proceeds to
the simulation loop. Each SuperBot thread yields execution
control at the end of its program loop to give control to the
simulation thread which thus has highest execution priority.
This helps to make simulation smooth and reduce CPU load,
since instead of busy waiting, the SuperBot programs go to
“sleep” mode until enough simulated time has passed.

The emulated concurrency also forces discipline on con-
trol program developers. The fact that each simulated module
runs an independent piece of code requires deep considera-
tion of synchronization and sensor data propagation among
modules in configuration. This realistic approach makes the
developed control algorithms much more suitable for trans-
ferring them onto real SuperBot modules.

The physics-based SuperBot simulation was developed
using Object-Oriented design to allow intuitive program-
ming of behaviors that map conceptually to programming
of SuperBot hardware. Thus, control of a module was ab-
stracted as a set of methods to set servo target position and
get current position. Other sensor readings were also imple-
mented as simple access methods. We developed simulation
API concurrently by several people to develop different loco-
motion behaviors and obtain test results, which are described
in the following sections.

5. Classification of locomotion modes

The key feature of the SuperBot platform is to support many
different locomotion modes on a wide range of terrain types.
Before we describe each mode in detail, it is useful to discuss
how we classify the locomotion modes in theory, so that they
can be used appropriately for future applications.

Table 1 shows a list of locomotion modes in terms of 8§
parameters. The “mode” and “config” show the name and
configuration of the mode. The “slope” and “obstacle” pa-
rameters show the type of environment that the mode can
cope with. The value for slope is a range of degree of the
slope that the robot can handle. For example, [— 60, 40]
means that the mode can go down on slopes of 60 degree
and climb up slopes of 40 degree on carpet. The “speed” tells
how fast the mode can move, the “turn” parameter indicates
if the mode can make turn or not, the “energy” parameter
specifies the efficiency of the energy consumption in terms
of Watts per module (W/mdl). Finally, the “recover” param-
eter indicates if the mode can recover from failures or not.

For each locomotion mode, it is a challenge to optimize
all the parameters simultaneously. For example, efficiency
and adaptability are two complete groups of parameters.
When optimizing the efficiency parameters such as speed
and energy consumption, it is hard to keep the adaptability
parameters such as the range of slope and obstacle height.
Using the advantage of reconfiguration to change shape, one
can change mode and select the most effective and efficient
mode for the current task and environment. This way, we can

Table 1 Classification of

locomotion modes. Mode Config Slope Obstacle Speed Turn Energy Recover

(W/mdl)
6M Loop [—40, 10] 0 1.0 m/s no 5.8 non
10C Loop [—40,10] 1/3 high 0.3 m/s yes ~5.0 yes
oM H-Walker [—10, 10] 1/1 high 0.36 m/s yes 4.35 yes
6M4C T-Wheel [—40, 10] 0 0.6 m/s yes ~6.3 yes
2M4C Loop [—40, 10] 0 0.70 m/s yes ~ 6.0 yes
M Climber [— 60, 40] 0 0.1 m/s yes ~6.5 yes
Other [—...,...]

2 Springer

Auton Robot (2006) 20:165-177

171

avoid the tradeoff between efficiency and adaptability for a
conventional robotic system.

Thus, a reconfigurable robot can optimize traversal of two
different terrain types. Optimizing and enhancing function-
ality of a SuperBot module will lead to improvement in each
locomotion mode, given a properly designed controller. Op-
timizing control of a specific mode does not affect efficiency
of other modes so that the robot can guarantee good perfor-
mance on speed and energy consumption for all locomotion
modes. In the next several subsections, we describe the lo-
comotion modes in Table 1 in detail.

5.1. The 6M-loop mode

The first locomotion mode we consider is the 6M-Loop
mode, which consists of six M-modules in a loop config-
uration. This mode can cope with relative flat terrain (with
—10° to 10° slopes) with minimal or no obstacles. This type
of environment is traditionally dominated by wheeled sys-
tems in terms of locomotion efficiency. Wheeled mode of
locomotion is very energy efficient and allows high speeds.
However the tolerance to environmental obstacles is limited
by the size of the wheel and increase in wheel size leads
to other undesirable features. Thus, a wheel-actuated system
usually uses obstacle avoidance instead of increased wheel
size.

In order to achieve comparable locomotion performance
results on this type of terrain, the SuperBot system has to
mimic wheeled locomotion using its hyper-redundant con-
figuration. Dynamic behavior must be introduced for this
rolling-track to accomplish a wheel-like movement. The
idea is to configure the modules in a ring configuration of
a hexagon shape and put it vertically as a rolling traveler.

It rolls along a vertical plane propelling itself by changing
its shape. It continues the rolling movement by contracting
and relaxing its configuration based on gravity sensors in the
modules. The number of 6 modules is chosen for the stability
and efficiency of movement.

Figure 4 shows a sequence of the fast rolling movement,
and the implementation of the dynamic control for each step.
The mode alternates its shapes between a regular hexagon
(shown in the left diagram) and a deformed hexagon that
tends to fall forward (shown in the right diagram). Starting
from the regular hexagon, the movement is controlled by
the deformation of the shape to change the center of gravity
of the robot. There are 2 commands governing the shape
transformation. One is to retain the regular hexagon shape.
The other is to let the rolling robot “squeeze” itself to a
deformed hexagon. The deformed shape shifts the center of
gravity forward creating torque about the joint of a module
(module F in the right diagram) and causes the robot to roll.
When at top speed, the regular round shape helps to maintain
the momentum.

Fast rolling movement is achieved by co-operating these
two commands with gravity sensors. Gravity sensors are put
on both segments of each module. Each segment of a module
knows the vector of gravity with respect to its own coordinate
frame. Initially, the traveler is set in a regular hexagon shape.
The lower left module touching the ground (module A in the
diagram) will check the gravity sensor of its segment 2. If it
indicates the module lies flat on the surface, a “squeezing”
command is issued to deform the traveler and the robot starts
to roll. The command to retain regular hexagon shape is
issued when segment 1 of the lower left module (module A)
knows it is in vertical. The duty of determining commands
based on gravity sensor is transferred counter-clockwise to

Figure 4. 6M-Loop mode for fast movement with dynamic control.

) Springer

172

Auton Robot (2006) 20:165-177

the module next to it. For example, after gravity sensor of
segment 1 of module A indicates the segment is vertical
and the traveler transforms back to a regular hexagon shape,
the lower left module will be module F, which will start to
examine its gravity sensor on its segment 2 and check if it
is touching the ground. The duty of determining commands
continually transfers in a counter-clockwise direction. In this
way, the rolling traveler keeps accelerating until the servo
reaches its speed limit for responding to shape changing
commands. This particular controller is dynamic and sensor
based. Note that a similar gait has been achieved before
by the M-TRAN robot (Kamimura et al., 2003). However,
the control of M-TRAN gait was open loop, while the gait
described here uses gravity sensors so that it may adapt to
changes in the environment.

In terms of energy efficiency, this locomotion mode al-
lows fast traversal of terrains with minor obstacles. With
6 modules in a loop configuration the robot can roll with aver-
age speed of 0.93—1.04 m/s. This was measured in simulation
for a distance of 1 km traveled in 18 min. Maximum bound
of energy usage was estimated by assuming each change of
servo angle uses maximum torque of 1.8 Nm. Sum of an-
gle changes was accumulated then used to calculate energy
consumption of 35 W for 6 modules, thus 5.83 W/module
in average. To travel 1 km, the total energy required by the
entire robot for 18 min is 37.776 KJ.

5.2. The 10C-Loop Mode

Although the 6M-Loop can move fast, the robot cannot stand
up again once it falls down. This is due to the fact that all
modules in that mode are in M-TRAN shape, and they can
only move in the same plane they were configured. To over-
come this limitation, the 10C-Loop mode uses all CONRO-
like modules so that each module can control its pitch and
yaw movement. As a result, the robot is much more flexible
and can run, turn, and recover from falling down. This mode
can deal with environments where obstacles do not exceed
in size the height of the robot configuration.

Fig.5 The implementation of
10C-Loop locomotion mode

) Springer

To cope with obstacles in the environment, this rolling
track is particularly effective and efficient. With a flexible
track, it can roll over obstacles that are comparable to the
size of the robot (Yim et al., 2003). The 10C-Loop mode
demonstrates the rolling track locomotion while retaining its
ability to use more efficient configuration for flat terrains.

When a single rolling track is fast moving, it is a challenge
to keep it balanced when there are obstacles in the environ-
ment. The most common solution is to have two tracks in
parallel, but it doubles the energy consumption if the task
at hand requires only a single track. For a single track to
survive in an obstacle-rich environment, it must be able to
turn and avoid obstacles. To the best of our knowledge, the
turn capability has been lacking in all previous single rolling
track movements in modular robotics.

As shown in Fig. 5, the 10C-Loop mode has 10 CONRO-
like modules connected in a loop. The forward straight move-
ment starts in the position shown in the left picture. At a fixed
time interval, or when all modules have bent forward to the
desired angle, each module begins to bend forward again to
reach the angle that is equal to the current angle of the mod-
ule that is in front of it. When this process repeats, the rolling
track will move forward in a straight path. To make the robot
turn, the top center and bottom center modules will bend
sideway (shown on the right-hand side in Fig. 5) while all
modules maintaining the same process of described above.
Because every module desires to reach the same angle posi-
tion as the current position of the module in front of it, the
entire rolling track will turn and move forward. Notice that in
comparison with the dynamic control of the 6M-Loop mode,
this movement is static stable and every module moves from
one statically state to another.

Even with the ability to turn to avoid obstacles, there is no
guarantee that the robot will never fall down in an unfamiliar
and unstructured environment. Thus, the ability to recover
from failure is essential. The most common locomotion fault
is “tipping over” or more generally, change of robot’s orienta-
tion and position relative to terrain such that interaction of the
locomotion gait and environment does not produce expected

Auton Robot (2006) 20:165-177

173

.
Fig. 6 Recovery of 10C-Loop from a falling position

propelling effect. Conventional robotic systems usually use
elaborate preventive strategies to avoid such faults, because
recovery from most faults is extremely difficult or impos-
sible. This leads to very conservative results in terms of
locomotion efficiency. For example, a Mars Rover’s slow
movement is partially due to this reason. However, modular
reconfigurable robots have a great advantage in this respect
because they can change configuration shape and recover
from locomotion faults much easier than the conventional
robots. This justifies the fact that a reconfigurable robot can
employ more aggressive locomotion strategies for uneven
and unknown terrain.

10C-Loop mode represents one fault recovery strategy
for SuperBot, and this strategy can be generalized for all
modes that have the similar configuration. When the robot
fall down, it can restore its original normal orientation by
going through a sequence of motions shown in Fig. 6. In
step 1—4, the fallen-down loop first bends itself upward to
form a folded loop in a vertical position (step 5), and then
unfold this vertical loop horizontally (step 6—8) so that the
loop stretched into a new rolling track. Then it can turn
itself back to the original moving direction (not shown). The
10 modules are experimentally determined to be minimal
for C-modules. If we use M-modules, then two M-modules
must be used to achieve the effect of one C-module’s pitch-
yaw movement, so the total number of M-modules would
be 20.

Fig.7 The H-Walker
configuration and naming
convention

5.3. The 9M-walker mode

In many deployment scenarios, terrain to be traversed is
highly irregular and has many obstacles that are of size com-
parable to that of the robot itself. In such environments,
even hybrid wheeled locomotion becomes impossible and
limbed morphology has to be used to allow for “walking”,
“climbing” and similar gaits. For specialized robotic systems
with relatively monolithic design, this drastic change in mor-
phology makes it impossible to use any other gaits that are
suitable for other types of environments described above.
However modular systems, such as SuperBot, allow using
limbed modes of locomotion without giving up other more
efficient gaits, since they allow reuse of the same hardware
through reconfiguration. Furthermore, Digital Hormone dis-
tributed control used in SuperBot allows reuse of the same
software, which dynamically detects changes in configura-
tion topology and adjusts control accordingly. We present a
limbed locomotion mode—“H-Walker” that is implemented
using SuperBot simulated modules.

The H-Walker is a 4-legged walker using two degrees of
freedom on each module. It is composed of two M-modules
for each leg and a single M-module representing the torso
as seen in Fig. 7. This locomotion design was inspired from
the M-TRAN experiments in automatic locomotion gener-
ation (Kamimura et al., 2003). The naming convention for
the modules and the control strategy are also illustrated in

Q Springer

174

Auton Robot (2006) 20:165-177

Fig.8 H-Walker standing sequence

Fig. 7. There were three possible local topologies for a Su-
perBot module in this robot: torso, upper leg, and lower
leg. Distributed locomotion control was achieved using the
digital hormone method (Shen et al., 2002) based on these
different topological types. Four hormones were used in this
robot and each one is to control a different leg (front-left,
front-right, back-left, and back-right). The torso was respon-
sible for sending hormone messages to each of the legs and
synchronizing their coordinated actions. Each leg receives
one of four hormones representing whether it is the right-
front leg, left-front leg, right-back leg, or left-back leg. The
torso sends a message to each leg once every locomotion
period to reset and synchronize the local timers of all the leg
modules.

Both the upper and lower legs, based on the local topology
and the hormone message they receive, reset their local timer
to zero and move the pan and yaw servos based on a sinu-
soid with a given phase offset and amplitude. This way, the
motions of all the legs are reasonably coordinated so long as
the hormone messages are received quickly to synchronize
the clocks of all the modules.

Using this control method, the H-Walker can move for-
ward and backward, and can turn to change its moving di-
rections. It can reach speeds of 0.6 m/s, with average speed
0.36 m/s. The total energy required is 39.07 W for 9 modules,
thus 4.35 W per module in average.

The H-Walker locomotion mode demonstrates a concep-
tually different approach to locomotion fault recovery. Since
in a limbed configuration, a change in morphology can be
costly, the initial design itself should include features facil-
itating recovery. In H-Walker mode, it is achieved through
symmetry of design and control. Because the H-Walker’s
topology is in the shape of an ‘H’, the SuperBot can walk
forwards and backwards using the same control strategy,
as well as upside down with the legs re-positioned below

the torso. In fact, this symmetry prevents the H-Walker from
ever falling into any unrecoverable position because the robot
does not need to flip itself over to resume walking.

Should the H-Walker fall, it is easy to achieve the relaxed
position in which the legs are straightened out to the sides in
a double-caterpillar shape. Then H-Walker proceeds to stand
up using the steps as seen in Fig. 8. These steps perform well
in simulation, and further tests are required on a physical
system in various terrains.

5.4. The 6M4C-training-wheel mode

As we mentioned before, the fastest mode is the 6M-loop but
it cannot turn or recover from falling. The 6M4C-training-
wheel mode is a modified version of 6M so that it can run
fast, and can turn and recover from falling. To do so, we add
four extra legs as “training wheels” to the 6M-loop. Shown
in Fig. 9, one pair of “legs” is attached to each side of the
loop, perpendicular to the hexagon plane and in opposite
directions. The other pair of legs is attached in the same
fashion but at the other end of the loop.

To turn and change the traveling direction of the loop, the
“leg” modules on one side, which is a C-module, can lower
down its “feet” by rotating the pitch servo, and at the same
time, the 6M-Loop continues to roll forward. The 6M-Loop
will be tilted and begin turning. This sequence is shown in
Fig. 9.

Figure 10 shows how this locomotion mode recovers from
falling down. The robot first straightens all the “leg” mod-
ules and collapses the hexagon to a flat loop. The hexagon
plane can then be made vertical and the flat loop will change
back to its hexagon shape and continue to roll. Note that this
recovery procedure is simpler than that of 10C-Loop because
it is accomplished through changes of contacting points

Fig. 9 The training-wheel configuration and its turning sequence

) Springer

Auton Robot (2006) 20:165-177

175

Fig. 10 Recovering from a fall

Fig. 11 The 2M4C-Loop mode and its turning operation

between the robot and the ground. Efficiency-wise, adding
the 4 extra leg modules reduces the average rolling speed
down to 0.77 m/s.

5.5. The 2M4C-loop mode

The training-wheel mode uses extra modules to allow a 6M-
loop to turn and recover. However, there exist other modes
that can accomplish the same effect without extra modules.
The 2M4C-Loop is one of such modes. It still uses 6 modules
for the loop, but alternates the type of module to enable the
loop to turn and recover from falling.

Figure 11 illustrates this new locomotion mode and its
turning sequence. The 6 modules in the loop are arranged to
be M-C-C-M-C-C. To run, this mode uses the same dynamic
control as 6M-Loop but each module will only use one servo
(the C-modules will use their pitch motor) for the rolling
action (see step 7). To turn, the hexagon of the 2M4C-Loop
first bends into a rectangular shape where the C-modules
are on the top and bottom of the rectangle and M-modules
are at the vertical sides of the rectangle. Then, it uses the
yaw servos of the C-modules to changes its direction. After
that, the rectangle will go back to the original hexagon shape
to run again. Note that this turning is statically stable and
possible only when the robot is not rolling.

Figure 12 illustrates how the 2M4C-Loop recovers from
falling. First, the loop straightens itself by bending the 2

M-modules into 180 degrees (note that this can be done
only by the M-modules) and reset the shape of all 4 C-
modules (step 2). The C-modules then change their yaw
servos so that the robot is rising up yet unbalanced (step
3). The unusual movements of the C-modules will cause the
robot to fall sideways for 90 degrees (step 4). The loop will
then straighten up again (step 5) and go back to its original
hexagon shape (step 6).

An interesting observation about 2M4C-Loop is its rela-
tion to 6M-Loop. In the 6M-Loop, by rotating the roll motors
of two consecutive modules simultaneously, the two mod-
ules can become two consecutive C-modules without any
disconnecting and connecting actions. Thus, a 6M-Loop can
become a 2M4C-Loop, and vice versa. This makes a single
configuration of SuperBot capable of fast running, turning,
and recovery from failures.

5.6. The 8M-climbing mode

Previous locomotion modes show how different combina-
tions of modules and gaits tackle the exploration issue on
a relatively flat terrain. To tackle the climbing problem, a
rolling track gait has been simulated to climb up a slope
of 40 degrees, with the friction simulated as if the robot is
climbing a slope covered by regular office carpet.

Shown in Fig. 13, the mode consists of 8 M-shape Super-
Bot modules forming a rolling track that is only 1.5-module

Q Springer

176

Auton Robot (2006) 20:165-177

Fig. 12 The recovery sequence
of 2M4C-Loop locomotion
mode

Fig. 13 The 8M-Climbing
locomotion mode

in height. The advantage of this configuration is to make use
of its low height property to stabilize it on the slope. In this
simulation we assume the friction between the skin of the
module and the slope is about 1.5 times higher than the rest of
the modes in the paper (similar to climbing on carpet). In re-
ality, this friction ratio can be achieved by allowing modules
to dock with some special material on their outside docking
faces. The mode will climb up the slope slowly by moving
module by module. The simulation shows the configuration
can climb up a slope of 40 degrees straight with sufficient
friction, but it also show a =+ 10 degrees of tolerance in the
direction of travel before it falls sideway.

6. Conclusions

This paper presents the concept of multimode locomotion
for robotic systems, and illustrates the concept of SuperBot
modules that are designed to combine the advantages of
several existing reconfigurable robotics systems. The paper
also describes a list of locomotion modes, and each mode
is classified by a set of realistic parameters to specify the

) Springer

environment properties, the flexibility of the locomotion for
moving and turning, as well as the ability to recover from
unexpected failures. The effectiveness of these modes are
demonstrated by the SuperBot modules and configurations
in simulation and the details of the moving, turning, recov-
ering, and energy-efficiency of these locomotion modes are
described. To the best of our knowledge, these results are
very difficult to achieve by conventional robotic systems and
provide convincing evidence for the concept of multimode
locomotion and the value of modular and reconfigurable
robots and distributed control mechanisms for these robots.
It is our intension to show that it is possible to accommodate
different locomotion modes without increasing the hardware
and software complexity of the robots, and therefore
avoiding the inescapable tradeoff between the generality
for adaptation and the specialty for high-performance for
conventional robotic systems. Our future work will be ad-
dressing the process of how to reconfigure the robot from one
mode to another through self-reconfiguration. We will also
implement all these modes on SuperBot modules and verify
them through field tests in different terrain types and travel
distances.

Auton Robot (2006) 20:165-177

177

This research is supported in part by US Army Research
Office under the grants W911NF-04-1-0317 and W911NF-
05-1-0134, and in part by NASA’s Cooperative Agreement
NNAO5CS38A. We thank Alliance Spacesystems Inc. and
USC Engineering Machine Shop for the fabrication of pro-
totype SuperBot modules, and we are also grateful for Peter
Will, Berok Khoshnevis, Yigal Arens, and other members in
the Polymorphic Robotics Laboratory for their intellectual
and moral support.

References

Butler, Z., Kotay, K., Rus, D., and Tomita, K. 2002. Generic decen-
tralized control for a class of self-reconfigurable robots. In /EEE
International Conference on Robotics and Automation.

Jorgensen, M.W., Ostergaard, E.H., and Lund, H.H. 2004.
Modular ATRON: Modules for a self-reconfigurable robot.
In [EEE/RSJ International Conference on Robots and
Systems.

Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., Murata, S.,
and Kokaji, S. 2003. Automatic Locomotion Pattern Genera-
tion for Modular Robots, In Proceedings of IEEE International
Conference on Robotics and Automation (ICRA’03), pp. 714—
720.

Kotay, K., Rus, D., Vona, M., and McGray, G. 1998. The
self-reconfiguring robotic molecule: Design and control algo-
rithms. In [EEE International Conference on Robotics and
Automation.

Lipson, H., White, P., Zykov, V., and Bongard, J. 2005. 3D Stochastic
Reconfiguration of Modular Robots. Presentation at the Workshop
on Self-reconfigurable Robotics at the Robotics Science and Sys-
tems Conference, MIT.

Moruta, S., Hurokawa, H., Yoshida, E., Tomita, K., and Kokaji, S.
1998. A 3D self-reconfigurable structure. In IEEE International
Conference on Robotics and Automation.

Shen, W.-M., Salemi, B., and Will, P. 2002. Hormone-Inspired Adap-
tive Communication and distributed control for CONRO self-
reconfigurable robots. IEEE Transactions on Robotics and Au-
tomation, 18(5).

Stoy, K., Shen, W.-M., and Will, P. 2002. Using role-based control
to produce locomotion in chain-type self-reconfigurable Robots.
1IEEE Transactions on Mechatronics 7(4):410-417.

Unsal, C., Kiliccote, H., and Khosla, P. 2001. A modular self-
reconfigurable bipartite robotic system: Implementation and mo-
tion planning. Autonomous Robots, 10(1):23—40.

Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., and
Homans, S. 2003. Modular Reconfigurable robots in space appli-
cations. Autonomous Robots Special Issue on Space Applications,
14(2/3).

Harris Chi Ho Chiu is a PhD Student in Computer Sci-
ence at the University of Southern California and a research
assistant in Polymorphic Robotics Laboratory of Informa-
tion Science Institute. He received his Master in Computer
Science from the University of Southern California and his
Bachelor of Engineering from the University of Hong Kong.
His research interests include intelligent automated systems,
modular self-reconfigurable systems, artificial intelligence,
and machine learning.

Michael Rubenstein is currently a PhD student at the Poly-
morphic Robotics Laboratory, working on the CONRO and
Superbot self-reconfigurable robotic systems. He has re-
ceived his bachelors in Electrical Engineering from Purdue
University, and his masters in Electrical Engineering from
the University of Southern California, and is currently work-
ing towards his PhD in Computer Science from the Uni-
versity of Southern California. His interests include mod-
ular self-reconfigurable systems, autonomous robots, self-
healing systems, and self-replicating systems.

Jagadesh B Venkatesh is a member of the Polymorphic
Robotics Laboratory at the Information Sciences Institute.
He is currently a Master’s candidate in the Product Devel-
opment Engineering program at the University of Southern
California. He received his MS in Computer Science with
specialization in Intelligent Robotics, also at the University
of Southern California in 2005. His current interest is the
commercialization of robotic technologies, specifically in
the consumer robotics sector.

) Springer

