On the2ROT13Encryption Algorithm

ak, #mum cryptolabs

April 1, 2005

Abstract

This paper describes the research results ofithe cryptolabs crew regarding
a previously underestimated encryption algorithm, Elwible-Rotate by 13 or
short “2ROT13" — algorithm, including a detailed analysis of the algorithm, a close
look at some practical issues and an outlook at possible future applications of this
encryption algorithm.

Contents

1 Introduction 1
2 Description of the 2ROT13 Encryption Algorithm 2
3 AnImplementation of 2ROT13 2
4 Future Goals of 2ROT13 Development 3
5 Source Code of PG2ROT13P 3

1 Introduction

People have used different ways of encoding information since the dawn of mankind.
Some ways were meant to be understood by everybody, like natural, coloquial lan-
guage, other ways are meant to hide information or to make it available to a very lim-
ited number of persons, e.g. a “language for the gods” that is spoken only by a caste of
elite shamans or secret strategic plans that the enemy must not know about.

One of the first well-known and well-documented encryption algorithms is the
“Caesar Code”, a simple code where each letter of the alphabet is associated with
another letter of the alphabet, rotatedrbpositions. Heren is the secret key that is
necessary to both encrypt the human-readable message to the cipher text and to decrypt
the cipher text to the human-readable message.

At the time of writing, the author of this paper is not aware of acigntific research
paperthat showed any cryptographical weaknesses in this simple yet efficient system.
A lot of people called it “obvious” that the algorithm is insecure, but this is totally

unscientific, and cannot be accepted as a serious analysis. Yet, the Caesar code has
been under constant peer review for over 2000 years, and is thus considered secure by
the #mum cryptolab crew.

Over the time, other, more complicated crypto systems have been invented, but
most of them have already been broken, e.g. the Enigma machine, the DES encryption
algorithm, or RSA-1024[WLBO03]. Thus, the author currently considers the Caesar
code more secure than the other mentioned encryption algorithms.

2 Description of the 2ROT13 Encryption Algorithm

The 2ROT13 encryption algorithm is based on the ROT13 encryption algorithm. The
ROT13 encryption algorithm is a special case of the Caesar code, with a fixed key of
13. ROT13 has been under wide use for over 20 years, where it was mostly useful
for encrypting parts of usenet and email messages. Today, most Unix-like operating
systems feature an implementation of ROT13 and/or the Caesar code. ROT13 can thus
be considered ubiquitous in the world of IT.

As briefly mentioned before, ROT13 is based on the principle that every letter in
a reference alphabet corresponds to another letter in a rotated alphabet. In the case of
ROTL13, the rotated alphabet is rotated by 13 places relative to the reference alphabet.
The rotation width of 13 was chosen because the latin alphabet that is common in the
western world consists of 26 letters. This leads to the nice effect that e.g. the letter
A of the reference alphabet corresponds to the Igttef the rotated alphabet and the
letter N of the reference alphabet corresponds to the I&tter the rotated alphabet.

This clearly shows that ROT13 is a secret key encryption algorithm, with the secret
key beingl3 (but don't tell anyone).

A number of other encryption algorithms are designed in a way that the process of
encrypting the data is done several times, so-called “rounds”. Round-based encryption
algorithms are e.g. AES, DES or 3DES, which consists of 3 rounds of DES. It can thus
be assumed that more rounds of encryption bring more security.

Based on this idea, the 2ROT13 encryption algorithm has been developed. It con-
sists of nothing but two rounds of encrypting the cipher text with ROT13. Due to the
special properties of ROT13, the number of rounds must be even, otherwise the al-
gorithm provides only as much security as simple ROT13. The following mnemonic
rhyme describes this situation pretty well:

“What you can't divide by two, is not very good for you.”

Good implementations would be e.g. 2ROT13, 4ROT13, 6ROT13 or 2048ROT13.
But so far, the authors see no need in using more than two rounds, as it is currently
considered hard enough to break. Bad implementations would be ROT13, 3ROT13,
7ROT13 or 1697ROT13.

3 An Implementation of 2ROT13

Currently, an implementation of 2ROT13 exists, which is cafeetty Good Double
ROT13 Privacy- or short PG2ROT13P — and is meant to be a successor to the infa-

mousPretty Good Privacycryptography toolkit. It implements both encrypting and
decrypting cipher texts, and is written in the Perl programming language. You can find
the source code in the last section of this paper.

4 Future Goals of 2ROT13 Development

The development of 2ROT13 has just begun. 2ROT13 needs to become more widespread.
This means that we will blackmail all Linux vendors and distributors to secretly replace
GnuPG by PG2ROT13P to help PG2ROT13P become more widespread. Other ideas
are to implement 2ROT13 in the SSL and SSH cipher suites, and to make thee the

fault. The #mun cryptolab crew is confident that this would make the world a safer and
more peaceful palce on earth. Long-term goals are also to make the EU parliament and
US congress pass laws that require all personal letters, postcards and even face-to-face
conversations to be encrypted with 2ROT13.

5 Source Code of PG2ROT13P

#!/usr/bin/perl
pretty good double-rotl3 privacy - PG2ROT13P
(c) 2005 ak, #mum cryptolabs

$header = "--—-- BEGIN 2ROT13 MESSAGE--—-- "
$footer = "--——v END 2ROT13 MESSAGE-----— "

sub rotl13($) {
my $x = shift;
$x =~ tr/a-zA-7Z/n-za-mN-ZA-M/;
return $x;

}

sub do_2rotl3_encrypt () {
@lines = <STDIN>;
print "S$header\n";
foreach $line (@lines) {
foreach $i (1..2) { # two rounds of ROT13
$line = rotl3(Sline);
}
print $line;
}
print "S$footer\n";

}

sub do_2rotl3_decrypt () {
print STDERR "pg2rotl3p: go ahead and type your message...\n";

@lines = <STDIN>;
if (Slines[0] ne "Sheader\n" or S$lines[S#lines] ne "S$footer\n") {
print STDERR "Sorry, this is not a valid 2ROT13 message\n";
exit (1);
}
shift (@lines); pop(@lines);
foreach $line (@lines) {
foreach $i (1..2) {
$line = &rotl3($line);
}
print $line;

}

sub usage() {
print STDERR "usage: pg2rotl3p [-e|-d]\n";
exit (1);

}

if (S#ARGV == -1 or $ARGV[0] eq ’'-d’) {
&do_2rotl3_decrypt();

} elsif ($SARGV[0] eq "-e’) {
&do_2rotl3_encrypt();

} else {
&usage () ;

}

References

[WLBO3] Weis, Lucks, Bogk: Sicherheit von 1024 bit RSA Schlisseln gefahrdet
http://cryptolabs.org/rsa/WLBrsaDuD.pdf

