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1 The Earth and its magnetic field

1.1 A brief history

Interest in the Earth’s magnetic field goes back some 2000 years, in particular to the
ancient Chinese, whose major achievements include the invention of the magnetic compass
and the subsequent discovery of declination, the angle between magnetic and geographic
north. Initially, the compass was believed to be attracted to the pole star. Later, the
favoured source of attraction moved to the polar regions of the Earth and subsequently
to the interior of the Earth. This followed the discovery in Europe in the 16th Century
of inclination, the angle of dip of the field direction. At this time, considerable effort
was expended in mapping the declination and inclination as a potential aid to navigation.
Modern maps can be found at “http://geomag.usgs.gov/”. The year 2000 was the 400th

anniversary of William Gilbert’s treatise on geomagnetism De Magnete. This gave the first
rational explanation for the mysterious ability of the compass needle to point north-south;
that the Earth itself was magnetic.

Up until this point, the Earth’s magnetic field had been assumed to be steady, but it
was not long before a series of observations at Greenwich led Henry Gellibrand in 1634 to
deduce that the declination changes with time. This was the first observed feature of the
so-called Geomagnetic Secular Variation (GSV), the slow (on a human time scale) change
of the field emanating from the Earth’s core. From detailed observations we now know
this behaviour in considerable detail over the past few hundred years (see for example
Courtillot & Le Mouël, 1988; Bloxham & Jackson, 1992; Jackson et al. 2000).

Much further information about the Earth’s field and its history can be found at the de
Magnete website at “http://www-spof.gsfc.nasa.gov/earthmag/demagint.htm”, see
also Chapter 1 of Merrill et al. (1996) and Stern (2002).

1.2 Structure of the Earth

A spherical harmonic analysis of the geomagnetic field averaged over a few years shows
clearly that the long-time field is essentially entirely of internal origin (see for example
the discussion in Backus et al. 1996). A key prerequisite to understanding the generation
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Figure 1: The interior of the Earth.

mechanism of the field is therefore a knowledge of the interior of the Earth. Our principal
sources of information are: (A) the composition of meteorites thought to be characteristic of
the material from which the Earth was formed, (B) the analysis of seismic waves, and (C)
the properties of materials at high pressure determined from high-pressure experiments
and, more recently, theoretical calculations. Useful references, explaining the ideas, are
Bolt (1982), Melchior (1986), Stacey (1992) and Poirier (2000). A review of the theoretical
approach can be found in Alfè et al. (2002b).

These three sources give the following picture, see Figure 1. The Earth is composed
of a core of radius 3485 km surrounded by a rocky mantle of radius 6370 km. On top of
that is the thin crust on which we live. The mantle is a good electrical insulator (except
perhaps close to its boundary with the core) so the only possible source of electromagnetic
induction that can generate magnetic field is in the core. The core has two distinct parts:
an inner core of radius 1215 km that is solid and an outer core that is fluid. The principal
constituent of both is iron. While the density of the inner core is consistent with it being
pure iron, the density of the outer core is up to 10% lighter than iron at core pressures.
While there remains considerable controversy as to the identity of the lighter element or
elements that are mixed with iron in the outer core, it is clear that the outer core is
composed of a mixture of iron and some lighter constituents. Possible candidates include
sulphur, oxygen and silicon. Recent studies have estimated the core density deficit at closer
to 5% (Anderson & Isaac 2002) and have highlighted the importance of oxygen in the core
(Alfè et al. 2002a).

The presence of the solid inner core can be explained by the freezing of the outer
core. While the temperature in the interior of the Earth increases with depth, the freezing
temperature also increases because of the effect of pressure. Indeed, the latter increases
more rapidly with depth. This explains why, as the Earth cools, freezing takes place first
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at the centre. It is believed that the core was initially completely molten and that a proto
inner core nucleated first at the centre of the Earth several billion years ago and has grown
steadily since then through the freezing of the outer core. Estimates of the age of the
inner core vary. Recent studies put it as at least 3 Gyr (1GYr = 109 years) to explain
the paleomagnetic measurements of the Earth’s field, see Gubbins et al. (2003, 2004) but,
for example, Labrosse et al. (2001) estimate it at 1 Gyr based on the assumption of no
radioactive heating in the core. See also Roberts et al. (2001) who come to a similar
conclusion but then go on to consider the consequences of all the potassium 40 “missing”
from the Earth being in the core (see Section 1.4).

It is a common property of mixtures that the composition of the solid which freezes is
different from that of the fluid from which it has frozen. For example, if sea water is cooled,
the ice that forms contains very little salt, with the remaining fluid being enriched in salt.
The same process is believed to take place as the outer core fluid freezes; as the mixture
of iron and lighter constituent cools, what freezes is predominantly iron, with most of the
light constituent being rejected into the remaining outer core. This explains the observed
density contrast between the inner and outer cores which is larger than can be explained
by density change upon freezing. Our picture then is of a dense inner core growing steadily
as the Earth cools, with the density of the remaining outer core gradually decreasing as
the fraction of light constituent in it increases. This picture has major implications for the
energy source of the geodynamo which we discuss in Section 1.4.

1.3 The geomagnetic field

While direct measurements of the Earth’s field go back only a few hundred years, we
have information on its behaviour going back several billion years through paleomagnetic
measurements, see for example Merrill et al. (1996). Though most rock forming minerals
are non-magnetic, all rocks exhibit some magnetic properties due to the presence of traces
of iron oxides. The magnetisation of these may be used to determine both the local
direction and intensity of the Earth’s field at the time the rock was formed. Relatively
short time-scale behaviour can be determined from sequences of lava flows, and longer
time-scale behaviour from sedimentary rocks.

Intensity measurements show that the field has roughly maintained its strength over
the past 3.5 GYr, see Figure 2. When compared with the ohmic decay time of the Earth’s
core

τη =
r2
o

η
≈ 3× 105 years, (1)

there is a clear requirement to explain how the field is maintained and what is its energy
source. Permanent magnetism is not a possible explanation because, below a depth of
the order of a hundred kilometers, the temperature inside the Earth exceeds the Curie
temperature (see for example Stacey 1992). In (1), ro is the radius of the core and η = 1/µσ
is the magnetic diffusivity of the core, µ is the magnetic permeability (usually taken to be
the free-space value µ0 = 4π × 10−7 Hm−1) and σ is the electrical conductivity. For the
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Figure 2: Intensity of the geomagnetic field over the past 3.5Gyr averaged over 100Myr
intervals. The current strength is 8× 1022 Am2. From Kono & Tanaka (1995).

Earth, substituting ro = 3.485 × 106 m and σ ≈ 6 × 105 Sm−1 (Merrill et al. 1996) gives
η ≈ 1.3 m2s−1.

The principal component of the Earth’s field at present is a dipole whose axis is roughly
aligned with the geographic axis (the declination measuring the deviation). Indeed, the
average field over the past 5MYr closely approximates a geocentric axial dipole (see Merrill
& McFadden 2003). Directional paleomagnetic measurements show that the field has
reversed its direction many times. Reversals are irregular and take place over a time that
is short (of the order of 5000 years) compared with the quiescent period between reversals.
The last (the Brunhes-Mutuyama reversal) was some 7 × 105 years ago. The reversal
frequency has varied over time, see Figure 3 and McFadden & Merrill (2000). Typically
there have been a few every million years over the past 45 Myr but there was a period
(the Cretaceous Superchron) of some 20 Myr ending 86 Myr ago in which hardly any
reversals have been found (see Merrill et al. 1996). Heller et al. (2002) have investigated
the relationship between the frequency of reversals and what is known about the field
intensity. They conclude “that there is not a simple correlation between reversal rate and
intensity”. In addition to reversals, features known as excursions have been found. When
observed in detail, these start off in a similar way to reversals, with an increase in the
declination and typically a decrease in intensity. However, in these events, the field returns
to its original polarity rather than the reversed one. Excursions may be “aborted reversals”
and may occur ten times more frequently than reversals, see for example Gubbins (1999).
They may be due to an intrinsic instability of the dynamo process, see McFadden & Merrill
(1993) and Zhang & Gubbins (2000). McFadden & Merrill demonstrate that, following a
reversal, there is a reduced probability of a further reversal during a period of some 45000
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Figure 3: Frequency of reversal of the Earth’s magnetic field. From Merrill et al. (1996).
The vertical scale indicates the number of reversals per MYr.

yrs, a period of the order of τη.
The governing equations (4a)-(4d) clearly admit −B as a solution if B is a solution,

so the existence of reversed fields is not a puzzle. However, we do not have a good under-
standing of what triggers a reversal, what influences their frequency or why some should
fail. Simulations are beginning to give some insight into these issues, see Section 5. For
example, the pattern of heat flux at the CMB has been shown to strongly influence reversal
behaviour (Glatzmaier et al. 1999), see Figure 5

1.4 Energy sources

The observation in the previous section that the Earth’s field has existed at around its
present strength for a time four orders of magnitude longer than the ohmic diffusion time
(1) clearly indicates the need for a mechanism for maintaining the field against ohmic decay,
together with an adequate power source. A rough estimate of the power required can be
obtained by setting u = 0 in (4a), taking the scalar product with B/µ0 and integrating
over all space V to give

P =
d

dt

∫
V

B2

2µ0

dV = −
∫

V

J2

σ
dV (2)

The standard vector identity (??) and the divergence theorem have been used in deriving
(2). For an insulating mantle, the current J vanishes outside the core. The left-hand side
of (2) is the rate of change of magnetic energy. Now, since µ0J = ∇×B, the ohmic power
dissipation can then be roughly estimated from the right-hand side to give

P ≈ 4

3
πr3

o

B2

σµ2
0L2

, (3)
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where B is a typical field strength and L an appropriate length scale (which cannot be
greater than ro). If we choose L = 106 m, then (3) gives an ohmic power dissipation of
1.4 × 1014B2 W. For a field strength of 6 mT this equates to 5 × 109W. Of course, this
estimate depends crucially on our (rather arbitrary) choice of L. Shorter length scales lead
to higher dissipation. Loper and Roberts (1983) reviewed the various estimates; these give
P/B2 in the range from 0.7 × 1014 to 200 × 1014WT−2. Loper and Roberts (1983) favour
a value, somewhere in the middle of this range, of P/B2 = O(1015)WT−2. A field of 10
mT then requires O(1011)W. This gives a ball-park figure of the power requirement of the
geodynamo. More accurate estimates can be expected from specific geodynamo models.
For example, Glatzmaier and Roberts estimate that at least 2×1011W is required to balance
ohmic diffusion (the dominant loss mechanism) in models of their type (Glatzmaier and
Roberts 1995a,b, 1996a,b,c 1997). Recent estimates have put the total heat transfer
from the core to the mantle at 8TW, with 6.8TW of that due to conduction in the core
(Anderson 2002). Olson (2003) reviews the thermal interaction between the core and the
mantle which has a vital controlling influence on the evolution of the whole of the Earth’s
deep interior.

The ohmic energy loss is made good by conversion [through the term ∇× (u×B) in
(4a)] from the kinetic energy of the flow u. In turn this kinetic energy must be continually
replenished. There are two possible means of driving the flow: internal, by buoyancy forces
and external, through forcing by boundary motion. The main candidates are: thermal
convection (T), compositional convection (C), and precessionally driven flows (P). Cooling
and radiogenic heating can lead to (T). The latent heat and light constituent release at
the inner-core boundary (ICB) associated with the freezing of the inner core (see Section
1.2) can lead to (T) and (C). Precessional driving of core flows is due to the gravitational
torques exerted on the Earth by the Sun and the Moon (see for example Malkus 1994).

Over the years, there has been considerable debate about the source of the core fluid
motions driving the geodynamo. This has centered on two main issues: the power that
can be extracted from a particular energy source, and the efficiency with which it can
be converted into useful fluid motions (see for example Braginsky and Roberts 1995 for
a detailed discussion). In the late 1970s, precession had been discounted on efficiency
grounds and there were doubts as to the amount of radiogenic heating in the core and the
efficiency of its conversion into kinetic energy, see for example Verhoogen (1980). This led
to the revival of the idea of a gravitationally-powered dynamo whose energy source is the
gravitational potential energy stored in the outer core. The gravitational potential energy
is released as the Earth cools and the dense (almost pure iron) inner core grows by the
freezing of iron from the outer core. Verhoogen (1961) was the first to associate freezing in
the core with the dynamo power source. He discounted the chemical segregation associated
with freezing of a mixture, preferring convection driven by the latent heat released during
the crystallization of the inner core and the specific heat given out by the cooling core.
Braginsky (1963) was the first to recognise the contribution of compositional effects. Their
inherent efficiency together with the estimated power available made this an attractive
power source when the other candidates appeared wanting on efficiency grounds.

Considerable progress has been made in understanding the complex process of freezing
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of a mixture and applying the results to the Earth’s core. Meanwhile, recent work on the
other candidates means that precession should not be discounted (see for example Aldridge
(2003)) and a question still remains about radiogenic heating (see for example Roberts et
al. (2003)). For a more detailed discussion, see for example Fearn (1998).

The debate about what is driving the geodynamo continues and is linked with models for
the thermal history of the Earth and the age of the inner core, see for example Labrosse et
al. (2001), Roberts et al. (2003) and Gubbins et al. (2003, 2004). Most dynamo models still
adopt thermally driven convection as the basis for their driving force, using a combination
of internal and differential heating.

2 Governing equations and parameters

Our governing equations are the magnetic induction equation (??), the Navier-Stokes equa-
tions (??) (??) and the heat conduction equation (??). It is most convenient to deal with
these in non-dimensional form. Adopting the outer-core radius ro as our length scale,
the ohmic diffusion time τη (1) as our time scale, ro/τη as our velocity scale, (Ωµ0ρ0η)1/2

(where Ω = 7.29 × 10−5s−1 is the rotation frequency of the Earth and ρ0 = 1.1 × 104kg
m−3 is the mean core density) as our scale for the magnetic field and βro (where β is a
characteristic temperature gradient in the core) as the temperature scale, the governing
equations become

∂B

∂t
= ∇× (u×B) + ∆B, (4a)

Em

(
∂u

∂t
+ (u ·∇)u

)
+ 2k× u = −∇p + qR̃aTr + E∆u + (∇×B)×B, (4b)

∇ · u = 0, (4c)

∂T

∂t
+ u ·∇T = q∆T + E , (4d)

where E represents a source of heat. In most models, this is taken to be uniform. The
effects of compressibility are not believed to be of primary importance in the dynamics of
the core so the Boussinesq approximation is usually adopted. In this context, when applied
to the core, the temperature T should be interpreted as the deviation from the adiabatic
temperature. To include the effects of compressibility the anelastic approximation can be
used, see (??). Glatzmaier & Roberts use this for all but the earliest of their models, see
Section 5.3.

The non-dimensional parameters appearing in (4a)-(4d) are the modified Rayleigh num-

ber R̃a, the magnetic Ekman number Em, the Ekman number E and Roberts number q
defined by

R̃a =
g0αβr2

o

Ωκ
, Em =

η

Ωr2
o

, E =
ν

Ωr2
o

, q =
κ

η
. (5)

In the above we have written the gravitational acceleration as g0g and taken g = −r,
the non-dimensional position vector, since, to a fair approximation, the strength of the
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gravitational acceleration increases linearly with radius in the core. The definition of R̃a
is that most appropriate to a rotating magnetic system. The standard Rayleigh number,
which is that normally used in non-rotating systems is

Ra =
g0αβr4

o

νκ
=

R̃a

E
. (6)

Here we shall usually simply refer to (5)1 as the “Rayleigh number” and only use the term
“modified Rayleigh number” when it is necessary to contrast it with (6).

The Ekman number E measures the strength of the viscous force (for length scales
of the order of the core radius ro) relative to the Coriolis force. The kinematic viscosity
in the Earth’s core is very poorly determined but most estimates are very much smaller
than the magnetic diffusivity. A typical value for the Earth is ν ≈ 10−6 m2s−1 (de Wijs
et al. 1998), giving E = O(10−15). It might therefore seem a very good approximation
to neglect viscous effects altogether. In many fluid dynamical problems, provided the
no-slip boundary conditions are also dropped, the mainstream flow (i.e. that away from
narrow viscous boundary layers) is well approximated by an inviscid theory. (Then, the
only role viscosity plays is to bring the tangential flow to zero at the boundaries. Such
boundary layers are referred to as passive.) Unfortunately, in rotating systems, things
are not so straightforward. The (Ekman) boundary layers are active or controlling ; the
mainstream solution cannot be completed without taking into consideration the flow in the
Ekman layers, particularly the Ekman pumping, the flow out of the boundary layer into
the mainstream. (Perhaps the simplest example of this is the flow between two parallel,
differentially rotating plates, see, for example Chapter 8 of Acheson 1990.) So far, two
complementary approaches have been adopted to deal with the problem of very small
E. The first is to retain viscous terms and, for reasons of numerical resolution, we have
to accept very much larger values of E than that given above. The alternative is to
neglect viscous terms but have to accept the complications associated with Taylor’s (1963)
constraint (see Section 3.1). This is an example of the controlling influence of the boundary
layers on the mainstream.

The magnetic Ekman number (5)2 is sometimes referred to as the Rossby number. In
the fluid dynamics literature, the Rossby number is defined as the ratio of the fluid speed to
the rotational speed. The fluid speed will only emerge as part of the solution to (4a)-(4d)
and the two definitions will only agree when the fluid speed is η/ro. The magnetic Ekman
number Em is very much larger than E but is still small, O(10−9), so the inertial terms
in (4b) are often neglected; an approximation that filters out inertial waves and torsional
oscillations (see Section 3.4) .

For the Earth’s core, molecular diffusivity values give κ ≈ 8 × 10−6 m2s−1 (Poirier
2000), giving q = O(10−5). Such a low value has important implications for the nature of
convective flow, and for dynamo action. Current thought favours using q = O(1) to avoid
the various complications that arise when q � 1. This is the sensible approach until the
complex interaction between flow and field that maintains the field is better understood.
We discuss the choice of parameter values and the various restrictions on these in detail in
Section 4.
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There are two other important non-dimensional parameters that do not appear in (4a)-
(4d). Had we chosen typical magnitudes B and U as our scales for the magnetic field and
fluid velocity instead of those adopted above [(Ωµ0ρ0η)1/2 and ro/τη respectively], then B
would be replaced by Λ1/2B and u by Rmu, where the Elsasser number Λ and magnetic
Reynolds number Rm are defined by

Λ =
B2

Ωµ0ρ0η

(
=

σB2

Ωρ0

=
τη

τMC

)
, Rm =

Uro

η
, (7)

where the slow MHD time scale identified by Soward in Section ?? is given by

τMC =
Ω

ΩA
2 , where ΩA

2 =
B2

µ0ρ0r2
o

. (8)

This is the time scale on which diffusionless magnetic waves evolve in a rapidly rotating
system where Ω � ΩA, the Alfvén frequency. For fully dynamic calculations, the scalings
adopted here are the most appropriate since the amplitudes of B and u emerge as part
of the solution. Hence Λ and Rm are not parameters that we can prescribe. In simpler
model problems, though, the field and/or flow are often prescribed so that the alternative
scalings based on B and U are often used. In either case, Λ and Rm are very useful
non-dimensional measures of the field strength and flow speed respectively. Important
alternative interpretations are in terms of the diffusivity η; both Λ → ∞ and Rm → ∞
are associated with the perfectly conducting limit η → 0.

For the Earth, a value of Λ = 1 roughly corresponds to a field strength of 1 mT, while
Rm = 1 corresponds to a flow speed of about 4× 10−7 ms−1. The latter, when compared
with the flows inferred from the GSV suggest values of Rm of O(103) when based on the
core radius as length scale. This exceeds the lower bounds that have been derived for Rm
if there is to be net field generation by dynamo action, see for example Moffatt (1978),
Roberts (1994) and Chapter ?? and is consistent with the values found in hydrodynamic
dynamo models (see Section 5).

3 Fundamental theoretical results

3.1 Taylor’s Constraint

The smallness of the geophysical values of E and Em suggests that both inertial and viscous
terms be neglected in models of the core. This is the so-called magnetostrophic approxi-
mation. In this section we explore its fundamental consequences which clearly also have
important implications for the behaviour of numerical solutions when E and Em are small.

Setting Em = 0, E = 0 in (4b) gives

2k× u = −∇p + qR̃aTr + (∇×B)×B. (9)

Taking the φ-component gives

2us = −1

s

∂p

∂φ
+ [(∇×B)×B]φ . (10)
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Integrating this over the cylinder C(s), the cylinder of radius s coaxial with the rotation
axis gives

2

∫
C(s)

us dS =

∫
C(s)

[(∇×B)×B]φ dS , ∀ s . (11)

The term on the left hand side is twice the net flow of fluid out of the curved surface of
the cylinder.

If viscosity is totally neglected, (10) applies throughout the core and the cylinder ex-
tends to the boundaries of the outer core. There can therefore be no flow of fluid into or
out of the ends of the cylinder. Consequently, for an incompressible fluid, the left hand
side of (11) must vanish, giving∫

C(s)

[(∇×B)×B]φ dS = 0, ∀ s. (12)

This condition was first derived by Taylor (1963) and is referred to as “Taylor’s condition”
or “Taylor’s constraint”. It can be interpreted as that the net magnetic torque on each
cylinder must vanish.

If viscous effects are retained in the problem, (but are only important in thin Ekman
layers at the boundaries of the outer core) then (10) is valid throughout the core except
for the Ekman layers, and the cylinder C(s) must be considered as extending, not to the
boundaries of the outer core, but to the outer edges of the Ekman layers. The North-South
flow in the Ekman layers leads to a net flow of fluid into the ends of the cylinder. This
must be balanced by a net flow out of the curved surface of the cylinder, so the left hand
side of (11) is in general non-zero. To evaluate

∫
C(s)

us dS we must calculate the flow in

the Ekman layers.
The problem is analysed by splitting the core into three regions, a thin spherical shell

that extends inward a short distance from the core-mantle boundary, a similar shell adja-
cent to the boundary with the inner core, and the interior, which is the remainder (and
the bulk of) the outer core. In the interior, viscous effects are negligible, and (10) holds.
In the two boundary regions, viscous effects are important. The short length scale in the
radial direction permits a simplification to the governing equations and an analytical so-
lution. This must then be matched to the solution in the interior. The spherical geometry
is unimportant in the boundary layers and can locally be approximated by a plane layer.
In general, we define, for any f = f(r, θ, φ) its azimuthal mean

f(r, θ) ≡ f ≡ 1

2π

∫ 2π

0

f dφ. (13)

The analysis relates the mean azimuthal flow uφ at the edge of the boundary layer to the
flow in the boundary layer in the θ-direction. The latter is related to the left hand side
of (11) since, for an incompressible fluid, the flow into the top and bottom of the cylinder
C(s) must be matched by a flow out through its curved surface. The boundary-layer
analysis then allows us to relate uφ to the right hand side of (11). Details can be found, for
example in Fearn (1994) [but note that he uses an alternative definition of E that differs
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1

Figure 4: An example of a solution satisfying Taylor’s constraint. Shown are contour plots
of [(∇×B)×B]φ. Contour interval is 1. Solid lines represent positive and dashed lines
represent negative contours.

by a factor 2 and the factor 2 then does not appear in the Coriolis force term in (9)]. The
boundary-layer analysis can be found in Section 4.4 of Batchelor (1967). We find, for the
case where s is outside the tangent cylinder (s > ri), and uφ(s, zT ) is assumed to take the
same value as uφ(s, zB) that

uφ(s, zT ) =
1

2

(
cos θ

E

) 1
2

T , (14)

where

T (s) =

∫ zT

zB

[(∇×B)×B]φ dz , (15)

and zT =
√

1− s2 and zB = −zT . This replaces (12) when the effects of Ekman boundary
layers are included in the problem.

We note here that (12) and (14) are very different in character. The former is a
constraint on B while the latter is a means of determining uφ. In a typical small E solution
we shall expect T also to be small. For O(1) values of |B| this is achieved by regions of
positive T cancelling with regions of negative T in the integral, see Figure 4. The balance
is delicate and can be expected to be difficult numerically.

3.2 The “arbitrary” geostrophic flow uG(s)

If (12) is satisfied then we can solve (9) for u, given B and T , as we see below. However,
the solution is not unique. If we add any uG(s)eφ to u, then the additional Coriolis term
can be written as

k× uG(s)eφ = −uG(s)es = −∇
(∫

uG(s) ds

)
, (16)
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and hence can be absorbed into the pressure gradient term. Consequently if u is a solution
of (9), then so is u + uG(s)eφ for arbitrary uG(s).

Taking the curl of (9), and using (4c) gives

−2
∂u

∂z
= ∇× [(∇×B)×B] + qR̃a(∇T × r). (17)

Taking the axisymmetric part and integrating this with respect to z gives

2u =

∫ zT

z

∇× [(∇×B)×B] dz′ + qR̃a

∫ zT

z

(∇T × r) dz′ + F(s), (18)

where F(s) is an arbitrary function of integration. The flow u must satisfy the boundary
condition that (to leading order) there is no normal flow at the top and bottom boundaries.
These two boundary conditions give two expressions relating us and uz which then deter-
mine Fs and Fz. In a non-axisymmetric system, the third component uφ of the flow would
be determined from ∇ · u = 0. However, in this axisymmetric system uφ is independent
of φ and so does not appear in ∇ · u. Consequently Fφ is undetermined and we call it the
“arbitrary” geostrophic flow uG. We then have

uφ = uM + uT + uG , (19)

where

uM =
1

2

∫ zT

z

∇× [(∇×B)×B]φ dz′ (20)

is the magnetic wind, and

uT =
1

2
qR̃a

∫ zT

z

(∇T × r)φdz′ (21)

is the thermal wind familiar in the meteorological literature (see for example Roberts
& Soward, 1978). Note that with our choice of the limits of integration in (20)-(21),
uM = uT = 0 at z = zT . Consequently the geostrophic flow uG = uφ|zT

.
The apparent arbitrariness of the geostrophic flow uG is a consequence of considering

(9) in isolation; of considering the forcing terms on the right hand side as prescribed, rather
than as determined through (4a) and (4d). In practice uG is not arbitrary. The manner in
which it is determined depends on the importance of the Ekman suction.

3.3 Ekman states, Taylor states and model-Z: determination of
the geostrophic flow uG

If Taylor’s condition (12) is satisfied, then (9) can be solved for u up to the unknown
geostrophic flow. As Fearn & Proctor (1992) point out, it is the very existence of a
“homogeneous solution” of the form uG(s)eφ that makes a “solvability condition” of the
form (12) necessary. Of course, uG(s) can only be considered as arbitrary in the context of
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solving (9) for a given right hand side when (12) is satisfied. In practice, uG is determined
in one of two ways. Either Ekman suction is important, so the left hand side of (11)
is non-zero and Taylor’s condition does not apply. Then we know uφ at the boundary
through an expression like (14). This extra piece of information determines uG explicitly.
Alternatively, Taylor’s condition does apply. The system (4a-4d) then must adjust the
magnetic field so that Taylor’s condition is satisfied. The mechanism used to achieve this
is to adjust the differential rotation (the ω-effect discussed in Chapter ??) by varying uG.
The differential rotation stretches out poloidal field to generate toroidal field. By varying
uG, Bφ can be adjusted and perhaps (12) satisfied. This mechanism determines uG in a
very complicated implicit manner.

There is no guarantee that (12) can be satisfied. Fearn & Proctor (1987) tackled the
problem of the determination of uG through this mechanism, by choosing uG to minimise
the absolute value of the left hand side of (12) for a given poloidal magnetic field and a flow
that is prescribed (apart from the geostrophic flow). Their method was very successful for
certain choices of field and flow, but gave poor results for other choices.

Non-axisymmetric magnetoconvection models and kinematic α2- and αω-dynamo mod-
els and have been adapted to include a geostrophic flow determined by an expression similar
to (14). Without the feedback due to the geostrophic flow, both problems are linear and
would show exponential growth of their solutions for a sufficiently large forcing. For forcing
just above critical, the systems typically find themselves in an “Ekman state” where equi-
libration of the amplitude of the solution is achieved through the action of the geostrophic
flow. In this respect, it is the condition (14) that provides the dominant nonlinear effect,
since it becomes important at much smaller amplitude of solution than all other nonlinear
effects. The reason for this is the small value of the Ekman number, giving an equilibrated

solution amplitude of O(E
1
4 ) (see Section 7.3 of Fearn, 1994). As the driving force is in-

creased, the system usually evolves to a state where (12) is satisfied (a “Taylor state”) and
it is the other nonlinear effects that are responsible for equilibration, this time at higher
[O(1)] amplitude; viscous effects no longer have a major influence on the solution.

This picture of the nonlinear evolution of a dynamo has come to be known as the
Malkus-Proctor scenario, see Malkus & Proctor (1975). It is not the only possible manner in
which a dynamo can evolve. An (or the) alternative is where the Taylor state is replaced by
a state in which the solution amplitude is O(1) but where viscous effects remain important,
even in the limit E → 0. This is Braginsky’s (1975) model-Z (see also Braginsky, 1994).
Its fundamental difference from a Taylor state is the manner in which Taylor’s constraint
is satisfied or almost satisfied. In a Taylor state, with |B| of O(1), (12) is satisfied with T
[see (15)] of O(1) everywhere and regions of positive T cancelling with regions of negative
T when the integral over C(s) is taken. (This cancellation effect is illustrated well in
Fearn & Proctor, 1987.) There is strong coupling between adjacent cylinders [since T is
O(1)], providing the mechanism for Taylor’s condition (12) to be maintained as the system
evolves. By contrast, in model-Z, (12) is almost satisfied, by T being small everywhere.
This is achieved by having Bs close to zero, while Bφ, Bz are O(1). This is because an
alternative expression of Taylor’s constraint (for an axisymmetric field and an insulating
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mantle) is ∫ zT

zB

BφBs dz = 0, (22)

see for example Fearn (1994). The meridional field is then almost aligned with the z-
axis, hence the name of the model. Since Bs is small, there is only small coupling between
adjacent cylinders C(s) and the system is unable to satisfy Taylor’s condition exactly. Con-
sequently, the geostrophic flow remains dependent on the strength of core-mantle coupling.
Here, we have concentrated on viscous core-mantle coupling, so uG remains dependent on
E, and very large geostrophic flows are found in the limit of small E, see for example
Braginsky & Roberts (1987).

Note that in the above discussion we have used the description “O(1)” rather loosely.
This has been to avoid too detailed a discussion of the appropriate scalings and to focus on
the important distinction between the small amplitude Ekman state and the high amplitude
Taylor and model-Z states. Model-Z is discussed in detail in Braginsky (1994), and the
relationship between model-Z and Taylor states in Roberts (1989). The nonlinear role of
the geostrophic flow on kinematic dynamo and magnetoconvection models is discussed in
detail in Fearn (1994).

3.4 The role of inertia

An arbitrary initial condition will not necessarily satisfy Taylor’s constraint, in which case
(9) has no solution. Of course, the full equation (4b) can quite happily be time-stepped for
arbitrary initial conditions. Taylor (1963) comments that if his constraint is not satisfied
then “rapid torsional motion would be set up in which each concentric cylindrical annulus
rotated as a rigid body. The adjacent annuli are coupled together, as if by elastic strings,
through the magnetic field Bs. Because of this linkage, the torsional motion would modify
the fields until a state was reached in which (12) was satisfied”. Taylor (1963) envisaged
that, in a short time, this adjustment would take place. Subsequently, the flow would
continue to adjust in just the manner required to ensure that Taylor’s constraint continued
to be satisfied. Indeed this is the process that determines the geostrophic flow uG in a
Taylor state.

Should Taylor’s constraint fail to be satisfied, the azimuthal torque (15) on cylinders

will be non-zero and the E− 1
2 factor in (14) indicates the generation of a strong geostrophic

flow. Inertia must then inevitably play a role. If we retain inertia in our problem, but only
for a geostrophic flow uG(s)eφ, we can repeat the analysis of Section 3.1 to obtain, in place
of (14),

2zT Em
∂uG

∂t
+ 2

(
E

cos θ

) 1
2

uG = T . (23)

The addition of the inertial term can be of assistance in finding steady solutions, playing
a technical role, preventing numerical instabilities in the small E limit, see Jault (1995), in
particular his equation (6). Glatzmaier & Roberts (1996a) introduced the axisymmetric
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azimuthal part of inertia into their 3D hydrodynamic dynamo model, having neglected
inertia in their earlier work (Glatzmaier & Roberts 1995a,b).

In the limit of small E, (23) becomes an equation for torsional oscillations

2zT Em
∂uG

∂t
= T . (24)

An additional equation can be obtained by taking the expression (15) and differentiating
it with respect to t:

2πs
∂T (s, t)

∂t
=

∫
C(s)

[
(∇×B)× ∂B

∂t

]
φ

+

[
(∇× ∂B

∂t
)×B

]
φ

dS . (25)

Substituting for ∂B/∂t from the induction equation (4a) and neglecting the diffusion term,
for an axisymmetric field it can be shown that

2πs
∂T (s, t)

∂t
= a(s)

∂2

∂s2

(uG

s

)
+ b(s)

∂

∂s

(uG

s

)
+ c(s) (26)

where

a(s) =

∫
C(s)

sB2
s dS , b(s) =

∫
C(s)

(
sB ·∇Bs + 2B2

s

)
dS , (27)

and c(s) contains all the other contributions that do not involve uG. Note that Taylor(1963)
derived a version of this equation, without the left-hand-side by differentiating (12) rather
than (15). It was Braginsky (1970) who first derived an equation describing torsional
waves.

Equations (24) and (26) form a hyperbolic system which may be expected to admit
oscillatory solutions about the steady state for which T = 0 (Moffatt, 1978). In these
torsional oscillations, each cylinder C(s) rotates about its axis. Recall that flows of the
form uG(s)eφ are unaffected by the Coriolis force, see (16). The oscillations are controlled
by their magnetic linkage through Bs and the shearing of this field component by differential
rotation; notice that it is only radial gradients of uG/s that appear in (26). The time scale
of the torsional oscillations can be determined by combining (24) and (26). We find that

Em
∂2

∂t2
∼ B2

s . (28)

Recalling that time has been non-dimensionalised using τη and B using (Ωµ0ρ0η)
1
2 we

conclude that the characteristic time for torsional waves is

Em

1
2

Bs

τη =
1

Bs

(
τηΩ

−1
) 1

2 = ro

√
µ0ρ0

B∗
s

, (29)

where B∗
s is the dimensional radial field. From this we can see that the time scale of

torsional waves is essentially determined by the time it takes an Alfvén wave propagating
on the radial field to travel a distance of the order of the radius of the core. If we choose
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an average radial field strength of 0.1mT then the above gives a time of the order of 130
years. Stronger fields give shorter times. Section 3 of Roberts & Soward (1972) gives a
more detailed analysis including a discussion of the decay of torsional oscillations.

Braginsky (1970) invoked torsional oscillations as a possible mechanism for explaining
observations of variations in the length of the day with a period of about 60 years (he
assumed a field strength of 0.186mT). Jault & Le Mouël (1991) also investigated the prob-
lem, looking in detail at electromagnetic and topographic core-mantle coupling. Torsional
oscillations continue to be of interest as mechanism for explaining observations. For exam-
ple Pais & Hulot (2000) see evidence for torsional oscillations in their analysis of core flow
at the CMB deduced from geomagnetic models, and Bloxham et al. (2002) in an analysis
of geomagnetic data show that “geomagnetic jerks can be explained by the combination of
a steady flow and a simple time-varying, axisymmetric, equatorially symmetric, toroidal
zonal flow. Such a flow is consistent with torsional oscillations in the Earths core”. Jault
(2003) reviews this area.

4 Parameter Constraints

The choice of the values for freely prescribable parameters in geodynamo models is a
compromise between realistic values for planetary interiors and computationally tractable
values. The balance will move to the former as our understanding of the problem, compu-
tational techniques and computational power advance, but initially a practical approach
is wise; adopting values that produce well-resolved solutions. Here we summarise some
results from model problems that illustrate the dependence of solutions on key parameters
and discuss how these constrain what values of these parameters we can reasonably use in
geodynamo models.

4.1 The Ekman number

As discussed in Section 2, using typical estimates of the molecular viscosity, and the radius
of the Earth’s outer core as our length scale, the Ekman number E = O(10−15). It is this
very small value that is the most fundamental source of difficulty in solving the geodynamo

problem. The (Ekman) boundary layers at the CMB and ICB each have thickness of O(E
1
2 )

(equivalent to about 0.1m for the Earth). In a non-magnetic system (where the leading
order balance is geostrophic) both the convective length scale (see Section ??) and the
shortest length scale of the Stewartson-layer structure (see Section ??) associated with

the tangent cylinder are of O(E
1
3 ). Clearly, resolution of such structures in any numerical

scheme is impossible for any realistic value of E. The Stewartson-layer structure is modified
by the presence of a magnetic field (see Soward & Hollerbach 2000) but any simulation has
to be able to deal with situations where the field is, at least locally, weak. The stiffness
associated with Taylor’s constraint in the limit of small E (see Section 3.1) is a further
difficulty. The only options are to work with much larger values of E or to adopt the
magnetostrophic approximation E = 0. Work by Walker et al. (1998) has identified a
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problem that affects both the E = 0 and E → 0 cases; the development of small scale,
high frequency waves, implying a time step of order Eτη to ensure numerical stability.
This has proved an insurmountable problem in attempts to work in the magnetostrophic
approximation.

Significant progress has been made using the finite E approach (see Section 5). Even
with substantial supercomputer resources, it is not feasible to reduce E much below 10−5

(see for example Jones et al. 1995, Kuang & Bloxham 1997, 1999). To lower, what we might
call the headline Ekman number, some authors have adopted so-called hyperdiffusivities.
These enhance the diffusivity for short length scales in the θ- and φ-directions. Solutions
are typically expressed through expansions in spherical harmonics, for example

g =
L∑

l=m

M∑
m=0

glm(r)Pm
l (cos θ)eimφ + c.c., (30)

where g is the toroidal part of the field, Pm
l are associated Legendre functions (see for

example Abramowitz and Stegun 1965) and c.c. denotes complex conjugate. Then, an
example of hyperdiffusivity is defined by

ν = ν(1 + hl3), (31)

where h is some constant and l is the spherical harmonic degree. It is then ν that appears
in the definition of the Ekman number rather than ν. The effect of the hyperdiffusivity
is to “damp small scales while allowing the large scales to experience much less diffusion”
(Glatzmaier and Roberts 1995b). Glatzmaier and Roberts (1995b) use h = 0.075, achieving
a headline Ekman number of 2 × 10−6. The other diffusivities κ and η are treated in the
same manner. More recently, Glatzmaier and Roberts have used h = 0.037 for ν and κ
and 0.016 for η (Glatzmaier and Roberts 1996b,c). The argument typically put forward to
justify the use of hyperdiffusivities is that the diffusivities are assumed to be eddy (sub-
grid) diffusivities and the small resolved eddies physically interact more strongly with the
small unresolved eddies so they should have larger diffusivities. The use of hyperdiffusion
does distort the dynamics of the core, resulting in viscosity retaining a controlling influence
on the geostrophic flow, for example, see Zhang & Jones (1997).

An important issue that is relevant to the question of how low E must be in order to
be characteristic of the geodynamo is highlighted by Jones (2000). He discusses whether
the geodynamo is supercritical or subcritical, in the following sense. It is well known from
linear studies (see for example Proctor 1994) that, in a rapidly rotating system, the modified

Rayleigh number for the onset of thermally driven convection R̃ac0 ≡ R̃ac(B = 0) is of

O(E− 1
3 ) in the absence of any magnetic field. By contrast, in the presence of a prescribed

magnetic field with Λ = O(1), R̃ac reduces to O(1); the presence of the field facilitates

convection. Numerical studies (see Section 5.3) show that R̃a may have to be well above
its critical value in order to maintain a field. Nonetheless, when E � 1, it is possible
that a self-sustaining dynamo exists for R̃a < R̃ac0. Jones (2000) calls this situation a
subcritical dynamo and estimates that dynamos for E < 10−10 must be subcritical. They
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may exist at larger values of E but all numerical models so far have required R̃a > R̃ac0

for dynamo action, see for example Busse et al. (2003). Gubbins (2001) argues that the
Rayleigh number in the core is highly supercritical.

4.2 The magnetic Reynolds number

The magnetic Reynolds number Rm is a non-dimensional measure of the relative impor-
tance of the induction term ∇ × (u × B) to the diffusive term ∆B. In the absence of
the former, it can be shown that the field B inevitably decays. For field maintenance, the
induction effect must be able to at least balance the diffusive losses; i.e. Rm must exceed
some minimum value [≥ O(1)]. Specific lower bounds on Rm for dynamo action can be
derived, see for example Roberts (1994) and Chapter ??.

In a fully hydrodynamic dynamo model, the flow u emerges as part of the solution so
Rm is not a parameter that can be freely chosen. The vigour of the flow depends on the
forcing whose magnitude is determined by the modified Rayleigh number R̃a (see below).
The level of the forcing must be sufficient that dynamo action is taking place, while at the
same time ensuring that Rm (which measures the strength of the differential rotation) is
not too large. Shear acts to inhibit convection (see for example Fearn & Proctor, 1983)

and associated with this are short length scales typically O(Rm− 1
3 ). If Rm is too large,

such length scales may be difficult to resolve.

4.3 The Roberts number

The situation described above is worse when the Roberts number q is small. Differential
rotation begins to have a significant effect when Rm = O(q) with length scales O(Rm/q)−

1
3

having to be resolved. With the requirement for dynamo action that Rm be at least O(1)
there is a clear problem when q is small, as is appropriate if we use molecular values of the
diffusivities. The situation may be helped somewhat in that strong fields act to oppose
shear (see for example Busse 2002). Small values of q have also been problematical in
attaining solutions satisfying Taylor’s constraint (see Section 3.1 and Soward 1986, Skinner

& Soward 1988, 1990). Further, peculiar features are present in the R̃a versus Λ graph for
the onset of thermally driven convection when q � 1 (see Zhang & Jones 1996).

The source of many of these problems is the mismatch between the thermal and ohmic
time scales [τκ = r2

o/κ and τη, see (1)]. With molecular values of the diffusivities, τη =
O(105) years. This is an upper bound on the time scale on which the dynamo must
regenerate magnetic field. With q = O(10−5) (see Section 2), the natural thermal time
scale is longer than the age of the Earth. This mismatch is probably also the source of the
much higher values of R̃a found to be required for dynamo action when q is small, see for
example the discussion in Jones (2000), Busse (2002, Figure 15) and below.

It is clear that, initially, to make progress, it is sensible to adopt O(1) values of q.
Indeed, parameter surveys have shown no dynamo action for q less than some critical
value qc which decreases with decreasing E, see for example Christensen et al. (1999).

18



They choose Pr = 1 so q = Pm. They found dynamo action only for Pm > Pmc ∼ 450E
3
4 .

For E = 10−3, Pmc ∼ 2 and for E = 10−4 they found Pmc ∼ 0.5.

4.4 The Rayleigh number

The above discussion about disparate time scales suggests that very highly supercritical
values of R̃a will be required for dynamo action if q is small. This is consistent with the
findings of Glatzmaier and Roberts (1995a,b) who use q = 0.1. Jones et al. (1995) find

dynamo action at much smaller values of R̃a− R̃ac0 for q = 10 compared with q = 1. The
form of the buoyancy term in (4b) suggests that it is qR̃a that is important for dynamo
action.

4.5 The magnetic Ekman number

Motivated by the smallness of Em, some numerical models of the geodynamo neglect inertial
terms altogether, a few choose the geophysical value, while many take the view that Em

should be no smaller than the Ekman number. The magnetic Prandtl number

Pm = E/Em = ν/η (32)

is small in the core but the numerical constraints on E mean that most numerical models
take Pm = O(1). Taking the geophysical value of Em while accepting the numerical
constraints on E would imply a large magnetic Prandtl number, while neglecting inertial
effects altogether corresponds to the infinite magnetic Prandtl number limit. Whatever
the choice, almost all studies choose a fixed value of Em and focus on other aspects of the
problem. Very little work has focussed in on the role of inertia in the dynamo problem
(but see Fearn & Morrison, 2001; Fearn & Rahman 2004b). Fearn & Morrison (2001) find
that dynamo action shuts off as Em is increased. This is consistent with the studies (see
Section 4.3) that show no dynamo action if q or equivalently Pm is too small.

5 Numerical models

There has been considerable progress over the past 10 years in modelling the geodynamo,
with many groups now actively involved. Reviews include those by Dormy et al. (2000),
Jones (2000), Roberts & Glatzmaier (2000), Busse (2002), Glatzmaier (2002) and Kono
& Roberts (2002). In making comparisons between different calculations, care should be
taken to note that different authors use different definitions of the key non-dimensional
parameters. The two main differences are:

• whether the factor 2 is retained, as here [see (4b)], in the Coriolis force or whether it

is absorbed into the definitions of E, R̃a, Em and Λ,

• the choice of length scale. Here we have used the outer core radius ro. Many papers
use the core gap width ro − ri, and of course there are variations on the choice of ri.

19



In the following discussion, where we give values of dimensionless parameters, we are simply
quoting the values given by the authors; we have not attempted to normalise them to the
definitions used here.

5.1 Nonlinear α2 and αω models

Proctor, in Chapter ??, has described linear mean-field α2- and αω-dynamos. For these,
in the supercritical regime, a seed field will grow without bound. In the context of the
geodynamo, the first nonlinear effect that becomes important as B grows in strength is

the geostrophic flow discussed in Section 3.1. The E− 1
2 factor in (14) implies uG is of

O(1) when |B| is of O(E
1
4 ). The system is then in an Ekman state. A number of studies

have investigated the role of the geostrophic flow in equilibrating mean-field dynamos. As
the driving is increased (an increase in the strength of α and/or ω), the system typically
evolves towards a state in which Taylor’s constraint (12) is satisfied as envisaged by Malkus
& Proctor (1975), though the manner in which this happens is model dependent, see for
example Soward & Jones (1983). If the only nonlinear effect that is included in a model
is uG, then, when (12) is satisfied, the solution is no longer viscously controlled and will
grow without bound. Other (ageostrophic) nonlinear effects then must come into play
to equilibrate the solution with |B| = O(1) in a Taylor state. Studies using a spherical
geometry include those by Proctor (1977), Hollerbach & Ierley (1991), Barenghi (1992)
and Hollerbach & Jones (1993, 1995). The latter solved

∂B

∂t
= ∇× (u×B + αB) + ∆B, (33a)

2k× u = −∇p + Θr + E∆u + (∇×B)×B, (33b)

together with (4c) for axisymmetric B and u and prescribed α and Θ. The term Θr models
the buoyancy force, driving a meridional circulation as well as differential rotation.

This system retains the simplicity of the mean-field dynamo by parameterising non-
axisymmetric effects by the α-effect while including the key nonlinear interactions between
B and u; the field drives a flow through the action of the Lorentz force in (33b) and this
flow acts back on the field in (33a).

Hollerbach & Jones (1993, 1995) considered a system with a finitely conducting inner
core and demonstrated the stabilising effect it could have on dynamo solutions. Fothering-
ham et al. (2002) and Fearn & Rahman (2004a) have extended the model to investigate
the stability of axisymmetric fields to non-axisymmetric instabilities and found that such
instabilities can significantly constrain the strength of field that can be generated.

5.2 2.5D models

The term “2.5D” is applied to models that solve the convectively-driven system (4a)-
(4d), resolving fully in radius r and colatitude θ but with only very restricted resolution
in azimuth φ. The motivation for this is to produce a problem that is tractable with
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moderate computing resources. The justification is from Cowling’s theorem (see Chapter
??). We know that an axisymmetric field cannot be maintained by fluid motions. The
interaction between axisymmetric and non-axisymmetric parts of the system are therefore
a key ingredient of the dynamo problem. So, simply considering the axisymmetric part
and even one non-axisymmetric mode ensures that this key ingredient is present in the
model.

Jones et al. (1995) reported the first results from a 2.5D model. The results were encour-
aging, producing fields of around the right magnitude and associated with flow strengths
consistent with those deduced from the secular variation. Most of their calculations are for
an Ekman number of 10−3 (note that their definitions of the Ekman and modified Rayleigh
numbers have a factor 2 in the denominator and are based on the gap-width ro − ri as
length scale). Their single non-axisymmetric mode has azimuthal wavenumber m = 2.

They consider both q = 10 and q = 1 and find that while for R̃aJ = 50 (a subscript J
denotes their definition of the parameter) is sufficient to maintain a dynamo for q = 10,

R̃aJ = 1600 was required to sustain a field when q = 1. This feature of increasing R̃a with
decreasing q is one that is reinforced by 3D studies.

Subsequent studies have proceeded to use the model to investigate, for example, the
effect of varying the Ekman number (Sarson & Jones 1998), the effect of CMB heterogeneity
(Sarson et al. 1997) and reversals (Sarson & Jones 1999, Sarson 2000). The model has been
used to good effect in elucidating the results from 3D models and in understanding dynamo
behaviour in different parameter regimes (see below and Jones 2000).

5.3 3D models

The first attempts at 3D calculations were by Zhang & Busse (1989, 1990). Their calcula-
tions used stress-free boundary conditions which reduces the problem of resolving viscous
boundary layers. This was appropriate since computing resources were limited; allowing
only modest space resolution. Furthermore, resolution in time was restricted to a single
mode; they did not use a time-stepping method, instead following a bifurcation sequence
from stationary fluid, to steadily drifting finite amplitude convection, to a finite amplitude
convection driven dynamo. Solutions were sought proportional to exp[i(φ− ct)] so all com-
ponents of the solution were forced to drift at the same wave speed c. They used E = 10−3

and found dynamo solutions. Unfortunately, attempts to follow these to lower E failed;
the dynamo action found did not persist as E was reduced.

The fully 3D time-stepping calculation of Glatzmaier & Roberts (1995a,b) marked a
major step forward. They used q = 0.1 and found maintenance of a field of strength up
to 56 mT. Glatzmaier & Roberts found that very high values of their Rayleigh number
(gαQ/2Ωcpρκ2 ≈ 6 × 107, where Q is the heat flux at the bottom of the core and cp the
specific heat capacity) were required to give dynamo action. This high value at small q is
consistent with the trend found by Jones et al. (1995) who speculate that the reason is that

convective velocities scale with qR̃a rather than R̃a. The single integration of Glatzmaier &
Roberts (1995a,b) required substantial supercomputer resources and simulated only 40,000
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years. An important feature of the simulation was that it included a field reversal.
Following on from this pioneering work, several groups have produced their own geo-

dynamo models. Increasing computing power has allowed longer integrations and modest
exploration of parameter space. Most models use a similar (spectral) numerical approach
(see for example Hollerbach 2000) and give good agreement for a simple steady benchmark
solution (see Christensen et al. 2001). Jones (2000) has reviewed what has been learnt from
the first 5 years of this work. He finds it useful to divide the calculations that have been
done into two categories which he calls Busse-Zhang (BZ) and Glatzmaier-Roberts (GR)

models. The distinction is made according to the choice of the key parameters q, R̃a and
E. BZ calculations typically have R̃a a few times R̃ac0 (the critical value for the onset of
convection in the rapidly rotating system in the absence of any magnetic field), q ∼ 10 and
10−4 ≤ E ≤ 10−3. They are characterised by velocities having magnitude of O(10) on the
thermal diffusion timescale [so the magnetic Reynolds number Rm = O(100), sufficient for
dynamo action]. The magnetic field has only a weak influence on convection which takes
place mostly outside the tangent cylinder. There is no strong differential rotation, poloidal
and toroidal fields are comparable in magnitude and the dynamo can be thought of as of
α2 type. GR calculations are more supercritical with R̃a ∼ 100R̃ac0 and therefore much
more computationally intensive. (Consequently most published work is in the BZ regime.)

The larger R̃a is permitted by going to lower E. (Increasing R̃a at fixed E can result in
dynamo action shutting off.) Convective velocities are larger, permitting lower values of q.
There is a stronger differential rotation and the dynamo is more of αω type, although the
peak poloidal field strength remains comparable with the that of the toroidal field.

Most of the work described above is for what Jones (2000) refers to as the “zero-order
model”, that is a spherically symmetric Boussinesq basic state with only one buoyancy
source. The main exception is the work by Glatzmaier & Roberts (1996a,b,c) (and their
subsequent papers) which use the anelastic approximation and both thermal and composi-
tional buoyancy. Even within the zero-order model there is considerable scope for variation.
As well as choice of the key governing parameters q, E, Em and R̃a models differ in:

• Inner core. Most models include an inner core of radius about one third of that of
the outer core with an electrical conductivity comparable with (and usually the same
as) that of the outer core. Some have no inner core while others choose an insulating
or perfectly conducting inner core. Wicht (2002) has recently concluded that in his
model, the inner core does not play an important role in Earth-like reversal sequences.

• Buoyancy distribution. Even with thermal buoyancy only, there is scope to choose
differential heating, internal heating or some combination of the two.

• Inertia. Its size is determined by the choice of Em. Some models neglect it alto-
gether (Em = 0) while others include it partially, for example only the axisymmetric
azimuthal part important for the geostrophic flow.

• Boundary conditions. The values of E that we are forced to use in order to give a
numerically tractable problem mean that the role of viscosity is significantly ampli-
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fied compared with the real Earth. Kuang & Bloxham (1997, 1999) have applied
stress-free boundary conditions, arguing that this reduces somewhat the influence of
viscosity, in partial compensation for the effect of the larger Ekman number. Most
calculations continue to apply rigid boundary conditions on u.

Beyond the zero-order model, there have been several developments:

• Density. As mentioned above, Glatzmaier & Roberts (1996a,b,c, 1997, 1998) have
championed the use of the anelastic approximation and of both thermal and compo-
sitional buoyancy. Their’s is the only model that deals with the sources of buoyancy
(mostly at the ICB) in a fully consistent manner, directly linking them to cooling at
the CMB.

• Heterogeneous boundary conditions. The heat flow across the CMB is not spheri-
cally symmetric. Motivated by this, several groups have investigated the effect of
heterogeneous thermal boundary conditions at the CMB. Glatzmaier et al. (1999)
have shown the strong influence the choice of boundary condition has on reversal fre-
quency. Olson & Christensen (2002) find that “When the amplitude of the boundary
heat flow heterogeneity exceeds the average heat flow, the dynamos usually fail” and
also find similarities between the present field and that produced by a model with
boundary heat flow derived from lower-mantle seismic tomography, see also Chris-
tensen & Olson (2003). Bloxham (2000) compares the secular variation in the Kuang
& Bloxham (1997, 1999) model with the paleomagnetic secular variation. He finds
that, while there is a fair agreement for the meridional distribution, the amplitude
in the numerical simulations is smaller by a factor of at least two. When he includes
heterogeneous CMB heat flow in the model, he finds that he can match the amplitude
of the paleomagnetic secular variation .

As computer power has increased and more groups have constructed their own models,
a large number of model variations has been studied and several groups have undertaken
parameter surveys (for example Christensen et al. 1999, Kutzner & Christensen 2002,
Morrison & Fearn 2000, Fearn & Morrison 2001, Simitev & Busse 2002, 2003).

6 Where are we now, and the future

Our knowledge of the geomagnetic field comes from a number of distinct sources:

• Paleomagnetic measurements. These give the long-time behaviour; showing that the
field is maintained on times very much longer than τη and give information about
reversals, excursions, and the long-term secular variation. For example, in analyses of
paleomagnetic data, Love (2000a) finds an inverse correlation between angular secular
variation and field strength and Love (2000b) confirms the statistical significance
of the paths taken by the virtual geomagnetic pole (VGP) during reversals having
preferred locations.

23



D
ip

o
le

 M
o

m
en

t
P

o
le

 L
at

it
u

d
e

P
o

le
T

ra
je

ct
o

ry
C

M
B

H
ea

t 
F

lu
x

Time (1000 years) Time (1000 years) Time (1000 years) Time (1000 years)

b c da

D
ip

o
le

 M
o

m
en

t
P

o
le

 L
at

it
u

d
e

P
o

le
T

ra
je

ct
o

ry
C

M
B

H
ea

t 
F

lu
x

Time (1000 years) Time (1000 years) Time (1000 years) Time (1000 years)

e f g h

3 3 3 3

Figure 5: An example of the influence heterogeneous heat flux boundary conditions on the
reversal behaviour of a dynamo model. From Glatzmaier et al. (1999

• Surface observations. These are available for about the past 400 years. Early mea-
surements giving global coverage were largely made from ships. More recently a
network of land-based observatories has provided good quality data.
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• Satellite observations. The high quality data from MAGSAT (1979-1980) is now being
complemented by ØRSTED allowing detailed models of the field and the secular
variation over the past 20 years, see for example Hulot et al. (2002) and Jackson
(2003).

In addition, there are other sources of information relevant to geodynamo simulations:

• Seismological measurements. In addition to giving vital information on the structure
and composition of the core, recent work has used the anisotropy of the inner core
to determine its rotation rate, see for example Tromp (2001).

There are two clear distinct aims in geodynamo modelling:

1. to understand the key physical processes of convection-driven hydrodynamic dynamos
in parameter regimes characteristic of the Earth, and

2. to try to explain specific features of the observed geomagnetic field.

An example of [1] is to demonstrate the maintenance of a magnetic field of strength com-
parable with that of the Earth over times long compared with τη. An example of [2] is to
explain the observed variation in the reversal frequency. We can expect that simpler mod-
els such as the zero-order models to be adequate for [1] while features specific to the Earth
such as its heterogeneous CMB heat flow and its thermal history resulting in its inner-core
growth to be necessary for [2]. Ultimately, we may hope to learn new facts about the
interior of the Earth by matching the results of sophisticated modelling to observations.

Numerical simulations give reasonable results for the morphology and strength of the
field at the CMB, and the models are also capable of giving reversals and excursions which
can be compared with palaeomagnetic observations. They also predict differential rotation
between the inner core and the mantle. Given the parameter values we are able to use,
particularly for E and q, the success of our models is better than we might expect. Jones
(2000) comments “The parameter regime in which the current generation of numerical
models can be run is very far from the regime of geophysical parameter values; so far,
indeed, that the strong similarity between the model outputs and the geodynamo is quite
surprising.”

We can expect progress in a number of directions in the coming years. Increasing
computing power and improved numerical methods such as the inclusion of subgrid-scale
models (see for example Buffett 2003 and Chapter ??) should benefit all classes of models.
Improved data and its analysis will identify generic and specific features of the Earth’s field
requiring explanation, motivating further developments away from the zero-order model.
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Alfè D., Gillan M.J., Vočadlo L., Brodholt, J. & Price G.D., The ab initio simulation of the
Earths core, Phil. Trans. R. Soc. Lond Ser. A 360, 1227-1244 (2002b).

Anderson O.L., The power balance at the core-mantle boundary, Phys. Earth Planet. Inter.
131, 1-17 (2002).

Anderson O.L. & Isaak D.G., Another look at the core density deficit of Earth’s outer core, Phys.
Earth Planet. Inter. 131, 19-27 (2002).

Backus G., Parker R. & Constable C., Foundations of Geomagnetism, Cambridge University
Press (1996).

Batchelor G.K., An Introduction to Fluid Dynamics, Cambridge University Press (1967).
Barenghi C.F., Nonlinear planetary dynamos in a rotating spherical shell. II. The post-Taylor

equilibration for α2-dynamos, Geophys. Astrophys. Fluid Dynam. 67, 27-36 (1992).
Bloxham J., The effect of thermal core-mantle interactions on the palaeomagnetic secular varia-

tion, Phil. Trans. R. Soc. Lond Ser. A 358, 1171-1179 (2000).
Bloxham J. & Jackson A., Time-dependent mapping of the magnetic field at the core-mantle

boundary, J. Geophys. Res. 97, 19537-19563 (1992).
Bloxham J., Zatman S. & Dumberry M., The origin of geomagnetic jerks, Nature 420, 65-68

(2002).
Bolt B.A., Inside the Earth, Freeman, San Fransisco (1982).
Braginsky S.I., Structure of the F layer and reasons for convection in the Earth’s core, Sov. Phys.

Dokl. 149, 8-10 (1963).
Braginsky S.I., Torsional magnetohydrodynamic vibrations in the Earth’s core and variations in

day length, Geomag. Aeron. 10, 1-8 (1970).
Braginsky S.I., Nearly axially symmetric model of the hydromagnetic dynamo of the Earth. I,

Geomag. Aeron. 15, 122-128 (1975).
Braginsky S.I., The nonlinear dynamo and model-Z, in Lectures on Solar and Planetary Dynamos

(Proctor M.R.E. & Gilbert A.D., eds.) Cambridge University Press, 267-304 (1994).
Braginsky S.I. & Roberts P.H., A model-Z geodynamo, Geophys. Astrophys. Fluid Dynam. 38,

327-349 (1987).
Braginsky S.I. & Roberts P.H., Equations governing convection in Earth’s core and the geody-

namo, Geophys. Astrophys. Fluid Dynam. 79, 1-97 (1995).
Buffet B.A., A comparison of subgrid-scale models for large-eddy simulations of convection in

the Earth’s core, Geophys. J. Int. 153, 753-765 (2003).

26



Busse F.H., Convective flows in rapidly rotating spheres and their dynamo action, Phys. Fluids
14, 1301-1314 (2002).

Busse F.H., Grote E. & Simitev R., Convection in rotating spherical shells and its dynamo action,
in Earth’s core and lower mantle (C.A. Jones, A.M. Soward & K. Zhang, eds.), Taylor and
Francis, London, 130-152 (2003).

Christensen U.R., Aubert J., Cardin P., Dormy E., Gibbons S., Glatzmaier G.A., Grote E.,
Honkura Y., Jones C., Kono M., Matsushima M., Sakuraba A., Takahashi F., Tilgner A.,
Wicht J. & Zhang K., A numerical dynamo benchmark, Phys. Earth Planet. Inter. 128, 25-34
(2001).

Christensen U.R. & Olson P., Secular variation in numerical geodynamo models with lateral
variations of boundary heat flow, Phys. Earth Planet. Inter. 138, 39-54 (2003)

Christensen U., Olson P. & Glatzmaier G.A., Numerical modelling of the geodynamo: a system-
atic parameter survey, Geophys. J. Int. 138, 393-409 (1999).
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