POSTSCRIPT*

Software From Adobe

Building PFM Files
for PostScript-Language

CJK Fonts

Adobe Developer Support

Technical Note #5178

10 January 1997

Adobe Systems Incorporated

Corporate Headquarters

345 Park Avenue

San Jose, CA 95110

(408) 536-6000 Main Number
(408) 536-9000 Developer Support
Fax: (408) 536-6883

European Engineering Support Group
Adobe Systems Benelux B.V.

P.O. Box 22750

1100 DG Amsterdam

The Netherlands

+31-20-6511 355

Fax: +31-20-6511 313

PN LPS5178

Adobe Systems Eastern Region
24 New England

Executive Park

Burlington, MA 01803

(617) 273-2120

Fax: (617) 273-2336

Adobe Systems Co., Ltd.
Yebisu Garden Place Tower
4-20-3 Ebisu, Shibuya-ku
Tokyo 150

Japan

+81-3-5423-8169

Fax: +81-3-5423-8204

Copyright O 1996 — 1997 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the publisher. Any software referred to
herein is furnished under license and may only be used or copied in accordance with the
terms of such license.

PostScript is a trademark of Adobe Systems Incorporated. All instances of the name Post-
Script in the text are references to the PostScript language as defined by Adobe Systems
Incorporated unless otherwise stated. The name PostScript also is used as a product
trademark for Adobe Systems’ implementation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer
to printers, files, and driver programs (respectively) which are written in or support the
PostScript language. The sentences in this book that use “PostScript language” as an
adjective phrase are so constructed to reinforce that the name refers to the standard
language definition as set forth by Adobe Systems Incorporated.

Adobe, Adobe Type Manager, ATM, Display PostScript, PostScript and the PostScript
logo are trademarks of Adobe Systems Incorporated which may be registered in certain
jurisdictions. Microsoft and Windows are registered trademarks of Microsoft Corpora-
tion. CJK is a registered trademark and service mark of The Research Libraries Group, Inc.
All other brand or product names are the trademarks or registered trademarks of their
respective holders.

This publication and the information herein is furnished AS IS, is subject to change with-
out notice, and should not be construed as a commitment by Adobe Systems Incorpo-
rated. Adobe Systems Incorporated assumes no responsibility or liability for any errors
or inaccuracies, makes no warranty of any kind (express, implied or statutory) with
respect to this publication, and expressly disclaims any and all warranties of merchant-
ability, fitness for particular purposes and noninfringement of third party rights.

© 00 N oo o b~ W N PP

[
= O

Contents

Building PFM Files for PostScript-Language CJK Fonts 1
Introduction 1

PFM File Sections 2

PFM Header 2

PFM Extension 5

PFM Extended Text Metrics 6

PFM PostScript Information 7

PFM Extent Table 9

The Order and Location of PFM Structures 9
Creating PFM Files 9

Naming PFM files 10

Installing and Registering PFM Files 10

Appendix A
Perl Program for Creating PFM Files 11

Appendix B
Sample Data Files for Creating PFM Files 15

(10 Jan 97)

Building PFM Files for
PostScript-Language
CJK Fonts

1 Introduction

Printer Font Metrics (PFM) files are required for installing
Type 1, CID-keyed, or composite font programs in a Win-
dows® system. Although this file format was originally
designed for single-byte fonts, PFM files provide Adobe
Type Manager® (ATM®) and other software with key font-
specific information that is necessary for installation and
use in a Windows environment.

There are some special considerations when building PFM
files for PostScript®-language CJK® (Chinese, Japanese,
and Korean) fonts. This Technical Note describes the struc-
ture of a PFM file in practical terms, and supplies guidance
that can be used for building tools that generate well-
formed PFM files. A simple tool written in Perl for building
PFM files is included as part of this document (see Appen-
dix A). The PFM file specification is available in the
Microsoft Windows Device Development Kit (DDK), avail-
able from Microsoft. That document describes the
structure and use of PFM files only for single-byte fonts.

PFM files are packed as binary structures with many sec-
tions, and contain information about a single font. Many
of the data fields in PFM files are two- or four-byte values
that must be in little-endian byte order (that is, the byte
order used on Windows systems). They represent a single
numeric value, but are packed into data sizes greater than
one byte. Such two-byte entities are often called “WORD"
or “short” values, and four-byte entities are often called
“DWORD" or “long” values.

Many of the font-specific values that are included in a PFM
file, such as ascent and descent information, can be calcu-

lated or read from the font data itself. The availability of
an AFM (Adobe Font Metrics) file can ease or trivialize
these calculations. For CID-keyed fonts, the CID-keyed
AFM file format is described in Adobe Technical Note
#5004: “Adobe Font Metrics File Format Specification,”
Version 4.1.

2 PEM File Sections

There are five sections that comprise PFM files for
PostScript-language CJK fonts, indicated as follows:

Header

Extension

Extended Text Metrics
PostScript Information
Extent Table

Values for most PFM fields do not change from one font to
another — such values are static. And, some fields are not
currently used by drivers or applications, but it is wise to
calculate reasonable values in case they are used in the
future.

3 PFM Header

The PFM file’s Header section, 117 bytes total size, is
described in Table 1.

Table 1 Header

Field Name Data Size Value

dfVersion Two bytes 256

dfSize Four bytes The exact size of the PFM file,

in bytes

dfCopyright 60 byte Copyright string
string, null
padded

dfType Two bytes 129

dfPoint Two bytes 10

dfVertRes Two bytes 300

dfHorizRes Two bytes 300

Building PFM Files for PostScript-Language CJK Fonts (10 Jan 97)

Table 1 Header (Continued)

Field Name Data Size Value

dfAscent Two bytes Font-level ascent (the fourth
element of a FontBBox array)

dflnternalLeading Two bytes Internal leading (calculation
shown below)

dfExternalLead- Two bytes 196

ing

dfltalic One byte 0

dfUnderline One byte 0

dfStrikeOut One byte 0

dfWeight Two bytes 400 or 700 (calculation shown
below)

dfCharSet One byte 128, 129, 134, or 136 (calcula-
tion shown below)

dfPixWidth Two bytes 0

dfPixHeight Two bytes 1000

dfPitchAndFamily One byte 16, 17, 48, 49, 64, or 65 (calcula-
tion shown below)

dfAvgWidth Two bytes 500

dfMaxWidth Two bytes 1000

dfFirstChar One byte 32 (0x20)

dfLastChar One byte 255 (OxFF)

dfDefaultChar One byte 0

dfBreakChar One byte 0

dfwidthBytes Two bytes 0

dfDevice Four bytes 199 (offset value to the string
"PostScript” in the "PostScript
Information” section, in bytes)

dfFace Four bytes 210 (offset value to the Win-
dows Name string in the “Post-
Script Information” section, in
bytes)

dfBitsPointer Four bytes 0

dfBitsOffset Four bytes 0

3 PFM Header

The dfSize value is calculated after all other field sizes are
known. The only two variable-length PFM fields are in the
“PostScript Information” section, and are null-terminated
strings that represent the Windows font menu name and
the fully-qualified PostScript font name (for a definition of
these entries, see section 6).

Note 1 How the printer driver or other software deals with the Windows font
menu name or the fully-qualified PostScript font name is beyond the
scope of this document.

An example dfCopyright string, without the null padding,
looks like the following, taken from an Adobe Systems’
PFM file:

Copyri ght 1985-1997 Adobe Systens |nc.

If the dfCopyright string exceeds 60 bytes, it needs to be
shortened or truncated.
Notes about the calculations:

e The dfAscent value is calculated by determining the
highest point in the font. This value can be extracted
from the fourth element of the FontBBox (font bound-
ing box) array found in an AFM file.

e The dfinternalLeading value is calculated as follows:

If the result of (ascent — descent) is less than 1000,
then dfinternalLeading should be set to zero.

Otherwise, dfinternalLeading should be set to the
value of ((ascent — descent) — 1000).

The ascent value is the same as the dfAscent field, and
the descent value can be extracted from the second ele-
ment of the FontBBox array.

e The dfWeight value is specified as follows:

For bold fonts, use 700
For all others, use 400

e The dfCharSet value is specified as follows (supported
encodings in parentheses):

Building PFM Files for PostScript-Language CJK Fonts (10 Jan 97)

Japanese = 128 (Shift-JIS)

Korean = 129 (EUC-KR or Unified Hangul Code)
Simplified Chinese = 134 (EUC-CN or GBK)
Traditional Chinese = 136 (Big Five)

This value tells Windows how to treat this font in terms
of language, character set, and encoding.

e The dfPitchAndFamily value is specified as follows:

Serif-like designs (Mincho, Song, Myungjo) = 16
Script-like designs (Kaisho, Gyosho, Kai) = 64
Other designs (including sans serif: Gothic or Hei) = 48

(Note that the Japanese typeface design called
Kyokasho is treated like a serif-like design.) Further-
more, if the pitch of the one-byte Roman characters is
proportional, then add 1 to the above values.

4 PFM Extension

This section, 30 bytes total size, contains three meaningful
fields, all of which are offset values to other structures of
the PFM file. The format is shown in Table 2.

Table 2 Extension

Field Name Data Size Value
dfSizeFields Two bytes 30 (the size of this section, in
bytes)

dfExtMetricsOffset Four bytes 147 (offset value to the
“Extended Text Metrics” sec-
tion, in bytes)

dfExtentTable Four bytes Offset value to the Extent Table,
in bytes
dfOriginTable Four bytes 0

dfPairKernTable Four bytes 0
dfTrackKernTable Four bytes 0

dfDriverinfo Four bytes Offset value to the fully-quali-
fied PostScript font name string
in the “PostScript Information”
section, in bytes

dfReserved Four bytes 0

4 PFM Extension 5

5 PFM Extended Text Metrics

This section, shown in Table 3, includes many fields, and is

52 bytes in size.

Table 3 Extended Text Metrics

Field Name Data Size Value

etmSize Two bytes 52 (the size of this section,
in bytes)

etmPointSize Two bytes 240 (12-point expressed in
units of 1/20th of a point)

etmOrientation Two bytes 0

etmMasterHeight Two bytes 1000

etmMinScale Two bytes 3

etmMaxScale Two bytes 1000

etmMasterUnits Two bytes 1000

etmCapHeight Two bytes Height of uppercase “H"

etmXHeight Two bytes Height of lowercase “x"

etmLowerCaseAscent Two bytes Height of lowercase “d”

etmLowerCaseDescent Two bytes Descent of lowercase “p”
(absolute value)

etmSlant Two bytes 0

etmSuperScript Two bytes -500

etmSubScript Two bytes 250

etmSuperScriptSize Two bytes 500

etmSubScriptSize Two bytes 500

etmUnderlineOffset Two bytes 100 (or O if vertical)

etmUnderlineWidth Two bytes 50 (or O if vertical)

etmDoubleUpperUnder- Two bytes 50 (or O if vertical)

lineOffset

etmDoubleLowerUnder- Two bytes 100 (or O if vertical)

lineOffset

etmDoubleUpperUnder- Two bytes 25 (or 0 if vertical)

lineWidth

etmDoubleLowerUnder- Two bytes 25 (or 0 if vertical)

lineWidth

Building PFM Files for PostScript-Language CJK Fonts

(10 Jan 97)

Table 3 Extended Text Metrics (Continued)

Field Name Data Size Value
etmStrikeOutOffset Two bytes 405
etmStrikeOutWidth Two bytes 50
etmKernPairs Two bytes 0
etmKernTracks Two bytes 0

Most of Adobe Systems’ CJK fonts include both a half- and
proportional-width set of Roman characters. Some font
instances use half-width Roman, and some use propor-
tional-width Roman. Which H, x, d, and p you use to
calculate the etmCapHeight, etmXHeight, etmLower-
CaseAscent, and etmLowerCaseDescent fields depends on
which set of Roman characters the font instance uses in the
one-byte range.

Some fonts, such as Adobe Systems’ kana (subset) fonts or
Adobe-Japan2-0 CID-keyed fonts, do not include half- or
proportional-width Roman characters. (Adobe-Japan2-0
CID-keyed fonts are not usable on Windows at this time
because Shift-JIS encoding does not support the JIS X
0212-1990 character set.) In such cases, reasonable values
for etmCapHeight, etmXHeight, etmLowerCaseAscent,
and etmLowerCaseDescent should be used. Because the
two-byte characters in Adobe Systems’ CJK fonts are opti-
cally centered between y =-120 and y = 880, these values
are used as defaults. That is, 880 for etmCapHeight, etmX-
Height, and etmLowerCaseAscent; and 120 (not -120;
absolute value required) for etmLowerCaseDescent.

PFM PostScript Information

The three fields in this section are null-terminated strings
that provide PostScript- or driver-related information, as
shown in Table 4.

Table 4 PostScript Information

String Name Data Size Value
Device Type Null-terminated The static string “Post-
string of bytes Script” followed by a
null byte

6 PFM PostScript Information

Table 4 PostScript Information (Continued)

String Name Data Size Value
Windows Name Null-terminated Windows’' menu name as
string of bytes it should appear in appli-

cations' font menus fol-
lowed by a null byte

PostScript Name Null-terminated Fully-qualified PostScript
string of bytes font name followed by a
null byte.

Note that if the font is for vertical use (that is, its \WWMode
value is 1, or otherwise intended for vertical use), an “at”
symbol (“@"; hexadecimal 0x40) must be prepended to the
Windows Name string. This increases the length of the
Windows Name string by one byte.

The Windows Name string is typically in localized non-
ASClI script. For Japanese, it is a Shift-JIS string. For Korean,
it is an EUC-KR string (but the font instance itself can spec-
ify UHC encoding, which is a superset of EUC-KR
encoding). For Simplified Chinese, it is an EUC-CN string
(but the font instance itself can specify GBK encoding,
which is a superset of EUC-CN encoding). For Traditional
Chinese, it is a Big Five string.

Because UHC and GBK encodings were supported starting
with Windows 95, any characters specific to those encod-
ings would not be recognized in pre-Windows 95 systems.
This is why EUC-KR and EUC-CN encodings are recom-
mended for Korean and Simplified Chinese, respectively.

The PostScript Name string is a fully-qualified PostScript
font name (that is, a valid argument to the findfont or
selectfont operators). For CID-keyed fonts, this means a
CIDFont name plus a CMap name concatenated using one
or two hyphens. Two hyphens are preferred, but one
hyphen may be necessary for compatibility with fonts that
had a previous life as an OCF (Original Composite Format)
font. Some examples include the following:

STSong-Light--GBK-EUC-V (CID-only font)

Building PFM Files for PostScript-Language CJK Fonts (10 Jan 97)

Ryumin-Light-RKSJ-H (a font that has existed as
both an OCF and a CID-
keyed font)

7 PFM Extent Table

This PFM table contains the number of fields specified by
the range dfFirstChar to dfLastChar (32 to 255; 224 fields
total). Each field is represented by two bytes, and indicates
the width of each character in design units. For encoded
values that represent the first byte of a two-byte character,
the value should be set to 500. The total size of this table
is 448 bytes.

8 The Order and Location of PFM Structures

The PFM Header and Extension must be located at the
beginning of the PFM file, and must appear in that order.
The exact order and location of the Extended Text Metrics
section, Device Type string, Windows Name string, Post-
Script Name string, and Extent Table does not matter
because offsets to these structures are explicitly set in ear-
lier PFM fields. But, the convention is to order them in a
consistent manner. Adobe Systems’ convention is to
include them in the following order:

Extended Text Metrics section
Device Type string

Windows Name string
PostScript Name string

Extent Table

Following the above order has the benefit of fixed values
for the following PFM fields:

dfDevice 199
dfFace 210
dfExtMetricsOffset 147

9 Creating PFM Files

Appendix A provides a Perl program that builds a well-
formed PFM file. Perl is a freely-available interpreted pro-
gramming language available for most platforms. For
information on obtaining Perl for a specific platform,

7 PFM Extent Table 9

10

10

11

please refer to the following URL:

http://www.perl.com/perl/

The Perl program can be extracted as ASCIl text then used
with a Perl interpreter, or the algorithm can be studied and
implemented in another software tool.

The Perl program requires a simple data file as standard
input (STDIN), then writes as standard output (STDOUT) a
well-formed PFM file. The format of the data file is illus-
trated by two examples shown in Appendix B. The
following is an example command line:

% perl mkpfm.pl < data-file > output.pfm

where “data-file” is the input data file, and “output.pfm”
is the PFM file.

Naming PFM files

While there is no standard naming convention for PFM
files, the name must conform to the “8.3” Windows
naming convention (an eight-character file name, a
period, followed by a three-character extension). The
extension must be “pfm”.

Installing and Registering PFM Files

The installation of PFM files, including how to register
them with the Windows operating system and Adobe Type
Manager software, is described in Adobe Technical Note
#5175, “Installing CID-Keyed Fonts for ATM Software.” The
URL for this and other Adobe Technical Notes is:

http://www.adobe.com/supportservice/
devrelations/technotes.html

Building PFM Files for PostScript-Language CJK Fonts (10 Jan 97)

Appendix A
Perl Program for
Creating PFM Files

The following is a Perl program for constructing PFM files

for PostScript-language CJK fonts.

#!/usr/local/bin/perl -w

Version 1.0
Decenber 18, 1996
Witten by Ken Lunde, Adobe Systens |ncorporated (| unde@dobe.com

require 5.002;

$vertical = $errorcount = 0;
@i x_fields = (100, 50, 50, 100, 25, 25);

@anes = gw| df Copyri ght df Ascent dflnternal Leadi ng df Wei ght df Char Set
df Pi t chAndFami | y et mCapHei ght et mXHei ght et nLower CaseAscent
et mLower CaseDescent W ndowsNane PSNane W dt hs];

Read in the contents of the data file, ignoring blank Iines and non-
key/val ue pairs

whil e($line = <STDIN>) {
$line =~ s/Ms+//;
$line =~ s/\s+$//;
next unl ess ($key, $value) = split(/\s*=\s*/,$line,2) and defined $val ue;
$pf{lc $key} = $val ue;
}

First, check to nake sure that each required key exists

foreach $key (@anes) {
if (lexists $pfr{lc $key}) {
print STDERR "$key is undefined!\n";
$errorcount ++;
}
}

die "Exiting...\n" if $errorcount;

If the WndowsNane field is in an eight-bit printable format, convert
it to true eight-bit. Two | owercase or uppercase hexadeci mal digits,
which represent a single character, can be prefixed with either an

equals (=) or a percent (% sign.

11

12

$pf M{wi ndowsnanme} =~ s/[=% ([\dA-Fa-f]{2})/pack("C', hex($1))/eg;
Cal cul ate offsets and file size

$driverinfooffset = 210 + | engt h($pf m{ wi ndowsnane}) + 1;
$extenttbl of fset = $driverinfooffset + | ength($pfr{psnane}) + 1;
$size = $extenttbl of fset + 448;

Determ ne whether the font is vertical

i f ($pfnm{wi ndowsnane} =~ /"\@) {

$vertical = 1;

@ix_fields = (0, 0, 0, O, O,

}
&wvakeExt ent Thl ;

Bel ow are the binary packing

0);

structures for each section of the PFM

"v" is alittle-endian two-byte value, "V' is a little-endian four-
byte value, "a" is null-padded ASCI| text, "C' is an unsigned char

(one-byte), and "x" is a null

byt e.

$pat1 = "vVa60vvvvvvvCCCvCvvCvvCCCOVWWY'; # PFM Header

$pat2 = "VWWWV/'; # PFM Ext ensi on

$pat 3 = "VVVVVVVVVVVVVVVVVVVVVVVVVV"; # PFM Ext ended Text Metrics
$pat4 = "a*xa*xa*x"; # PFM Post Scri pt I nformation

Each section is packed using
val ues.

$string = pack($pat 1,
256,
$si ze,
$pf n{ df copyri ght},
129, 10, 300, 300,
$pf n{ df ascent },
$pf n{ df i nt er nal | eadi ng},
196,
o0, 0, O,

$pf n{ df wei ght},

$pf n{ df charset},

0, 1000,

$pf n{ df pi t chandf ani | y},
500, 1000, 32, 255,

o0, 0, O,

199, 210, 0, 0);

H O H O HOHOH R HHHHHHHHR

H*+

$string .= pack($pat 2,

30, 147, #
$ext ent t bl of f set, #
0, 0, O,
$dri veri nf oof f set, #
0); #
$string .= pack($pat 3, #
52, 240, O, #
1000, 3, 1000, #

Appendix A Perl Program for Creating PFM Files

the appropriate packing structure and

Packi ng structure for PFM Header
df Ver si on

df Si ze

df Copyri ght

df Type, df Point, dfVertRes, dfHorizRes
df Ascent

df I nt er nal Leadi ng

df Ext er nal Leadi ng

dfItalic, dfUnderline, dfStrikeQut
df Wi ght

df Char Set

df Pi xW dt h, df Pi xHei ght

df Pi t chAndFam |y

df AvgW dt h, df MaxW dt h, df FirstChar, dfLastChar

df Def aul t Char, df BreakChar, df WdthBytes

df Devi ce, df Face, dfBitsPointer, dfBitsOfset

Packi ng structure for PFM Extension
df Si zeFi el ds, df ExtMetricsOff set
df Ext ent Tabl e

df Ori gi nTabl e, df Pai rKernTabl e, df TrackKernTabl e

df Driverlnfo
df Reserved

Packi ng structure for PFM Extended Text Metrics

et nBi ze, etnPoi ntSize, etnmrientation
et mvast er Hei ght, etnM nScal e, et mvaxScal e

(10 Jan 97)

1000, # etnmvasterUnits
$pf n{ et ncaphei ght }, # et nCapHei ght
$pf n{ et mxhei ght }, # et mXHei ght
$pf n{ et mM ower caseascent}, # etnlowerCaseAscent
$pf n{ et mM ower casedescent}, # etnlLower CaseDescent
0, -500, 250, # etnBl ant, etnBSuperScript, etnBubScript
500, 500, # et mBuper Scri pt Si ze, etnBubScriptSi ze
@i x_fields, # etnnderlineOfset, etnlnderlineWdth,
et mDoubl eUpper Under | i neCf f set ,
et mDoubl eLower Under | i neCf f set ,
et nDoubl eUpper Under | i neW dt h,
et nDoubl eLower Under | i neW dt h
405, 50, # etnBtrikeQut Of fset, etnBtrikeOQutWdth
0, 0); # etnKernPairs, etnKernTracks

$string .= pack($pat4, "PostScript", $pfrm{w ndowsnane}, $pfn{psnane});

foreach $key (sort {$a <=> $b} keys %extenttbl) {
$string .= pack("v", S$extenttbl{$key});
}

Now, wite the PFMto STDOUT
print STDOUT $string;

The following function builds a database for creating the Extent Table,
which provides explicit width information for the characters in the
range 32 through 255, in device units.

sub MakeExtent Thl {
foreach $element (32 .. 255) {
$ext entt bl {$el enent} = 500;
}
if ($pfn{widths} =~ /Md+$/) {
foreach $elerment (32 .. 126) {
$extenttbl {$el ement} = $pf n{wi dt hs};
}
} oelsif ($pfm{widths} =~ /,/) {
@vidths = split(/\s*,\s*/, $pfn{wi dt hs});
$count = 0;
foreach $elenment (32 .. ($#wi dths + 32)) {
$extenttbl {$el ement} = $wi dt hs[$count] ;
$count ++;

13

14 Appendix A Perl Program for Creating PFM Files (10 Jan 97)

Appendix B
Sample Data Files for
Creating PFM Files

The following data file is used for constructing PFM files
for PostScript-language CJK fonts, using the Perl program
provided in Appendix A. This example uses a single value
for the Widths keyword, indicating that the one-byte
Roman characters are all half-width (500 units wide).

df Copyri ght =Copyri ght 1985-1997 Adobe Systemns Inc.
df Ascent =880

df I nt er nal Leadi ng=134

df Wei ght =400

df Char Set =134

df Pi t chAndFam | y=16

et mCapHei ght =675

et mXHei ght =447

et mLower CaseAscent =704

et mLower CaseDescent =195

W ndows Nanme=%& 3Rk
PSName=STSong- Li ght - - GBK- EUC- H
W dt hs=500

Two alternative methods for specifying the Windows-
Name string are as follows (eight-bit characters are repre-
sented by two hexadecimal digits prefixed with either an

u__n

equals (“=") or percent (“%") sign):

W ndows Name==BB=AA=CE=C4=CB=CE=CC=E5
W ndows Nanme=YBBYAAYCEYCA YCBYUCEYCCYES

The following data file example illustrates the use of a
comma-separated array to list width values for propor-
tional one-byte Roman characters in the font. The array of
width values must correspond to the encoded range 32
(0x20) through 126 (0x7E), namely 95 values.

df Copyri ght =Copyri ght 1985-1997 Adobe Systemns Inc.
df Ascent =880

15

df I nt er nal Leadi ng=28

df Wei ght =400

df Char Set =129

df Pi t chAndFami | y=17

et mCapHei ght =719

et mXHei ght =478

et mLower CaseAscent =727

et mLower CaseDescent =141

W ndows Name=HYA1 ™ %

PSName=HYSMyeongJo- Medi um - KSCrrs- UHC- H

W dt hs=333, 416, 416, 833, 625, 916, 833, 250, 500, 500, 500, 833, 291, 833,
291, 375, 625, 625, 625, 625, 625, 625, 625, 625, 625, 625, 333, 333, 833,
833, 916, 500, 1000, 791, 708, 708, 750, 708, 666, 750, 791, 375, 500, 791,
666, 916, 791, 750, 666, 750, 708, 666, 791, 791, 750, 1000, 708, 708, 666,
500, 375, 500, 500, 500, 333, 541, 583, 541, 583, 583, 375, 583, 583, 291,
333, 583, 291, 875, 583, 583, 583, 583, 458, 541, 375, 583, 583, 833, 625,
625, 500, 583, 583, 583, 750

The alternative forms of the WindowsName string are as
follows:

W ndows Nanme=HY=BD=C5=B8=ED=C1=B6
W ndows Name=HYYBD¥C5 Y88 YEDYC1 ¥B6

16 Appendix B Sample Data Files for Creating PFM Files (10 Jan 97)

	Building PFM Files for PostScript-Language CJK�Fon...
	1 Introduction
	2 PFM File Sections
	3 PFM Header
	4 PFM Extension
	5 PFM Extended Text Metrics
	6 PFM PostScript Information
	7 PFM Extent Table
	8 The Order and Location of PFM Structures
	9 Creating PFM Files
	10 Naming PFM files
	11 Installing and Registering PFM Files
	Appendix A Perl Program for Creating�PFM�Files
	Appendix B Sample Data Files for Creating�PFM�File...

