
ICARUS 130, 177–197 (1997)
ARTICLE NO. IS975788

The Long-Term Dynamics of Dactyl’s Orbit

J.-M. Petit

Centre National de la Recherche Scientifique, Observatoire de Nice, B.P. 4229, 06304 Nice, France, and Lunar and
Planetary Laboratory, University of Arizona, Tucson, Arizona 85721

E-mail: petit@obs-nice.fr

and

Daniel D. Durda, Richard Greenberg, T. A. Hurford, and P. E. Geissler

Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721

Received February 21, 1997; revised May 12, 1997

at too great a distance for Doppler data to be useful in
determining the asteroid’s mass, the discovery provided aAsteroid Ida’s satellite Dactyl was observed over 5As hr by
fortuitous opportunity to find the mass and mean densitythe Galileo spacecraft imaging system. The observed motion

fits a family of orbits parameterized by the mass of Ida. We of Ida if an orbit for the satellite could be determined.
have tested the stability of these orbits by numerically integ- Dactyl appeared in 47 of the returned images taken over
rating motion about a realistically shaped model for Ida. Those 5As hr. Unfortunately, Dactyl’s plane about Ida was nearly
with pericenter distance q & 65 km (corresponding to Ida’s coincident with Galileo’s trajectory past the asteroid, so
density * 3.1 g cm23) are unstable over time scales of a few no single orbit could be unambiguously defined from the
days to a few months, placing a strong upper limit on Ida’s limited imaging data alone. The observed positions fit any
density. Moreover, at the opposite extreme of density, orbits member of a continuous family of Keplerian orbits, each
corresponding to densities less than 2.3 g cm23 are chaotic and

orbit corresponding to a particular assumed mass of Idabecome unstable after about 1000 years. For density between
(Byrnes and D’Amario, 1994, Belton et al. 1995, 1996). We2.3 and 2.5 g cm23, Galileo family orbits are chaotic but there
refer to this set as the ‘‘Galileo family’’ of candidate orbits.is no indication of instability over thousands of years. Dactyl

Figure 1 shows the semimajor axis, eccentricity, and incli-likely formed at the same time as Ida, so its orbit must be stable
nation of the Galileo family orbits as functions of Ida’sover time scales much longer than we have been able to explore
mass. As can be seen, all orbits have a low inclination ofnumerically. As a start toward understanding long-term stabil-
order 88 with respect to Ida’s equatorial plane. The Galileoity, we have investigated the character of orbits commensurate

with the rotation of Ida within the Galileo family. We found family includes elliptic orbits with eccentricity as low as
that the overlap of high-order resonances for low densities of 0.09, as well as hyperbolic trajectories for the lowest-den-
Ida explains the chaotic behavior of orbits. The low-order p:1 sity cases. The hyperbolic cases may be ruled out based
and p:2 resonances, corresponding to a high density for Ida, are on Hubble Space Telescope searches for Dactyl in the
distinct and stable and are all consistent with the longitudinal vicinity of Ida after its discovery (Belton et al. 1995) and
position of Dactyl at the epoch of the Galileo encounter. How- from statistical arguments on the small likelihood of ob-
ever, there is no evidence of preferential stability of resonant serving a passing asteroid just during the short time of the
orbits against collison with Ida or escape over 6000 years. If a encounter so close to Ida (Belton et al. 1996). Further
resonant orbit is actually occupied, it may have been selected

constraints on the orbit of Dactyl, and thus on the massby a longer-term stability or by dissipative processes.  1997
and density of Ida, come from dynamical studies of orbital

Academic Press
stability. In Section II we describe the dynamical con-
straints that can be placed on the range of allowable Dactyl
orbits that have been found by short-term integration usingI. INTRODUCTION
both a simple triaxial ellipsoidal shape model and a realistic
irregular shape model for Ida (Thomas et al. 1966). SomeAsteroid 243 Ida’s satellite Dactyl was discovered in

imaging data returned by the Galileo spacecraft after its of the results of the work reported in Section II have been
integrated into descriptions of Ida’s properties and historyAugust 28, 1993, encounter with the asteroid (Belton and

Carlson 1994). Because Galileo was targeted to fly by Ida by Belton et al. (1995, 1996) and by Greenberg et al. (1996).
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FIG. 1. Semimajor axis, eccentricity, and inclination, in degrees (from top to bottom), of the Galileo family orbits as functions of Ida’s mass.
Here are included only the elliptic orbits with pericenter distance larger than 50 km.

We then present in Section III our study of resonant orbits IIIC) that these orbits are consistent with orbital positions
about a realistically shaped Ida. We first describe how from Galileo images. In Section IIID we give a Hamilto-
commensurabilities between Dactyl’s orbital period and nian description of the resonant structure of the Galileo
Ida’s rotational period can be locked (Section IIIA). Next family. The relative stability of resonant orbits and nearby
we search for orbits in the Galileo family that are commen- non-resonant orbits is discussed in Section IIIE, and our

conclusions are summarized in Section IV.surate with Ida’s rotation (Section IIIB) and check (Section
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II. BOUNDARIES OF ORBITAL STABILITY (r 5 2.98 g cm23), with a 5 81.43 km and q 5 68.55 km.
The orbital energy remains constant and stable, except for

To study the stablity of orbits around a rapidly rotating, oscillations due to the rotation of Ida, showing no signs of
elongated asteroid, we first modeled the primary asteroid impending instability over the 100-day time scale of the
as a triaxial ellipsoid with parameters similar to Ida’s (Petit integrations. Our numerical experiments show that, with
et al. 1994). With such a primary, at Dactyl’s close distance this ellipsoidal-Ida model, orbits in the Galileo family that
orbits can be quite irregular. Our preliminary numerical correspond to assumed M . 4.93 3 1016 kg (r . 3.06 g
integrations showed that the most critical parameter gov- cm23, q , 63 km) are highly unstable on a time scale of
erning stability is the pericenter distance. For low enough p100 days. Those orbits corresponding to smaller values of
pericenter distances, orbits impact the primary or escape M are generally stable for as long as we ran the integrations
within a few hundred periods. For retrograde orbits (mo- (1000 years or more).
tion opposite the sense of rotation), the critical pericenter Scheeres et al. (1996) have analytically discussed how
distance is about 50 km. For prograde orbits (as Dactyl’s escape can occur, but only considering up to second-order
is), motion is unstable if the pericenter is lower than about harmonics in the gravitational field. That discussion helps
70 km. Such a restriction would rule out a large range of give insight into the mechanics. However, Ida is so irregular
the Galileo family of orbits, allowing only those orbits that that higher-order harmonics are significant.
correspond to a mass density less than about 3 g cm23 We next explored the influence of the irregular shape
(Petit et al. 1994, Belton et al. 1996). of Ida on the short-term instability limits. We approximate

To test that result, we have systematically examined the the shape model for Ida (Thomas et al. 1996) by a collection
stability of Galileo family orbits. This series of numerical of 44 packed spheres of different sizes. By choosing the
experiments used the triaxial ellipsoid reported by Thomas number, masses, and arrangement of spheres we obtained
et al. (1996), as the best fit to Ida’s figure, with axes 59.8, a body with nearly the same gravitational potential as a
25.4, and 18.6 km. The potential of the triaxial ellipsoid is uniform density in the Thomas et al. model figure while
then given by elliptical integrals (Chauvineau et al. 1993). minimizing the time necessary to compute the gravitational
We used a Bulirsch and Stoer integrator, with self-adaptive force during numerical integration. The difference be-
time steps, and required a relative precision of 10210 at tween our 44-sphere model and the shape model of
each time step. The precision was actually about 10212 to Thomas et al. is less than the uncertainty in the true gravita-
10213 for each time step, and even after more than a million tional field.
orbits, the Jacobi constant had changed by only 1028 in With this representation of the real shape, the fate of
relative value. individual orbits is somewhat different from what we found

We found that along the continuum of orbits that can in the triaxial-ellipsoid case, and the boundary between
fit the Galileo images, prograde orbits with a pericenter instability (impact or escape) and stability is changed
distance & 65 km exhibit strong short-term instabilities. slightly. Figure 5 shows, for the realistic shape model, the
They either impact Ida or escape the asteroid in only a same initial orbit as Fig. 2. The satellite escapes after less
few hours to days. Here we define escape as a positive than 1 year in orbit. To determine more precisely the
binding energy when the distance from Ida is greater than boundary between stable and unstable orbits, we interpo-
500 km. All significant changes in energy occur near peri- lated osculating elements from those tabulated for the Gal-
center. At large distances, the rotation of Ida averages out ileo family by Belton et al. (1996). For our 44-sphere model,
its effect on energy. the limit of stability for the Galileo family of candidate

Figure 2 shows the results of a numerical integration orbits is at M 5 4.99 3 1016 kg (r 5 3.10 g cm23, a 5 78
starting on an osculating orbit from the Galileo family. km, q 5 60 km). Again, orbits below the limit are stable
This initial orbit corresponds to the value of Ida’s mass for at least p1000 years, while those for larger M impact
M 5 5.7 3 1016 kg (r 5 3.54 g cm23), and has semimajor Ida or escape in &100 days, or a few hundred orbits (see
axis a 5 70.07 km and pericenter distance q 5 40.46 km. Fig. 6).
The satellite makes five revolutions before impacting Ida Next we consider the stability of the orbits with large
after less than 37 hr. Figure 3 illustrates a slightly longer- values of e, just below the hyperbolic limit (e 5 1). We
lived escaping case, M 5 5.1 3 1016 kg (r 5 3.17 g cm23), find that these orbits are very stable on the short time
with a 5 75.96 km and q 5 56.18 km. Between close scales that characterized the instabilities near the upper
approaches, the energy oscillates around a constant value limit of M. However, numerical integrations over a few
(Fig. 3b). At each passage at pericenter, the energy gets thousand years do show both unstable and chaotic be-

havior.an impulse and changes by a potentially large amount. The
satellite has four close encounters with Ida and during the For those numerical experiments, we followed both the

behavior of the orbital elements and the Lyapunov charac-last one, after 29 days in orbit, received enough energy to
escape. Figure 4 shows the case for M 5 4.8 3 1016 kg teristic number, which serves as an indicator of chaos (see
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FIG. 2. An orbit that is unstable ending in impact on the primary in less than a few days. Orbit is plotted in the frame rotating with Ida.
The central ellipse represents the projection of the primary (a triaxial ellipsoid best fit to Ida’s figure) on the (x, y) plane, with mass M 5 5.7 3

1016 kg, near the large-mass end of the Galileo family.

Appendix). We found that for the Galileo family of orbits, On the other hand, the orbit for M 5 3.75 3 1016 kg,
even though chaotic, seems to be stable over the 3000 yearsthose with M & 4.0 3 1016 kg (e * 0.36) are chaotic;

the Lyapunov characteristic indicator levels off after &100 of integration. Figure 8a shows the time evolution of the
Lyapunov characteristic indicator, which levels off at ayears. However, a chaotic orbit is not necessarily unstable;

it could be long-lived. An example of a chaotic system with value of the order of 1028.1 after some 30 years. Despite
this formal ‘‘chaos,’’ the osculating elements seem to bewell-bounded, regular behavior and an indefinite lifetime

is the system of terrestrial planets (Laskar 1990). trapped in a finite region not connected with the region
of escaping orbits. Figure 8b shows the time evolution ofIn our case, orbits with M # 3.65 3 1016 kg are chaotic,

leading to eventual satellite escape. Figure 7a shows the the semimajor axis. Although chaotic, its range of variation
is limited to 430 m around a value of 189.98 km. Similarly,time evolution of the Lyapunov characteristic indicator for

M 5 3.6 3 1016 kg. The orbit is clearly chaotic. Moreover, its eccentricity has a value of 0.5693 6 0.0007. There is no
hint of instability.long after chaos was evident (a few years in Fig. 7a), the

satellite reached an escaping orbit: the semimajor axis and None of the Galileo family orbits given by Belton et al.
(1996) with 4.0 3 1016 kg & M # 4.99 3 1016 kg showedeccentricity follow a kind of random walk with a slight

tendency to increase. This results in a decrease of the a sign of instability over the 3000-year of integration. Nor
are they chaotic: their Lyapunov characteristic indicator‘‘averaged pericenter distance’’ defined by q 5 a(1 2 e),

where a and e are the values at apocenter (Fig. 7b). When decreases regularly with time (e.g., Fig. 9).
The boundaries for stable orbits found from these inte-this pericenter distance reaches 74 km, orbital change ac-

celerates. This occurs when e is about 0.9 and a is 740 km. grations are indicated in Fig. 6, where the Galileo family
of candidate orbits is also shown. The range of stable butAfter a few more revolutions (about 230 years after the

start of integration), the satellite reaches a hyperbolic orbit chaotic orbits is 3.65 3 1016 kg , M , 4.0 3 1016 kg. The
total range of stable orbits is 3.65 3 1016 kg , M ,and escapes.
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FIG. 3. (a) Same as Fig. 2 for M 5 5.1 3 1016 kg. (b) Time evolution of energy per unit mass of the satellite for the same case as (a). Negative
energy corresponds to a bounded orbit, positive energy to a hyperbolic trajectory. This orbit leads to rapid escape.
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FIG. 4. Same as Fig. 3b for M 5 4.8 3 1016 kg. Such an orbit is stable for at least thousands of years.

4.99 3 1016 kg. Assuming a volume of 16,100 km3 (Thomas A. Character of Stable Commensurabilities
et al. 1996) this mass range yields a mean density r in the

To address that possibility, we first searched for stable,
range 2.27 to 3.10 g cm23. periodic orbits around the triaxial-ellipsoid model of Ida.

To attempt to restrict further the range of possible To reduce the volume of phase space to explore, and be-
masses we must consider longer-term stability. cause Dactyl’s inclination is small, we considered only or-

bits in Ida’s equatorial plane. One class of orbit, prograde,
III. STABLE COMMENSURABLE ORBITS synchronous, and locked to a longitude 908 from the long

axis, was thought a priori to be stable. Such an orbit would
Dactyl was probably created at the same time as Ida be in effect trapped in the gravitational harmonic ‘‘topog-

(Durda 1996) during the event that formed the Koronis raphy.’’ Numerical integration confirmed that such orbits
asteroid family as much as 1.5 byr ago (Durda 1993), al- are stable for moderately elongated primaries. However,
though it may have suffered major disruptions and size we discovered that such orbits proved to be unstable for
reduction by impactors & 108 years ago (Greenberg et al. a triaxial primary as elongated as Ida. Similar results were
1996). It is also possible that it formed even more recently, reported by Scheeres (1994).
e.g., as ejecta from a large cratering event on the asteroid For an ellipsoid with Ida’s dimensions, we did find a
(Durda and Geissler 1996). In any case, it is unlikely that class of stable, highly eccentric, retrograde orbits that are
a short-lived satellite would be in orbit just as Galileo commensurate with Ida’s rotation period. This discovery
encountered Ida. Therefore, we need to understand stabil- came about in the following way. We found that for motion
ity limits over time scales much longer than considered in near (but not exactly at) a p:1 commensurability (where
Section II. Resonant orbits are often especially stable and p is an integer), pericenter longitude precesses through

3608, but pericenter distance q 5 a(1 2 e) is correlatedmay play a role in maintaining orbits in Ida’s complex
dynamical environment. Periodic orbits may extend the with the rotational phase of Ida: when pericenter is located

near the long axis of Ida, the pericenter distance is greaterrange of possible conditions that can lead to a long-lived
satellite. than average. That observation motivated further investi-
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FIG. 5. Same as Fig. 2 for a realistic 44-sphere shape model for the primary. Escape occurs in less than a year.

gation, revealing that orbits could be found that were first on one side of Ida and then on the other. Numerical
integration shows that pericenter longitudes still avoid thetrapped with pericenter 908 from the long axis. In the case

of prograde orbits like Dactyl’s, the stability zone does not long axis, just as for the p:1 cases. Such a retrograde orbit
is represented in Fig. 11, which shows the alternating posi-extend as close to the primary as it would be for retrograde

orbits, which can be subject to the same kind of trapping tion of pericenter. Even though pericenter can come very
close to Ida, the orbit is stable and pericenter is confinedphenomenon. Here we illustrate the phenomenon with a

retrograde orbit to show how the protection mechanism far from the long axis so as to protect the satellite from
close approach. This kind of orbit stabilization may be ableworks to prevent close encounters between the satellite

and the ends of Ida. Retrograde orbits are more stable to counteract long-term perturbations, such as solar tides
and tidal torques, which might otherwise destabilize orbitsthan prograde ones, and display stronger effects, making

it easier to see how the mechanism works. However, the on time scales comparable to, or less than, the age of Ida.
The stability locking pericenter away from the long axissame general process can apply for prograde orbits.

This type of orbit is stabilized because pericenter is al- is governed by exchanges of energy and angular momen-
tum, especially when the satellite is close to the primary.ways near the shorter axis of Ida. Consider the case shown

in Fig. 10a, a 6:1 commensurability. This figure shows four The lock between the rotational phase of the asteroid and
the sub-satellite longitude is maintained by the force duerevolutions of a retrograde orbit with pericenter near 48

km. The dots indicate the position of the satellite at times to the mass at the ends of the long axis, which in effect
repels pericenter away from the bulge. This effect helpswhen the primary is oriented as shown (central ellipse).

Figure 10b shows that the longitude of pericenter is locked stabilize the orbit.
To understand the underlying physics of this stabilizingto 2908. The dots in Fig. 10b correspond to the passage

at pericenter. Similar orbits can be found for the 5:1, 7:1, interaction between the primary’s bulge and an orbiting
satellite, we approximate the primary’s shape as a set ofetc., commensurabilities.

Next consider commensurabilities of the form 11:2, 13:2, three spheres: a larger central sphere whose diameter
matches the shorter principal axis of Ida, and two smaller15:2, etc. In such cases, the location of pericenter alternates,
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This change in orbital energy (and, hence, semimajor
axis) results in a slight change in the orbital period, causing
the time of the next pericenter passage to be slightly ad-
vanced or retarded, depending on the phase of pericenter
relative to the long axis. This effect tends to return the
longitude of pericenter toward a longitude 908 from the
long axis. The orbit of such a hypothetical satellite is
thus stabilized.

An analytical treatment of the stability mechanism is
given by Scheeres et al. (1996) for an elongated primary
to second order in gravitational harmonics.

Through numerical integrations we have shown that sim-
ilar stable, synchronous orbits can exist around an Ida-
shaped primary as well. Results shown here are for the
44-sphere model, but they have also been confirmed with
an alternative model that simulates Ida’s figure by 4736
point masses on a uniform grid within the shape defined
by Thomas et al. (1996). (The integrations are much shorter
than those used in Section II to define the limits of orbital
stability, making such a model viable.) As with triaxial-
ellipsoidal primaries, the pericenter of the satellite’s orbit
is locked away from Ida’s longer axis, although it can be

FIG. 6. Plot of pericenter distance versus mass of Ida for the Galileo
substantially far from the 908 longitude due to Ida’s irregu-family of orbits (curve). Points are values tabulated by Belton et al. (1996).
lar and asymmetric shape. For example, Fig. 13a showsZones of stability and chaos are indicated. Density of Ida is constrained

between 2.3 and 3.1 g cm23. the position of pericenter over a libration period for a 6:1
resonance. Pericenter is locked to a longitude approxi-
mately 558 from Ida’s long axis. In contrast to orbits around
symmetric, ellipsoidal primaries, for p:1 commensurabilit-spheres placed opposite each other roughly filling the re-

mainder of Ida’s long dimension (central body in Fig. 12a). ies, pericenters are locked only on the convex side of Ida.
The asymmetric shape generally prevents orbits from beingWhen the satellite is about 458 away from the long axis,

the torque due to the two small spheres is maximum. (At 08 stable with pericenters on the concave side of the asteroid
for low-order resonances. For p:2 commensurabilities, per-or 908 the torgue would be zero by symmetry.) The torque is

stronger close to pericenter than elsewhere along the orbit. icenter alternates between longitudes on opposite sides of
the asteroid (e.g., Fig. 13b). For all these cases, motionFigure 12a shows an orbit at the 5:1 commensurability.

If pericenter were just aligned with the short axis of the remains within 18 of the equator, and out-of-plane motion
introduces only small oscillatory effects on the libration.primary, then the locations when the satellite is 458 (for

example) from the short axis, are symmetrical and the two
perturbations cancel each other. On the other hand, if the

B. Commensurable Orbits That Fit Galileo Observations
short-axis longitude is reached after (or before) pericenter,
then the perturbation felt for the preceding passage at 458 The family of Keplerian orbits that fit the Galileo im-

aging data spans a continuous range of values of semimajoris stronger (or weaker) than the one felt for the following
passage at 458. We can calculate the perturbing force due axis a as discussed in Sections I and II. The range of values

found to have short-term stability (Seciton II) correspondsto the two long axis bulges (simulated by the two smaller
spheres). The resulting orbital energy change rate is shown to a range of orbital periods that includes the following

commensurabilities with Ida’s period: 5:1, 6:1, ... , 40:1 andin Fig. 12b (solid line). (The results for the three-sphere
model are confirmed by comparison with a triaxial ellip- 9:2, 11:2, ... , 81:2. The exact value of a at which an orbit

is commensurable depends on the value of e as well. There-soid, shown by the dashed curve in Fig. 12b.) The short-
wavelength variations represent the rapid rotation of the fore we have explored orbital behavior numerically, using

the 44-sphere model for Ida’s figure (and verifying resultsprimary relative to the direction of the satellite, and the
envelope defining the amplitude of the oscillations is cen- with the 4736-sphere model), to identify precisely which

orbits in the Galileo family have (a, e) values that matchtered about pericenter. If (as in the case shown) pericenter
does not occur when the satellite is aligned with an axis commensurable orbits (Hurford et al. 1995).

For these experiments, initial orbits are in Ida’s equato-of symmetry of the primary, the curve is asymmetrical and
a net energy change is accumulated. rial plane to reduce the volume of phase space to investi-
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FIG. 7. (a) Time evolution of the Lyapunov characteristic indicator for M 5 3.6 3 1016 kg. The orbit is chaotic and the satellite eventually
escapes. (b) Time evolution of the ‘‘averaged pericenter distance’’ q 5 a(1 2 e) where a and e are the semimajor axis and eccentricity defined at
apocenter. Escape occurs after q drops below 74 km.
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FIG. 8. (a) Same as Fig. 7a for M 5 3.75 3 1016 kg. The orbit is chaotic but the satellite does not escape. (b) Time evolution of the semimajor
axis at apocenter.
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FIG. 9. Same as Fig. 7a for M 5 4.65 3 1016 kg. The orbit is stable for at least 3000 years, with no evidence of chaos.

FIG. 10. (a) The 6:1 commensurable retrograde orbit plotted in an inertial frame for an ellipsoidal primary. Dots indicate the position of the
satellite when the primary is oriented as shown (central ellipse). This orbit is highly eccentric: e p 0.47. (b) Pericenter longitude relative to primary’s
long axis versus pericenter distance.
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(a, e, M) values consistent with the Galileo data as well as
with stable commensurable motion.

For the orbital elements defined in that way, we have
numerically confirmed that pericenter is locked to a specific
longitude on Ida as described in Secton IIIA. In fact, the
cases shown in Fig. 13 are in the Galileo family as well as
commensurable. The Ida-centric longitude of pericenter is
shown in Table I as ‘‘stable longitude’’ for commensura-
bility.

C. Are Orbital Positions from Galileo Images Consistent
with Resonant Orbits?

If Dactyl indeed exists on one of these stable, commensu-
rate orbits, not only must the orbital elements (a, e) of the
satellite be consistent with the observations, the orbital
position relative to the rotational orientation of Ida must
match as well. At the epoch 28 August 1993 16:52:05 UT
all Galileo family orbits pass through a reference point
p90 km from Ida at longitude 858, indicated in Fig. 15FIG. 11. Same as Fig. 10b for a 13:2 commensurability.
(from Belton et al. 1995). Several of the Galileo family
orbits are shown for a range of discrete values of M for
Ida. Knowing the period and orientation in space of the

gate. However, the integrations are fully three-dimen- osculating orbits allows us to advance Dactyl along a given
sional. Despite the irregular shape of Ida, the subsequent orbit from the reference position at the Galileo reference
inclination never exceeds about a degree. This is not greatly epoch to the pericenter of that orbit. During the time of
different from Dactyl’s actual inclination of p88 and many travel to pericenter Ida rotates as well (Fig. 16 for the 5:1
numerical integrations with correctly inclined Galileo fam- case). This procedure gives the Ida-centric longitude of
ily orbits show that the zero-inclination approximation pericenter based on the Galileo observations. Table I
does not affect the results significantly. In this paper, we shows this value for each commensurable orbit in the Gali-
have also concentrated only on the lower-order resonances

leo family.
(7:1, 13:2, and lower), because higher-order resonances are

The nominal observed position of Dactyl and orientationassumed to be much weaker and therefore of less potential
of Ida at the Galileo flyby epoch give pericenter at aboutsignificance in stabilizing the orbit. Also, the higher-order
&208 of the value for the 9:2 and 5:1 resonances only. Theresonances (larger a) correspond to lower densities (,2.6
7:1 resonance could be a stable librator only if the amplitudeg cm23) for Ida in the Galileo family which would require
is *808 (peak to peak). The other ones would require evensubstantial porosity.
larger amplitude, as much as 3208 in the case of 6:1.The family of orbits that fit the Galileo images represent

The position of Dactyl is known with a rather high acur-a single continuous line through (a, e) space. Each (a, e)
acy, but the orientation of the pericenter is uncertain byvalue corresponds to a particular assumed value for the
approximately 6108 (for e p 0.2, e.g., 9:2 and 7:1) up tomass M of Ida. For each M value, we searched by a trial-
6358 (for e p 0.1, e.g., 6:1). The error on that angle trans-and-error procedure for the stable commensurable orbit
lates into a significant uncertainty in arrival time at pericen-that has the same e value as in the Galileo family. (In fact,
ter, which in turn gives uncertainty in the Ida-centric longi-as discussed in Section IIIA, for any commensurable orbit,
tude of pericenter about five times bigger. Thus any ofe oscillates slightly during each orbit, so we matched the
these low-order resonances is possible within the con-average e.) In general, the average a over one of these
straints of the Galileo observations. For any of these reso-commensurable orbits is not the same as that for the Gali-
nances the corresponding density of Ida is given in Table I.leo family orbit with the same e and M. In Fig. 14, we show
In the next section we describe the dynamics of resonancesa as a function of M for each of the commensurabilities of
more formally and show that the 5:1 commensurable orbitpotential interest. For comparison, we show a(M) for the
may be most probable. We also discuss whether resonantGalileo family of possible orbits.

Points in Fig. 14 at which the curves for the resonant orbits are more stable than non-resonant ones over longer
time scales.orbits intersect the Galileo family orbits represent sets of
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FIG. 12. (a) A 5:1 commensurable prograde orbit plotted in an inertial frame. Dots indicate the position of the satellite when it is aligned
with the primary’s long axis. The open star indicates the satellite position when it is at 458 off the short axis before passage at pericenter. The solid
straight line through the focus of the orbit is the long axis of the primary at that time. Dash–dotted lines indicate the orientation of the perturbing
forces on the satellite. The dashed ellipse shows the best fit ellipsoid to Ida’s figure and the solid circles represent the three-sphere model. (b) Rate
of orbital energy change (for the three-sphere model, solid curve, and a similar ellipsoid, dashed line). If (as in the case shown) pericenter does
not occur when the satellite is aligned with an axis of symmetry of the primary, the curve is asymmetrical and a net energy change is accumulated.
The corresponding change in orbital period tends to keep pericenter away from the long axis.

D. Characterizing Resonances by a following, the capital letters represent action variables,
while lowercase letters stand for the conjugate angle vari-Hamiltonian Approach
able. The Hamiltonian is

To precisely determine the orbital elements, for a zero-
libration, stable commensurable orbit in the Galileo family,
we adopt a formal Hamiltonian approach. We derive a

H 5 2
e2

2L2 2 gH 1 Upert(x, y, z), (2)
representation of the system in terms of ‘‘actions’’ and
‘‘angles.’’ For a resonant orbit, one of the angles and its
conjugate action do not evolve. Hence, the Hamiltonian where e is the product of the mass of Ida and the gravita-
has an extremum value with respect to these variables at tional constant, g is the rotational frequency of Ida, and
the resonance. We introduce the Delaunay variables Upert(x, y, z) is the perturbation potential, e.g., the differ-

ence between the true potential and the potential gener-
l 5 mean anomaly, ated by a point with the same mass as the primary and

located in its center of mass. x, y, z are Cartesian coordi-L 5 Ïea,
nates in the Ida-fixed rotating frame, and

g 5 argument of pericenter,
(1)

G 5 Ïea(1 2 e2),
ex 5 Fcos(h) cos(g) 2

H
G

sin(h) sin(g)G L2 (cos(E) 2 e)
h 5 longitude of node,

H 5 G cos(i),
1 F2 cos(h) sin(g) 2

H
G

sin(h) cos(g)GGL sin(E),

where i is the inclination of the orbit, and the longitude,
h, is measured from the body-fixed zero longitude on Ida ey 5 Fsin(h) cos(g) 1

H
G

cos(h) sin(g)G L2(cos(E) 2 e)
(i.e., from the end of Ida’s long axis). Here and in the
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FIG. 13. (a) Pericenter for a 6:1 commensurability is locked to a longitude near 558 relative to Ida’s long axis. Such stable commensurabilities
generally lock pericenter to the convex side of Ida, not the opposite (concave) side. The wiggles are due to out-of-plane oscillations which remain
&18. (b) Pericenter for an 11:2 commensurability alternates between two different Ida-centric longitudes on opposite sides of Ida, but both near
908 from the long axis. Pericenter is locked to these longitudes. As in (a), the small wiggles are due to the small, variable inclination of the orbit.

because H ; G, and g and h are undefined, but the longi-
tude of pericenter (g 1 h) is well defined. Also, because1 F2 sin(h) sin(g) 1

H
G

cos(h) cos(g)GGL sin(E),
we are interested in p:q commensurabilities between the
orbital period and the rotational period of the primary
(here, q is an integer, e.g., p 5 5, q 5 1), the angleez 5 !1 2

H2

G2 (sin(g)L2(cos(E) 2 e) 1 cos(g) GL sin(E).
2(p/q) l 2 (g 1 h) is constant, or slowly varying. (Remem-

(3) ber, by definition, g 1 h is the longitude of pericenter,
which is usually written g̃, measured relative to the body-Also,
fixed prime meridian on Ida.) So we introduce a canonical
change of variables:E 2 e sin(E) 5 l, (4)

E being the eccentric anomaly.
s 5

2p
Nq

l 2 (g 1 h),To reduce the number of dimensions and make the prob-
lem computationally tractable, we restrict ourselves to or-

S 5 2H,
(5)bits lying in the equatorial plane, e.g., i 5 08. To be sure

that an orbit starting in the equatorial plane will remain n 5 l,
in this plane, we use a shape model symmetric with respect

N 5 L 2
p
q

H.to the (x, y) plane. This symmetrical shape model is con-
structed by reflecting the 44-sphere model about the equa-
torial plane, and dividing the mass of each sphere by 2,

When we are close to a p:q commensurability, n variescreating an 88-point-mass model. In the (x, y) plane, the
rapidly compared with s. So we look at the averagedpotential field of this model is the same as in the 44-sphere
Hamiltonianmodel, within the uncertainties of the true gravitational

figure. Also, results that we obtain are consistent with
numerical integrations described in Sections IIIA and B.

H 5
1

2fq
E2fq

0
H dn. (6)

With i ; 08, the dimensionality of the problem is reduced
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FIG. 13—Continued

The averaged Hamiltonian H no longer depends on n, the surface H (S, s). For a given value of Ida’s mass, we
have a corresponding orbital period from the Galileo fam-the mean anomaly. Remember that n and N are conjugate

variables and ṅ 5 H /N and Ṅ 5 H /n. Hence N is a ily of fit orbits. We take the order of commensurability
p:q (with q 5 1 or 2) as being the ratio closest to the fitconstant of motion and can be considered as a parameter.
orbit’s orbital period divided by the rotational period ofOnly two variables are left, S and s.

To find equilibrium conditions, we look for extrema of Ida. Then we consider a range of values for N, and
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FIG. 14. Comparison between Galileo family orbits and p:q commensurable orbits. The commensurable orbits shown have the eccentricity of
the Galileo orbit with the same mass of Ida. Where curves cross, we have Galileo family orbits that are in stable commensurabilities.

for each of these values, we look for the extremum of The function H (S, s) also can be used to define the
H (S, s). The values of N and S at that point give a and width of the resonance zone, i.e., the width of the well that
e for an exactly resonant orbit for that particular mass of contains the exact resonance point. For example, the saddle
Ida. For example, a contour plot of H (S, s) is shown in point (B) in Fig. 17 represents the limiting value of H

Fig. 17 for the case with p 5 5, q 5 1, M 5 4.72 3 1016 for resonant libration. The contours passing through point
kg (e 5 0.00315 km3 sec22), and N 5 22020250 m2 sec21. B form a separatrix bounding the resonance zone, which
The extremum at S 5 2506,605 m2 sec21 at point A is the can equivalently be mapped into (a, e) space.
stable resonance. This point corresponds to a 5 83.47 km Thus for any value of assumed mass of Ida, we can
and e 5 0.155. Note that there is only one allowed orienta- generate a curved line in (a, e) space that represents the
tion of the pericenter for a resonant orbit, on one side of locus of zero libration for all possible values of N, and
the primary, not two as there would be for a symmetri- around that line are the boundaries of maximum libration.
cal primary. We have followed that procedure over the range of values

of M corresponding to the Galileo family of orbits. Specifi-
cally, we repeated this procedure for all values of e from

TABLE I
0.00330 to 0.00240 km3 sec22 in increments of 0.00001 km3

Dactyl’s Ida-centric Longitude of Pericenter for Low-Order
sec22 (masses from 4.95 3 1016 to 3.6 3 1016 kg in incre-Commensurabilities Compared with Galileo Data
ments of 0.015 3 1016 kg). We used a spline fit to the

Stable Observed published Galileo family parameters to obtain the (a, e)
M r longitude longitude values corresponding to each M. (The increment corre-

Commensurability (1016 kg) (g cm23) (deg) (deg) sponds to steps in a of p0.5 km, for Ida densities of 2.5
to 3.0 g cm23.) Results are plotted in Fig. 18. For each7:1 4.30 2.67 50.4 90.0
commensurability (p:1 or p:2) there is, in principle, a curve13:2 4.38 2.72 92.9/286.8 151.2

6:1 4.47 2.78 55.0 2103.6 in (a, e) space for each M value over some range of M
11:2 4.59 2.85 92.8/287.7 30.3 values. However, in Fig. 18, we plot only the commensura-
5:1 4.72 2.93 76.5 92.8

bility curve that includes (a, e) values closest to the corre-9:2 4.93 3.06 93.7/287.5 73.3
sponding (a, e) values from the Galileo family. In this way
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FIG. 15. Possible fit orbits of Dactyl for different values of parameter GM. The central ellipse shows the orientation of Ida at epoch 28 August
1993 16:52:05 UT, Dactyl being located at the intersection of all orbits. The arrows point toward the spacecraft. Reproduced, with permission, from
Belton et al. (1995).

we identify the members of the Galileo family of orbits
that are at stable commensurabilities (or at least near them,
given the incremental process). In Fig. 18, these orbits are
at the intersections of the commensurability curves with
the Galileo family curve. Figure 18 shows the results for
the range of Ida masses from M 5 4.25 3 1016 to 5.0 3
1016 kg (density 2.6 to 3.1 g cm23), within the zone of
stability (as shown in Fig. 6).

The width of the resonance zones given in Fig. 18 shows
that it is more likely for a satellite to be trapped in the 5:1
or 9:2 resonance than the other low-order resonances. For
example, for the 7:1 case the width is of the order of 200
m. In the case of the 9:2 resonance, the width is 2 km.

In Fig. 19, we show results for M 5 3.6 3 1016 kg (density
2.24 g cm23). Note that the resonances overlap for values
of e very close to the Galileo family (black dot). Even
minimal libration can thus lead to chaotic behavior. The
boundary for q , 65 km is located nearby (dotted line),
so that chaotic behavior can cause the orbit to go into that
unstable zone of small q. This explains the boundaries of
chaotic behavior at M 5 4.0 3 1016 kg (a 5 127 km) and
of instability at M 5 3.65 3 1016 (a 5 244 km) in Fig. 6.

In contrast, for the range of orbits shown in Fig. 18, the
resonances are well spaced, with no evident mechanism FIG. 16. Advancing Dactyl forward from its observed position at
for chaos. epoch to pericenter (on the 5:1 orbit that is in the Galileo family) gives

the Ida-centric longitude of pericenter shown in Table I.In all these simulations, we have neglected the solar
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FIG. 17. Contour plot of the averaged Hamiltonian as a function of S and s for N 5 22020250 m2 sec21 and p:q 5 5:1. Point A denotes the
extremum point, and point B the saddle point.

perturbations. For the orbits shown in Fig. 18, this is not the Appendix) for the 5:1 resonance is very similar to
a problem since the satellite always stays very close to Ida. the one shown in Fig. 9. The logarithm of the Lyapunov
For the orbit shown in Fig. 19, the apocenter distance indicator decreases linearly with logarithm of time for at
reaches several hundred kilometers. This is still well within least 6000 years, indicating a stable, non-chaotic orbit. The
the Hill radius of about 10,000 km. Solar perturbations are nearby, non-resonant orbits have Lyapunov characteristic
then very small and act on time scales longer than 1000 indicators that are qualitatively indistinguishable from the
years, which is the typical time scale for chaos and escape 5:1 commensurability one, showing that these orbits are
for these orbits. just as stable. Thus these preliminary results indicate that

resonant orbits offer no significant advantage over other
E. Long-Term Stability of Resonant Orbits orbits in stabilizing Dactyl over thousands of years.

These results are only preliminary because we need toNext we consider whether these resonant orbits are any
understand stability over tens of millions of years, whichmore stable over long time scales than nearby, non-com-
is Dactyl’s likely lifetime. We also need to investigate themensurate orbits. To address this question we have per-
relative stability of the other commensurabilities as well.formed a series of very long time scale (thousands of years)

We have considered only the so-called eccentricity reso-numerical integrations of the 5:1 orbit and neighboring
nances, which ensure that at pericenter, the satellite willnon-resonant orbits as an example. As in the previous
always be aligned with a given axis, avoiding close encoun-section, orbits started with zero inclination (e.g., in the
ters with the ends of Ida. Inclination resonances, by lockingequatorial plane of Ida) but with the same other osculating

elements as the Galileo family. We find that the time evolu- the node position, will not have such a protection mecha-
nism. Preliminary integrations with dissipative forces showtion of the Lyapunov characteristic indicator (defined in
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FIG. 18. Location of resonant orbits in the (a, e) plane. Solid lines represent the commensurabilities, the dashed lines limit the regions of
librating orbits, and the dash–dotted line shows the Galileo family of orbits for a range of masses of Ida. Resonances are plotted for the masses
of Ida where they fit the Galileo family.

that the orbit is indeed trapped into these eccentricity months. Moreover, at the opposite extreme of density,
orbits corresponding to densities less than 2.3 g cm23 areresonances. All other resonances may act on time scales

longer than the 6000 years considered here. chaotic and become unstable after about 1000 years, usu-
ally because the pericenter dips below the critical distance
from Ida. For density between 2.3 and 2.5 g cm23, GalileoIV. CONCLUSIONS
family orbits are chaotic but there is no indication of insta-
bility over thousands of years.Dactyl’s orbit probably lies fairly close to orbits that

Dactyl is probably at least tens of millions of years old,would be unstable on very short time scales. Fundamen-
so its orbit must be stable over time scales much longertally, such instability is due to the very elongated figure of
than we have been able to explore numerically. We haveIda and its proximity to Dactyl. The original indication
investigated the character of commensurable orbits withincame from our study of orbits around a triaxial ellipse with
the Galileo family. First, with the ellipsoidal-primaryparameters similar to Ida’s. We found that the dominant
model, we showed how orbits commensurate with the rota-criterion for instability was the distance of pericenter from
tion of Ida are stabilized by interactions with the long-axisIda: If it was less than about 65 km, for a direct orbit like
bulges of the elongated primary. Then we explored theDactyl’s, the satellite soon impacts the primary or is
character and stability of p:1 and p:2 resonances with realis-ejected. The family of orbits that fit Galileo images includes
tic Ida models. These resonances are stable. If we coulda broad range with lower pericenter distances. These orbits
show that one or some of these orbits were particularlycorrespond to assumed densities of Ida greater than about
stable over the long term, or otherwise favorable, we could3 g cm23.
constrain the mass and density of Ida to the correspondingRefinement of that result has been done by numerically

integrating motion around a primary with a figure close to value. In fact, however, all low-order cases are consistent
with the longitudinal position of Dactyl at the epoch of thethe actual figure of Ida. Orbits in the Galileo family were

explored, demonstrating that those with densities greater Galileo encounter, and there is no evidence of preferential
stability against collision with Ida or escape over the timethan 3.1 g cm23 were unstable on time scales of days to
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FIG. 19. Similar to Fig. 18, except all resonances assume the same mass (M 5 3.6 3 1016 kg, as an example). The Galileo family (a, e) for this
mass is shown by the black dot. The orbit is close to where resonances overlap (chaos), which can lead to crossing the dashed line (pericenter of
65 km) and instability.

scales we have investigated. Perhaps future integrations evolve inward. Therefore, a satellite evolving under dissi-
pative forces may be trapped temporarily and sequentiallyover longer times will show some preference for the reso-

nant orbits. into resonances and may stay in each for geological times,
thus favoring discovery in resonance at any particular ep-Another process that may have favored resonant orbits

may have been orbital evolution due to dissipative effects, och. Another dissipative effect we must consider is due to
tides raised on Ida by Dactyl. To conduct this study, wesuch as collisional drag. As Dactyl orbits Ida it also passes

through a variable cloud of impact-generated orbital de- cannot use standard tidal dissipation formulas due to the
odd shape of Ida. Further work on this problem is un-bris, lofted into temporary trajectories about Ida after large

cratering impacts (Geissler et al. 1996). Passage through derway.
this debris creates a small drag on the satellite, causing its
orbit about Ida to slowly decay. Collisions from dust and APPENDIX
small particles from the asteroidal belt cause the same kind

The Lyapunov characteristic number (LCN, Benettin et al. 1980,of drag. Regardless of Dactyl’s provenance, it may have
Froeschlé 1984) characterizes the divergence rate of two neighboringsince been captured into a stable resonant orbit after evolv-
orbits. Let us consider a differential equation:

ing inward toward Ida due to debris-induced drag. Prelimi-
nary study of the evolution of the semimajor axis of an dX

dt
(t) 5 F(X, t). (A1)Ida satellite near a resonance under the influence of a gas-

drag-like force shows that the orbit decays at a steady
We want to know how the point X(t) 1 «(t) diverges from X(t), whererate until captured into the resonance. As is typical in a
«(t) is a small quantity. We expand Eq. (A1) to find the equation governingresonance with an induced drag force, the eccentricity of
the evoluton of «(t),the orbit slowly increases until the satellite enters a second-

ary resonance overlapping the primary one (Henrard and dX
dt

(t) 1
d«

dt
(t) 5 F(X 1 «, t) 5 F(X, t) 1 L(X,t) · « 1 O(«2), (A2)Moons 1992). The orbit then evolves along this secondary

resonance on a chaotic path. Eventually, it crosses the
separatrix of the primary resonance and continues to where L(X,t) is the Jacobian matrix at point X and time t. Since « is
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an infinitely small vector, its evolution is governed by the well-known W. Merline, C. Chapman, D. Davis, T. Denk, J-M. Petit, R. Greenberg,
A. McEwen, A. Storrs, and B. Zellner 1996. The discovery and orbitvariation equation
of 1993 (243) 1 Dactyl. Icarus 120, 185–199.

Benettin, G. L., A. Giorgilli, and J. M. Strelcyn 1980. Meccanica 15, 10.d«

dt
(t) 5 L(X,t) · «. (A3)

Byrnes, D., and L. D’Amario 1994. Galileo Imaging Team Report, unpub-
lished.

Chauvineau, B., P. Farinella, and F. Mignard 1993. Planar orbits aboutThis is a linear equation, so we can normalize « as we wish. It is well
a triaxial body: Application to asteroidal satellites. Icarus 105, 370–384.known that the quantity
Durda, D. D. 1993. The Collisional Evolution of the Asteroid Belt and

Its Contribution to the Zodiacal Cloud. Ph.D. thesis, Univ. of Florida.
G(«(0), T) 5

1
T

i«(T)i
i«(0)i

(A4)
Durda, D. D. 1996. The formation of asteroidal satellites in catastrophic

collisons. Icarus 120, 212–219.
is independent of «(0) and tends to a limit, which is the largest LCN, as Durda, D. D., and P. Geissler 1996. The formation of asteroidal satellites
T goes to infinity. A strictly positive LCN means that two neighboring in large cratering collisions. Bull. Am. Astron. Soc. 28, 1101.
points will diverge exponentially in time, which formally defines chaotic Froeschlé, C. 1984. Numéro spécial du journal de Mécanique théorique
motion. In practice, we define the Lyapunov characteristic indicators as et appliquée 101.
the truncated values of the LCNs for a finite time and we use these to

Geissler, P., J-M. Petit, D. D. Durda, R. Greenberg, W. Bottke,
determine chaotic behavior. M. Nolan, and J. Moore 1996. Erosion and ejecta redistribution on

243 Ida and its moon. Icarus 120, 140–157.
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