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Abstract

Existing search engines, with Google at the top, have many truly remarkable capabilities.
Furthermore, constant progress is being made in improving their performance. But what
is not widely recognized is that there is a basic capability which existing search engines
do not have: deduction capability – the capability to synthesize an answer to a query by
drawing on bodies of information which reside in various parts of the knowledge base.
By definition, a question-answering system, or Q/A system for short, is a system which
has deduction capability. Can a search engine be upgraded to a question-answering system
through the use of existing tools – tools which are based on bivalent logic and probability
theory? A view which is articulated in the following is that the answer is: No.

The first obstacle is world knowledge – the knowledge which humans acquire through
experience, communication and education. Simple examples are: “Icy roads are slippery,”
“Princeton usually means Princeton University,” “Paris is the capital of France,” and “There
are no honest politicians.” World knowledge plays a central role in search, assessment
of relevance and deduction. The problem with world knowledge is that much of it is
perception-based. Perceptions – and especially perceptions of probabilities – are intrin-
sically imprecise, reflecting the fact that human sensory organs, and ultimately the brain,
have a bounded ability to resolve detail and store information. Imprecision of perceptions
stands in the way of using conventional techniques – techniques which are based on bi-
valent logic and probability theory – to deal with perception-based information. A further
complication is that much of world knowledge is negative knowledge in the sense that it

1 This paper draws in part on Toward a generalized theory of uncertainty (GTU) – an outline, Inform. Sci. 172
(2005), 1–40.
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relates to what is impossible and/or non-existent. For example, “A person cannot have two
fathers,” and “Netherlands has no mountains.”

The second obstacle centers on the concept of relevance. There is an extensive literature
on relevance, and every search engine deals with relevance in its own way, some at a high
level of sophistication. But what is quite obvious is that the problem of assessment of
relevance is quite complex and far from solution.

There are two kinds of relevance: (a) question relevance and (b) topic relevance. Both are
matters of degree. For example, on a very basic level, if the question is q: Number of cars
in California? and the available information is p: Population of California is 37,000,000,
then what is the degree of relevance of p to q? Another example: To what degree is a paper
entitled “A New Approach to Natural Language Understanding” of relevance to the topic
of machine translation.

Basically, there are two ways of approaching assessment of relevance: (a) semantic; and
(b) statistical. To illustrate, in the number of cars example, relevance of p to q is a matter of
semantics and world knowledge. In existing search engines, relevance is largely a matter of
statistics, involving counts of links and words, with little if any consideration of semantics.
Assessment of semantic relevance presents difficult problems whose solutions lie beyond
the reach of bivalent logic and probability theory. What should be noted is that assessment
of topic relevance is more amendable to the use of statistical techniques, which explains
why existing search engines are much better at assessment of topic relevance then question
relevance.

The third obstacle is deduction from perception-based information. As a basic example,
assume that the question is q: What is the average height of Swedes?, and the available
information is p: Most adult Swedes are tall. Another example is: Usually Robert returns
from work at about 6 pm. What is the probability that Robert is home at about 6:15 pm?
Neither bivalent logic nor probability theory provide effective tools for dealing with prob-
lems of this type. The difficulty is centered on deduction from premises which are both
uncertain and imprecise.

Underlying the problems of world knowledge, relevance and deduction is a very basic
problem – the problem of natural language understanding. Much of world knowledge and
web knowledge is expressed in a natural language. A natural language is basically a system
for describing perceptions. Since perceptions are intrinsically imprecise, so are natural
languages, especially in the realm of semantics.

A prerequisite to mechanization of question-answering is mechanization of natural lan-
guage understanding, and a prerequisite to mechanization of natural language understand-
ing is precisiation of meaning of concepts and proposition drawn from a natural language.
To deal effectively with world knowledge, relevance, deduction and precisiation, new tools
are needed. The principal new tools are: Precisiated Natural Language (PNL); Protoform
Theory (PFT); and the Generalized Theory of Uncertainty (GTU). These tools are drawn
from fuzzy logic – a logic in which everything is, or is allowed to be, a matter of degree.

The centerpiece of new tools is the concept of a generalized constraint. The importance
of the concept of a generalized constraint derives from the fact that in PNL and GTU it
serves as a basis for generalizing the universally accepted view that information is statisti-
cal in nature. More specifically, the point of departure in PNL and GTU is the fundamental
premise that, in general, information is representable as a system of generalized constraints,
with statistical information constituting a special case. This, much more general, view of
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information is needed to deal effectively with world knowledge, relevance, deduction, pre-
cisiation and related problems.

In summary, the principal objectives of this paper are: (a) to make a case for the view
that a quantum jump in search engine IQ cannot be achieved through the use of methods
based on bivalent logic and probability theory; and (b) to introduce and outline a collection
of non-standard concepts, ideas and tools which open the door to addition of deduction
capability to search engines.

1. Introduction

If I were asked, “What is the most challenging problem in the realm of information science
and technology?” my unequivocal answer would be; conception and design of question-
answering systems. And if I were asked what is likely to be the most important application
area for fuzzy logic in coming years, my answer would be (a) improvement of performance
of search engines; and (b) upgrading search engines to question-answering systems, or Q/A
systems, for short.

Existing search engines are not perfect. Nevertheless, they are extremely useful. Without
access to a search engine, many of us would be paralyzed. It is evident that existing search
engines, with Google at the top but faced with growing competition, have many truly re-
markable capabilities. But there is a very important capability which they do not have –
deduction capability – the capability to synthesize an answer to a question by drawing on
bodies of information which reside in various parts of the knowledge base. What should
be noted, however, is that there are many widely used special purpose Q/A systems which
have limited deduction capability. Examples of such systems are driving direction systems,
reservation systems, diagnostic systems and specialized expert systems, especially in the
domain of medicine.

It is of historical interest to note that question-answering systems were an object of
considerable attention in the early seventies. The literature abounded with papers dealing
with them. A few examples: L.S. Coles [6], M. Nagao and J. Tsujii [18], J.R. McSkimin
and J. Minker [16], A.R. Aronson, B.E. Jacobs and J. Minker [1], W.J.H.J. Bronnenberg et
al. [5]. There was no discussion of search engines because the needed computer technology
was not in existence. Interest in question-answering systems dwindled in the early eighties,
when it became obvious that AI was not advanced enough to provide the needed tools and
technology.

In recent years, significant progress toward enhancement of web intelligence has been
achieved through the use of concepts and techniques related to the Semantic Web [3],
OWL [23], CYC [14] and other approaches. But can such approaches, based as they are on
bivalent logic and probability theory, be employed to upgrade search engines to question-
answering systems? The answer, in my view, is: No. The reason, which is not widely
recognized as yet, is that bivalent logic and bivalent-logic-based probability theory have
intrinsic limitations. To circumvent these limitations what are needed are new tools based
on fuzzy logic and fuzzy-logic-based probability theory. What distinguishes fuzzy logic
from standard logical systems is that in fuzzy logic everything is, or is allowed to be
graduated, that is, be a matter of degree. Furthermore, in fuzzy logic everything is allowed
to be granulated, with a granule being a clump of values drawn together by indistinguisha-
bility, similarity or proximity. It is these fundamental features of fuzzy logic that give it
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a far greater power to deal with problems related to web intelligence than standard tools
based on bivalent logic and probability theory. An analogy which will be elaborated at a
later point is: In general, a valid model of a nonlinear system cannot be constructed through
the use of linear components.

There are three major obstacles to upgrading a search engine to a question-answering
system: (a) the problem of world knowledge; (b) the problem of relevance; and (c) the
underlying problem of mechanization of natural language understanding and, in particular,
the basic problem of precisiation of meaning. A very brief discussion of these problems
follows. We will return to a discussion of these problems at a later point. Since the issues
to be discussed are not restricted to web-related problems, our discussion will be general
in nature.

2. The principal problems

2.1. The problem of world knowledge

World knowledge is the knowledge which humans acquire through experience, education
and communication. Simple examples are:

• Few professors are rich
• There are no honest politicians
• It is not likely to rain in San Francisco in midsummer
• Most adult Swedes are tall
• There are no mountains in Holland
• Usually Princeton means Princeton University
• Paris is the capital of France
• In Europe, the child-bearing age ranges from about sixteen to about forty-two

The problem with world knowledge is that much of it is perception-based. Examples:
• Most adult Swedes are tall
• Most adult Swedes are much taller than most adult Italians
• Usually a large house costs more than a small house
• There are no honest politicians
Perception-based knowledge is intrinsically imprecise, reflecting the bounded ability of

sensory organs, and ultimately the brain, to resolve detail and store information. More
specifically, perception-based knowledge is f-granular in the sense that (a) the boundaries
of perceived classes are unsharp (fuzzy); and (b) the values of perceived attributes are
imprecise (fuzzy). Bivalent-logic-based approaches provide no methods for deduction from
perception-based knowledge. For example, given the datum: Most adult Swedes are tall,
existing bivalent-logic-based methods cannot be employed to come up with valid answers
to the questions q1: How many adult Swedes are short; and q2: What is the average height
of adult Swedes?

2.2. The problem of relevance

The importance of the concept of relevance is hard to exaggerate. Relevance is central to
search. Indeed, the initial success of Google is due, in large measure, to its simple but
ingenious page ranking algorithm for assessment of relevance [4].
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Despite its importance, there are no satisfactory definitions of relevance in the literature,
nor can the problem of assessment of relevance be considered to be on the way to solution.
In fact, it may be argued that, as in the case of world knowledge, the concept of relevance
is much too complex to lend itself to treatment within the limited conceptual framework of
bivalent logic and bivalent-logic-based probability theory. An immediate problem is that
relevance is not a bivalent concept. Relevance is a matter of degree, that is, it is a fuzzy
concept. To define fuzzy concepts, what is needed is the conceptual structure of fuzzy
logic. As was stated earlier, in fuzzy logic everything is, or is allowed to be, a matter of
degree.

For concreteness, it is convenient to define a relevance function, R(q/p), as a function
in which the first argument, q, is a question or a topic; the second argument, p, is a propo-
sition, topic, document, web page or a collection of such objects; and R is the degree to
which p is relevant to q.

When q is a question, computation of R(q/p) involves an assessment of the degree of
relevance of p to q, with p playing the role of question-relevant information. For example,
if q: What is the number of cars in California, and p: Population of California is 37 mil-
lion, then p is question-relevant to q in the sense that p constrains, albeit imprecisely, the
number of cars in California. The constraint is a function of world knowledge.

If q is a topic, e.g., q: Ontology, then a document entitled p: What is ontology?, is
of obvious relevance to q, i.e., p is topic-relevant. The problem in both cases is that of
assessment of degree of relevance. The problem is far from solution. Basically, what we
need is a method of computing the degree of relevance based on the meaning of q and p,
that is, we need semantic relevance. Existing search engines have a very limited capability
to deal with semantic relevance. Instead, what they use is what may be called statistical
relevance. In statistical relevance, what is used is, in the main, statistics of links and counts
of words. Performance of statistical methods of assessment of relevance is unreliable, as
can be seen from examples which will be considered later in this section.

A major source of difficulty in assessment of relevance relates to non-compositionality
of the relevance function. More specifically, assume that we have a question, q, and two
propositions p and r . Can the value of R(q/p, r) be composed from the values of R(q/p)

and R(q/r)? The answer, in general, is: No. As a simple, not web-related, example, sup-
pose that q: How old is Vera; p: Vera’s age is the same as Irene’s; r: Irene is 65. In this
case, R(q/p) = 0; R(q/r) = 0 and yet R(q/p, r) = 1. What this implies is that, in
general, relevance cannot be assessed in isolation. This suggests a need for differentiation
between relevance and what may be called i-relevance, that is, relevance in isolation. In
other words, a proposition, p, is i-relevant if it is relevant by itself, and it is i-irrelevant if
it is not of relevance by itself but might be relevant in combination with other propositions.
An example is considered in [40,41].

2.3. The problem of precisiation of meaning – a prerequisite to mechanization of natural
language understanding

Much of world knowledge and web knowledge is expressed in a natural language. This is
why issues relating to natural language understanding and natural language reasoning are
of direct relevance to search and, even more so, to question-answering.
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Fig. 1. Cointension of definition.

Humans have no difficulty in understanding natural language, but machines have many.
One basic problem is that of imprecision of meaning. A human can understand an in-
struction such as “Take a few steps,” but a machine cannot. To execute this instruction, a
machine needs a precisiation of “few.”

Precisiation of propositions drawn from a natural language is the province of PNL
(Precisiated Natural Language) [40,41]. A forerunner of PNL is PRUF [34]. In PNL, pre-
cisiation is interpreted as meaning precisiation rather than value precisiation. A proposition
is precisiated through translation into the Generalized Constraint Language (GCL), as will
be dismissed in greater detail in Section 3. An element of GCL which precisiates p is re-
ferred to as a precisiand of p, GC(p), with GC(p) representing a generalized constraint. A
precisiand may be viewed as a model of meaning.

A concept which plays a key role in precisiation is cointension, with intension used in
its usual logical sense as attribute-based meaning. Thus, p and q are cointensive if the
meaning of p is a close approximation to that of q. In this sense, a precisiand, GC(p), is
valid if GC(p) is cointensive with p.

The concept of cointensive precisiation has an important implication for validity of def-
initions of concepts. More specifically, if C is a concept and Def(C) is its definition, then
for Def(C) to be a valid definition, Def(C) must be cointensive with C (Figure 1).

The concept of cointensive definition leads to an important conclusion: In general, a
cointensive definition of a fuzzy concept cannot be formulated within the conceptual struc-
ture of bivalent logic and bivalent-logic-based probability theory. This is why cointensive
definitions of such concepts as causality, relevance, summary and mountain cannot be
found in the literature. The concept of cointensive precisiation will be discussed in greater
detail in Section 4.

3. Test queries (Google)

There is no question that existing search engines, with Google at the top, have many
remarkable capabilities and are extremely useful. Search engines are extremely useful
because the user of a search engine employs human intelligence to compensate for its
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limitations, especially in relation to world knowledge, assessment of relevance and natural
language understanding. A few examples of use of Google are intended to illustrate its
strengths and limitations.

Topic 1: Precisiation
Top-ranking results
[UAI] The concept of cointensive precisiation
. . . from data expressed in a natural language is precisiation of meaning. . . .

In this perspective, the problem of precisiation is that of picking a . . .

[PPT] www.cs.berkeley.edu/~nikraves/bisc/Present/Fall0/l . . .

. . . precisiation of c, i, and q can be reduced to precisiation of p . . . the issues
of definability, precisiation, recognition, organization and search loom . . .

AI Magazine: Precisiated natural language
. . . Basically, what PNL provides is a system for precisiation of . . . provide a
computational framework for precisiation of meaning rather than to serve as a . . .

Precisiation of Meaning via Translation into PRUF, Lotfi A. Zadeh, In Vaina, L. and
Hintikka, J., Eds., Cognitive Constraints on Communication, D. Reidel, 1984: 373–401.

COMMENT. In this test, Google does a remarkably good job. Precisiation is a neologism.
I used it for the first time in a paper published in 1984 – a paper which Google finds. The
top-ranking result relates to a presentation which I made just a few weeks ago.

Rating of performance: Excellent

Topic 2: Precisiand
Top-ranking results
[UAI] The concept of cointensive precisiation
. . . the meaning of p is referred to as a precisiand of p, denoted as GC(p). . . .

A cointensive precisiand would be GC(p): If speed is less than about 70 mph, . . .

[PDF] Microsoft PowerPoint – Zadeh_presentation
. . . In general, precisiand of p is not unique. If GC.1.(p), . . . , .GC.n.(p) are
possible precisiands of p, then a basic. question which arises is: which of . . .

COMMENT. Precisiand is a neologism which I introduced in a recent presentation. In this
test, Google does a remarkably good job.

Rating of performance: Excellent

Topic 3: Tikhonov regularization
Top-ranking results
Tikhonov Regularization and Total Least Squares
. . . stable solutions to these systems it is necessary to apply regularization
methods. We show how Tikhonov’s regularization method, which in its original . . .

Tikhonov Regularization for Finitely and Infinitely Smoothing . . .

. . . The main goal of this paper is to obtain a unified theory of Tikhonov
regularization, . . . Tikhonov regularization, Hilbert scales, spectral measure . . .

Finite Dimensional Approximation and Tikhonov Regularization Method
. . . of the regularization functional (Tikhonov & Arsenin, 1977, Morozov, 1984, . . .

and then applying the Tikhonov regularization method in the frequency space. . . .

http://www.cs.berkeley.edu/~nikraves/bisc/Present/Fall0/l
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COMMENT. Tikhonov regularization is a specialized topic. Google does extremely well.

Rating of performance: Excellent

Topic 4: Knowledge representation
Top-ranking results
Book results for knowledge representation Knowledge Representation – by Arthur B.
Markman – 200 pages
What is a Knowledge Representation?
An introductory critical paper by R. Davis, H. Shrobe, and P. Szolovits in AI Magazine
– 1993.
Knowledge Representation Book
The cover art for John Sowa’s book is Ramon Lull’s tree of nature and logic. It is
reproduced here, along with Sowa’s explanation.

COMMENT. This is a much broader topic, and yet Google does extremely well.

Rating of performance: Excellent

Question 1: What is the capital of New York?
Top-ranking results
Web definitions for capital of new york Albany: state capital of New York; located in
eastern New York State on the west bank of the Hudson river
News results for what is the capital of New York – View today’s top stories After the
twin-tower nightmare, New York is back on form, says . . . – Economist –
The New Raiders – BusinessWeek –
Brascan acquires New York-based Hyperion Capital for $50M US

COMMENT. There is some ambiguity in the meaning of New York: Does it refer to the city
of New York or the state of New York? Google resolves the ambiguity and comes up with
correct answer. The results which follow the correct answer are of little, if any, relevance.

Rating of performance: Very good

Question 2: What is the population of the capital of New York?
Top-ranking results
News results for population of New York – View today’s top stories After the twin-tower
nightmare, New York is back on form, says . . .

UN: World’s population is aging rapidly –
New, deadly threat from AIDS virus

COMMENT. Google fails to come up with the correct answer. However, Google comes up
with a correct answer to the query: What is the population of Albany? What this example
shows is that Google lacks the ability to synthesize an answer to the question by combining
the answers to: What is the capital of New York?, and What is the population of Albany?

Rating of performance: Poor
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Question 3: What is the distance between the largest city in Spain and the largest city in
Portugal?
Top-ranking results
Porto – Oporto – Portugal Travel Planner
Munich Germany Travel Planner – Hotels Restaurants Languange . . .

COMMENT. This example is a slightly more complicated version of the previous question.
Similar problem with deduction incapability.

Rating of performance: Poor

Topic 5: Chirac
Top-ranking results
News results for Chirac – View today’s top stories Chirac, Schroeder meet on EU
constitution, cooperation
en.wikipedia.org/wiki/Jacques_Chirac
BBC NEWS | World | Europe | Chirac makes case for EU treaty
The French president goes on TV in a bid to boost the faltering Yes campaign on
the EU constitution.
Biography – Website of the Office of the French President
. . . Jacques Chirac Born on 29 November 1932 in the 5th arrondissement of Paris.
Son of François Chirac, a company director, and Marie-Louise, née Valette. . . .

COMMENT. Google correctly assumes that Chirac is the president of France. Relevance
of many results is low.

Rating of performance: Fairly good

Topic 6: Chirac’s son
Top-ranking results
Guardian Unlimited | Special reports | Chirac’s nemesis
. . . Two events destroyed his position as Chirac’s spiritual son. The first, a
little talked about extra-marital romance with the President’s daughter Claude . . .

lgf: Moore: a BIG Hit in Britain
. . . ‘intellectual’ circles, like Mitterand’s hidden daughter, or, today, Chirac’s
hidden son in Japan. . . . I was not talking of Chirac’s son, nor mazarine. . . .

International PoliticsandElections.com
. . . son of late French president Francois Mitterand. . . . Chirac’s candidacy appears
to be weakend substantially by allegations and investigations of . . .

COMMENT. Most of the results are irrelevant.

Rating of performance: Poor

Question 4: Age of Chirac’s son
Top-ranking results
Guardian Unlimited | Special reports | Chirac’s nemesis
. . . Their son plunged himself into politics at a precocious age, and was active



172 L.A. Zadeh

in the . . . Two events destroyed his position as Chirac’s spiritual son. . . .

Jacques Chirac
. . . An only child, Chirac is the son of a bank clerk and later an executive for
. . . However, Chirac’s extensive family acquaintances had him ranked back at . . .

Politics and Elections
. . . Jean-Christophe Mitterand, son of former President Francois Mitterand, . . .

Chirac’s candidacy appears to be weakend substantially by allegations and . . .

COMMENT. No relevant results. No deduction capability.

Rating of performance: Very poor

Question 5: What is the number of cars in California?
Top-ranking results
California Lemon Law – Lemon Check CARFAX Report, used car history . . .

California Lemon Law provides FREE CARFAX Report, Kelley Blue Book, VIN
number, used car history, auto insurance, auto warranty, lemon check, . . .

CBS News | States Mull Taxing Drivers By Mile | February 16, 2005 . . .

. . . Officials in car-clogged California are so worried they may be considering a . . . So
Too Does Number Of Fakes, • Softer Cars To Save Pedestrians . . .

Ev Archive for January 2001
. . . of a decade-long bureaucratic and political fight over electric cars in California. . . .

should be a greater number of cars that produce no pollution. . . .

COMMENT. No relevant results.

Rating of performance: Poor

Question 6: How many Ph.D. degrees in mathematics were granted by European
universities in 1986?
Top-ranking results
A History of the University of Podlasie
. . . to grant master’s degrees in the following programmes: mathematics, . . . its inception
in 1986, the Faculty was granted rights to confer Ph.D. degree in . . .

1999 Gairdner Foundation Winners!
. . . SB degrees in Mathematics and Economics from MIT in 1968 and his Ph.D. . . . of
Science degrees from the University of Manitoba and McGill University. . . .

Enabling technology for distributed multimedia applications . . .

. . . Ph.D. degree in computer science from the University of Waterloo in 1986. . . . degree
in mathematics from the University of Regina, and a Ph.D. degree in . . .

COMMENT. No relevant results. No deduction capability.

Rating of performance: Very poor

What these tests show is that Google has some remarkable capabilities and serious inca-
pabilities, especially in relation to assessment of semantic relevance and deduction. Google
is extremely useful because a skilled human user can exploit Google’s strengths and com-
pensate for Google’s limitations.



From search engines to question answering systems 173

4. The new tools

The principal thesis of the proceeding discussion is that upgrading a search engine to a
question-answering system is beyond the reach of methods based on bivalent logic and
bivalent-logic-based probability theory. The principal obstacles are the problems of world
knowledge, relevance and precisiation.

To deal with these and related problems it is necessary to move from bivalent logic to
fuzzy logic – a logic that is far more general than bivalent logic. With fuzzy logic as the
base, a complex of new tools can be constructed. The structure of this complex is shown in
Figure 2.

In what follows, we discuss the basics of some of the new tools. The centerpiece of the
new tools is the concept of a generalized constraint [35].

4.1. The concept of a generalized constraint

Constraints are ubiquitous. A typical constraint is an expression of the form X ∈ C, where
X is the constrained variable and C is the set of values which X is allowed to take. A typ-
ical constraint is hard (inelastic) in the sense that if u is a value of X then u satisfies the
constraint if and only if u ∈ C.

The problem with hard constraints is that most real-world constraints are not hard,
meaning that most real-world constraints have some degree of elasticity. For example,
the constraints “check-out time is 1 pm,” and “speed limit is 100 km/h,” are, in reality,
not hard. How can such constraints be defined? The concept of a generalized constraint is
motivated by questions of this kind.
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Fig. 2. Structure of new tools.
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Real-world constraints may assume a variety of forms. They may be simple in appear-
ance and yet have a complex structure. Reflecting this reality, a generalized constraint, GC,
is defined as an expression of the form.

GC: X isr R,

where X is the constrained variable; R is a constraining relation which, in general, is non-
bivalent; and r is an indexing variable which identifies the modality of the constraint, that
is, its semantics. R will be referred to as a granular value of X.

The constrained variable, X, may assume a variety of forms. In particular,
• X is an n-ary variable, X = (X1, . . . , Xn)

• X is a proposition, e.g., X = Leslie is tall
• X is a function
• X is a function of another variable, X = f (Y )

• X is conditioned on another variable, X/Y

• X has a structure, e.g., X = Location(Residence(Carol))
• X is a group variable. In this case, there is a group, G[A]; with each member of

the group, Namei , i = 1, . . . , n, associated with an attribute-value, Ai . Ai may be
vector-valued. Symbolically

G[A]: Name1/A1 + · · · + Namen/An.

Basically, G[A] is a relation.
• X is a generalized constraint, X = Y isr R.

A generalized constraint, GC, is associated with a test-score function, ts(u) [31] which
associates with each object, u, to which the constraint is applicable, the degree to which u

satisfies the constraint. Usually, ts(u) is a point in the unit interval. However, if necessary,
the test-score may be a vector, an element of a semi-ring [21], an element of a lattice [11]
or, more generally, an element of a partially ordered set, or a bimodal distribution – a
constraint which will be described later in this section. The test-score function defines the
semantics of the constraint with which it is associated.

The constraining relation, R, is, or is allowed to be, non-bivalent (fuzzy). The principal
modalities of generalized constraints are summarized in the following.

4.1.1. Principal modalities of generalized constraints

(a) Possibilistic(r = blank)

X is R

with R playing the role of the possibility distribution of X. For example:

X is [a, b]
means that [a, b] is the set of possible values of X. Another example:

X is small.

In this case, the fuzzy set labeled small is the possibility distribution of X. If µsmall is the
membership function of small, then the semantics of “X is small” is defined by

Poss{X = u} = µsmall(u)

where u is a generic value of X.
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(b) Probabilistic(r = p)

X isp R,

with R playing the role of the probability distribution of X. For example.

X isp N
(
m, σ 2)

means that X is a normally distributed random variable with mean m and variance σ 2.
If X is a random variable which takes values in a finite set {u1, . . . , un} with respective

probabilities p1, . . . , pn, then X may be expressed symbolically as

X isp (p1\u1 + · · · + pn\un),

with the semantics

Prob(X = ui) = pi, i = 1, . . . , n.

What is important to note is that in the Generalized Theory of Uncertainty (GTU) [42]
a probabilistic constraint is viewed as an instance of a generalized constraint.

When X is a generalized constraint, the expression

X isp R

is interpreted as a probability qualification of X, with R being the probability of X [29].
For example.

(X is small) isp likely,

where small is a fuzzy subset of the real line, means that the probability of the fuzzy event
{X is small} is likely. More specifically, if X takes values in the interval [a, b] and g is the
probability density function of X, then the probability of the fuzzy even “X is small” may
be expressed as [25]

Prob(X is small) =
b∫

a

µsmall(u)g(u) du.

Hence

ts(g) = µlikely

( a∫
b

g(u)µsmall(u) du

)
.

This expression for the test-score function defines the semantics of probability qualification
of a possibilistic constraint.

(c) Veristic(r = v)

X isv R,

where R plays the role of a verity (truth) distribution of X. In particular, if X takes values
in a finite set {u1, . . . , un} with respective verity (truth) values t1, . . . , tn, then X may be
expressed as

X isv (t1|u1 + · · · + tn|un),
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X0

1

t

(t)small

small

Fig. 3. Truth-qualification: (X is small) is t .

meaning that Ver(X = ui) = ti , i = 1, . . . , n.
For example, if Robert is half German, quarter French and quarter Italian, then

Ethnicity(Robert) isv (0.5|German + 0.25|French + 0.25|Italian).

When X is a generalized constraint, the expression

X isv R

is interpreted as verity (truth) qualification of X. For example,

(X is small) isv very.true,

should be interpreted as “It is very true that X is small.” The semantics of truth qualification
is defined in [29,30]

Ver(X is R) is t → X is µ−1
R (t),

where µ−1
R is inverse of the membership function of R and t is a fuzzy truth value which

is a subset of [0, 1], Figure 3.

NOTE. There are two classes of fuzzy sets: (a) possibilistic, and (b) veristic. In the case of
a possibilistic fuzzy set, the grade of membership is the degree of possibility. In the case of
a veristic fuzzy set, the grade of membership is the degree of verity (truth). Unless stated
to the contrary, a fuzzy set is assumed to be possibilistic.

(d) Usuality(r = u)

X isu R.

The usuality constraint presupposes that X is a random variable, and that probability of the
event {X isu R} is usually, where usually plays the role of a fuzzy probability which is a
fuzzy number [13]. For example.

X isu small
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Fig. 4. Fuzzy graph.

means that “usually X is small” or, equivalently,

Prob{X is small} is usually.

In this expression, small may be interpreted as the usual value of X. The concept of a usual
value has the potential of playing a significant role in decision analysis, since it is more
informative than the concept of expected value.

(e) Random-set(r = rs)
In

X isrs R,

X is a fuzzy-set-valued random variable and R is a fuzzy random set.

(f) Fuzzy-graph(r = fg)
In

X isfg R,

X is a function, f , and R is a fuzzy graph [27] which constrains f (Figure 4). A fuzzy
graph is a disjunction of Cartesian granules expressed as

R = A1 × B1 + · · · + An × Bn,

where the Ai and Bi , i = 1, . . . , n, are fuzzy subsets of the real line, and × is the Cartesian
product. A fuzzy graph is frequently described as a collection of fuzzy if–then rules [26,
36,20,2].

R: if X is A1 then Y is B1, i = 1, . . . , n.

The concept of a fuzzy-graph constraint plays an important role in applications of fuzzy
logic [2,10,12].
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A1 A2

An A

U

fuzzy subset of U

Fig. 5. Bimodal distribution. The Ai are fuzzy subsets of U .

(g) Bimodal(r = bm)
In the bimodal constraint,

X isbm R,

R is a bimodal distribution of the form

R:
∑

i

Pi\Ai, i = 1, . . . , n,

which means that Prob(X is Ai) is Pi [39].
To clarify the meaning of a bimodal distribution it is expedient to start with an example.

I am considering buying Ford stock. I ask my stockbroker, “What is your perception of
the near-term prospects for Ford stock?” He tells me, “A moderate decline is very likely;
a steep decline is unlikely; and a moderate gain is not likely.” My question is: What is the
probability of a large gain?

Information provided by my stock broker may be represented as a collection of ordered
pairs:

• Price: ((unlikely, steep.decline), (very.likely, moderate.decline), (not.likely, moder-
ate.gain)).

In this collection, the second element of an ordered pair is a fuzzy event or, generally,
a possibility distribution, and the first element is a fuzzy probability. The expression for
Price is an example of a bimodal distribution.

The importance of the concept of a bimodal distribution derives from the fact that in
the context of human-centric systems, most probability distributions are bimodal. Bimodal
distributions can assume a variety of forms. The principal types are Type 1, Type 2 and
Type 3 [29,30]. Type 1, 2 and 3 bimodal distributions have a common framework but
differ in important detail (Figure 5). A bimodal distribution may be viewed as an important
generalization of standard probability distribution. For this reason, bimodal distributions
of Type 1, 2, 3 are discussed in greater detail in the following.

• Type 1 (default): X is a random variable taking values in U

A1, . . . , An, A are events (fuzzy sets)
pi = Prob(X is Ai), Prob(X is Ai) is Pi , i = 1, . . . , n,∑

i pi is unconstrained
BD: bimodal distribution: ((P1, A1), . . . , (Pn,An))

or, equivalently,

X isbm (P1\A1 + · · · + Pn\An)

PROBLEM. What is the probability, p, of A? In general, this probability is fuzzy-set-
valued.
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Fig. 6. Basic bimodal distribution.

A special case of bimodal distribution of Type 1 is the basic bimodal distribution (BBD).
In BBD, X is a real-valued random variable, and X and P are granular (Figure 6).

• Type 2 (fuzzy random set): X is a fuzzy-set-valued random variable with values
A1, . . . , An (fuzzy sets)
pi = Prob(X = Ai), Prob(X is Ai) is Pi , i = 1, . . . , n

BD: X isrs (P1\A1 + · · · + Pn\An)∑
i

Pi = 1,

where the Pi are granular probabilities.

PROBLEM. What is the probability, P , of A? P is not definable. What are definable are
(a) the expected value of the conditional possibility of A given BD, and (b) the expected
value of the conditional necessity of A given BD.

• Type 3 (Dempster–Shafer) [22]: X is a random variable taking values X1, . . . , Xn

with probabilities p1, . . . , pn.

Xi is a random variable taking values in Ai, i = 1, . . . , n

Probability distribution of Xi in Ai , i = 1, . . . , n, is not specified.

PROBLEM. What is the probability, p, that X is in A? Because probability distributions of
the Xi in the Ai are not specified, p is interval-valued. What is important to note is that the
concepts of upper and lower probabilities break down when the Ai are fuzzy sets.

NOTE. In applying Dempster–Shafer theory, it is important to check on whether the data
fit Type 3 model. In many cases, the correct model is Type 1 rather than Type 3.

The importance of bimodal distributions derives from the fact that in many realistic
settings a bimodal distribution is the best approximation to our state of knowledge. An
example is assessment of degree of relevance, since relevance is generally not well defined.
If I am asked to assess the degree of relevance of a book on knowledge representation to
summarization, my state of knowledge about the book may not be sufficient to justify an
answer such as 0.7. A better approximation to my state of knowledge may be “likely to be
high.” Such an answer is an instance of a bimodal distribution.

What is the expected value of a bimodal distribution? This question is considered in
Section 4.
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(h) Group(r = g)
In

X isg R,

X is a group variable, G[A], and R is a group constraint on G[A]. More specifically, if X

is a group variable of the form

G[A]: Name1/A1 + · · · + Namen/An

or

G[A]:
∑

i

Namei/Ai, for short, i = 1, . . . , n,

then R is a constraint on the Ai . To illustrate, if we have a group of n Swedes, with Namei

being the name of ith Swede, and Ai being the height of Namei , then the proposition “most
Swedes are tall,” is a constraint on the Ai which may be expressed as [40]

1

n

∑
Count(tall.Swedes) is most

or, more explicitly,

1

n

(
µtall(A1) + · · · + µtall(An)

)
is most,

where most is a fuzzy quantifier which is interpreted as a fuzzy number.

4.1.2. Operations on generalized constraints

There are many ways in which generalized constraints may be operated on. The basic
operations – expressed in symbolic form – are the following.

(a) Conjunction

X isr R

Y iss S

(X, Y ) ist T
.

EXAMPLE (possibilistic constraints).

X is R

Y is S

(X, Y ) is R × S
,

where × is the Cartesian product.

EXAMPLE (probabilistic/possibilistic).

X isp R

(X, Y ) is S

(X, Y ) isrs T
.
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Fig. 7. Projection.

In this example, if S is a fuzzy relation then T is a fuzzy random set. What is involved
in this example is a conjunction of a probabilistic constraint and a possibilistic constraint.
This type of probabilistic/possibilistic constraint plays a key role in the Dempster–Shafer
theory of evidence [22], and in its extension to fuzzy sets and fuzzy probabilities [29,30].

EXAMPLE (possibilistic/probabilistic).

X is R

(X, Y ) isp S

Y/X isp T
.

This example, which is a dual of the proceeding example, is an instance of conditioning.

(b) Projection(possibilistic) (Figure 7)

(X, Y ) is R

X is S
,

where X takes values in U = {u}; Y takes values in V = {v}; and the projection

S = ProjXR,

is defined as

µS(u) = µProjXR(u) = max
v

µR(u, v),

where µR and µS are the membership functions of R and S, respectively.

(c) Projection(probabilistic)

(X, Y ) isp R

X isp S
,

where X and Y are real-valued random variables, and R and S are the probability distribu-
tions of (X, Y ) and X, respectively. The probability density function of S, pS , is related to
that of R, pR , by the familiar equation

pS(u) =
∫

pR(u, v) dv

with the integral taken over the real line.
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Fig. 8. Extension principle.

(d) Propagation

f (X) isr R

g(X) iss S
,

where f and g are functions or functionals.

EXAMPLE (possibilistic constraints) (Figure 8).

f (X) is R

g(X) is S
,

where R and S are fuzzy sets. In terms of the membership function of R, the membership
function of S is given by the solution of the variational problem

µS(v) = sup
u

(
µR

(
f (u)

))
subject to

v = g(u).

NOTE. The constraint propagation rule described in this example is the well-known exten-
sion principle of fuzzy logic [24,28]. Basically, this principle provides a way of computing
the possibilistic constraint on g(X) given a possibilistic constraint on f (X).

4.1.3. Primary constraints, composite constraints and standard constraints

Among the principal generalized constraints there are three that play the role of primary
generalized constraints. They are:

Possibilistic constraint: X is R

Probabilistic constraint: X isp R
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and

Veristic constraint: X isv R

A special case of primary constraints is what may be called standard constraints: bivalent
possibilistic, probabilistic and bivalent veristic. Standard constraints form the basis for the
conceptual framework of bivalent logic and probability theory.

A generalized constraint, GC, is composite if it can be generated from other generalized
constraints through conjunction, and/or projection, and/or constraint propagation, and/or
qualification and/or possibly other operations. For example, a random-set constraint may
be viewed as a conjunction of a probabilistic constraint and either a possibilistic or veristic
constraint. The Dempster–Shafer theory of evidence is, in effect, a theory of possibilistic
random-set constraints. The derivation graph of a composite constraint defines how it can
be derived from primary constraints.

The three primary constraints – possibilistic, probabilistic and veristic – are closely re-
lated to a concept which has a position of centrality in human cognition – the concept of
partiality. In the sense used here, partial means: a matter of degree or, more or less equiva-
lently, fuzzy. In this sense, almost all human concepts are partial (fuzzy). Familiar examples
of fuzzy concepts are: knowledge, understanding, friendship, love, beauty, intelligence,
belief, causality, relevance, honesty, mountain and, most important, truth, likelihood and
possibility. Is a specified concept, C, fuzzy? A simple test is: If C can be hedged, then it
is fuzzy. For example, in the case of relevance, we can say: very relevant, quite relevant,
slightly relevant, etc. Consequently, relevance is a fuzzy concept.

The three primary constraints may be likened to the three primary colors: red, blue and
green. In terms of this analogy, existing theories of uncertainty may be viewed as theories
of different mixtures of primary constraints. For example, the Dempster–Shafer theory of
evidence is a theory of a mixture of probabilistic and possibilistic constraints. The Gener-
alized Theory of Uncertainty (GTU) [42] embraces all possible mixtures. In this sense the
conceptual structure of GTU accommodates most, and perhaps all, of the existing theories
of uncertainty.

4.1.4. The generalized constraint language and standard constraint language

A concept which has a position of centrality in PNL is that of Generalized Constraint
Language (GCL). Informally, GCL is the set of all generalized constraints together with
the rules governing syntax, semantics and generation. Simple examples of elements of
GCL are:(

(X, Y ) isp A
) ∧ (X is B)

(X isp A) ∧ (
(X, Y ) isv B

)
ProjY

(
(X is A) ∧ (

(X, Y ) isp B
))

,

where ∧ is conjunction.
A very simple example of a semantic rule is:

(X is A) ∧ (Y is B) −→ Poss(X = u, Y = v) = µA(u) ∧ µB(v),

where u and v are generic values of X, Y , and µA and µB are the membership functions
of A and B, respectively.
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In principle, GCL is an infinite set. However, in most applications only a small subset of
GCL is likely to be needed.

In PNL, the set of all standard constraints together with the rules governing syntax,
semantics and generation constitute the Standard Constraint Language (SCL). SCL is a
subset of GCL.

4.2. The concept of cointensive precisiation

As was pointed out already, much of world knowledge and web knowledge is expressed in
a natural language. For this reason, mechanization of natural language understanding is of
direct relevance to enhancement of web intelligence.

In recent years, considerable progress has been made in areas of computational linguis-
tics which relate to mechanization of natural language understanding. But what is widely
unrecognized is that there is a fundamental limitation to what can be achieved through the
use of commonly-employed methods of meaning representation. The aim of what follows
is, first, to highlight this limitation and, second, to suggest ways of removing it.

To understand the nature of the limitation, two facts have to be considered. First, as was
pointed out earlier, a natural language, NL, is basically a system for describing perceptions;
and second, perceptions are intrinsically imprecise, reflecting the bounded ability of human
sensory organs, and ultimately the brain, to resolve detail and store information.

A direct consequence of imprecision of perceptions is semantic imprecision of natural
languages. Semantic imprecision of natural languages is not a problem for humans, but is
a major problem for machines.

To clarify the issue, let p be a proposition, concept, question or command. For p to be
understood by a machine, it must be precisiated, that is, expressed in a mathematically
well-defined language. A precisiated form of p, Pre(p), will be referred to as a precisiand
of p and will be denoted as p∗. The object of precisiation, p, will be referred to us pre-
cisiend.

To precisiate p we can employ a number of meaning-representation languages, e.g.,
Prolog, predicate logic, semantic networks, conceptual graphs, LISP, SQL, etc. The
commonly-used meaning-representation languages are bivalent, i.e., are based on bivalent
logic. Are we moving in the right direction when we employ such languages for mech-
anization of natural language understanding? The answer is: No. The reason relates to
an important issue which we have not addressed: cointension of p∗, with intension used
in its logical sense as attribute-based meaning. More specifically, cointension is a mea-
sure of the goodness of fit of the intension of a precisiand, p∗, to the intended intension
of precisiend, p. Thus, cointension is a desideratum of precisiation. What this implies is
that mechanization of natural language understanding requires more than precisiation –
it requires cointensive precisiation. Note that definition is a form of precisiation. In plain
words, a definition is cointensive if its meaning is a good fit to the intended meaning of the
definiendum.

Here is where the fundamental limitation which was alluded to earlier comes into view.
In a natural language, NL, most p’s are fuzzy, that is, are in one way or another, a matter
of degree. Simple examples: propositions “most Swedes are tall” and “overeating causes
obesity;” concepts “mountain” and “honest;” question “is Albert honest?” and command
“take a few steps.”

Employment of commonly-used meaning-representation languages to precisiate a
fuzzy p leads to a bivalent (crisp) precisiand p∗. The problem is that, in general, a bi-



From search engines to question answering systems 185

annotated translation
p X/A isr R/B GC(p)

p p

NL GCL

precisiation
translation

precisiand
of p (GC(p))

explicitation

Fig. 9. Precisiation = translation into GCL.

valent p∗ is not cointensive. As a simple illustration, consider the concept of recession.
The standard definition of recession is: A period of general economic decline; specifically,
a decline in GDP for two or more consecutive quarters. Similarly, a definition of bear mar-
ket is: We classify a bear market as a 30 percent decline after 50 days, or a 13 percent
decline after 145 days. (Robert Shuster, Ned Davis Research.) Clearly, neither definition
is cointensive. Another example is the classical definition of stability. Consider a ball of
diameter D which is placed on an open bottle whose mouth is of diameter d . If D is some-
what larger than d , the configuration is stable: Obviously, as D increases, the configuration
becomes less and less stable. But, according to Lyapounov’s bivalent definition of stability,
the configuration is stable for all values of D greater than d . This contradiction is char-
acteristic of crisp definitions of fuzzy concepts – a well-known example of which is the
Greek sorites (heap) paradox. The magnitude of the problem becomes apparent when we
consider that many concepts in scientific theories are fuzzy, but are defined and treated as
if they are crisp. This is particularly true in fields in which the concepts which are defined
are descriptions of perceptions.

To remove the fundamental limitation, bivalence must be abandoned. Furthermore, new
concepts, ideas and tools must be developed and deployed to deal with the issues of coin-
tensive precisiation, definability and deduction. The principal tools are Precisiated Natural
Language (PNL); Protoform Theory (PFT); and the Generalized Theory of Uncertainty
(GTU). These tools form the core of what may be called the Computational Theory of Pre-
cisiation of Meaning (CTPM). The centerpiece of CTPM is the concept of a generalized
constraint [35].

The concept of a generalized constraint plays a key role in CTPM by providing a basis
for precisiation of meaning. More specifically, if p is a proposition or a concept, its pre-
cisiand, Pre(p), is represented as a generalized constraint, GC. Thus, Pre(p) = GC. In
this sense, the concept of a generalized constraint may be viewed as a bridge from natural
languages to mathematics (Figure 9).

Representing precisiands of p as elements of GCL is the pivotal idea in CTPM. Each
precisiand is associated with the degree to which it is cointensive with p. Given p, the
problem is that of finding those precisiands which are cointensive, that is, have a high
degree of cointension. If p is a fuzzy proposition or concept, then in general there are no
cointensive precisiands in SCL (Figure 10).

In CTPM, a refinement of the concept of precisiation is needed. First, a differentiation
is made between v-precision (precision in value) and m-precision (precision in meaning)
(Figure 11). For example, proposition p: X is 5, is both v-precise and m-precise; p: X
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Fig. 10. Precisiands of p.

precise value

• p: X is a Gaussian random variable w ith mean m  
and variance 2. m  and 2are precisely defined real 
numbers

p is v-imprecise and m-precise 
• p: X is in the interval [a, b]. a and b are precisely 
defined real numbers

p is v-imprecise and m-precise

precise meaning

PRECISE

v-precise m-precise

m-precise = mathematically well-defined

Fig. 11. Two meanings of precise.

is between 5 and 7, is v-imprecise and m-precise; and p: X is small, is both v-imprecise
and m-imprecise; however, p can be m-precisiated by defining small as a fuzzy set or a
probability distribution. A perception is v-imprecise and its description is m-imprecise.
PNL makes it possible to m-precisiate descriptions of perceptions.

Granulation of a variable, e.g., representing the values of age as young, middle-aged
and old, may be viewed as a form of v-imprecisiation. Granulation plays an important role
in human cognition by serving as a means of (a) exploiting a tolerance for imprecision
through omission of irrelevant information; (b) lowering precision and thereby lowering
cost; and (c) facilitating understanding and articulation. In fuzzy logic, granulation is m-
precisiated through the use of the concept of a linguistic variable.

Further refinement of the concept of precisiation relates to two modalities of
m-precisiation: (a) human-oriented, denoted as mh-precisiation; and (b) machine-oriented,
denoted as mm-precisiation (Figure 12). Unless stated to the contrary, in CTPM, precisia-
tion should be understood as mm-precisiation.

In a bimodal dictionary or lexicon, the first entry, p, is a concept or proposition; the sec-
ond entry, p∗, is mh-precisiand of p; and the third entry is mm-precisiand of p. To illustrate,
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oriented
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mh-precisiation mm-precisiation

human-oriented

Fig. 12. Modalities of m-precisiation.

P Def(p) GC(p)

mh-precisiand mm-precisiand

machine-oriented
(mathematical)

human-oriented
natural language

proposition or concept

mm-precisiationmh-precisation

Fig. 13. Bimodal lexicon (PNL).

the entries for recession might read: mh-precisiand – a period of general economic decline;
and mm-precisiand – a decline in GDP for two or more consecutive quarters (Figure 13).

There is a simple analogy which helps to understand the meaning of cointensive precisi-
ation. Specifically, a proposition, p, is analogous to a system, S; precisiation is analogous
to modelization; a precisiand, expressed as a generalized constraint, GC(p), is analogous
to a model, M(S), of S; test-score function is analogous to input–output relation; coin-
tensive precisiand is analogous to well-fitting model; GCL is analogous to the class of all
fuzzy-logic-based systems; and SCL is analogous to the subclass of all bivalent-logic-based
systems (Figure 14). To say that, in general, a cointensive definition of a fuzzy concept can-
not be formulated within the conceptual structure of bivalent logic and probability theory,
is similar to saying that, in general, a linear system cannot be a well-fitting model of a
nonlinear system.

Ramifications of the concept of cointensive precisiation extend well beyond mechaniza-
tion of natural language understanding. A broader basic issue is validity of definitions
in scientific theories, especially in the realms of human-oriented fields such as law, eco-
nomics, medicine, psychology and linguistics. More specifically, the concept of cointensive
precisiation calls into question the validity of many of the existing definitions of basic
concepts – among them the concepts of causality, relevance, independence, stability, com-
plexity and optimality.

Translation of p into GCL is made more transparent though annotation. To illustrate,

(a) p: Monika is young −→ X/Age(Monika) is R/young
(b) p: It is likely that Monika is young −→ Prob(X/Age(Monika) is R/young) is

S/likely
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system

proposition
or concept

model
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degree of match between M(S) and S cointension

In general, it is not possible to constraint a valid model of 
a nonlinear system from linear components

precisiand

S M(S)

p GC(p)

Fig. 14. Analogy between precisiation and modelization.

NOTE. Example (b) is an instance of probability qualification.

More concretely, let g(u) be the probability density function of the random variable,
Age(Monika). Then, with reference to our earlier discussion of probability qualification,
we have

Prob
(
Age(Monika) is young

)
is likely −→

100∫
0

g(u)µyoung(u) du is likely

or, in annotated form,

GC(g) = X

/ 100∫
0

g(u)µyoung(u) du is R/likely.

The test-score of this constraint on g is given by

ts(g) = µlikely

( 100∫
0

g(u)µyoung(u) du

)
.

(c) p: Most Swedes are tall
Following (b), let h(u) be the count density function of Swedes, meaning that

h(u) du = fraction of Swedes whose height lies in the interval [u, u + du].
Assume that height of Swedes lies in the interval [a, b]. Then,

fraction of tall Swedes:
b∫

a

h(u)µtall(u) du is most.
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Fig. 15. s-precisiation and g-precisiation.

Interpreting this relation as a generalized constraint on h, the test-score may be expressed
as

ts(h) = µmost

( h∫
0

h(u)µtall(u) du

)
.

In summary, precisiation of “Most Swedes are tall” may be expressed as the generalized
constraint.

Most Swedes are tall −→ GC(h) = µmost

( b∫
a

h(u)µtall(u) du

)
.

An important application of the concept of precisiation relates to precisiation of propo-
sitions of the form “X is approximately a,” where a is a real number. How can “ap-
proximately a,” or ∗a for short, be precisiated? In other words, how can the uncertainty
associated with the value of X which is described as ∗a, be defined precisely?

There is a hierarchy of ways in which this can be done. The simplest is to define ∗a as a.
This mode of precisiation will be referred to as singular precisiation, or s-precisiation,
for short (Figure 15) s-precisiation is employed very widely, especially in probabilistic
computations in which an imprecise probability, ∗a, is computed with as if it were an exact
number, a.

The other ways (Figures 15, 16) will be referred to as granular precisiation, or
g-precisiation, for short. In g-precisiation, ∗a is treated as a granule. What we see is that
various modes of precisiating ∗a are instances of the generalized constraint.

The concept of precisiation has an inverse – the concept of imprecisiation, which in-
volves replacing a with ∗a, with the understanding that ∗a is not unique.

Imprecisiation has a negative connotation. In fact, imprecisiation serves an important
purposes. More specifically, consider a proposition p of the form

p: X is V,

where X is a variable and V is its value. X may assume a variety of forms. In particular, X

may be a real-valued variable, an n-ary variable, a function or a relation. The value, V , is
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Fig. 16. Precisiands of “X is approximately a.”

v-precise if it is singular, that is, V is a singleton. V is v-imprecise if it is granular. In this
framework, v-imprecisiation may be interpreted as a transition from singular to granular
value of V .

v-imprecisiation is forced (necessary) when the value of V is not known precisely.
v-imprecisiation is deliberate (optional) if there is no need for V to be known precisely. In
this case, what may be called v-imprecisiation principle comes into play.

v-imprecisiation principle: Precision carries a cost. If there is a tolerance for impreci-
sion, exploit it by employing v-imprecisiation to achieve lower cost, robustness, tractabil-
ity, decision-relevance and higher level of confidence.

A word about confidence. If V is uncertain, the confidence in p, Con(p), may be de-
fined as the probability that p is true. Generally, v-imprecisiation of V serves to increase
Con(p). For example, Con(Carol is young) > Con(Carol is 23). Thus, as a rule, confi-
dence increases when specificity decreases.

An important example is granulation. In fuzzy logic, granulation may be interpreted as
v-imprecisiation followed by mm-precisiation. In this perspective, the concept of granula-
tion – in combination with the associated concept of a linguistic variable – may be viewed
as one of the major contributions of fuzzy logic.

A basic problem which relates to imprecisiation is the following. Assume for simplic-
ity that we have two linear equations involving real-valued coefficients and real-valued
variables:

a11X + a12Y = b1,

a21X + a22Y = b2.
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Solutions of these equations read,

X = a22b1 − a12b2

a11a22 − a12a21
,

Y = a11b2 − a21b1

a11a22 − a12a21
.

Now suppose that we imprecisiate the coefficients, replacing, aij with ∗aij , i, j = 1, 2,
and replacing bi with ∗bi , i = 1, 2. How can we solve these equations when imprecisiated
coefficients are defined as generalized constraints?

There is no general answer to this question. Assuming that all coefficients are defined
in the same way, the method of solution will depend on the modality of the constraint.
For example, if the coefficients are interval-valued, the problem falls within the province
of interval analysis [17]. If the coefficients are fuzzy-interval-valued, the problem falls
within the province of the theory of relational equations [8,7]. And if the coefficients are
real-valued random variables, we are dealing with the problem of solution of stochastic
equations. In general, solution of a system of equations with imprecisiated coefficients
may present complex problems.

One complication is the following. If (a) we solve the original equations, as we have
done above; (b) imprecisiate the coefficients in the solution; and (c) employ the extension
principle to complete X and Y , will we obtain solutions of imprecisiated equations? The
answer, in general, is: No.

Nevertheless, when we are faced with a problem which we do not know how to solve
correctly, we proceed as if the answer is: Yes. This common practice may be described as
Precisiation/Imprecisiation Principle which is defined in the following.

4.3. Precisiation/imprecisiation principle (P/I principle)

Informally, let f be a function or a functional. Y = f (X), where X and Y are assumed to
be imprecise, Pr(X) and Pr(Y ) are precisiations of X and Y , and ∗Pr(X) and ∗Pr(Y ) are
imprecisiations of Pr(X) and Pr(Y ), respectively. In symbolic form, the P/I principle may
be expressed as

f (X) ∗= ∗f
(
Pr(X)

)
,

where ∗= denotes “approximately equal,” and ∗f is imprecisiation of f . In words, to
compute f (X) when X is imprecise, (a) precisiate X, (b) compute f (Pr(X)); and (c) im-
precisiate f (Pr(X)). Then, usually, ∗f (Pr(X)) will be approximately equal to f (X). An
underlying assumption is that approximations are commensurate in the sense that the closer
Pr(X) is to X, the closer f (Pr(X)) is to f (X). This assumption is related to the concept
of gradual rules of Dubois and Prade [9].

As an illustration, suppose that X is a real-valued function; f is the operation of differ-
entiation, and ∗X is the fuzzy graph of X. Then, using the P/I principle, ∗f (X) will have
the form shown in Figure 17. It should be underscored that imprecisiation is an imprecise
concept.

Use of the P/I principle underlies many computations in science, engineering, economics
and other fields. In particular, as was alluded to earlier, this applies to many computations in
probability theory which involve imprecise probabilities. It should be emphasized that the
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X

Y

0 0
X

df
dX

differentiation

f

Pr(f )

*d Pr(f )
dX

d Pr(f )
dX

Fig. 17. Illustration of P/I principle.

P/I principle is neither normative (prescriptive) nor precise; it merely describes imprecisely
what is common practice – without suggesting that common practice is correct.

4.3.1. Precisiation of propositions

In preceding discussion, we focused our attention on precisiation of propositions of the
special form “X is ∗a.” In the following, we shall consider precisiation in a more general
setting. In this setting, the concept of precisiation in PNL opens the door to a wide-ranging
enlargement of the role of natural languages in scientific theories, especially in fields such
as economics, law and decision analysis. Our discussion will be brief; details may be found
in [40,41].

Within CTPM, precisiation of propositions – and the related issues of precisiation of
questions, commands and concepts – falls within the province of PNL. As was stated ear-
lier, the point of departure in PNL is representation of a precisiand of a proposition, p, as
a generalized constraint.

p −→ X isr R.

To illustrate precisiation of propositions and questions, it will be convenient to consider
the examples which were discussed earlier in Section 4.

(a) The Robert example
p: Usually Robert returns from work at about 6 pm.
Q: What is the probability that Robert is home at about 6:15 pm?
Precisiation of p may be expressed as
p: Prob(Time(Return(Robert)) is ∗6:00 pm) is usually

where “usually” is a fuzzy probability.
Assuming that Robert stays home after returning from work, precisiation of q may be

expressed as

q: Prob
(
Time

(
Return(Robert)

)
is � ◦ 6:15 pm

)
is A?

where ◦ is the operation of composition, and A is a fuzzy probability

(b) The balls-in-box problem
p1: A box contains about 20 black and white balls
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x

Y

0

X = several × Y

X = most × 20*

X +Y = 20*

solution set

Fig. 18. Fuzzy integer programming.

p2: Most are black
p3: There are several times as many black balls as white balls
q1: What is the number of white balls?
q2: What is the probability that a ball drawn at random is white?
Let X be the number of black balls and let Y be the number of white balls. Then, in

precisiated form, the statement of the problem may be expressed as:

p1: (X + Y) is ∗20
p2: X is most × ∗20
p3: X is several × Y


 data

q1: Y is ?A

q2:
Y

∗20
is ?B


 questions

where Y/∗20 is the granular probability that a ball drawn at random is white.
Solution of these equations reduces to an application of fuzzy integer programming (Fig-

ure 18).

(c) The tall Swedes problem
p: Most Swedes are tall.
Q: What is the average height of Swedes?
Q: How many Swedes are short?

As was shown earlier,

p: Most Swedes are tall −→
b∫

a

h(u)µtall(u) du is most,

where h is the count density function.
Precisiations of q1, and q2 may be expressed as

q1:

b∫
a

uh(u) du is ?A,
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where A is a fuzzy number which represents the average height of Swedes, and

q2:

b∫
a

h(u)µshort(u) du is ?B,

where µshort is the membership function of short, and B is the fraction of short Swedes.

(d) The partial existence problem
X is a real number. I am uncertain about the value of X. What I know about X is:
p1: X is much larger than approximately a,
p2: X is much smaller than approximately b,

where a and b are real numbers, with a < b.
What is the value of X?
In this case, precisiations of data may be expressed as
p1: X is much.larger ◦ ∗a
p2: X is much smaller ◦ ∗b,

where ◦ is the operation of composition. Precisiation of the question is:

q: X is ?A,

where A is a fuzzy number. The solution is immediate:

X is (much.larger ◦ ∗a ∧ much.smaller ◦ ∗b),

when ∧ is min or a t-norm. In this instance, depending on a and b,X may exist to a degree.
These examples point to an important aspect of precisiation. Specifically, to precisiate p

we have to precisiate or, equivalently, calibrate its lexical constituents. For example, in the
case of “Most Swedes are tall,” we have to calibrate “most” and “tall.” Likewise, in the case
of the Robert example, we have to calibrate “about 6:00 pm,” “about 6:15 pm” and “usu-
ally.” In effect, we are composing the meaning of p from the meaning of its constituents.
This process is in the spirit of Frege’s principle of compositionality [32,33], Montague
grammar [19] and the semantics of programming languages.

An important aspect of precisiation which will not be discussed here relates to precisi-
ation of concepts. It is a deep-seated tradition in science to base definition of concepts
on bivalent logic. In probability theory, for example, independence of events is a bivalent
concept. But, in reality, independence is a matter of degree, i.e., is a fuzzy concept. PNL,
used as a definition language, makes it possible, more realistically, to define independence
and other bivalent concepts in probability theory as fuzzy concepts. For this purpose, when
PNL is used as a definition language, a concept is first defined in a natural language and
then its definition is precisiated through the use of PNL.

4.4. The concept of a protoform

Viewed in a broader perspective, what should be noted is that precisiation of meaning is
not the ultimate goal – it is an intermediate goal. Once precisiation of meaning is achieved,
the next goal is that of deduction from decision-relevant information. The ultimate goal is
decision.
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In CTPM, a concept which plays a key role in deduction is that of a protoform – an
abbreviation for prototypical form. Informally, a protoform of an object is its abstracted
summary. More specifically, a protoform is a symbolic expression which defines the deep
semantic structure of an object such as a proposition, question, command, concept, sce-
nario, or a system of such objects. In the following, our attention will be focused on
protoforms of propositions, with PF(p) denoting a protoform of p (Figure 19). Abstraction
has levels, just as summarization does. For this reason, an object may have a multiplicity
of protoforms (Figure 20). Conversely, many objects may have the same protoform. Such
objects are said to be protoform-equivalent, or PF-equivalent, for short. The set of proto-
forms of all precisiable propositions in NL, together with rules which govern propagation
of generalized constraints, constitute what is called the Protoform Language (PFL).

EXAMPLES.

• Monika is young

instantiation 

    Age(Monika) is young    A(B) is C

abstraction 

• Monika is much younger than Pat (A (B), A(C)) is R

 Age        Age Pat  much younger 
Monika 

• distance between New York and Boston is about 200 mi −→ A(B,C) is R

• usually Robert returns from work at about 6 pm −→

Prob{A is B} is C
 usually 
about 6 pm 

 Time(Robert.returns.from.work)

• Carol lives in a small city near San Francisco −→

A(B(C) is (D and E )
   small city 
  city near SF 
 Carol 
           Residence 

•           Location 

most Swedes are tall  1/n Count(G[A] is R) is Q 

        Height 
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object

p

object space

summarization abstraction
protoform

protoform space
summary of p

S(p) A(S(p))

PF(p)

S(p): summary of p 
PF(p): abstracted summary of p

deep structure of p

Fig. 19. Definition of protoform of p.

• at a given level of abstraction and summarization, 
objects p and q are PF-equivalent if PF(p)=PF(q)

PF-equivalence
class

object space protoform space

Fig. 20. Protoforms and PF-equivalence.

Alan has severe back pain. He goes to see a
doctor. The doctor tells him that there are two
options: (1) do nothing; and (2) do surgery.
In the case of surgery, there are two possibil-
ities: (a) surgery is successful, in which case
Alan will be pain free; and (b) surgery is not
successful, in which case Alan will be para-
lyzed from the neck down.

option 1 

option 2

0
1 2

gain

4.4.1. Protoformal deduction

The rules of deduction in CTPM are, basically, the rules which govern constraint prop-
agation. In CTPM, such rules reside in the Deduction Database (DDB), Figure 21. The
Deduction Database comprises a collection of agent-controlled modules and submodules,
each of which contains rules drawn from various fields and various modalities of gener-
alized constraints (Figure 22). A typical rule has a symbolic part, which is expressed in
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p• • •
p* p**

NL PFLGCL

GC(p) PF(p)

precisiation

precisiation
(a)

summarization/abstraction
(b)

world
knowledge
database

DDB

•In PNL, deduction=generalized constraint propagation
•PFL: Protoform Language
• DDB: deduction database=collection of protoformal rules 
governing generalized constraint propagation
• WKDB: World Knowledge Database (PNL-based) 

deduction
database

WKDB

Fig. 21. Basic structure of PNL.

POSSIBILITY
MODULE

PROBABILITY
MODULE

SEARCH
MODULE

FUZZY LOGIC 
MODULE

agent

FUZZY ARITHMETIC 
MODULE

EXTENSION
PRINCIPLE MODULE

DDB

Fig. 22. Structure of deduction database.

terms of protoforms; and a computational part which defines the computation that has to
be carried out to arrive at a conclusion. In what follows, we describe briefly some of the
basic rules, and list a number of other rules without describing their computational parts.
The motivation for doing so is to point to the necessity of developing a set of rules which
is much more complete than the few rules which are used as examples in this section.

(a) Computational rule of inference[37]

Symbolic part Computational part

X is A

(X, Y ) is B

Y is C
µC(v) = maxu

(
µA(u) ∧ µB(u, v)

)
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Fig. 23. Compositional rule of inference.

Y

0 X

f(A) f

A

Fig. 24. Basic extension principle.

A, B and C are fuzzy sets with respective membership functions µA, µB , µC . ∧ is
min or t-norm (Figure 23).

(b) Intersection/product syllogism[32,33]

Symbolic part Computational part

Q1A’s are B’s
Q2(A&B)’s are C’s

Q3A’s are (B&C)’s
Q3 = Q1 ∗ Q2

Q1 and Q2 are fuzzy quantifiers; A,B,C are fuzzy sets; ∗ is product in fuzzy arith-
metic [13].

(c) Basic extension principle[24]

Symbolic part Computational part

X is A

f (X) is B

µB(v) = sup
u

(
µA(u)

)
subject to
v = f (u)

g is a given function or functional; A and B are fuzzy sets (Figure 24).

(d) Extension principle[38]
This is the principal rule governing possibilistic constraint propagation (Figure 8)
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Symbolic part Computational part

f (X) is A

g(X) is B

µB(v) = sup
u

(
µB

(
f (u)

))
subject to
v = g(u)

NOTE. The extension principle is a primary deduction rule in the sense that many other
deduction rules are derivable from the extension principle. An example is the following
rule.

(e) Basic probability rule

Symbolic part Computational part

Prob(X is A) is B

Prob(X is C) is D
µD(v) = sup

r

(
µB

(∫
U

µA(u)r(u) du

))

subject to

v =
∫
U

µC(u)r(u) du

∫
U

r(u) du = 1.

X is a real-valued random variable; A,B,C and D are fuzzy sets: r is the probability
density of X; and U = {u}. To derive this rule, we note that

Prob(X is A) is B −→
∫
U

r(u)µA(u) du is B

Prob(X is C) is D −→
∫
U

r(u)µC(u) du is D

which are generalized constraints of the form

f (r) is B

g(r) is D.

Applying the extension principle to these expressions, we obtain the expression for D

which appears in the basic probability rule.

(f) Bimodal interpolation rule
The bimodal interpolation rule is a rule which resides in the Probability module of
DDB. With reference to Figure 25, the symbolic and computational parts of this rule
are:

Symbolic
Prob(X is Ai) is Pi

Prob(X is A) is Q
, i = 1, . . . , n
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Fig. 25. Interpolation of a bimodal distribution.

Computational

µQ(v) = sup
r

(
µP1

( ∫
U

µA1(u)r(u) du

)
∧ · · · ∧ µPn

( ∫
U

µAn(u)r(u) du

))

subject to

v =
∫
U

µA(u)r(u) du

∫
U

r(u) du = 1

In this rule, X is a real-valued random variable; r is the probability density of X; and
U is the domain of X.

NOTE. The probability rule is a special case of the bimodal interpolation rule.

What is the expected value, E(X), of a bimodal distribution? The answer follows
through application of the extension principle:

µE(X)(v) = sup
r

(
µP1

(∫
U

µA1(u)r(u) du

)
∧ · · ·

∧ µPn

(∫
U

µAn(u)r(u) du

))

subject to

v =
∫
U

ur(u) du

∫
U

r(u) du = 1
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Y

0 X
A

fuzzy graph of f(X)

f(A)

f(X) isfg i Ai×B i

i Ai×B i

Fig. 26. Fuzzy-graph interpolation.

NOTE. E(X) is a fuzzy subset of U .

(g) Fuzzy-graph interpolation rule
This rule is the most widely used rule in applications of fuzzy logic [36]. We have a
function, Y = f (X), which is represented as a fuzzy graph (Figure 26). The question
is: What is the value of Y when X is A? The Ai , Bi and A are fuzzy sets.

Symbolic part

X is A

Y = f (X)

f (X) isfg
∑

i Ai × Bi

Y is C

Computational part

C =
∑

i

mi ∧ Bi,

where mi is the degree to which A matches Ai

mi = sup
u

(
µA(u) ∧ µAi

(u)
)
, i = 1, . . . , n.

When A is a singleton, this rule reduces to

X = a

Y = f (X)

f (X) isfg
∑

i

Ai × Bi, i = 1, . . . , n.

Y =
∑

i

µAi
(a) ∧ B.

In this form, the fuzzy-graph interpolation rule coincides with the Mamdani rule – a
rule which is widely used in control and related applications [15] (Figure 27).
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Y

0 a X

fuzzy graph of f(X)

f(a)
Ai×B i

Fig. 27. Mamdani interpolation.

In the foregoing, we have summarized some of the basic rules in DDB which govern
generalized constraint propagation. Many more rules will have to be developed and added
to DDB. A few examples of such rules are the following.

(a) Probabilistic extension principle

f (X) isp A

g(X) isr ?B

(b) Usuality-qualified extension principle

f (X) isu A

g(X) isr ?B

(c) Usuality-qualified fuzzy-graph interpolation rule

X is A

Y = f (X)

f (X) isfg
∑

i if X is Ai then Y isu Bi

Y isr ?B

(d) Bimodal extension principle

X isbm
∑

i Pi\Ai

Y = f (X)

Y isr ?B

(e) Bimodal, binary extension principle

X isr R

Y iss S

Z = f (X, Y )

Z ist T

In the instance, bimodality means that X and Y have different modalities, and binary
means that f is a function of two variables. An interesting special case is one in which
X is R and Y isp S.

The deduction rules which were briefly described in the foregoing are intended to serve
as examples. How can these rules be applied to reasoning under uncertainty? To illustrate,
it will be convenient to return to the examples given in Section 1.
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(a) The Robert example
p: Usually Robert returns from work at about 6:00 pm. What is the probability that
Robert is home at about 6:15 pm?
First, we find the protoforms of the data and the query.
Usually Robert returns from work at about 6:00 pm −→

−→ Prob
(
Time(Return(Robert)

)
is ∗6 : 00 pm) is usually

which in annotated form reads

−→ Prob
(
X/Time(Return(Robert)

)
is A/∗6:00 pm) is B/usually

Likewise, for the query, we have

Prob
(
Time(Return(Robert)

)
is � ◦ ∗6:15 pm) is ?D

which in annotated form reads

−→ Prob
(
X/Time(Return(Robert)

)
is C/ � ◦ ∗6:15 pm) is D/usually

Searching the Deduction Database, we find that the basic probability rule matches the
protoforms of the data and the query

Prob(X is A) is B

Prob(X is C) is D
,

where

µD(v) = sup
g

(
µB

( ∫
U

µA(u)g(u) du

))

subject to

v =
∫
U

µC(u)g(u) du

∫
U

g(u) du = 1

Instantiating A,B,C and D, we obtain the answer to the query:
Probability that Robert is home at about 6:15 pm is D, where

µD(v) = sup
g

(
µusually

(∫
U

µ∗6:00 pm(u)g(u) du

))

subject to

v =
∫
U

µ�◦∗6:15 pm(u)g(u) du

and∫
U

g(u) du = 1
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0.5 1
0

1
1-most most

V

Fig. 28. “Most” and antonym of “most.”

(b) The tall Swedes problem
We start with the data
p: Most Swedes are tall.

Assume that the queries are:
q1: How many Swedes are not tall
q2: How many are short
q3: What is the average height of Swedes
In our earlier discussion of this example, we found that p translates into a generalized

constraint on the count density function, h.
Thus

p −→
b∫

a

h(u)µtall(u) du is most

Precisiations of q1, q2 and q3 may be expressed as

q1: −→
b∫

a

h(u)µnot.tall(u) du

q2: −→
b∫

a

h(u)µshort(u) du

q3: −→
b∫

a

uh(u) du.

Considering q1, we note that

µnot.tall(u) = 1 − µtall(u).

Consequently

q1 −→ 1 −
b∫

a

h(u)µtall(u) du
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which may be rewritten as

q2 −→ 1-most

where 1-most plays the role of the antonym of most (Figure 28).
Considering q2, we have to compute

A:

b∫
a

h(u)µshort(u) du

given that
∫ b

a
h(u)µtall(u) du is most.

Applying the extension principle, we arrive at the desired answer to the query:

µA(v) = sup

(
µmost

( b∫
a

h(u)µtall(u) du

))

subject to

v =
b∫

a

h(u)µshort(u) du

and

b∫
a

h(u) du = 1.

Likewise, for q3 we have as the answer

µA(v) = sup
u

(
µmost

( b∫
a

h(u)µtall(u) du

))

subject to

v =
b∫

a

uh(u) du

and

b∫
a

h(u) du = 1.

As an illustration of application of protoformal deduction to an instance of this example,
consider

p: Most Swedes are tall
q: How many Swedes are short?
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We start with the protoforms of p and q (see earlier example):
Most Swedes are tall → 1/n

∑
Count(G[A is R]) is Q

?T Swedes are short −→ 1/n
∑

Count(G[A is S]) is T ,
where

G[A] =
∑

i

Namei/Ai, i = 1, . . . , n.

An applicable deduction rule in symbolic form is:

1/n
∑

Count(G[A is R]) is Q

1/n
∑

Count(G[A is S]) is T

The computational part of the rule is expressed as

1/n
∑

i µR(Ai) is Q

1/n
∑

i µS(Ai) is T

where

µT (v) = sup
Ai,...,An

µQ

(∑
i

µR(Ai)

)

subject to

v =
∑

i

µS(Ai).

What we see is that computation of the answer to the query, q, reduces to the solution
of a variational problem, as it does in the earlier discussion of this example in which
protoformal deduction was not employed.

The foregoing examples are merely elementary instances of reasoning through the use
of generalized constraint propagation. What should be noted is that the chains of reasoning
in these examples are very short. More generally, what is important to recognize is that
shortness of chains of reasoning is an intrinsic characteristic of reasoning processes which
take place in an environment of substantive imprecision and uncertainty. What this implies
is that, in such environments, a conclusion arrived at the end of a long chain of reasoning
is likely to be vacuous or of questionable validity.

4.5. Deduction (extension) principle

Underlying almost all examples involving computation of an answer to a question, is a ba-
sic principle which may be referred to as the Deduction Principle. This principle is closely
related to the extension principle of fuzzy logic [24,28].

Assume that we have a database, D, and database variables X1, . . . , Xn, with ui being
a generic value of Xi , i = 1, . . . , n.

Suppose that q is a given question and that the answer to q, Ans(q), is a function of the
ui .

Ans(q) = g(u1, . . . , un), u = (u1, . . . , un).
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I do not know the exact values of the ui . My information about the ui , I (u1, . . . , un),
is a generalized constraint on the ui . The constraint is defined by its test-score function
ts(u) = f (u1, . . . , un).

At this point, the problem is that of constraint propagation from ts(u) to g(u). Employing
the extension principle, we are led to the membership function of the answer to q. More
specifically,

µAns(q)(v) = sup
u

(
ts(u)

)
subject to

v = g(u)

This, in brief, is the substance of the Deduction Principle.
As a simple illustration, let us consider an example that was discussed earlier. Suppose

that q: What is the average height of Swedes. Assume that D consists of information about
the heights of a population of Swedes, Swede1, . . . , Sweden, with height of ith Swede
being hi, i = 1, . . . , n. Thus, average height may be expressed as

Ave(h) = 1/n(h1 + · · · + hn).

Now, I do not know the hi . What I am given is the datum d: Most Swedes are tall. This
datum constrains the hi . The test-score of this constraint is

ts(h) = µmost

(
1

n

∑
µtall(hi)

)
, h = (h1, . . . , hn).

The generalized constraint on the hi induces a generalized constraint on Ave(h). Thus

µAve(h)(v) = sup

(
µmost

(
1

n

∑
i

µtall(hi)

))
, h = (h1, . . . , hn)

subject to

v = 1

n

∑
i

hi .

5. Concluding remark

Existing search engines, with Google at the top, have many truly remarkable capabili-
ties. But there is a basic limitation – search engines do not have deduction capability – a
capability which a question-answering system is expected to have. Nevertheless, search
engines are extremely useful because a skilled human user can get around search en-
gine limitations. In this perspective, a search engine may be viewed as a semi-mechanized
question-answering system.

Upgrading a search engine such as Google to a question-answering system is a task
whose complexity is hard to exaggerate. To achieve success, new concepts, ideas and tools
are needed to address difficult problems which arise when knowledge has to be dealt with
in an environment of imprecision, uncertainty and partial truth.

The present paper sketches a conceptual framework which may be viewed as a step in
this direction. What lies ahead is the challenging task of applying this framework to web-
specific problems.
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