SWITCHING POWER SUPPLY DESIGN: CONTINUOUS MODE FLYBACK CONVERTER

$x_{x x}:=$
Get the results on:
Rsults $_{\mathrm{xx}}:=$

This Mathcad file helps the calculation of the external components of a typical continuous mode switching power supply.
Input voltage:

- Minimum input voltage:

$$
\begin{aligned}
& \mathrm{Vi}_{\text {min }}:=22 \cdot \text { volt } \quad \mu \mathrm{sec}:=10^{-6} \cdot \mathrm{sec} \\
& \mathrm{Vi}_{\max }:=55 \cdot \text { volt } \\
& \mathrm{V}_{\text {inom }}:=36 \cdot \text { volt }
\end{aligned}
$$

- Maximum input voltage:
- Nominal input voltage:

Output:

- Nominal output voltage, maximum output ripple, minimum output current, maximum output current

Vo1 $:=3.3 \cdot \mathrm{volt}$	Vrp1 $:=100 \cdot \mathrm{mV}$	01 ${ }_{\text {min }}:=0.250 \cdot \mathrm{mp}$	$101_{\text {max }}:=2 . \mathrm{amp}$
Vo2 : $=0 \cdot \mathrm{voli}$	$\mathrm{Vrp2}:=120 \cdot \mathrm{mV}$	$102_{\text {min }}:=0.000 \cdot \mathrm{mp}$	$102_{\text {max }}:=0.000 \cdot \mathrm{mp}$
$\mathrm{Vd}_{\mathrm{fw}}:=0.5 \cdot \mathrm{volt}$	(diod	forward drop voltage)	
$\mathrm{Po}_{\text {min }}:=(\mathrm{Vo1}$	$\left.\mathrm{Vd}_{\text {fw }}\right) \cdot \mathrm{lo} 1_{\text {min }}+$	Vo2 + Vdfw $) \cdot 102{ }_{\text {min }}$	$\mathrm{Po}_{\text {min }}=0.95$ watt
$\mathrm{Po}_{\text {max }}:=(\mathrm{Vo1}$	$\left.\mathrm{Vd} \mathrm{f}_{\text {w }}\right) \cdot \mathrm{lo1} 1_{\text {max }}+$	(Vo2 + Vdfw $) \cdot 102_{\text {max }}$	$\mathrm{Po}_{\text {max }}=7.6 \mathrm{watt}$

- Switching Frequency
fsw : $=300 \cdot \mathrm{kHz}$
$\mathrm{T}:=\frac{1}{\mathrm{fsw}}$
- Transformer's Efficiency: $\quad \eta:=0.90 \quad$ (Guessed value)
- Maximum drop voltage across the switching mosfet during the on time:
- On resistance of the Mosfet: \quad Rds $\mathrm{on}:=0.180 \cdot$ ohm

Vds on $:=\frac{\mathrm{Po}_{\text {max }}}{\eta \cdot \mathrm{Vi}_{\text {min }}} \cdot$ Rds $_{\text {on }} \quad \mathrm{Vds}_{\text {on }}=0.07$ volt

1) Define Primary/secondary turns ratio: Nps1

Primary/secondary turns ratio can be selected as compromise between maximum voltage across the switching mosfet and desired max.-min. duty cycle.

- Nominal desired on Duty Cycle: $D_{\text {nom }}:=0.24$

Nps1 $:=\left(\frac{V_{\text {inom }}-V_{d s} \text { on }}{V_{01} 1+\mathrm{Vd}_{\mathrm{fw}}}\right) \cdot \frac{\mathrm{D}_{\text {nom }}}{1-\mathrm{D}_{\text {nom }}} \quad$ Nps1 $=3$
The calculated turns ratio can be modified to optimise the windings

- Flyback voltage across the mutual inductance during the off time: Vfm
$\mathrm{Vfm}:=\mathrm{Nps} 1 \cdot\left(\mathrm{Vo1}+\mathrm{Vd}_{\mathrm{fw}}\right) \quad \mathrm{Vfm}=11.35$ volt
- Maximum voltage across the switching-mosfet:
$\mathrm{F}_{\text {spike }}:=0.15$
$\mathrm{Vds}_{\text {max }}:=\left(\mathrm{F}_{\text {spike }}+1\right) \cdot\left(\mathrm{Vi}_{\text {max }}+\mathrm{Vfm}\right) \quad \mathrm{Vds}_{\text {max }}=76.3$ volt
Safe factor (assume spikes of $20-30 \%$ of Vdc)
To reduce the maximum voltage across the switching mosfet reduce Nps turns ratio by reducing the desired on-duty cycle
- Slave output turns ratio:
$\mathrm{Nps2}:=\frac{\mathrm{Vfm}}{\mathrm{Vo} 2+\mathrm{Vd}_{\mathrm{fw}}}$

$$
\mathrm{Nps} 2=22.7
$$

2) Maximum and minimum duty cycle : Dmax and Dmin

To maintain the continuous mode of operation the dead time has to be equal zero (Ton+Toff = T), and to reset the core every cycle, the average voltage on the primary inductance must be equal zero: (Vi-Vds) *Ton = (Vo + Vd) * Nps * Toff, where Toff is equal to (T - Ton)
$\mathrm{Ton}_{\text {max }}:=\frac{\mathrm{Vfm} \cdot \mathrm{T}}{\left(\mathrm{Vi}_{\text {min }}-\mathrm{Vds}_{\mathrm{on}}\right)+\mathrm{Vfm}} \quad \mathrm{Ton}_{\text {max }}=1.14 \mu \mathrm{sec}$

Ton $_{\text {min }}:=\frac{\mathrm{Vfm} \cdot \mathrm{T}}{\left(\mathrm{Vi}_{\max }-\mathrm{Vds}_{\text {on }}\right)+\mathrm{Vfm}} \quad \mathrm{Ton}_{\text {min }}=0.57 \mu \mathrm{sec}$
Maximum duty cycle $\quad \mathrm{D}_{\max }:=\frac{\mathrm{Ton}_{\text {max }}}{\mathrm{T}} \quad \mathrm{D}_{\text {max }}=0.34$

Minimum duty cycle $\quad \mathrm{D}_{\min }:=\frac{\mathrm{Ton}_{\text {min }}}{\mathrm{T}} \quad \mathrm{D}_{\text {min }}=0.17$
3) Primary winding: Inductance, peak, AC, RMS current

In continuous mode the duty cycle changes with a change of input voltage. An increase of output current, will temporary increase the duty cycle until the average primary and secondary currents increase.

- Primary average current:

There are several criterias to select the primary and secondary inductances, following are explained two different solutions: the first one is to select the primary inductance in order to insure continuous mode of operation from full load to minimum load. (about 1/10-1/20 of the maximum load). (3-a),
The second alternative criteria, is to calculate primary and secondary inductances by defining maximum secondary ripple current. (3-b)
3-a) Select primary inductance for continuous mode of operation at minimum load:
During the transition from discontinuous to continuous mode, the peak primary current it's about double the central average current $\operatorname{lpcs}(\mathrm{min})$. In order to maintain continuous mode at minimum load the maximul ramp amplitude has to be twice the minimum average current.

- Ramp amplitude:
$\Delta \mathrm{l}_{\mathrm{a}}:=\frac{2 \cdot \mathrm{Po}_{\text {min }}}{\left(\mathrm{Vi}_{\text {min }}-\mathrm{Vds}_{\text {on }}\right) \cdot \eta \cdot \mathrm{D}_{\text {max }}} \quad \Delta \mathrm{l}_{\mathrm{a}}=0.28 \mathrm{amp}$
- Primary inductance: dlp= (Vi-Vds)*Ton/Lp
$L p_{a}:=\frac{\left(\mathrm{Vi}_{\text {min }}-\mathrm{Vds}_{\text {on }}\right) \cdot \text { Ton }_{\text {max }}}{\Delta \mathrm{lp}_{\mathrm{a}}} \quad L p_{\mathrm{a}}=88.29 \mu \mathrm{H}$
3-b) Primary and secondary inductance for a maximum defined secondary peak to peak ripple current:
AC core losses, AC winding losses, and output ripple current are directly proportional to the current ramp amplitude of the primary and secondaries windings. Therefore in high current application, AC ripple currents could have a predominant role on the overall performance of the converter, a good compromise between transformer's size and AC currents can be obtained by selecting the most appropriate secondary ripple current:
- Desired secondary ripple current:
$\Delta \mathrm{l} \%$:= 30.\%
(maximum value / average)
$\mathrm{Is} 1_{\mathrm{Cs}}:=\frac{\mathrm{lo} 1_{\max }}{\left(1-\mathrm{D}_{\max }\right)}$

$$
\mathrm{Is} 1_{\mathrm{cs}}=3.03 \mathrm{amp}
$$

- Ramp amplitude:
$\Delta \mathrm{ls} 1_{\mathrm{b}}:=\mathrm{Is} 1_{\mathrm{Cs}} \cdot \Delta \mathrm{ls} \% \quad \Delta \mathrm{~s} 1_{\mathrm{b}}=0.91 \mathrm{amp}$

- Secondary inductance :

$L s 1_{b}:=\frac{\left(\mathrm{Vo1}+\mathrm{Vd}_{\mathrm{fw}}\right) \cdot\left(\mathrm{T}-\text { Ton }_{\text {max }}\right)}{\Delta \mathrm{ls} 1_{\mathrm{b}}} \quad \mathrm{Ls} 1_{\mathrm{b}}=9.17 \mu \mathrm{H}$

- Primary inductance:
$\mathrm{Lp}_{\mathrm{b}}:=\mathrm{Ls} 1_{\mathrm{b}} \cdot \mathrm{Nps}^{2}$
$L p_{b}=81.75 \mu \mathrm{H}$
- Ramp amplitude:
$\Delta \mathrm{p}_{\mathrm{b}}:=\frac{\left(\mathrm{Vi}_{\min }-\mathrm{Vds}_{\mathrm{on}}\right) \cdot \mathrm{Ton}_{\text {max }}}{\mathrm{L} \mathrm{p}_{\mathrm{b}}} \quad \Delta \mathrm{l}_{\mathrm{b}}=0.3 \mathrm{amp}$
Select primary inductance (3-a) or (3-b):----> Lp:= Lpb $\quad \mathrm{Lp}=81.75 \mu \mathrm{H}$

$$
\Delta \mathrm{lp}:=\frac{\left(\mathrm{Vi}_{\mathrm{min}}-\mathrm{Vds}_{\mathrm{on}}\right) \cdot \operatorname{Ton}_{\max }}{\mathrm{Lp}} \quad \Delta \mathrm{lp}=0.3 \mathrm{amp}
$$

- Primary average current:
$I p_{\mathrm{CS}}:=\frac{\mathrm{Po}_{\max }}{\left(\mathrm{Vi}_{\min }-\mathrm{Vds}_{\mathrm{on}}\right) \cdot \eta \cdot \mathrm{D}_{\max }} \quad \quad \mathrm{I}_{\mathrm{cs}}=1.13 \mathrm{amp}$
- Primary peak current:
$\mathrm{lp}_{\mathrm{pk}}:=\mathrm{lp}_{\mathrm{Cs}}+\frac{\Delta \mathrm{lp}}{2}$

$$
1 \mathrm{p}_{\mathrm{pk}}=1.28 \mathrm{amp}
$$

- Primary RMS current:

$$
\text { IPrms }=0.66 \mathrm{amp}
$$

- Primary DC current:
$I p_{\mathrm{dc}}:=\frac{\mathrm{Po}_{\max }}{\eta \cdot\left(\mathrm{Vi}_{\min }-\mathrm{Vds}_{\mathrm{on}}\right)}$
$1 p_{\mathrm{dc}}=0.39 \mathrm{amp}$
- Primary AC(rms) current:
$\mid p_{\mathrm{ac}}:=\sqrt{\operatorname{lp}_{\mathrm{rms}}{ }^{2}-\mathrm{Ip}_{\mathrm{dc}}{ }^{2}}$
$1 \mathrm{Pac}_{\mathrm{ac}}=0.54 \mathrm{amp}$

Edt := Vi $\mathrm{min}_{\min } \cdot$ Ton $_{\max } \quad$ Edt $=2.5 \times 10^{-5}$ volt $\cdot \mathrm{sec}$
4) Secondary winding: Inductance, peak, AC, RMS current -Master output:

- Primary average current:
$\mathrm{Is} 1_{\mathrm{cs}}:=\frac{\mathrm{lo} 1_{\max }}{\left(1-\mathrm{D}_{\max }\right)}$
Is $1_{\mathrm{cs}}=3.03 \mathrm{amp}$
- Secondary inductance :
$\operatorname{Ls} 1:=\frac{\mathrm{Lp}}{\mathrm{Nps} 1^{2}}$

$$
L s 1=9.17 \mu \mathrm{H}
$$

- Ramp amplitude:
$\Delta \mathrm{ls} 1:=\frac{\left(\mathrm{Vo} 1+\mathrm{Vd}_{\mathrm{fw}}\right) \cdot\left(\mathrm{T}-\mathrm{Ton}_{\max }\right)}{\mathrm{Ls} 1} \quad \Delta \mathrm{ls} 1=0.91 \mathrm{amp}$
- Secondary peak current:
$\mathrm{Is} 1_{\mathrm{pk}}:=\mathrm{Is} 1_{\mathrm{cs}}+\frac{\Delta \mathrm{Is} 1}{2} \quad \mathrm{Is} 1_{\mathrm{pk}}=3.49 \mathrm{amp}$
- Secondary RMS current:
$\mid \mathrm{Is} 1_{\mathrm{rms}}:=\sqrt{\left(1-\mathrm{D}_{\mathrm{max}}\right) \cdot\left[\left\lvert\, \mathrm{Is} 1_{\mathrm{pk}} \cdot\left(\mathrm{Is} 1_{\mathrm{cs}}-\frac{\Delta \mathrm{Is} 1}{2}\right)_{+} \frac{1}{3} \cdot\left[\operatorname{Is} 1_{\mathrm{pk}}-\left(I \mathrm{Is} 1_{\mathrm{cs}}-\frac{\Delta \mathrm{Is} 1}{2}\right)\right]^{2}\right.\right]}$

$$
\text { Is } 1 \mathrm{rms}=2.47 \mathrm{amp}
$$

- Secondary AC current:

Is $1_{\mathrm{ac}}:=\sqrt{\text { Is } 1_{\mathrm{rms}}{ }^{2}-\mathrm{Io} 1_{\mathrm{max}^{2}}{ }^{2}} \quad$ Is $1_{\mathrm{ac}}=1.45 \mathrm{amp}$
-First slave output:

- Primary average current:
$\mathrm{Is} 2_{\mathrm{CS}}: \left.=\frac{\mathrm{lo} 2_{\max }}{\left(1-\mathrm{D}_{\max }\right)} \quad \right\rvert\, \mathrm{s} 2_{\mathrm{CS}}=0 \mathrm{amp}$
- Secondary inductance :

Ls2 $:=\frac{\mathrm{Lp}}{\mathrm{Nps}^{2}}$
$L s 2=0.16 \mu \mathrm{H}$

- Ramp amplitude:
$\Delta \mathrm{ls} 2:=\frac{\left(\mathrm{Vo} 2+\mathrm{Vd}_{\mathrm{fw}}\right) \cdot\left(\mathrm{T}-\mathrm{Ton}_{\mathrm{max}}\right)}{\mathrm{Ls} 2} \quad \Delta \mathrm{ls} 2=6.92 \mathrm{amp}$
- Secondary peak current:
$\mathrm{Is} 2_{\mathrm{pk}}:=\mathrm{Is} 2_{\mathrm{cs}}+\frac{\Delta \mathrm{ls} 2}{2} \quad \mathrm{Is} 2_{\mathrm{pk}}=3.46 \mathrm{amp}$
- Secondary RMS current:
$\mid s 2_{r m s}:=\sqrt{\left(1-D_{m a x}\right) \cdot\left[\left\lvert\, s 2_{p k} \cdot\left(I s 2_{c s}-\frac{\Delta \mid s 2}{2}\right)+\frac{1}{3} \cdot\left[I s 2_{p k}-\left(I s 2_{c s}-\frac{\Delta \mid s 2}{2}\right)\right]^{2}\right.\right]}$ Is2 $\mathrm{rms}^{2}=1.62 \mathrm{amp}$
- Secondary AC current:

Is2 $\mathrm{ac}:=\sqrt{\mathrm{Is}_{\mathrm{rms}}{ }^{2}-\mathrm{lo}_{\mathrm{max}}{ }^{2}} \quad$ Is2 $\mathrm{ac}=1.62 \mathrm{amp}$
5) Maximum Stress across the output diodes: Vdiode -Maximum stress voltage on the cathode of diodes
$\begin{array}{ll}\text { Vdiode1 } 1_{\text {max }}:=\frac{V \mathrm{i}_{\text {max }}}{N p s 1}+\text { Vo1 } & \text { Vdiode1 } \text { max }^{\mathrm{Na}=21.72 \text { volt }} \\ \text { Vdiode2 }_{\text {max }}:=\frac{V \mathrm{i}_{\text {max }}}{\mathrm{Nps} 2}+\text { Vo2 } & \text { Vdiode2 }_{\text {max }}=2.42 \text { volt }\end{array}$
Select a diode with Va-c>> Vdiode.max, and ultra-fast switching diode
Pdiode1 ${ }_{\text {max }}:=\mathrm{Is} 1_{\mathrm{rms}} \cdot \mathrm{Vd}_{\mathrm{f}} \cdot\left(1-\mathrm{D}_{\text {max }}\right) \quad$ Pdiode $1_{\text {max }}=0.81$ watt
Pdiode2 $\max :=\mathrm{Is} 2_{\mathrm{rms}} \cdot V d_{\mathrm{fw}} \cdot\left(1-\mathrm{D}_{\max }\right) \quad$ Pdiode2 max $=0.53$ watt
Pdiode ${ }_{\text {tot }}$:= Pdiode1 max + Pdiode2 $_{\text {max }} \quad$ Pdiode $_{\text {tot }}=1.35$ watt

6) Output ripple Specifications and Output Capacitors

To meet the output ripple specifications the output capacitors have to meet two criterias:

- satisfy the standard capacitance definition: $\mathbf{I}=\mathbf{C}^{*} \mathbf{d V} / \mathbf{d t}$ where t is the Toff time, V is 25% of the allowable output ripple.
- The Equivalent Series Resistance (ESR) of the capacitor has to provide less than 75% of the maximum output ripple. (Vripple=dl*ESR)
-Maximum outputs ripple:
Vrp1 $=100 \mathrm{mV} \quad$ Vrp2 $=120 \mathrm{mV}$
-Minimum output capacitance:
Co1 $:=\Delta \mathrm{s} 1 \cdot \frac{\left(\text { Ton }_{\text {max }}\right)}{\mathrm{Vrp1}^{1} \cdot 0.25} \quad$ Co1 $=41.39 \mu \mathrm{~F}$
-Maximum ESR value:
ESR1:= Vrp1•0.75 $\quad \Delta \mathrm{ls} 1 \quad \quad$ ESR1 $=0.08 \mathrm{ohm}$
-Minimum output capacitance:
$\mathrm{Co2}:=\Delta \mathrm{ls} 2 \cdot \frac{\left(\text { Ton }_{\text {max }}\right)}{\mathrm{Vrp2} 2 \cdot 0.25} \quad \mathrm{Co} 2=262.14 \mu \mathrm{~F}$
ESR2 : $=\frac{0.75 \cdot \mathrm{Vrp2} 2}{\Delta \mathrm{ls} 2}$
-Maximum ESR value: $\quad E S R 2=0.01 \mathrm{ohm}$

7) Input capacitor:

The input capacitor has to meet the maximum ripple current rating $\mathrm{lp}(\mathrm{rms})$ and the maximum input voltage ripple ESR value.

8) Switching Mosfet: Power Dissipation

The Mosfet is chosen based on maximum Stress voltage (section1), maximum peak input current (section 3), total power losses, maximum allowed operating temperature, and driver capability of the LM3488.
-The drain to source Breakdown of the mosfet (Vdss) has to be greater than:
$\mathrm{Vds}_{\text {max }}=76.3 \mathrm{volt}$
-Continuous Drain current of the mosfet (Id) has to be greater than:
$1 \mathrm{ppk}_{\mathrm{pk}}=1.28 \mathrm{amp}$

- Maximum drive voltage:

The voltage on the drive pin of the LM3488, Vdr is equal to the input voltage when input voltage is less than 7.2 V , and Vdr is equal to 7.2 V when the input voltage is greater than 7.2 V
Vdr := 7.2•volt
Rdron := 7 -ohm
-Total Mosfet's losses and maximum junction temperature:
The goal in selecting a Mosfet is to minimize junction temperature rise by minimizing the power loss while being cost effective. Besides maximum voltage rating, and maximum current rating, the others three important parameters of a Mosfet are Rds(on), gate threshold voltage, and gate
capacitance.
The switching Mosfet has three types of losses, conduction loss and switching loss, and gate charge losses:
-Conduction losses are equal to: $\|^{\wedge} 2^{*}$ R losses, therefore the total resistance between the source and drain during the on state, Rds(on) has to be as low as possible.
-Switching losses are equal to: Switching-time*Vds*।*frequecy. The switching time, rise time and fall time is a function of the gate to drain Miller-charge of the Mosfet, Qgd, the internal resistance of the driver and the Threshold Voltage, $\mathrm{Vgs}(\mathrm{th})$ the minimum gate voltage which enables the current through drain source of the Mosfet.
-Gate charge lossesare caused by charging up the gate capacitance and then dumping the charge to ground every cycle. The gate charge losses are equal to: frequency • $\mathrm{Qg}($ tot $\cdot \mathrm{Vdr}$ Unfortunately, the lowest on resistance devices tend to have higher gate capacitance. Because this loss is frequency dependent, in very high current supplies with very large FETs, with large gate capacitance, a more optimal design may result from reducing operating frequency. Switching losses are also effected by gate capacitance. If the gate driver has to charge a larger capacitance, then the time the Mosfet spends in the linear region increases and the losses increase. The faster the rise time, the lower the switching loss. Unfortunately this causes high frequency noise.
$\mathrm{n}:=10^{-9}$
Mosfet:
Rds $\begin{aligned} & \text { on }:=0.200 \cdot \text { ohm } \\ & \text { (Total resistance between the source and drain during the on state) }\end{aligned}$
Coss :=95•pF (Output capacitance)
$\mathrm{Qg}_{\text {tot }}:=13 \cdot n \cdot$ coul \quad (Total gate charge)
Qgd $_{\text {miller }}:=6.1 \cdot n \cdot$ coul \quad (Gate drain Miller charge)
Vgs $_{\text {th }}:=2 \cdot$ volt
(Threshold voltage)

- Conduction losses: Pcond

Pcond $:=$ Rds $_{\text {on }} \cdot \operatorname{lp}_{\text {rms }}{ }^{2}$. $\mathrm{D}_{\text {max }} \quad$ Pcond $=0.03$ watt

- Switching losses: Psw(max)

Turn On time:
$\mathrm{t}_{\text {sw }}:=$ Qgd $_{\text {miller }} \cdot \frac{\text { Rdr }_{\text {on }}}{\mathrm{Vdr}-\mathrm{Vgs}_{\text {th }}} \quad \quad \mathrm{t}_{\mathrm{sw}}=8.21 \times 10^{-9} \mathrm{sec}$

- Gate charge losses: Pgate

Average current required to drive the gate capacitor of the Mosfet:

Igate $_{\text {awg }}:=\mathrm{fsw} \cdot \mathrm{Qg}_{\mathrm{tol}}$
Igate $_{\text {awg }}=3.9 \times 10^{-3} \mathrm{amp}$
Pgate := Igate ${ }_{\text {awg }} \cdot V d r$
-Total losses: Ptot(max)
Pmosfet $_{\text {tot }}:=$ Pcond + Psw $_{\text {max }}+$ Pgate Pmosfet $_{\text {tot }}=0.38$ watt
-Maximum junction temperature and heat sink requirement:
Maximum junction temperature desired: $\quad \mathrm{Tj}_{\max }:=140 \quad$ Celsius
Maximum ambient temperature: $\mathrm{Ta}_{\max }:=70 \quad$ Celsius
-Thermal resistance junction to ambient temperature:
$\theta \mathrm{ja}:=\frac{\mathrm{T}_{\mathrm{max}}-\mathrm{Ta}_{\max }}{\text { Pmosfet }_{\text {tot }}}$

$$
\theta \mathrm{ja}=183.35 \frac{1}{\text { watt }}
$$

Celsius
If the thermal resistance calculated is lower than that one specified on the Mosfet's data sheet a heat sink or higher copper area is needed.
For Example for a T0-263 (D2pak) package the Tja of the Mosfet versus copper plane area is:

10) Current limit:

The LM3488 uses a current mode control scheme. The main advantages of current mode control are inherent cycle-by-cycle current limit for the switch, and simple control loop characteristics. Since the LM3488 has a maximum duty cycle of 100%, the current limit should be designed to have current limit just above the maximum primary peak current plus 20-30\%
$\mathrm{R}_{\text {sense }}:=\frac{160 \cdot \mathrm{mV}}{\mathrm{Ip}_{\mathrm{pk}} \cdot 1.2} \quad \quad \mathrm{R}_{\text {sense }}=0.1 \Omega$
11) Transformer Design:

The inductor- transformer should be designed to minimize the leakage inductance, ac winding losses, and core losses.
In continuous mode of operation, the total amper-turns never goes to zero, therefore the transformer will have lower core losses, and high AC winding losses.
Unipolar pulses cause dc current to flow through the core winding, moving the flux in the core from Br towards saturation. When pulses goes to zero, the flux travels back to Br . The transformer in Flyback power supply acts as an energy storage device, therefore to do not saturate is used a air-gapped ferrite core or Molypermalloy Poweder cores with distributed airgap.

The power handling capacity of the transformer core can be determined by its WaAc product area , where Wa is the available core window area, and Ac is the effective core cross-selectional area. The WaAc power output relationship is obtained with the Faraday's law:

$$
E=4 B \text { Ac Nf } 10^{\wedge}-8
$$

Where:
$\mathrm{E}=$ applied voltage
$B=$ flux density in gauss
$\mathrm{Ac}=$ core are in $\mathrm{cm}^{\wedge} 2$

$$
\begin{aligned}
& \quad \mathrm{J}=\text { current density amp/cm^2 } \\
& \mathrm{K}=\text { winding factor } \\
& \mathrm{I}=\text { current }(\mathrm{rms})
\end{aligned}
$$

$\mathrm{N}=$ number of turns	$\mathrm{Po}=$ output power
$\mathrm{f}=$ frequency	$\mathrm{Wa}=$ window area in $\mathrm{cm}^{\wedge} 2$

-Select maximum current density of the windings:C (280-390 amp/cm^2, or 400-500 circular-mils/amp)

- winding factor: $\quad \mathrm{K}:=0.2 \quad$ (0.2-0.3 for flyback continuous mode)

-Select core material and maximum flux density:

It is assume that at high switching frequency (fsw>>25KHz) the limitation factor is the core losses, and temperature rise of the transformer
The type of ferrite material chosen will influence the core losses at the given operating conditions:

- F material has its lowerst losses at room temperature to $40^{\circ} \mathrm{C}$.
- P material has lowerst losses at $70^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$.
- R material has lowerst losses at $100^{\circ} \mathrm{C}-110^{\circ} \mathrm{C}$.
- K material has lowerst losses at $40^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$ at elevated frequencies.

At high switching frequency it is necessary to adjust the flux density in order to limit core temperature rise: limiting core losses density to $100 \mathrm{~mW} / \mathrm{cm}^{\wedge} 3$ would keep the temperature rise at approximately $40^{\circ} \mathrm{C}$.
Use the following formula to select the most appropriate maximum flux density:

- Maximum core losses density: Pcored := $250 \mathrm{~mW} / \mathrm{cm}^{\wedge} 3$
for P material:

$\mathrm{a}=0.158 \quad \mathrm{~b}=1.36$	$\mathrm{c}=2.86$	for frequency $\mathrm{f}<100 \mathrm{kHz}$
$a=0.0434 \quad b=1.63$	$\mathrm{c}=2.62$	for frequency $100 \mathrm{kHz}<$ << 500 kHz
$\mathrm{a}=7.36 * 10^{\wedge} 7 \mathrm{~b}=3.47$	$\mathrm{c}=2.54$	for frequency f $>500 \mathrm{kHz}$
for K material:		
$\mathrm{a}=0.0530 \quad \mathrm{~b}=1.60$	$\mathrm{c}=3.15$	for frequency $\mathrm{f}<500 \mathrm{kHz}$
$\mathrm{a}=0.00113 \quad \mathrm{~b}=2.19$	$\mathrm{c}=3.10$	for frequency $500 \mathrm{kHz}<\mathrm{f}<1 \mathrm{MHz}$
$a=1.77^{*} 10^{\wedge}-9 \quad b=4.13$	$\mathrm{c}=2.98$	for frequency f> 1 MHz
$\mathrm{a} 1:=0.0434 \quad \mathrm{~b} 1:=1.63$	c1 : $=2.62$	
($\frac{1}{11}$		
$B:=\left[\frac{\text { Pcored }}{\mathrm{a} 1 \cdot\left(\frac{\mathrm{fsw}}{\mathrm{kHz}}\right)^{\mathrm{b} 1}}\right]^{\mathrm{c} 1} \cdot 10^{3} \cdot$ gauss	ss $\quad \mathrm{B}=783.75$ gauss	
$\Delta \mathrm{B}:=\mathrm{B} \cdot 2$	$\Delta \mathrm{B}=1.57 \times 10^{3}$ gauss	
-Topology constant:	$\mathrm{Kt}:=\frac{0.00025}{1.97} \cdot 10^{3}$	
$\mathrm{WaAc}:=\frac{\mathrm{Po}_{\max }}{\mathrm{Kt} \cdot \Delta \mathrm{~B} \cdot \mathrm{fsw}^{2} \cdot \mathrm{~J}}$	WaAc $=0.03 \mathrm{~cm}^{4}$	

-Select a core with Area Product larger than : ---> $\quad \mathrm{WaAc}=0.03 \mathrm{~cm}^{4}$ Core selected:

- Manufacture: Ferroxcube.com
- Material: P
- Shape: E core
- Part number: RM6S/I3-F3
- Core Area: Ae
- Bobbin area: Wa

$$
\begin{aligned}
& \mathrm{Ae}:=0.37 \cdot \mathrm{~cm}^{2} \\
& \mathrm{Wa}:=0.14 \cdot \mathrm{~cm}^{2} \\
& \mathrm{Ve}:=1.09 \cdot \mathrm{~cm}^{3} \\
& \mathrm{IW}:=0.67 \cdot \mathrm{~cm}
\end{aligned}
$$

- Core volume: Ve
- Window length Iw
- Area product: Used \qquad $\mathrm{Ae} \cdot \mathrm{Wa}=0.05 \mathrm{~cm}^{4}$
- Inductance per 1000 turns without airgap :
- first length of turn: Lt :=24.cm

- Primary inductance: Primary turns
$N p_{\mathrm{c}}:=\frac{\mathrm{Lp} \cdot \mid \mathrm{ppk}_{\mathrm{pk}}}{\Delta \mathrm{B} \cdot \mathrm{Ae}}$
$N p_{C}=18.07$
The number of turns has to be rounded to the higher or lower integer value: $\mathrm{Np}:=18$
$\frac{\mathrm{Np} \cdot \mathrm{Ae} \cdot \Delta \mathrm{B}}{\mathrm{IP}_{\mathrm{pk}}}=81.45 \mu \mathrm{H}$
- Secondary inductance: Secondary turns
$\begin{array}{llll}\mathrm{Ns} 1_{C}:=\left(\frac{\mathrm{Np}}{\mathrm{Nps} 1}\right) & \mathrm{Ns} 1_{C}=6.03 & ---\rightarrow & \mathrm{Ns} 1:=6 \\ \mathrm{Ns} 2_{\mathrm{C}}:=\left(\frac{\mathrm{Np}}{\mathrm{Nps} 2}\right) & \mathrm{Ns} 2_{\mathrm{C}}=0.79 & ---- & \mathrm{Ns} 2:=0\end{array}$

-Air-gap length

The air-gap length is proportional to the effective gap section area (Ag).
Ag is equal to the core section times the finging coefficient, that take in consideration the finging flux in the air-gap. Since Ag depends on the air-gap length itself, the air-gap length (Lg) can be calculated with few iterations of a loop cycle.
$\mu_{0}:=4 \cdot \pi \cdot 10^{-7} \cdot \frac{\text { henry }}{\mathrm{m}}$
$\mathrm{Lg}:=\left\lvert\, \begin{aligned} & \mathrm{Ag} \leftarrow \frac{\mathrm{Ae}}{\mathrm{cm}^{2}} \\ & \text { for } \quad i \in 0 . .4\end{aligned}\right.$

$$
\left\{\begin{array}{l}
\operatorname{lgap} \leftarrow \mu_{0} \cdot \frac{\mathrm{~cm}}{\text { henry }} \cdot \mathrm{Np}^{2} \cdot\left(\frac{\mathrm{Ag}}{\left.\frac{\mathrm{Lp}}{\text { henry }}\right)}\right. \\
\mathrm{Ag} \leftarrow \frac{\mathrm{Ae}}{\mathrm{~cm}^{2}} \cdot\left(1+\frac{\operatorname{lgap}}{\sqrt{\frac{\mathrm{Ae}}{\mathrm{~cm}^{2}}} \cdot \log \left(\frac{\mathrm{Cm}}{\lg }\right)}\right. \\
\text { gap }) \cdot \mathrm{cm}
\end{array}\right.
$$

(Air-gap length)

$\mathrm{Lg}=7.68 \times 10^{-3}$ in
$\mathrm{Lg}=0.2 \mathrm{~mm}$

- Primary and secondary wire size:

Maximum current density: $\quad J=390 \frac{\mathrm{amp}}{\mathrm{cm}^{2}}$
Primary rms current:

$$
\mathrm{Ip}_{\mathrm{rms}}=0.66 \mathrm{amp}
$$

Primary:
by wire area:
$W p_{c u}:=\frac{\text { lp }_{\mathrm{rms}}}{\mathrm{J}} \quad W \mathrm{p}_{\mathrm{cu}}=1.710^{-3} \cdot \mathrm{~cm}^{2}$
or by wire size:
AWGp $:=-4.2 \cdot \ln \left(\frac{W p_{c u}}{\mathrm{~cm}^{2}}\right) \quad$ AWGp $=26.79$
(Approximated AWG wire size, for more precision refer to wire size table)
Primary Wire selected:
Wire size

$$
A W G_{L p}:=28
$$

Bare area (copper plus insulation)
$W_{L p}:=1.05 \cdot 10^{-3} \cdot \mathrm{~cm}^{2}$
Copper area: WcuLp $:=0.8 \cdot 10^{-3} \cdot \mathrm{~cm}^{2}$
Diameter DcuLp $:=0.0366 \cdot \mathrm{~cm}$
Number of strands: Nst $\mathrm{Lp}:=2$

- Number of primary turns per layer:
$\mathrm{Nt\mid} \mathrm{Lp}:=$ floor $\left.\left(\frac{\mathrm{lw}}{\mathrm{Dcu}_{\mathrm{Lp}}}\right) \quad \mathrm{Nt\mid}\right|_{\mathrm{Lp}}=18$
- Number of primary layers:

Nly \quad Lp $:=$ ceil $\left(\frac{\text { Np } \cdot N_{L t}}{N_{L t}}\right) \quad$ Nly $_{L p}=2$

Secondary: Master

by wire area:
$\mathrm{Ws} 1_{\mathrm{cu}}:=\frac{\mathrm{Is} 1_{\mathrm{rms}}}{\mathrm{J}} \quad \mathrm{Ws} 1_{\mathrm{cu}}=6.3410^{-3} \cdot \mathrm{~cm}^{2}$
or by wire size:
AWGs $1:=-4.2 \cdot \ln \left(\frac{\mathrm{Ws}_{\mathrm{cu}}}{\mathrm{cm}^{2}}\right)$
AWGs1 $=21.26$

Secondary Wire selected:

Wire size
AWGLs1 $:=25$
Bare area (copper plus insulation) WaLs1:=2•10 ${ }^{-3} \cdot \mathrm{~cm}^{2}$
Copper area: WcuLs1 $:=2.514 \cdot 10^{-3} \cdot \mathrm{~cm}^{2}$
Diameter DcuLs1:=0.0505.cm
Number of strands: \quad Nst Ls $1:=4$

- Number of secondary turns per layer:
$\left.\mathrm{Nt}\right|_{\text {Ls } 1}:=$ floor $\left(\frac{\mathrm{lw}}{\text { DcuLs1 }}\right) \quad \mathrm{Nt}_{\mathrm{Ls} 1}=13$
- Number of secondary layers:

Secondary: Slave

by wire area:
$\mathrm{Ws}^{2}{ }_{\mathrm{cu}}:=\frac{\mathrm{Is} 2_{\mathrm{rms}}}{\mathrm{J}}$

$$
\mathrm{Ws} 2_{\mathrm{cu}}=4.1610^{-3} \cdot \mathrm{~cm}^{2}
$$

or by wire size:
AWGs2 :=-4.2.ln $\left(\frac{\mathrm{Ws} 2_{\mathrm{cu}}}{\mathrm{cm}^{2}}\right) \quad$ AWGs2 $=23.03$

Secondary Wire selected:

Wire size
Bare area (copper plus insulation)
Copper area:

$$
\begin{aligned}
& \text { AWGLs2 }:=26 \\
& \text { WaLs2 }:=1.63 \cdot 10^{-3} \cdot \mathrm{~cm}^{2} \\
& \text { WcuLs2 }:=1.28 \cdot 10^{-3} \cdot \mathrm{~cm}^{2}
\end{aligned}
$$

Diameter
Number of strands:

$$
\begin{aligned}
& \text { DcuLs2 }:=0.0452 \cdot \mathrm{~cm} \\
& \text { NstLs2 }:=1
\end{aligned}
$$

- Number of secondary turns per layer:

Nt|Ls2 $:=$ floor $\left(\frac{\mathrm{lw}}{\text { DcuLs2 }}\right) \quad$ Nt|Ls2 $=14$

- Number of secondary layers:

NlyLs2 := ceil $\left(\frac{\text { Ns2.NstLs2 }}{\text { NtLLs2 }}\right) \quad$ NlyLs2 $=0$

- Copper area:

$$
\begin{array}{r}
\text { Wcu }_{\text {tot }}:=\left(\text { Dcu }_{\text {Lp }} \cdot \mathrm{Nly}_{\mathrm{Lp}}+\text { Dcu }_{\text {Ls } 1} \cdot \mathrm{Nly}_{\mathrm{Ls} 1}+\mathrm{Dcu}_{\mathrm{Ls} 2} \cdot \mathrm{Nly}_{\mathrm{Ls} 2}\right) \cdot 1.15 \cdot \mathrm{lw} \\
\mathrm{Wcu}_{\text {tot }}=0.13 \mathrm{~cm}^{2}
\end{array}
$$

- Window utilizzation:

$$
\mathrm{Wu}:=\frac{\mathrm{Wcu}_{\text {tot }}}{\mathrm{Wa}} \quad \mathrm{Wu}=95.87 \%
$$

Important: if Window utilisation is greater than 90%, (Copper area>> than bobbin area) a core with larger window area, or smaller wire sizes must be selected.

- Core losses:

Pcore $:=\mathrm{Ve} \cdot\left[\left(\frac{\mathrm{B}}{10^{3} \cdot \text { gauss }}\right)^{\mathrm{c} 1} \cdot \mathrm{a} 1 \cdot\left(\frac{\mathrm{fsw}}{\mathrm{kHz}}\right)^{\mathrm{b} 1}\right] \cdot \frac{10^{-3} \cdot \text { watt }}{\mathrm{cm}^{3}} \quad$ Pcore $=0.27$ watt

- Winding copper losses:

There are two effects, which can cause the winding losses to be significantly greater than ($\left.{ }^{\wedge} 2^{\star} R \mathrm{Rcu}\right)$: skin and proximity effects.
Skin effect causes current in a wire to flow only in a thin skin of the wire.
Skin depth: distance below the surface where the current density has fallen to 1 /e of its value at the surface: (Sd)

$$
\mathrm{Sd}:=\frac{6.61}{\sqrt{\frac{\mathrm{fsw}}{\mathrm{~Hz}}}} \cdot \mathrm{~cm} \quad \mathrm{Sd}=0.01 \mathrm{~cm} \quad \mathrm{Lt}=24 \mathrm{~cm} \quad \text { Nly } \mathrm{Lp}=2
$$

To minimize the AC copper losses in a transformer, if the wire diameter is greater than two times
the skin depth, a multy strands winding or litz wires should be considered If \quad DcuLp $=0.04 \mathrm{~cm}$ is greater than $\mathrm{Sd} \cdot 2=0.02 \mathrm{~cm}$
Primary winding length:

$\mathrm{Np}=18 \quad \mathrm{Lcu}_{\mathrm{Lp}}=432 \mathrm{~cm} \quad \operatorname{Ldf}_{\mathrm{Lp}}=24.15 \mathrm{~cm} \quad 7.15 \cdot \mathrm{~Np}=128.7$
Copper resistivity: (20C) $\quad \rho_{20}:=1.724 \cdot 10^{-6} \cdot \mathrm{ohm} \cdot \mathrm{cm}$
-Maximum temperature of the winding: $\operatorname{Tmax}_{c u}:=80$
$\rho:=\rho_{20} \cdot\left[1+0.0042 \cdot\left(\operatorname{Tmax}_{\text {cu }}-20\right)\right]$
$\operatorname{Rdc}_{L p}:=\rho \cdot \frac{\operatorname{Lcu}_{L p}}{\text { Wcu }_{L p} \cdot N_{s t} L_{p}} \quad \quad \operatorname{Rdc}_{L p}=0.58 \mathrm{ohm}$
$\operatorname{Rac}_{L p}:=\frac{\operatorname{Rdc}_{L p} \cdot\left(\frac{\text { DcuLp }}{2 \cdot \mathrm{Sd}}\right)^{2}}{\left(\frac{D_{c u L p}}{2 \cdot \mathrm{Sd}}\right)^{2}-\left(\frac{\mathrm{DcuLp}^{L}}{2 \cdot \mathrm{Sd}}-1\right)^{2}} \quad \operatorname{Rac}_{L p}=0.66 \mathrm{ohm}$
$\frac{R_{\text {ac }} \mathrm{Lp}}{\operatorname{Rdc}_{\mathrm{Lp}}}=1.13$
Pcu $_{\text {Lp }}:=\operatorname{Rdc}_{\mathrm{Lp}} \cdot \operatorname{lp}_{\mathrm{dc}}{ }^{2}+\operatorname{Rac}_{\mathrm{Lp}} \cdot \operatorname{lp}_{\mathrm{ac}}{ }^{2}$
PcuLp $=0.28$ watt
Secondary winding length:

$$
\text { Ldf }_{\text {Ls1 }}:=\left\lvert\, \begin{aligned}
& \mathrm{L} 1 \leftarrow \mathrm{Ldf}_{\mathrm{Lp}} \\
& \text { for } \quad \mathrm{i} \in 1 . .(\text { NlyLs2 }-1) \\
& \mathrm{L} 1 \leftarrow \mathrm{~L} 1+4 \cdot \text { DcuLs1 } \\
& \mathrm{L} 1
\end{aligned}\right.
$$

$$
\begin{aligned}
& \text { LcuLs1 } 1:=\left\lvert\, \begin{array}{l}
\mathrm{L} 1 \leftarrow \mathrm{Ldf} \mathrm{Lp} \\
\mathrm{~L} \leftarrow 0 \cdot \mathrm{~cm} \\
\text { for } \quad \mathrm{i} \in 1 . .\left(\mathrm{Nly}_{\mathrm{Ls} 1}-1\right) \\
\left\lvert\, \begin{array}{l}
\mathrm{L} \leftarrow \mathrm{~L}+\mathrm{L} 1 \cdot \mathrm{NtI}_{\mathrm{Ls} 1} \\
\mathrm{~L} 1 \leftarrow \mathrm{~L} 1+4 \cdot \text { DcuLs } 1
\end{array}\right.
\end{array}\right. \\
& \mathrm{~L} \leftarrow 0 \text { if } \mathrm{Nly}_{\mathrm{Ls} 1} \leftarrow 1 \\
& {\left[\mathrm{~L}+\mathrm{L} 1 \cdot\left[\mathrm{Ns} 1-\left(\mathrm{Nly}_{\mathrm{Ls} 1}-1\right) \cdot \mathrm{NtL}_{\mathrm{Ls} 1}\right]\right]} \\
& \mathrm{LcuLs}^{\prime}=146.09 \mathrm{~cm} \\
& \operatorname{Rdc}_{\text {Ls } 1}:=\rho \cdot \frac{\text { LcuLs } 1^{W_{c u L s} 1} \cdot \text { Nst }_{\text {Ls } 1}}{\operatorname{Rdc}_{\text {Ls } 1}=0.03 \mathrm{ohm}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\operatorname{Rac}_{\mathrm{Ls} 1}}{\operatorname{Rdc}_{\mathrm{Ls} 1}}=1.37 \\
& \text { PcuLs } 1:=\operatorname{Rdc}_{\text {Ls } 1} \cdot \mathrm{lo}_{\mathrm{max}}{ }^{2}+\text { Rac }_{\mathrm{Ls} 1} \cdot \mathrm{Is} 1 \mathrm{ac}{ }^{2} \quad \text { PcuLs } 1=0.22 \text { watt } \\
& \text { LcuLs2: }=\left\lvert\, \begin{array}{l}
\mathrm{L} 1 \leftarrow \mathrm{Ldf} \mathrm{Ls} 1 \\
\mathrm{~L} \leftarrow 0 \cdot \mathrm{~cm} \\
\text { for } \quad \mathrm{i} \in 1 . .\left(\mathrm{Nly}_{\mathrm{Ls} 2}-1\right) \\
\left\lvert\, \begin{array}{l}
\mathrm{L} \leftarrow \mathrm{~L}+\mathrm{L} 1 \cdot \mathrm{NtILs}^{2} \\
\mathrm{~L} 1 \leftarrow \mathrm{~L} 1+4 \cdot \text { DcuLs2 }
\end{array}\right.
\end{array}\right. \\
& \mathrm{L} \leftarrow 0 \text { if } \mathrm{Nly}_{\mathrm{Ls} 2} \leftarrow 1 \\
& {\left[\mathrm{~L}+\mathrm{L} 1 \cdot\left[\mathrm{Ns} 2-\left(\mathrm{Nly}_{\mathrm{Ls} 2}-1\right) \cdot \mathrm{Nt} \mathrm{~L} \mathrm{Ls} 2\right]\right]} \\
& \text { LcuLs2 }=0 \mathrm{~cm} \\
& \text { Rdc }{ }_{\text {Ls2 }}:=\rho \cdot \frac{\text { LcuLs2 }}{\text { WcuLs2 } \cdot \text { NstLs2 }} \quad \text { Rdccs2 }=0 \text { ohm }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{R_{\text {ac }} \text { Ls2 }}{\operatorname{Rdc}_{\mathrm{Ls} 2}}=0 \\
& P_{c u L s 2}:=\text { Rdc }_{\text {Ls2 }} \cdot 102_{\text {max }}{ }^{2}+\text { Rac }_{\text {Ls2 }} \cdot \mathrm{Is}_{\mathrm{ac}}{ }^{2} \quad \text { PcuLs2 }=0 \text { watt } \\
& \mathrm{Pcu}_{\text {tot }}:=\text { PcuLp }+ \text { PcuLs1 }+ \text { PcuLs2 } \\
& \mathrm{Pcu}_{\text {tot }}=0.49 \text { watt }
\end{aligned}
$$

Pcore $=0.27$ watt
-Total transformer's losses:
Ptrans $_{\text {tot }}:=$ Pcu $_{\text {tot }}+$ Pcore \quad Ptrans $_{\text {tot }}=0.77$ watt
-Transformer's efficiency:
$\eta_{\text {Tra }}:=\frac{\mathrm{Po}_{\text {max }}}{\mathrm{Po}_{\text {max }}+\mathrm{Ptrans}_{\text {tot }}}$
$\eta_{\text {Tra }}=90.84 \%$
12) Total Power Supply Efficiency:

Ptrans $_{\text {tot }}=0.77$ watt \quad Pdiode $_{\text {tot }}=1.35$ watt \quad Pmosfet $_{\text {tot }}=0.38$ watt
Pout $:=\mathrm{Vo1} \cdot \mathrm{lo} 1_{\max }+\mathrm{Vo2} \cdot \mathrm{lo} 2_{\max }$
$\eta_{\text {tot }}:=\frac{\text { Pout }}{\text { Pout }+ \text { Ptrans }_{\text {tot }}+\text { Pdiode }_{\text {tot }}+\text { Pmosfet }_{\text {tot }}} \eta_{\text {tot }}=72.55 \%$

13) Select the proper switching frequency:

The operating frequency of the power supply should be selected to obtain the best balance between switching losses, total transformer losses, size and cost of magnetic components and output capacitors.
High switching frequency reduces the output capacitor value and the inductance of the primary and secondary windings, and therefore the total size of the transformer.
In the same manner, higher switching frequency increases the transformer losses and the switching losses of the switching transistor. High losses reduce the overall efficiency of the power supply, and increase the size of the heat-sink required to dissipate the heat.
Notes:
Wire table:

AWG Wire Size	Bare Area $\mathrm{cm}^{\wedge} 210^{\wedge}-3$	Area $\mathrm{cm}^{\wedge} 210^{\wedge}-3$	Diameter cm
10	52,61	55,9	0,267
11	41,68	44,5	0,238
12	33,08	35,64	0,213
13	26,36	28,36	0,19
14	20,82	22,95	0,171
15	16,51	18,37	0,153
16	13,07	14,73	0,137
17	10,39	11,68	0,122
18	8,23	9,32	0,109
19	6,53	7,54	0,098
20	5,19	6,06	0,0879
21	4,12	4,84	0,0785
22	3,24	3,86	0,0701
23	2,59	3,13	0,0632
24	2,05	2,514	0,0566
25	1,62	2	0,0505
26	1,28	1,603	0,0452
27	1,02	1,313	0,0409
28	0,8	1,05	0,0366
29	0,647	0,854	0,033
30	0,506	0,678	0,0294

References:

1. Rudolf P. Severns, Gordon E. Bloom "Modern DC to DC switchmode power converter circuits".
2. Magnetics application notes.
3. Colonel Wm. T. McLyman "Transformer and Inductor Design Handbook"
4. Pressman "Switching Power Supply Design"
5. R. Martinelli, C. Hymowitz, Intusoft "Designing a 12.5 W 50 kHz Flyback Transformer"
