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ABSTRACT
The need for interoperability among databases has increased dra-
matically with the proliferation of readily available DBMS and ap-
plication software. Even within a single organization, data from
disparate relational databases must be integrated. A framework for
interoperability in a federated system of relational databases should
be inherently relational, so that it can use existing techniques for
query evaluation and optimization where possible and retain the
key features of SQL, such as a modest complexity and ease of query
formulation. Our contribution is a LOGSPACE  relational algebra,
the Meta-Algebra  (MA), for data/metadata  integration among re-
lational databases containing semantically similar information in
schematically disparate formats. The MA is a simple yet powerful
extension of the classical relational algebra (RA). The MA has a
natural declarative counterpart, the Meta-Query Language (MQL),
which we briefly describe. We state a result showing MQL and the
MA are computationally equivalent, which enables us to algebra-
tize MQL queries in fundamentally the same way as ordinary SQL
queries. This algebratization in turn enables us to use MA equiv-
alences to facilitate the application of known query optimization
techniques to MQL query evaluation.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management; H.2.3 [Data-
base Management]: Languages-Query Languages; H.2.5 [Data-
base Management]: Heterogeneous Databases; H.2.1  [Database
Management]: Logical Design--Data  models, schema and sub-
schema; H.2.4 [Database Management]: Systems-Query pro-
cessing, relational databases, distributed databases
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Languages

Keywords
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1. INTRODUCTION
The problem of integrating heterogeneous data sources has grown
in importance within the last two decades. One reason for this is
the rise in availability of web-based data sources, another is the
proliferation of readily available DBMS and application software.
Even within a single organization, data from disparate sources must
be integrated. Fortunately, there are a wide variety of tools and
methodologies available to address the need for integrating hetero-
geneous data, although many issues remain unresolved [lo]. Solu-
tions for integrating heterogeneous data often rely on multi-tiered
conceptual models for integrating data. Examples include mediator
systems, federated database systems, metadata repository systems
and description-logic based systems [2,7, 8, 11, 12, 14, 15,261.

In this paper, we consider a sub-problem of the data integration
(and interoperability) problem: that of achieving schema trans-
parency in a federated system of autonomous relational databases
(RDBMSs). We assume that component databases contain seman-
tically homogeneous information in structurally heterogeneous, re-
lational formats. The goal within such a federation is to provide a
sophisticated end user (one who knows SQL) with a uniform query
language providing schema transparency. Each database in the un-
derlying RDBMSs  has a relational schema detailing the relations in
the database, and their attributes; this information is stored in a cen-
tralized metadata dictionary. An end-user should not be expected
to have detailed knowledge of the contents of the metadata dictio-
nary, nor should the user be obliged to resolve any logical conflicts
among the databases that arise from schematic discrepancies. This
is the notion ofschema transparency [3].  The user should be able to
query constituent databases in the federation without prior knowl-
edge of their exact schemas.  Such a facility would be useful in
schema browsing systems [ 161  or web-based interfaces.

Another important application of a schema transparent query lan-
guage would be to provide sophisticated support to federation data-
base administrators (DBAs),  allowing the creation ofefficient meta-
database front ends, and assisting in the definition and implemen-
tation of wrappers, mediators, and integrating views. Ideally, such
a language would be downward compatible with SQL, supporting
the portability of legacy code. Also, the language should share
some of the key features of SQL, such as ease of query formula-
tion, sufficient expressiveness, a modest complexity (LOGSPACE),
and support for aggregation [ 141.

The primary contributions of this paper are as follows.

1. Our main contribution ($3) is an extended relational algebra
supporting schema transparency and data / metadata integra-
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Figure 1: The consultants Federation.

tion, the Meta-Algebra  (MA). The meta-algebra is based on
the idea of adding dereference  capabilities to RA operators.

2. In 44 we describe a declarative query language, Meta-Query
Language (MQL) for restructuring relational data within a
federation of RDBMSs.  MQL allows data to be promoted
to attribute, relation or database names, and metadata to be
demoted to data. In $4.2,  we illustrate the equivalence of the
MA and MQL with an example. The equivalence is based on
a transformation process whose core is fundamentally similar
to that between SQL and the RA.

3. The MA facilitates known techniques for query evaluation
and optimization. Query evaluation within the MQL/MA
framework directly parallels SQL/RA  query evaluation in a
natural way, as indicated in $5.

Finally (§6),  we indicate in more depth how our work improves on
existing approaches and give directions for further  research.’

2. FORMAL PRELIMINARIES
Let dom be a countably infinite set of alphanumeric strings, pro-
viding both data and metadata for our federation. Elements of dom
begin with a lowercase letter and appear in typewriter font (for ex-
ample, xl, relName).2  We allow I E dom to appear as data but
not as metadata. It is an artifact of our framework that we will now
need meta-metadata,  in order to distinguish metadata that is a for-
mal component of our framework and metadata that comes from
the constituent relational databases. For this, we use a set of distin-
guished constants, Xl  = {a, p,  6) that will be used as column labels
within the meta-algebra to distinguish the me&level  information
used by the MA operators. We assume 9 fl  dom = 0.

Formally, a federation, !F,  is a finite set of databases. Each data-
base is a finite  set of relations and each relation has a schema, S C

’ For lack of space, all proofs are omitted.
21n  general, dom may contain other elements (for example, num-
bers); we assume a uniform domain so as to simplify presentation.

-I

dom, denoting attribute names. Each relation is a finite set of tu-
ples, each tuple denoted by (al : x1,  . . . . ak : xk)  where al, . . . . ak E s
and x1 , . . ..xk E dom. Each metadata query presupposes a fixed
federation that provides the context for the query. In this federa-
tion, each relation is assumed to have a uniquepathname, which is
denoted by a tuple of the form (6  : dbName,  p : relName),  where
6,~ E 9.  Pathnames are abbreviated as dbName:  :relName, fol-
lowing the SchemaSQL  convention [ 14, 161.

Consider the consultants federation (figure I),  illustrating vary-
ing methods of storing payroll information about consultants. John
and Sally have each consulted for 4 different firms, and similar
information is stored within these firms. Firm A stores salary in-
formation in a single relation, firm-A: : payInfo.  Firm B uses a
single relation as well (firm-B : :payInfo), however consultant
names appear as attributes in this relation. Firm C uses several
relations, each named after a consultant (for example, the rela-
tions firm-C::john and firm-C::sally).  FirmDusesaseparate
database for each consultant; information within these databases is
stored in the relation f irmproj s.

Formally, a metaquery, Q, is a second order transformation map-
ping a federation to a federation, Q : !F  H F’. “What is known
about John in the consultants federation?” is a canonical meta-
query. The result of this query is the subset of the consultants
federation referring to the atom j ohn.

3. META-ALGEBRA
The Meta-Algebra  (MA) extends the classical Relational Algebra
(RA) with the power to query and interchange data and metadata.
This ability requires extending the RA to query and utilize rela-
tional objects and their names. In effect, relation pathnames can be
“dereferenced”  to obtain the relation named.

3.1 Basic Terms
Basic terms in the meta  algebra (MA) are (i) relation variables,
denoted by identifiers in italics beginning with an upper-case letter
(for example, Rt  ,Rz,...)  or (ii) pathname  relations (for example
{firm-A::payInfo}={(6:firm-A, p :payInfo)}).
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S(consultants)  = p(S(consultants))  =
a({firm-B: :payInfo}) =

Figure 2: Metadata interface operators example.

3.2 Metadata Interface
The MA contains three operators used to extract metadata from
the federation’s metadata dictionary.3  Recall 6,  p,  and CI  are spe-
cial constants denoting relation columns containing meta-metadata
($2).  We overload these symbols to also denote the operators 6, p
and CC,  which return the database names, relation path names, and
attribute names of their argument, respectively. Figure 2 illustrates
the interface operators as applied to the federation of figure 1.

3.3 ExtensionDntension  Operators
The MA is essentially relational. However, since metadata is al-
lowed as first class data, a basic expression can now represent either
a pathname  or the actual relation object. Only one of these is in-
tended in a particular MA expression, thus  our algebra contains two
operators 1 (extension) and 7 (intension) to distinguish whether a
relation object or pathname  is intended, respectively.4  The operator
: is also termed the dereference operator.

Given a basic expression, R, define x as the formal pathname  of R
and B as the  actual relation object, R. For example, if dbl : : rell
is the relation {(a : x, b : y), (a : u, b : v)}, then

dbl: :rell= {dbl: :rell}  = ((6:  dbl, p : rell)),  and
dbl: :rell=  {(a:~,  b:y),(a :u, b:v)}.

3.4 Extension Projection
One of the novel operators in the relational base of the MA is the
Extension Projection operator. This operator is denoted n and al-
lows dereferencing the fields in a tuple as attribute names, obtaining
a new column of data. This new column must be named explicitly
within the extension projection.

Dejnition 1. (Extension Projection) Given an input relation, R,
withschemaS={Al,..., A,,} and x E dom -S,  the Extension Pro-
jection of R on column Ai producing column x, denoted a;i’  (R),
is defined as follows. Whenever (Al : t[Al],...,A,  : t[AAn])  E R, then
(Al : t[Al],...,An : t[AA,],x  : t[t[Ai])  E lJn’A:‘((R)  where t[t[Ai]] = I in
case t[Ai] $ S.

Exumple  1. Figure 3 shows the relation proj : : ex and the result
ofIJ’$(proj  : :ex).

3These  operators first appeared in [ 151.
4Extension  and intension are terms from the philosophy of lan-
guage. A crucial distinction made when using language to discuss
language itself is between the real-world object a term  refers to (its
extension) and any internal or non-corporeal properties the term
suggests (its intension). We recapitulate this distinction here.

Figure 3: Relations pro j : : ex and g‘$(pro  j : : ex).

3.5 Relational Selection
The MA allows ordinary relational selection, (J.  However, note
that extension projection allows us to select tuples  indirectly, based
on the result of a prior extension projection. This situation is quite
common in the MA, and we introduce the macro notation o,+~,  (R)
to stand for the operation l$,,,..~~  (c~=A~(~‘~:(R))).

3.6 Renaming Columns and Relations
As in the relational algebra, we will sometimes need to rename the
output of an MA expression. We introduce the renaming operator,
’ kii$bl  ___ a +b which allows us to assign a new pathname  to a re-
lation a;ld renahe  the columns al,  . . . . a,, as bl,  . . . . 41, respectively,
where ai,bi E dom (15 i 5 n).

3.7 Relational Projection
We retain ordinary relational projection, n,  in the MA. However,
we allow negative projection conditions of the form -Ai. For exam-
ple, n7a,-,d(proj  : : ex) removes columns a and d from proj : : ex.

It is also convenient to extend the projection notation so that we
may rename columns directly within the projection. For example,
H’ba,:‘::::‘k’  (R)  is shorthand for  Ilal,...,a.(R)lal~bl,...,a.~b..

Once we can rename directly within a projection, we can introduce
a macro for bundling the extension projection into ordinary projec-
tions. We use the notation ll’“,’ (R) as shorthand for IJf’(R).  Thus,
we may include extension projections in a list of ordinary projec-
tions (stipulating that extension projections are performed first).
For example,

rI ‘U’,‘V’  ‘W’  ‘I’a,  b,’ c,’ p (R) = ff;;)‘;;+‘;’  (n’;’  @‘f(R))).

3.8 The Transpose Operator
The Transpose Operator, 2,  allows  a dynamic schema to be created
where the new schema values are taken from a column of data. The
contents of the new columns are obtained from a second column of
data in the relation being transposed. The net effect is similar to
matrix transposition, in that values that were “beside” one another
in the two original columns are now “beneath” one another.
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Dejnition 2. (MA  Transpose) Given a relation R with schema
S = {A*  ,..., Ai,Aj,..., A,,,}, the transpose ofAt  on Aj, z?(R), is

given as follows: (i) the schema of T::(R) is {Al, . . ..A.} U {v : v E

R.Aj}  and (ii) whenever (Al : al,  . . . . At : ai,Aj  : aj,  . . . . A, : a,) E R,

then (Al : al,  . . . .A, : a,,aj  : ai) E Z?(R).

Example 2. The relation R = T~~$~~S(firm-A::payInfo)  is
shown in figure 4 (below). Note that the contents of salclass  are
identical with the column x in the extension projectionII,,&,,  (R).
This holds generally, so that z and n are roughly inverses.

empName projNo salClass john SSllY frank
iohn ~24 a6 a6 I I

s a l l y $8 a 5 I a 5 I
s a l l y P20 b2 I b2 I
john P5 c3 c3 I I
frank P5 al I I a7

Figure4:Relation  ~~~$~,(firzn-A:  :payInfo).

3.9 Cartesian Product
The Cartesian product operator takes two well-formed basic relu-
tional  terms as arguments and returns the Cartesian product of the
relations given by those arguments.

Definition 3. T is a basic relational term of the MA in case:
(a) T is a relation variable, enclosed in an extension or intension
operator, (b) T is a relation pathname, enclosed in an extension or
intension operator, or (c) T is a well-formed 6, p,  or a term.

If P is a finite product of basic relational terms and RI,.  . . , R, i s  a
list of distinct relation variables, then P(R1,. . . , R,) indicates that
the relational variables of P are included among RI,.  . . , R,.

As an example of the Cartesian product operator,

p({(S:firm-C)})xfirm-C::john=

6 1 p 1 projNo 1 salclass
firm-C 1 john 1 n8 k 5

3.10 The map Operator
Thus far, our operators have only concerned relations. Yet an MQL
query outputs a federation; two levels beyond our operators. To
achieve this, we use a powerful 9JIap  operator to apply a base MA
expression to a subset of relations in the federation, obtaining a
federation as a result. The action of the !JJIap  operator is similar
to the extended relational operations for multidatabases, given in
[8].  First, we need a formal definition of the relational subset of the
MA, the base MA expressions.

Dejnition 4. An MA expression, E, is a base MA expression if
it is a finite sequence of transpose, projection, extension projection
and selection operations applied to a finite product of basic rela-
tional terms, P(Rl , . . . . Rn).

The idea behind the !JJZap  operator is that we will apply a well-
formed base MA expression to a set of relations picked out from
the federation by the metadata extractors. Let E(R1,  . . ..R.)  be a
well-formed base MA expression having n relation variables. Let
4 ,x2 , . . . , Xn  be variable-free base MA expressions yielding rela-
tions containing valid relation pathnames. The syntax of the 9JIap
operator is:

?3JW (E(R1,...,&);  XI,&,...,&;  N,Nd)
The idea is that we will apply the base expression E to the relations
named by the 4.  The expressions Nr and Nd refer to columns of
the Cartesian product within E (these columns may be projected
out subsequently), and for each tuple t in this product, the columns
referred to by Nr  and Nd specify the pathname  of the relation the
result should go into. The result itself is computed tuple-by-tuple,
based on instantiations that assign values to the variables RI, . . ..R.
from the relations Xl, . . ..X..

Example 3. We can now restructure the firm-C database into
the format off irm-A, as follows:

map  p‘emy’,  ‘v~;%)  ‘;;;g;z;z’  tR_  x ~1;

p(firm-C); ‘payInfo',‘cZa').

The instantiation relation in this case is p(f irm-C). Thus, the user
does not have to know in advance how many relations there ac-
tually are in firm-C, or what they are named. For each of these
relations, R, the expression B x i? is computed: note how this pairs
the tuples in each relation with the name of the relation. Thus, this
relation name can be projected in the result, simultaneously with
the information from the relation itself, into a single output relation
c2a : : payInfo.  Each R E firm-c is restructured in turn, and the
results are placed in &a  : : payInf  o.

3.11 Set Union and Difference
Given a finite number of map expressions, 9JIt,  . . ..!JJIk.  we may
take their set union or difference. For example, consider 9J$  U
!JJIz.  Each relation in the output federations of Ml  and m2, has a
pathname. If pathnames match between R1  E !IJIt  and R2 E ?J&, a
union is formed between the two relations. The schema of RI U R2
is .$t  US2 where St = schema(R1)  and .S2 = schema(R2).  Existing
tuples are then augmented with I where necessary. Set difference
can be handled in a similar way. Note that if St = &, U and -
function as in the ordinary RA. The ability to “extend schemas”
during U allows one (for example) the capability to perform roll-
ups naturally when combined with aggregation. MA U and - are
properly termed outer union and outer difference.

3.12 Error Conditions
Error conditions may arise from applying MA operations to rela-
tions of improper schemas. In these cases, the operations will pro-
duce empty results (of the appropriate schemas). Thus, further op-
erations are well-defined, albeit the final result may be the empty
federation. As an example of such error conditions, the metadata
interface operators ignore invalid arguments, in some cases retum-
ing the empty relation of appropriate schema. For example, there is
no relation named foo in any of the databases in the consultants
federation; hence, in the context of this federation the expression

a@(consultants)x  {(p: foo)})

returns the empty relation of schema (6, p,  a}.
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4. A DECLARATIVE LANGUAGE FOR IN-
TEROPERABILITY

4.1 Meta-Query Language
Meta-Query Language (MQL) is a declarative, SQL-like language
for restructuring and querying relations in our federation. A key
feature of the syntax of MQL is derived from SchemaSQL [14]:
meta-range declarations in the FROM clause. MQL admits four types
of range declarations, going beyond tuple variables to include metu-
variables defined to range over database, relation or column names.
Metavariable declarations are distinguished by the ‘I-  >”  token!

In addition, MQL allows dynamic output relations to be defined
in the SELECT clause. Following the MA convention, all column
projections must be explicitly named; we use the standard AS key-
word in the SELECT clause for naming output columns in the case
of static output. In the case of dynamic output, where the schema of
the output relations is determined at run-time from the input rela-
tions, we use the keyword ON instead of AS. Below, we illustrate the
power of MQL with sample queries that restructure between the
A and B databases of our consultants federation (figures 5 and
6). Note the use of the keywords INTO and WITHIN in the SELECT
clause, which give the output relation and database names, respec-
tively. Thus, an MQL query maps a federation to a federation, as
does the MA.

A full EBNF for MQL appears in [27].

SELECT A.projNo AS 'projNo',  A.s.alClass  ON A.empName
INTO IpayInfo'  WITHIN 'a2b'

FROM firmA::payInfo  A

Figure S:firra-A:  :payInfoe)a2b::payInfo.

SELECT B AS 'empName',  T.projNo AS 'projNo',
T.B AS 'salclass'

INTO 'payInfo'  WITHIN 'b2a'
FROM firm-B::payInfo -> B, firm-B::payInfo T
WHERE B != 'projNo'

Figure6: Q2: first-B:  :payInfo  c) b2a: :payInfo

4.2 An Algebratization of MQL
MQL is a declarative language that a federation DBA would use to
define the translations among relations in the constituent databases
of the federation. MQL can be given a semantics based on this
notion, independently of the MA. However, it is also useful to think
of the MA as providing the semantics of MQL, a point of view
which is valid in light of the following theorem.

THEOREM 1. (1) For any MQL  query, Q, there exists an MA
expression G such that for any input federation F’,  Q(F)  =

G(F).

(2) For any MA expression, Al, there exists an MQL  query 2
such that for any input federation F, M(F)  = M(F).

SAlthough  the syntax of MQL range declarations is similar to that
of SchemaSQL  [ 14, 161,  the semantics differs in that range decla-
rations appearing in the same MQL query are independent of one
another, as in SQL [ 271.

Due to space constraints, a proof of the equivalence is omitted here.
We illustrate part (1) of the theorem with an example showing the
translation from an MQL query to a corresponding MA expression.

(SELECT A.projNo AS 'projNo',  A.salClass  AS 'salClass'
INTO A.empName WITHIN 'ab2c'

FROM firm-A::payInfo A)
UNION
(SELECT B.projNo AS IprojNo',  B.EmpName AS 'salclass'

INTO EmpName WITHIN 'ab2c'
FROM firm-B::payInfo -> EmpName, firm-B::payInfo B
WHERE EmpName c> 'projNo')

Figure7: firm-A+finn-B-t firm-C

Example 4. Consider an MQL query that restructures the infor-
mation in the firm-A and firm-B databases into the format of
firm-c (figure 7). This query is composed of two sub-queries,
Qa2c  and Qbzc.  Each sub-query is translated separately using a
four-step process.

1. First, relations named in the FROM clause are gathered into
the instantiation relations. In our case, we have: Xazc  :=
{firm-A::payInfo} andXbzc  :={firm-B::payInfo}.

2. Next, the naming terms for the output relations are created.
We have that Na2’  := empName,  Nj2’  := 'ab2c',  and Nj2’  :=
a,Nj2c:=  ‘a&c’.

3. Next, the base MA expression that will be mapped to the
relations in Xazc  andX&  is created. In this case, we have

Ea2c := lI‘~:$~:“$,‘~~~~’  (8) and

Eb2c ‘= IJ  projNo,
‘projNo',‘s~Class'(R  x a(~))

Here, we have only needed projections; an ON expression in
the SELECT clause would necessitate transposition.

4. Finally, we assemble the components above into Vlap ex-
pressions. We have

~:=rma~(Ea2c;Xa2c;~~',~~')

= mql (I-I‘P,',",;;  ‘,",4',"la",","'  (R);

{firm-A::payInfo}; empName,‘abac')

Q;  . = !Tk.ap(.!&C’ ‘xj2C-9 .Nb2’c, r ,N~2c)

= fJJtap(Il  ~~~j~~~~‘s~class’  (&  x a(R));

{firm-B::payInfo}; a,‘ablc’)

The final output query is the MA expression QT=  U QGc.

The heart of this translation is very similar to that between SQL
and the RA, in that the SELECT clause translates to II terms, the
FROM clause range declarations appear inside the Cartesian product,
and the WHERE clause corresponds to selection conditions. Thus the
MQL/MA  framework is useful for interoperability within a feder-
ation of RDBMS, since much of what is known about optimizing
and implementing SQL carries over to an MQL-based system. In
55, we give specific MA equivalences and data structures.
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5. METADATA-QUERY PROCESSING
In this section, we discuss the expressiveness, evaluation and opti-
mization of metaqueries within the MA framework. We begin by
stating a result concerning the expressiveness of the Meta-Algebra
as a query language.

PROPOSITION 1. MA c LOGSPACE .

The heart of the proof of proposition 1 relies on the tuple-by-tuple
evaluation of MA expressions that was indicated throughout $3.
The only workspace that is necessary are indices into the input fed-
eration: the output is generated a tuple at a time, from the input.

Next, we sketch the evaluation and optimization of MQL queries
within a canonical query processing system. An interoperability
engine would reside over a federation of relational databases. Since
the MA is inherently relational, query evaluation and optimization
follow the canonical treatment of RA queries (figure 8).

M A =  MOL

Figure 8: Metadata Query Processing Lifecycle

5.1 MA Evaluation
The evaluation of MA expressions is based on the notion of an in-
direct index. An indirect index is an ordinary relational index (for
example, a hash or B+ index) where the search key is indicated indi-
rectly within each tuple indexed. As an example, consider an index
on a of the table proj : : ex (figure 3). Each tuple t E proj : : ex is
indexed on the value of the t [a] field (as opposed to the value of the
a field in a normal index). The key values are thus {a, d, y, x}.

Indirect indices allow the usual algorithms for the evaluation of n,
o, and w to apply in the case of MA expressions, with straight-
forward modifications. This means that we can view a base MA
expression as an evaluation plan (having a canonical tree form) and
optimize accordingly. As with the generation of ordinary indices,
query optimizers can create indirect indices only on columns that
frequently appear in extension projections or selections, to mini-
mize the additional space required for these indices.

The final stage in evaluating an MQL query is to use the optimized
base expression within a I)llap  expression: we want to re-arrange
the query tree so that not only are intermediate relations small, but
sub-trees that must be issued as queries to the constituent databases
are grouped so as to minimize network utilization.

5.2 MA Optimization
Many of the RA algebraic equivalences used in query optimization
carry over to the MA. However, due to the dynamically generated
output schemas  that some MA expressions require, some equiva-
lences have well-definedness conditions that can only be evaluated
at run-time.

Indirect selection conditions do not interfere with the usual RA
equivalences. This is because the MA o operator does not produce

a dynamic output schema (proposition 2). Since the output schema
is static, as in SQL, the proofs of certain equivalences carry over
directly to the MA (corollary 1).

PROPOSITION 2. For relation instance r, and selection condi-
tion C,  schema(oc(r))  = schema(r).

COROLLARY  1. For relation instances 1-1  and r2.
(1) ~c,~cz...~c,(r~)  = fh, (oc,(...(oc,(r2))...)).
(2)  G,  (oc2(rl))  = Q(G,  (r2)h  and
(3) rl WC  r2 F  r2 WC  rl

Note that it is not necessarily the case that Gc(rl)  x r2 ZG  oc(rl x
r2),  even if C only mentions fields in ri.  Suppose C mentions field
a indirectly, for example C := a = b where a,b E schema(q).  If
column a of rl includes x @schema(q)  such that x E schema(q),
we may rule out new triples  when we enclose r2 in the selection.
Thus we can distribute selections only in the following case:

LEMMA 1. Suppose schema(ri)  fIschema(r2) = 0 and a, b E
schema(q).  Then, G&r1  X r2) E O&q)  X r2  in case {v :
v E rl.a}flschema(r2)  = 0.

Note that the condition can only be checked at run-time, in which
case we call it a dynamic condition. Dynamic conditions charac-
terize the difference between many MA equivalences and their RA
counterparts, in particular those involving MA projection.

PROPOSITION 3. For a relation instance, 21,

(I) Let a,b,  cl,  . . . . c, E schema(rl).  Then

T$i)  = $$C~;::::E::h))

incase ({v:v~r~.a}U{b})~{c~,...,c,}.  Here,@7)is
shorthandfir zb,(@‘(R)).

(2)  Let a,b, c E schema(r1).  Then

~~(0,~~~ (I-1))  = oc=k,  (&))

incasece{v:vErl.b}.

The dynamic conditions make it more difficult to restructure the
tree form of an MA query;  however,  many optimizations can be
saved. For example, we can push selection conditions down the
tree, with a goal of both minimizing intermediate relation sizes, and
also minimizing the number of tuples obtained from the constituent
databases across the network.

6. DISCUSSION AND CONCLUSIONS
6.1 Related Work
To put our work in context, we briefly discuss other approaches
that allow data/metadata  integration by introducing more powerful
query languages.

One of the first such higher-order languages is HiLog  [4].  HiLog  is
a complex object based logic programming language with function
terms. There is a single namespace over which terms are defined;
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these terms can appear in predicate and attribute positions, sup-
porting various types of metadata querying. One of the major lim-
itations of HiLog  is that terms have fixed arity, hence limiting the
flexibility needed for true schema independent querying. Dynamic
output schemas cannot be generated using a HiLog  query.

Soon after HiLog’s  introduction, the Ross Algebra and SchemaLog
were introduced. In [21],  Ross introduced an algebra and calculus
wherein it is possible to demote relation names to ordinary domain
values. A safe fragment of his calculus is proceduralized through
equivalence to his algebra. However, it is impossible to promote
data to metadata.

SchemaLog  [ 13, 151  is a logic programming language whose syn-
tax is similar to the Interoperable Database Language developed in
[ 121.  Like HiLog, SchemaLog  has a second-order syntax but first-
order semantics. SchemaLog  has been implemented over a single
database using a top-down processing technique and novel restruc-
turing operators [ 11. Although SchemaLog  allows data/metadata
integration at all levels, it uses tuple  identifiers and supports full re-
cursion, a significant drawback for efficient query processing. Fur-
thermore, logic programming is foreign to many users, who are
familiar with SQL-type declarative query languages.

SchemaSQL evolved from SchemaLog  [ 141  to meet the need for
an SQL-like metadata query language. However, SchemaSQL did
not retain the completeness of SchemaLog  for data / metadata in-
tegration: only one column of values can become metadata in a
restructuring view statement. Furthermore, SchemaSQL performs
restructuring exclusively by means of materialized views [ 14, 161,
which do not compose well with other types of restructuring that
SchemaSQL is capable of [6,20].

Neither SchemaSQL nor SchemaLog  has an equivalent, composi-
tional, relational algebra; thus, the equivalence between MQL and
the MA is a significant step forward.6  Furthermore, the MA is a
principled extension of the classical relational algebra (RA) and
does not introduce any unfamiliar restructuring operations. Such
operations have been a problem for equivalence proofs, which re-
quire parallel syntactic and semantic compositionality in the lan-
guage and algebra. Meta-query processing in the MQL/MA  frame-
work parallels relational query processing in the SQL/RA  frame-
work. On the other hand, current implementations of SchemaSQL
and SchemaLog  require novel physical operators [ 1, 171  and opti-
mization techniques [ 1, 17,221.

Frameworks for interoperability within federated information sys-
tems contain potential for data / metadata integration. However, in
most such frameworks, component schemas have to be known in
advance of specifying restructuring mappings (for example, this is
the case in the procedural mapping language BRIITY [lo]).

Several distinctions are commonly made with reference to feder-
ated information systems (FIS) architectures, such as monolithic
versus hierarchical [ 181,  centralized versus distributed [ 181,  and
coupled (loosely or tightly) versus autonomous [23].  Furthermore,
a distinction between multidatabases (decentralized, autonomous
relational sources) and federated (schema integrated) databases is
often made [ 19,24,25].  We do not view the MQLh4A  framework
as restricted to a single architecture; rather our platform could be

6The  algebra of [16] covers only a subset of SchemaLog  and
SchemaSQL. The recast tabular algebra introduced in [ 171  is
PSPACE complete [20],  whereas SchemaSQL is LOGSPACE.

useful for administrators and sophisticated users of any FIS archi-
tecture where some degree of global data interoperation is sought
among relational databases. Many existing tools for FIS architec-
tures are based on object models. We feel the success of the rela-
tional platform calls for an approach based more closely on Codd’s
relational framework; early precedents for such an approach in-
clude [5].

6.2 Future Directions
One area of future research would be to investigate aggregation
in MQL. SchemaSQL supports many types of aggregation, above
and beyond that of ordinary SQL [14].  More recently, nD-SQL
supports data/metadata  integration beyond SchemaSQL and fur-
ther aggregation capabilities [6].  The aggregation capabilities of
SchemaSQL carry over to MQL in a relatively straightforward way.
Furthermore, since MQL supports the additional data/metadata  in-
tegration of nD-SQL,  future work exploring just how far aggrega-
tion can go in MQL would be informative.

The MA/MQL  framework has deep affinities with complex object
models; pursuing these would be a profitable avenue of future re-
search. Furthermore, the relationship between the MA and the tab-
ular algebra is of interest, in particular because of the completeness
result that states the tabular algebra can perform all possible re-
structurings on tabular data [9].

Finally, the MA extension operator encapsulates the dereferencing
operation used in hypertext and XML links on the world wide web.
Since XML is a burgeoning standard for information storage on the
web, it would be interesting to explore this similarity with a view
toward assimilating XML and relational data in a single, relational
framework based on a suitable extension to the MA.
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