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Training-Based MIMO Channel Estimation: A Study
of Estimator Tradeoffs and Optimal Training Signals

Mehrzad Biguesh, Member, IEEE, and Alex B. Gershman, Fellow, IEEE

Abstract—In this paper, we study the performance of multiple-
input multiple-output channel estimation methods using training
sequences. We consider the popular linear least squares (LS) and
minimum mean-square-error (MMSE) approaches and propose
new scaled LS (SLS) and relaxed MMSE techniques which require
less knowledge of the channel second-order statistics and/or have
better performance than the conventional LS and MMSE channel
estimators. The optimal choice of training signals is investigated for
the aforementioned techniques. In the case of multiple LS channel
estimates, the best linear unbiased estimation (BLUE) scheme for
their linear combining is developed and studied.

Index Terms—Multiple-input multiple-output (MIMO) channel
estimation, optimal training signals.

I. INTRODUCTION

B ECAUSE of the growing demand for high data rates in
wireless communication systems, array-based transceivers

and space diversity methods have recently become an intensive
area of research [1]–[7]. It has been shown both analytically and
using field tests that in rich scattering environments, multiple-
input multiple-output (MIMO) techniques can greatly increase
the capacity of wireless systems [2], [3], [6].

However, to use the advantages that MIMO systems can offer,
an accurate channel state information (CSI) is required at the
transmitter and/or receiver. For example, the performance of
transmit beamforming is entirely determined by the accuracy
of the CSI at the transmitter. If space-time coding is used, then
the availability of an accurate CSI at the receiver is crucial for
the performance of space-time decoders. Therefore, an accurate
channel estimation plays a key role in MIMO communications
[8]–[10].

One of the most popular and widely used approaches to
the MIMO channel estimation is to employ pilot signals (also
referred to as training sequences) and then to estimate the
channel based on the received data and the knowledge of
training symbols.
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Recently, there has been a growing interest in training-based
MIMO channel estimation. In [11], the problem of training
sequence design for MIMO channels has been linked with
the channel capacity. There are several works where different
training schemes are considered for both the flat-fading and fre-
quency-selective MIMO cases [12]–[17]. For example, in [12],
the maximum likelihood (ML) method has been considered
for BLAST training, and orthogonal pilot signals have been
investigated. Further study of this estimator is reported in [13].
In [14], a least squares (LS) training-based channel estima-
tion technique for orthogonal frequency-division multiplexing
systems with multiple transmit antennas is developed. In [15],
the conventional LS channel estimate is improved using the
minimum mean-square-error (MMSE) symbol estimate, and
training design issues are discussed. In [16], optimal choices of
training signals are investigated in the case of multiple transmit
antennas and single receive antenna in application to several
training-based channel estimation schemes, including the linear
LS and MMSE estimators. In [17], a pilot symbol aided modu-
lation [18] is used to estimate doubly selective fading channels,
and an MMSE-based training scheme with orthogonal training
is considered. In [19], a general discussion on optimal MIMO
training schemes is given based on the LS criterion. Blind and
semiblind MIMO channel estimation techniques are discussed
in [20] as alternatives to the training-based channel estimation.

In this paper (see also [21] and [22]), we extend the re-
sults of [16] to the MIMO case and study the performance of
training-based flat block-fading MIMO channel estimation.
Four training-based channel estimators are considered, which
offer different tradeoffs in terms of performance and a priori
required knowledge of the channel second-order statistics.

First, the traditional LS method is considered, which does not
require any knowledge about the channel parameters. Then, a
refined version of the LS estimator is developed, which is re-
ferred to as the scaled LS (SLS) estimator. It is shown that the
proposed SLS estimator offers a substantially improved perfor-
mance relative to the LS method but requires that the ratio of
the trace of a specifically defined matrix of channel correlations
and the receiver noise power be known a priori.

Then, the linear MMSE channel estimator is studied. The
latter technique is shown to be able to outperform both the LS
and SLS estimators, but it requires the full a priori knowledge
of the aforementioned matrix of channel correlations and the re-
ceiver noise power.

Finally, the relaxed MMSE (RMMSE) method is introduced,
which represents a simplified and approximate version of the
linear MMSE method that requires only the knowledge of the
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trace of the matrix of channel correlations and the receiver noise
power.

For the LS, SLS, and MMSE techniques, the optimal choices
of training matrices are studied and the channel estimation er-
rors are analyzed.

Moreover, in the case of multiple LS channel estimates, an
optimal scheme for their linear combining is developed using
the so-called best linear unbiased estimation (BLUE) approach.
The effect of such a combining on the performance of channel
matrix estimation is studied.

II. BACKGROUND

Let us consider a flat block-fading MIMO system with
transmit and receive antennas. The 1 complex received
signal vector can be expressed as [19]

(1)

where is the complex random channel matrix, is the
complex vector of the transmitted signals, and is the
complex zero-mean white noise vector.

It should be stressed that in any statistical expectation below,
the matrix is treated as random. At the same time, any es-
timator of is supposed to obtain an estimate of a particular
realization of this random matrix that corresponds to the cur-
rent block of the received data.

In order to estimate the channel matrix , let training
signal vectors be transmitted. The corresponding

matrix of the received signals can be
expressed as

(2)

where

(3)

is the training matrix and is the
matrix of sensor noise.

The task of a channel estimation algorithm is to recover the
channel matrix based on the knowledge of and .

III. LS CHANNEL ESTIMATOR

Knowing and received data, the realization of the channel
matrix can be estimated using the LS approach as [25]

(4)

where is the pseudoinverse of and
denotes the Hermitian transpose. We will use the following
transmitted training power constraint:

(5)

where is a given constant value and is the Frobenius
matrix norm. Let us find which minimizes the channel estima-
tion error subject to the transmitted power constraint (5). This
is equivalent to the following optimization problem:

subject to (6)

Using (2) and (4), we have that and, hence,
the objective function in (6) can be rewritten as

(7)

where we have used the fact that . Here,
is the receiver noise power, is the identity matrix, and
denotes the trace of a matrix.

Using (7), the optimization problem (6) can be equivalently
written in the following form:

(8)

It can be straightforwardly shown1 that any training matrix is
optimal for (8) if it satisfies the equation

(9)

Therefore, any training matrix with orthogonal rows of the same
norm is optimal. Similar facts have been earlier noted
for various cases and from different points of view in [12], [16],
[17], [19], and [27].

From (9) it follows that there is an infinite number of choices
of the optimal training matrix and that each such choice is re-
ceiver-independent. Hence, any training matrix that satisfies (9)
is optimal for all receivers.

Additional constraints on may be dictated by particular im-
plementation issues. For example, if the peak transmitted power
per antenna is limited, all the elements of the optimal training
matrix should have the same magnitude. To satisfy this con-
straint, a properly normalized submatrix of the discrete Fourier
transform (DFT) matrix can be used [16]

...
...

...
(10)

where .
For optimal training which satisfies (9), the LS channel esti-

mate (4) yields

(11)

i.e., the estimation error is .
Using (9) along with (7), we obtain that the channel estima-

tion error under optimal training is given by

(12)

It is noteworthy that the error in (12) is proportional to the
square of . This may cause a certain restriction of the number
of transmit antennas as compared to the number of receive an-
tennas used.

1See Section V where the solution to a more general problem than (8)
is derived.
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IV. SCALED LS CHANNEL ESTIMATION

The LS estimate (4) does not necessarily lead to the estimate
of with the lowest MSE [23]. Therefore, it is meaningful to
optimally scale the LS channel estimate to further reduce the
channel estimation error. Scaled LS estimators that further re-
duce the MSE by allowing for a bias is a common approach that
has emerged in statistics [23], [24].

Using this idea and (4), we express the channel estimation
error in the following form:

(13)

where is the LS channel estimate (4), is the scaling factor,
is the matrix of channel correlations,2 and

is given by (7). Clearly, (13) is minimized with

(14)

and the minimum of (13) with respect to is given by

(15)

which means that the SLS estimation error is always lower
than the LS estimation error. Note that the difference be-
tween these errors becomes especially pronounced when the
channel is weak or the transmitted power is small, i.e., when

.
Assuming that the values of and are given in

advance and using (4), (7), and (14), we obtain that the SLS
channel estimate can be written as

(16)

Note that the SLS estimator (16) is a function of the ratio
. Therefore, this ratio has to be known (or prelimi-

nary estimated) when using the SLS approach.
Obviously, the requirement of knowing is less re-

strictive than that of knowing , which, in turn, is less re-
strictive than that of knowing itself. In practice, the need of

2Note that this matrix does not correspond to the conventional definition of
the channel correlation matrix Efvec(H)vec(H) g, where vec( � ) is the vec-
torization operator stacking the columns of a matrix on top of each other.

knowing can be avoided in the SLS estimator by means
of using the following LS-based consistent sample estimate:

(17)

in (14) instead of . The resulting estimator will be re-
ferred to as the LS-SLS estimator.

In the case of orthogonal training (9), we have

(18)

The optimal training matrix for the SLS channel estimation
method can be found by solving the following constrained op-
timization problem:

subject to (19)

Since , from (15) we see that is a mono-
tonically increasing function of . Note that is not
a function of , therefore, is the only term in (15) which
depends on . This means that the optimization problems (19)
and (6) are equivalent. Therefore, the optimal choice of training
matrix for the SLS channel estimator is the same as for the LS
approach.

Using (12) and (15), we obtain that the MSE of the SLS esti-
mator (16) under the optimal probing is given by

(20)

According to (20), increasing the number of transmit and/or re-
ceive antennas, we have

(21)

which means that asymptotically and under optimal training, the
SLS channel estimation error is determined only by the strength
of the channel itself.

V. MMSE CHANNEL ESTIMATION

Let us obtain a linear estimator that minimizes the estimation
MSE of [25]. It can be expressed in the following general
form:

(22)

where has to be obtained so that the MSE is minimized

(23)

Using (2), the estimation error can be expressed as

(24)

The optimal can be found from and is given by

(25)

Hence, the linear MMSE estimator of can be written as

(26)
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The performance of this estimator is characterized by the error
matrix with zero mean and

(27)

Therefore, the MMSE estimation error can be computed as

(28)

To minimize (28) subject to the transmit power constraint
, we can use the Lagrange multiplier method.

The problem can be written as

(29)

where is the Lagrange multiplier.
Using the chain differentiation rule for matrices [16], we ob-

tain that the optimal training matrix should satisfy the equation

(30)

Using the constraint , (30) can be expressed as

(31)

Note that the constraint that the matrix should be positive
semidefinite is ignored in (29). Therefore, (31) provides a sen-
sible solution to the optimal probing matrix design only if the
matrix in the right-hand
side of (31) is positive semidefinite [i.e., if the signal-to-noise
ratio (SNR) is sufficiently high].

Interestingly, in the uncorrelated channel or high
SNR cases, (31) reduces to (9). Therefore, in these
cases the LS, SLS, and MMSE approaches all have the same
condition on optimal training matrices. Otherwise, the condition
for the optimal training matrix of the MMSE estimator can be
different from that of the LS and SLS estimators.

Using (31), we obtain that, if the matrix
remains positive semidefinite,

then

(32)

To find the solution to (29) which is valid for any SNR, let us
use the eigenvalue decomposition of in the form

(33)

where is the unitary eigenvector matrix and is the diagonal
matrix with nonnegative eigenvalues. Using this notation, (28)
can be rewritten as

(34)

where

(35)

Using , the total transmit power (5) can be replaced with the
following equivalent form:

(36)

To minimize (34), we use the following lemma.
Lemma 1: For positive definite matrix , the fol-

lowing inequality holds:

(37)

where is the th diagonal element of and the equality
holds if is diagonal.

Proof: See [25, p. 65].
Based on this lemma, the minimum of (34) is achieved if

has the following diagonal structure:

(38)

Using Lagrange multiplier method and taking into account (34),
(36), and (38), the optimal training matrix of the MMSE method
can be found by minimizing the function

(39)

Note that the matrix in (38) is positive semidefinite.
Therefore, in contrast to (29), the positive semidefiniteness
of is explicitly taken into account in (39). Setting

for yields

(40)
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From (40), we obtain the following water-filling-type solution
to (39):

if
otherwise

(41)

where the positive constant should be tuned so that
the transmitted power constraint (36) is satisfied. Related water-
filling results in the context of channel capacity are reported in
[26].

If , then the optimal can be written in the following
matrix form:

(42)

where the operator replaces all negative entries of a real
matrix by zeros and leaves all nonnegative entries unchanged.
Inserting (42) into (35), we have that the optimal training matrix
can be written as

(43)

where the constant has to be adjusted to satisfy the trans-
mitted power constraint (5).

To find the optimal training matrix for an arbitrary ,
we will use the following two lemmas.

Lemma 2: If is an optimal training matrix for the
MMSE estimator, then the matrix
is also an optimal training matrix, where is zero
matrix.

Lemma 3: If is an optimal training matrix
for MMSE estimator, then is also an optimal training
matrix, where is an arbitrary unitary matrix.

The proofs of these lemmas are straightforward if we note that
. Therefore, if is an optimal training matrix,

then, according to (27) and (28), the matrix is also optimal.
Using Lemmas 2 and 3 and taking into account (43), we ob-

tain that if , then the optimal training matrix is
given by

(44)

where, as before, the constant factor must be tuned to satisfy
the transmitted power constraint.

Equation (44) shows that, from the MMSE viewpoint, it is
equivalent either to concentrate the whole transmitted power
in training samples (which corresponds to the case )
or, alternatively, to spread it over samples by means
of a proper choice of the matrix . The second way may be
more suitable if there is an additional peak power per antenna
constraint.

VI. RMMSE CHANNEL ESTIMATION

The MMSE channel estimator (26) assumes the perfect
knowledge of the matrix . This assumption may be un-
realistic in practical applications. Therefore, we relax it and
simplify the MMSE estimator by using the matrix in lieu of

in (26) where the parameter is adjusted to minimize the
MSE.

Replacing with in (26) and applying the matrix inver-
sion lemma, we can rewrite this equation as

(45)

Using (45) and assuming the orthogonal training (9), the channel
MSE can be computed as

(46)

where . Obviously, (46) is minimized with

(47)

Interestingly, (47) is also the value which minimizes
(i.e., the value which gives the best approximation of

in terms of a weighted identity matrix).
Using (47), we have that for any training matrix , the

RMMSE channel estimator is given by

(48)

where is assumed to be known or estimated. Inter-
estingly, (48) can be viewed as a diagonally loaded version
of the LS estimator (4) with the diagonal loading factor of

. Also, it can be readily seen that if the or-
thogonal training is used, then the RMMSE estimator of (48)
coincides with the SLS estimator of (16).

Using (46), we obtain that the RMMSE estimation error for
any orthogonal training matrix that satisfies (9) is given by

(49)

Using (49) along with (12), we have

(50)

From (50) we see that, if , then and,
therefore, the proposed RMMSE channel estimation technique
performs always better than the LS channel estimator. The im-
provement of the RMMSE estimator over the LS estimator is
especially pronounced if the SNR is low (i.e., if

).
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The RMMSE estimator (48) is a function of and
and, therefore, it requires these parameters to be known. In

practice, the estimate (17) can be used in lieu of the exact value
of .

In the case of orthogonal training matrix of (9), inserting (18)
into (48), we obtain the following LS-RMMSE estimator:

(51)

This estimator corresponds to the RMMSE technique which
uses the LS estimate (18) of . In contrast to the original
RMMSE estimator (48), the LS-RMMSE estimator (51) does
not require any knowledge of .

VII. COMBINING MULTIPLE LS CHANNEL ESTIMATES

In all the previous sections, the case of a single channel esti-
mate has been addressed. In this section, we extend the optimal
training approach to the case of multiple LS channel estimates. If
there are multiple training periods available within the channel
coherency time, it may be inconvenient to store and process long
amounts of data that are formed by accumulation of multiple re-
ceived data blocks that correspond to different probing periods
[16]. A good alternative here would be to obtain a particular
channel estimate for each training period and then to store these
estimates dynamically rather than storing the data itself. Using
this approach, the final channel estimate can be obtained based
on a proper combination of such previously computed particular
estimates.

Let us have estimates of the MIMO channel
which are computed using the LS estimator (4) based on the
training matrices , respectively. The channel is
assumed to be quasi-static (fixed) at the interval involving
training periods and is the transmitted power
during the th training period.

We aim to improve the performance of MIMO channel es-
timation by combining the values of in a
linear way as

(52)

where are unknown weight coefficients.
Let us obtain the optimal weight coefficients by means of

minimizing the error in (52). Then, these coefficients can be
found by solving the following optimization problem:

subject to

(53)

where the constraint in (53) guarantees that the final channel
estimate is unbiased. This problem corresponds to the so-called
BLUE estimator; see [25].

The solution to (53) is given by the following lemma which
is an extension of one of the results in [16] to the MIMO case.

Lemma 4: The optimal weights are given by

(54)

Proof: See the Appendix.
It is important to stress that the optimal weight coefficients
in (54) are user-independent, i.e., they are the same for any

user.
Choosing optimal orthogonal weighting matrices in each

training period, we have

(55)

(56)

where

(57)

is the total transmitted power during the training periods.
Inserting (55) and (56) into (54), we obtain that, if orthogonal

training matrices are used, the expression for optimal weight
coefficients can be simplified to

(58)

In this case, the channel estimation error is given by

(59)

where is the receiver zero-mean white noise during the th
training period. Here, we have used the property

, where is the Kronecker delta.
We observe that, similar to (12), the error in (59) is indepen-

dent of the channel realizations used. Comparing (59) with (12),
we see that the optimal linear combining of multiple estimates
reduces the estimation error by a factor of . For example,
if each training has the same power ,
then and the estimation error is reduced by a factor
of .
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Fig. 1. Channel estimation MSEs of the LS estimator versus P=� .

VIII. NUMERICAL EXAMPLES

In this section, we compare the performance of the LS, SLS,
MMSE, and RMMSE channel estimators numerically.

Throughout all our examples, we assume that . The
channel coefficients and the receiver noise are assumed to
be circular complex Gaussian random variables with the unit
variance. It is assumed that the matrix has the following
structure:

(60)

where and are the indexes of the array sensors. This co-
variance matrix model is frequently used in the literature; see
[28]–[30] and references therein. Each point in our figures is
obtained by averaging over 5000 independent simulation runs.

In Fig. 1, we display the normalized MSE of the LS
channel estimator with optimal training versus SNR .
The parameter is fixed, while the parameter is varied in
this figure. It can be seen from Fig. 1 that, as can be expected
from Section III, the performance of the LS estimator decreases
with the number of transmit antennas.

In Fig. 2, the normalized MSEs of the SLS estimator (16) and
the LS-SLS estimator are displayed versus SNR, where the SLS
estimator assumes that is perfectly known, whereas the
LS-SLS estimator corresponds to (16), where the LS-based es-
timate (17) is used instead of . Both estimators tested
use the optimal training. The parameter is fixed, while
the parameter is varied.

Comparing Figs. 1 and 2, we observe that at low SNRs, both
the SLS and LS-SLS estimators have substantially lower MSEs
than the LS estimator. From Fig. 2, it is also clear that the
SLS estimator with the perfect knowledge of slightly
outperforms the LS-SLS estimator at low SNRs, while at high
SNRs the performances of both these estimators are nearly
identical.

Fig. 2. Channel estimation MSEs of SLS and LS-SLS estimators versus
P=� . As there is no difference between the SLS and RMMSE estimators and
between the LS-SLS and LS-RMMSE estimators in the case of orthogonal
training, this figure is also valid for the RMMSE-based techniques.

Fig. 3(a) and (b) displays the normalized MSEs of the MMSE
estimator versus SNR in the cases of and , re-
spectively. Both orthogonal probing and optimal probing (which
is not orthogonal because of nonzero channel correlation) are
tested. Similar to the previous figures, the parameter is
fixed, while the parameter is varied.

From Fig. 3, it follows that the MMSE estimator performs
better than the LS and SLS techniques. From Fig. 3(a), it also
follows that at low values of (weakly correlated channels), or-
thogonal probing is nearly optimal for the MMSE channel esti-
mator. However, if is large (i.e., if the channel is highly corre-
lated) as in Fig. 3(b), then the orthogonal probing used instead
of the optimal one can substantially reduce the performance of
the MMSE estimator. This effect is especially pronounced when
the number of transmit antennas is large and the SNR is low.

Note that, as mentioned in Section VI, the SLS and RMMSE
estimators coincide in the case of orthogonal training. Accord-
ingly, the same is true for the LS-SLS and LS-RMMSE esti-
mators. Therefore, Fig. 2 is also valid for the RMMSE-based
estimators. From Fig. 2, we see that at high SNRs, the perfor-
mances of the RMMSE and LS-RMMSE estimators are nearly
identical. However, at low SNRs the RMMSE estimator sub-
stantially outperforms the LS-RMMSE estimator. This is espe-
cially true when is high.

Fig. 4 compares the normalized MSEs of the LS, SLS,
MMSE, and RMMSE channel estimators versus SNR. The
cases and are considered, is
assumed, and orthogonal training is used in this figure. We can
observe that the LS estimator has the worst performance among
all methods tested. As can be expected from the theoretical
part of this paper, the performances of the SLS and RMMSE
estimators are identical. The MMSE estimator has the best
performance among the methods tested, but it requires more
a priori knowledge about the channel than any of the other
techniques tested. Therefore, the proposed SLS and RMMSE
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Fig. 3. Channel estimation MSEs of the MMSE estimator versus P=� :
(a) " = 0:4 and (b) " = 0:8.

estimators (which are required to know about the channel much
less than the MMSE estimator) provide a good tradeoff between
the achieved performance and the required channel knowledge.

In our last example, the case of multiple LS channel estimates
is assumed. In Fig. 5, the normalized MSEs of the LS-based
BLUE estimator are shown versus SNR in the case of optimal
training. In this figure, and are assumed and the
value of is varied.

Fig. 5 demonstrates substantial improvements that, as ex-
pected from Section VII, can be achieved when the BLUE
estimator is used in the case of multiple channel estimates.

IX. CONCLUSION

The performance of several training-based MIMO channel
estimation methods has been studied. The popular LS and
MMSE approaches have been considered, and new scaled LS

Fig. 4. Channel estimation MSEs of the LS, SLS, MMSE and RMMSE
estimators versus P=� in the case of orthogonal training.

Fig. 5. Channel estimation MSEs of the BLUE estimator versus P=� .

and relaxed MMSE techniques have been proposed that require
less knowledge of the channel second-order statistics and/or
have better performance than the conventional LS and MMSE
channel estimators, therefore offering attractive tradeoffs in
terms of performance and a priori required knowledge of the
channel parameters. For each of the considered techniques,
channel estimation performances and the aforementioned trade-
offs have been investigated and the optimal choice of training
matrices has been studied.

In the case of multiple LS channel estimates, the best linear
unbiased estimation scheme for their linear combining has been
proposed and studied.

Numerical examples have further illustrated the aforemen-
tioned tradeoffs between different channel estimators and val-
idated the advantages of optimal training.
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APPENDIX

PROOF OF LEMMA 4

To solve (53), let us insert (4) into the objective function of
this problem and rewrite it as

(61)

where we have taken into account that .
Hence, the problem can be written in the form

subject to (62)

where . Note that problems similar to (62)
frequently arise in beamforming, multiuser detection, and other
fields; see, for example, [31] and references therein. Solving
(62), we immediately obtain (54) and the lemma is proved.
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