You have arrived at an old part of our website, to find the latest information please visit our new page about Building in Foam Sandwich. The new portal for the site can be found at www.uk-cherub.org please visit this for up to date news about the UK-Cherub class.
Why Foam Sandwich. Planning
the project. Building the Jig. Materials.
Building The Boat. Cost & Time.
This document is compiled by an amateur, not a professional.
It has been compiled in good faith, but almost certainly contains
errors and inaccuracies. "Best practice" also changes
frequently with changes in technology and materials. None of the
procedures listed are guaranteed to work, and some or all of them
may be hazardous. If you feel unable to take responsibility for
your own actions and errors without resorting to the legal profession
then you are advised not to read it, let alone build anything
based on information here. In any case you are advised not to
build a composite boat without someone experienced in the materials
to contact for advice
The first thing to realise about foam sandwich construction
is that it is easier for the amateur to build a strong light foam
sandwich Cherub than it is to build a plywood one. The second
thing to realise is that the materials involved are inherently
more hostile to humans than those used in building wooden boats,
and rather more handling precautions need to be taken. This is
especially true for those of us who are used to being up to our
wrists in Aerolite 306, with no greater precautions than a bucket
of water to wash off acid spills (not that such practices are
a good idea).
There are two stages in building a foam boat. The first stage
is to build the mould or jig that the hull is to be made about,
and the second is the construction of the boat itself. The alternatives
are to build the boat from a female mould, a male mould or a jig.
Building a female mould is a very lengthy business, as it involves
making a complete model of the finished boat, absolutely fair,
or taking a mould off an existing boat. Renoving the boat from
the mould when finished can bring its problems too. However the
finished boat needs minimal fairing and finishing, which is why
this is the preferred option for batch or series production of
multiple boats. A male mould is used if the boat is to be vacuum
bagged. If you have vacuum bagging facilities available - and
there are ways and means of doing it on the cheap using old freezer
pump motors etc - then you won't need me to tell you about the
advantages. A male jig - which consists of battens over frames
without a solid surface- is used when the layup will be hand consolidated.
This is the most popular and probably the simplest option.
Planning the project.
This is vitally important with a foam boat. Whereas with a wood
boat you can move fittings about easily, on a foam boat it's a
good idea to have plywood or high density foam pads built in at
an early stage. It is possible to do this later, but it's hassle.
Before you start work out your internal layout as best you can,
including any likely changes in the future (!) and draw up a diagram
showing exactly where you are likely to want fittings. You can
neither screw nor bolt fittings into foam sandwich, no matter
how big a backing plate you put on.
It is often possible to borrow a jig from someone else who
has made a boat. In the UK most jigs seem to be used quite a number
of times. However if you are building to your own design
you have no choice. Spend a considerable amount of time on
this. if the mould is not true, fair and symmetrical then the
final boat won't be - one or two of the early Bistros are a little
crooked about the transom at deck level for this very reason.
The mould is normally constructed of 12mm plywood formers at 12"
intervals with battens at reasonably close intervals. Mark out
the plywood formers using templates drawn on drafting film, not
forgetting to allow for the thickness of your battens. Also build
a ply keel former (longitudinal). This is used to help align all
the transverse formers. The formers should be screwed down to
a pair of rails, 4" by 2" is adequate, to keep the whole
thing solid. Once you are confident that they are all in exactly
the correct place you can start putting on the battens. 1/2"
square is perfectly adequate for these. Start with the chines
gunwales and centre line, double and triple checking that everything
is fair. They are best screwed down so you can alter them. Once
the main battens are in you should put in sufficient others to
support any large areas of foam, especially in areas like the
underside where space is critical. Once they are all on it is
a case of sanding and adjusting until you have exactly the shape
you want. After some 4 months graft you will be in the same position
as the someone who is borrowing a jig!
If you have vacuum bagging facilities then there are considerable
advantages in constructing a male mould, basically just by putting
a layer of plywood over the battens. This is filled and faired,
covered with parcel tape and then inner skin, foam and outer skin
successively bagged down on top of this.
[Photo - Paterson 7 under construction (c) Bloodaxe Boats]
The jig needs to be at a reasonable working height. On the
one hand you need to be easily able to work on the middle of the
hull, but on the other hand you don't want to have to bend down
all the time.
One advantage of being an amateur is that time is less of a
constraint. If a pro goes a couple of days over building a boat
than he doesn't eat for a few days, whereas an amateur just doesn't
get to sail so quickly. Therefore there is less need to compromise
on materials in favour of speedy construction. The other factor
is that you are saving so much money on the cost of a new boat
that it is easier to spend a bit more money on the constituents.
8mm or 10 mm Airex, Termanto or Divinycell is normally used.
If you have both then use the thicker gauge for high load areas
such as the space frame and the bottom of the hull. The hull floor
and the false floor should be 75/80kg/m3 for dent resistance,
but 55kg/m3 is adequate for topsides and other verticals. Many
people use the same density throughout. Use the heavy foam for
sidedecks and anything else likely to be exposed to the dreaded
trapeze hook! Pads for fittings can be made from 200kg/m3 foam.
The size of the bubbles in the foam and thus the hollows in the
outer surface will affect how much resin and filler you use, and
thus the weight and cost of the boat. Airex is generally considered
best for this.
Rudyard Kipling wrote
"There are nine and sixty ways of constructing tribal lays
And every single one of them is right!"
Exactly the same applies to Cherub fibre lay-ups these days. If
you talk to people about fibre lay-ups you will get about as many
opinions as people you ask, some of them contradictory! There
are several choices of fibre lay-up that will work well. Most
boats now are either glass with local carbon or all carbon, but
part Kevlar lay-ups have their fans too and certainly seem to
lead to bullet-proof boats. The different fibre combinations have
different characteristics, and different people seem to have different
experiences. Kevlar is always a pain to wet out, and cannot be
sanded, but has superb impact resistance. Carbon can give wetting
out problems, isn't too great on impact resistance, sands well
and provides the stiffest boat. E Glass is cheap and easy to work
with, with reasonable impact resistance.
Glass is probably the best choice for a first boat with a hand
consolidated wet lay-up. All-carbon boats are much better vacuum
bagged. All else being equal a glass boat will come out about
5kg heavier than a carbon one, but you should still easily be
able to get under the minimum weight limit.
There are two lay-ups in common use, one being two layers of
200g/m2 E-glass on the outer shell inside and out, and the other
1 layer of 300g/m2 with a second layer on the outside skin only
over the bottom of the hull. The main fibres should be arranged
at 45 degrees to the centreline, but where there are two layers
the second layer should be 0/90.
The best weaves to use are either 45/45 bi-directional or crows
foot. Bi-directional is strongest and easy to use. Crows foot
weave is very easy to shape and might be a bit cheaper. Standard
weave is difficult to get to run over corners and chines, and
also weakest.
It's a good idea to add some local carbon reinforcement to an
all glass shell. Unidirectional carbon tape is the favourite,
as it is very easy to use. It should go in the areas subject to
heavy loads from the rigging, front bulkheads, space frames etc.
You should put it under the outer layer of glass in order to avoid
sanding it all off again when you fair the boat.
A good lay-up is 200g/m² carbon plain weave, inner skin
at ±45°, outer skin at ±45° with an extra
layer at 0°/90° over bottom, 500mm from stem to 1m from
the transom. Then add a thin layer of 100g/m² glass which
adds thickness and protects the carbon from being removed during
the fairing/sanding process...- if it goes black, stop sanding!
If you want to go for a Kevlar skin on the undersurface - and this could be a good idea if you launch on lots of stones and the boat gets bashed a lot, then use the above lay-up, substituting a skin of 165g/m2 Kevlar for the 0°/90° carbon layer above, and run it from stem to stern. You need to be especially careful in the fairing stage to make sure that you don't cut through the glass into the Kevlar, because the ends of Kevlar will not sand off, but stick out through the fibre as a light fuzz. Not Smooth.
The major choice is between polyester and epoxy. Polyester
is cheaper and easier to use, Epoxy is more expensive, but makes
for a much longer lived boat. Polyester also smells absolutely
disgusting, and as far as I am concerned is right out if you are
building the boat in the living room or a garage attached to the
house. On the other hand epoxy is mildly carcinogenic and can
cause allergic reactions, but in both cases it is important not
to get the stuff on your hands. Barrier cream and plastic gloves
are firmly recommended.
Epoxy is recommended unless money is really tight or for some
reason (perhaps a wild idea you want to try) you're not that bothered
about longevity. In any case only use polyeseter with a primarily
glass boat. Scott Bader (Strand Plastics) are a good supplier
for polyester resin and SP Systems are most commonly used for
Epoxy.
There are many epoxy resin formulations and the one you should
use does depend on your facilities. SP Ampreg 20 is the most commonly
used. However if your are vacuum bagging Ampreg 22 has advantages
in health and safety terms provided that you have a heated workshop
- it can get very viscous at low temperatures, and especially
provided that you can keep it stored at an even temperature. It
reacts very badly to getting cold, although all epoxy formulations
will suffer if stored outside their recommended range.
Epoxy resins like to be post cured, which basically means heating
the structure up quite a bit for an extended period of time. There
is much more in the suppliers' handouts and technical documents
- here are some references.
SP
Systems Guide to Composites (PDF File)
West
Systems Epoxy User Manual
Marine Composites (US)
- a considerable publication in PDF format.
First cover the jig with plastic sheet to stop the foam getting
glued to the jig - most embarrassing. Obviously don't get any
wrinkles on the battens because it will stop you fastening it
down properly. Next attach the foam. Tie it on with wire, the
handiest to use is probably 1.5mm PVC coated (inner core of telephone
cables! ). Use large pieces of foam where possible, but where
there is much curvature - bow etc. - you will need to use smaller
pieces to prevent it cracking as it is bent. Take a lot of trouble
over this, get it absolutely flush to the battens, and keep gaps
between sections to an absolute minimum. At this stage you should
put ply or high density foam pads in where any fittings will go
- bow fitting, shroud plates, etc.
Next you should fill all the gaps and fair off the foam. Use lots
of very light filler as all this is adding unhelpful weight. Be
careful fairing off the foam, it is very easy to sand away lots
of foam and leave the filler standing proud ! All raised portions
must be lost, but small shallow dents don't really matter too
much. Once all the foam is in place, all gaps filled, and all
is fair - check 3 times! - coat the foam with a mixture of resin
and microballoons or litecell. The aim is to fill all the open
cells on the surface with light filler, otherwise it will get
filled with heavy resin when you put the glass on. The best tools
to apply this are a one-foot plastic ruler or a piece of Formica
with a straight edge.
Apply the laminates next. Use a brush and a consolidating roller
to ensure full impregnation - which can be a problem with Kevlar
- and good resin to glass ratios. Remember you need enough resin
to fully impregnate the fibre, but any more is just parasitic
weight. Peel ply can be used and is very effective. Supposedly
you can get a peel ply like nylon fabric from dressmakers which
works nearly as well. I think I might be a bit wary of something
like that in a vacuum bag lay-up though! A resin to glass ratio
of 1.1-1.3:1 is achievable with polyester, and 1.8:1 with epoxy.
Once you have done this cut all the wire ties and turn the
hull over. It will be very floppy (don't panic!) so support it
in a good cradle. This can be used as the basis for a trailer
when you've finished the boat. Put some extra reinforcement around
where the centreboard case will come.
These can be made outside the boat and cut to shape and fitted
later. Even if you don't have vacuum bagging you can (because
they're flat) still compress them while they are curing. Do this
with a couple of sheets of flat wood (chipboard is fine), covered
with melinex - polythene may wrinkle. Put one piece on a flat
floor, add your lay-up, and put the other sheet on top and weigh
down with anything to hand - I used the last 5 years of Yachts
and Yachting and Boards magazines. If you can't get melinex readily
use Parcel tape - yes, the brown stuff! Epoxy won't stick to it
so its great for these sorts of jobs. It can even be used instead
of a release agent on moulds. You do - of course - have to be
very careful not to get wrinkles and creases in the tape when
you stick it down. Bulkheads can have one layer of 200g glass
(or carbon) each side, but the space frame and high load points
should have uni-directional carbon reinforcement under the glass.
The bulkheads can be glued straight in with epoxy fillets, but
the space frame should be glassed in to distribute the loads.
It should hit your ply pads too!
The exact layout of bulkheads depends on your fibre lay-up. A
carbon boat needs less in the way of internal bulkheads. Below
the floor a Glass boat will at least have a full length central
spine, a bulkhead under the mast, one at the back of the daggerboard
case at the mainsheet takeoff and one in the middle of the helmsman's
stamping area. There's not normally a need for an extra bulkhead
in front of the mast, but it is good to add some extra reinforcement
as this area takes a pounding upwind in a chop.
Use 55kg/m3 foam if you have it. Glass one side of the foam
and allow to cure. Then bend each half of the case around the
daggerboard and clamp in place. Don't forget the parcel tape/plastic
sheet to stop it sticking. Glass around the outside, then remove
the board and cut the case down leading and trailing edges. Coat
the inside surface with a gel-coat type layer, preferably with
graphite in, so that the fibres cannot get worn down. The two
sides are then spaced apart a bit with foam or wood, and the whole
lot glassed together again.

[Photo - Bistro shell by Wiz Deas ready for home completion.
(c) Alison Wilde]
Made in much the same as the bulkheads. You can use a jig -
especially if you are making neat rolled side-decks, or use the
bulkheads as a jig. Don't forget pads where fittings will go -
jib sheets, cleats etc. etc. Get the parcel tape out again to
hold the decks down!
There are currently three interior layouts in use. Most common
is still the traditional flat side-deck and side tanks with a
slightly concave false floor. However there are also two variations
on the "scooped deck from side to side theme. Andy Paterson
builds his boats without side decks at all. The false floor comes
up to the point where topside meets flare, and the crew sit on
the inside of the outer skin. An alternative is to have a steeply
raked in side deck which meets the false floor in the same way,
but still having a side deck.
If you are opting for the side deck less route you will have to
have a substantial gunwhale structure to stiffen up the boat as
you won't get the box section effect from the tanks. However in
all cases there is a considerable advantage in having a gunwhale
arrangement that leaves a lip under the topside. When you have
capsized and inverted the boat you need to climb on top. This
is lots easier if there's a nice lip at the edge to rest your
feet on.
Use 75kg/m3 foam. This area is prone to dents (!). Glass on
the bottom layer before you put it in the boat, using one layer
of 200g/m3 glass. Put a fair bit of light resin/filler paste on
top of the bulkheads and weigh it down (Y&Y again ?) until it
is cured. Once it is firmly attached you can put the top layer
of glass on. Use two layers of 200g/m3. Leaving the top layer
off while you attach it leaves the floor more flexible while you
fasten it down.
Lastly run an extra layer of glass over the gunwale where hull
and decks join, partly to keep the whole thing together, and also
to give some abrasion resistance for rigging on concrete and to
help protect against unplanned impacts from solid objects!
Odd brackets for fittings etc can be jigged up on little moulds/jigs
made from wood covered in parcel tape, but its easy to spend hours
making little jigs to not much benefit. There's a lot of mileage
in making up a largish bit of foam coated in glass each side and
cutting things out of that. If you are compressing down small
bits with jigs then, even if you don't use it for the big jobs,
peel ply is recommended. It can make a big difference to how neat
the bits come out and how much finishing work is needed, which
is a big plus if its an awkward shaped bracket.
Absolutely crucial of course, not for strength but for boat
speed. Use the lightest filler you can afford, mix it in resin,
and spread it on as evenly as you can. A plastic ruler is very
good for this. Once it is cured you can start sanding it all off
again, the aim being to get down to a fraction of a millimetre
above the top layer of cloth. In practice you are bound to end
up sanding some cloth off, but make sure it is the very bare minimum.
If you have a layer of Kevlar you must not expose it. Kevlar doesn't
sand off - it leaves little fibres sticking out !
Different jobs on the boat need different fillers. Fillets and
things need some colloidal silica for strength - a mix that is
solely bubbles is very soft. For really high load applications,
and especially in tension, microfibres are great, but they soak
up a lot of resin and so get heavy.
You can load up the resin with a great deal of filler - if you
are simply filling with no need for strength then it can be almost
"dry". Be aware that these mixes are very soft though,
so if the area needs dent resistance you will need to have some
silica and a higher percentage of resin in the mix and accept
the weight penalty.
The lightest fillers are plastic bubbles - Fairlight or something
similar, but are very soft. Microballoons - - the brown phenolic
resin bubbles - are significantly stronger.
For really serious filling you can make a brushable filler. Make
up a reasonably thick filler mix - still a bit "sinking,"
maybe 80% of maximum amount of filler you can mix in, and then
add a little epoxy solvent - proportions perhaps 50cc resin, 250cc
filler and 20cc of solvent and you have a brushable filler that
will sand off readily. An adequate substitute for epoxy solvent
- at least for cleaning and so on, is a general purpose industrial
solvent of 90% methanol, 5% xylene 5% toluene.
It will take you in excess of 200 hours to build a hull once your jig has finished. Most people seem to take about 4 months to fit it all in including fitting out etc. Foam sandwich is a more expensive option than wood, but the final total will depend tremendously on materials. As of 2001 the materials cost is probably about UK£1200 for a glass/polyester boat, going up to UK£1750 for an epoxy/carbon hull. In the US it works out at around US$2600 for a predominantly carbon boat.
If you don't want to do the whole job yourself, whether through lack of time, skill, or inclination, an obvious alternative is to start with a part built shell. Quite a nice option is to buy a shell complete with false floor, which means that the trickier jobs are done.
Jim Champ.
This article was compiled in 1991 with the help of Dave Roe, Alistair Cope, Bill Deeley, Simon Baker and Simon Roberts, and updated slightly in 1998 and 2000 with help from numerous others, including Robin Russell, Matt Searle, Andy Paterson and David Lee. Especial thanks to Andy Paterson for teaching me about Parcel Tape!
If you wish to have fuller construction details for building a foam sandwich boat then it would be worth considering purchasing a set of plans from Bloodaxe Boats, which contain much more detail than is practical to include here.
For further information on this page email the Webmaster