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Abstract

Ontologies are at the heart of the semantic web. They define the
concepts and relationships that make global interoperability possi-
ble. However, as these ontologies grow in size they become more
and more difficult to create, use, understand, maintain, transform
and classify. We present and evaluate several algorithms for extract-
ing relevant segments out of large description logic ontologies for
the purposes of increasing tractability for both humans and com-
puters. The segments are not mere fragments, but stand alone as
ontologies in their own right. This technique takes advantage of
the detailed semantics captured within an OWL ontology to pro-
duce highly relevant segments. The research was evaluated using
the GALEN ontology of medical terms and procedures.

Categories and Subject Descriptors

I.2.4 [Knowledge Representation Formalisms and Methods]:
Semantic networks; I.2.8 [Problem Solving, Control Methods,
and Search]: Graph and tree search strategies

General Terms

Algorithms, Experimentation, Performance

Keywords

Ontology, OWL, Segmentation, Scalability, Semantic Web

1 Introduction

1.1 The problem of large ontologies

Ontologies can add tremendous value to web technologies. As Jim
Hendler has pointed out on numerous occasions “a little semantics
goes a long way” [11]. The knowledge captured in ontologies can
be used, among other things, to annotate data, distinguish between
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homonyms and polysemy, generalize or specialise concepts, drive
intelligent user interfaces and even infer entirely new (implicit) in-
formation.

The ultimate vision for a semantic web is to create an internet that
computers can understand and navigate. Making this vision a re-
ality will either require an extremely large ontology that describes
every term of interest on the Internet, or, more realistically, numer-
ous domain-specific ontologies, which, when aligned with one an-
other, form a web of semantic inter-ontology relations. Either way,
the result is a very large knowledge corpus.

Examples of such enormous ontologies have already started to ap-
pear. For example, the biomedical domain has numerous very large
ontologies such as SNOMED-CT [34], GALEN [25], FMA [30]
and NCI-Thesaurus [7]. However, these ontologies have grown too
large to effectively used and maintained, often requiring large teams
of highly trained experts [35].

If a truly massive semantic web is going to be of use to anyone,
users and applications will have to find a way to limit their scope.
The knowledge web, as a whole, will be too big and mostly irrele-
vant for any single task.

1.2 Solutions to the scaling problem

Google solves the problem of scaling web search by creating par-
tially sorted barrels of keyword indexes. Searches are distributed
over a very large cluster of computers [5]. A similarly sophisticated
distributed system may be feasible for use with the ontologies of
the semantic web. However, ontologies, such as those represented
in the Web Ontology Language (OWL) [19], are significantly more
complex data structures than mere web pages. OWL builds several
levels of complexity on top of the XML of conventional web data
[4] [12]. It is likely that large and complex ontologies will require
a novel solution.

This paper suggests such a solution: instead of attempting to cap-
ture the entire semantic web in a gigantic index, each web appli-
cation extracts and uses a custom ontology segment specific to its
particular needs. Segments are big enough to be useful, but not so
big that scaling becomes a problem.

The ontology segmentation techniques shown in this paper exploit
the semantic connections between ontology terms and thereby en-
able web-application developers to quickly (or even automatically)
create the custom ontologies they require. This is a first step to-
wards a working application layer on top of a large-scale semantic
web.



1.3 Other applications for segmentation

Custom ontology segments, as described above, show potential for
a wide variety of use cases. For example:

• Query efficiently could be substantially improved by querying
segments instead of querying the complete ontology network.

• Segments could be used as examples of and discussion points
for specific modeling patterns.

• Segments could be captured at specific time points as backup
or provenance data.

• Similar segments from different ontologies in the same do-
main could be used for comparison and evaluation purposes.

• Segmentation could be used to specify, outline and annotate
specific ontology sub-sections.

• Segments from general purpose ontologies could be trans-
formed on-the-fly during the extraction process to produce
optimal ontologies for a specific applications.

1.4 GALEN

The research presented in this paper uses the GALEN ontology of
medical terms and surgical procedures (produced during the 1990s
by the University of Manchester in the OpenGALEN project [28])
as a test platform for such an ontology segmentation algorithm.
Since the complete GALEN ontology was only available in its own
proprietary format, it was converted into an OWL representation for
the purposes of this research. Only small, incomplete versions of
GALEN in OWL have previously been available.

GALEN serves as an excellent test case because it is both large and
complex. It also utilizes much of the expressive power of mod-
ern description logics, whereas other large ontologies more closely
resemble simple controlled vocabularies. If an effective segmenta-
tion algorithm can be demonstrated for something as complex as
GALEN, we can therefore expect it to also work well for the com-
plex large ontologies of the future.

1.5 Scope

The algorithm represented in this paper is optimized to work with
knowledge bases similar to the GALEN ontology. That is, a large
ontology with over 1000 classes and dense connectivity, with at
least, on average, one restriction asserted per concept.

Another pre-requisite for our segmentation methodology is that the
ontology be normalised [26]. Primitive classes in a normalised on-
tology have no more than one primitive superclass: multiple parents
are modeled implicitly and left to be explicitly inferred later. Nor-
malisation greatly simplifies ontology maintenance.

GALEN in OWL uses the SH I F subset (without negation or dis-
junction) of the full SH OI N (D) expressivity of OWL-DL, so the
segmentation is currently constrained to that. The methodology
presented here is not meant to offer a complete solution with rig-
orous logical proofs. Instead, we present empirical evidence as to
the effectiveness of our approach.

Most ontologies’ properties are structured as flat lists. GALEN
however employs a rich property hierarchy with over 500 distinct
properties. This is especially useful for producing extracts con-
strained to specific user and/or application requirements. Ontolo-

gies with simple property structures, such as, for example, the Gene
Ontology [33], will not be able to take advantage of this aspect of
the segmentation algorithm presented herein.

1.6 Aim: useful classification and small size

Description logic reasoners such as FaCT++ [37], RACER [10], or
Pellet [23] can be used to infer new information that is implicit in
an ontology [16]. This process is very important, especially for an
ontology like GALEN, which was built with normalisation princi-
ples in mind. It is therefore critical that GALEN in OWL can be
classified.

However, none of the above mentioned description logic reasoners
based on the tableaux algorithm are currently able to classify the
complete GALEN ontology. GALEN is too large and complex for
these reasoning systems. A primary aim of this research was there-
fore to produce classifiable segments. The ideal segment is as small
and focused as possible, while still containing enough information
to enable the reasoner to infer relevant new subsumption relation-
ships.

2 Links in description logic

2.1 Superclasses as links

OWL ontologies usually contain large hierarchies of concepts.
They also feature the ability to add restrictions to such concepts.
The most common types of restrictions restrict the individuals that
a certain class describes. These restrictions are quantified by, for
example, the existential (∃) or universal (∀) quantifiers. Quantified
restrictions also include a property and filler concept to specify how
the members of a class are restricted.

Restrictions, from one point-of-view, are anonymous classes and
can be added as superclasses of another (named) class. For exam-
ple: the class MalePerson might have the restriction in Figure 1
asserted as its superclass. This means that all individuals that the
MalePerson class defines must have one or more relations using the
hasGender property to individuals in the class MaleGender. Figure
1 illustrates this relationship.

Figure 1. Superclass restriction and the corresponding links
between individuals



However, seen from another point-of-view, restrictions represent
cross-links between different classes as shown in Figure 2, so that
an ontology can be seen as a large hierarchy of classes linked by
restrictions.

In reality, of course, the anonymous qualified restriction super-
classes actually restrict individuals’ relations to other individuals,
but it is useful to think of them simply as links. This paper will,
from here on, assume this model of ontological topology.

Figure 2. Interpreting quantified restrictions as links between
classes

2.2 Reciprocal links

Besides normal forward links, as described above, backward links,
or usages, also known as reciprocal links, are also important in un-
derstanding the structure of an ontology.

Finger v ∃ isPartOf .Hand (all fingers are part of some hand)
Hand v ∃ hasPart .Finger (all hands have some finger as part)

Figure 3. Example of a reciprocal link

Even though “isPartOf” and “hasPart”are inverses of each other, the
reciprocal statements in Figure 3 are not equivalent; in fact neither
implies the other.

GALEN is unusual in that it commonly represents anatomy using
reciprocal pairs of restrictions. This representation is inherently
cyclical and connects every piece of anatomy with every related
piece in both directions. Tableaux classifiers intrinsically scale ex-
ponentially when faced with such constructs. None of the current
tableaux-based reasoners listed in Section 1.6 can classify even a
small extract of the GALEN ontology containing both types of
reciprocal links present in the original. (Note: the original clas-
sifier used in GALEN used different principles and did not suffer
from this particular limitation [13].)

The algorithm presented herein therefore takes the approach of tak-
ing all reciprocals into account, but producing actual segments with
only one-way links, using, for example, only “isPartOf” relations.
Some of the new relations may be virtual: i.e. have only been found
by first adding the reciprocals.

Finger v ∃ hasPart .Hand (all fingers have some hand as part)
Hand v ∃ hasPart .Finger (all hands have some finger as part)

Figure 4. Example of a symmetric link

It is important to note that these reciprocal links differ from sym-
metric links. That statement in Figure 4 is a symmetric link, which
has a very different meaning to the example of a reciprocal link
given above. Symmetric links do not adversely affect classification.

3 Basic segmentation algorithm

The basic segmentation algorithm starts with one or more classes
of the user’s choice and creates an extract based around those and

related concepts. These related classes are identified by following
the ontology link structure.

3.1 Upwards traversal of the hierarchy

Assuming, for example, that a segment of the Heart class is to
be produced. The obvious first class to include is the Heart, the
Heart’s superclass (InternalOrgan), then that class’ superclass and
so on, all the way up the hierarchy, until the top (>) concept is
reached. Since this hierarchy is often quite deep (13 superclasses in
this case) one might consider collapsing the tree by merging several
superclasses. However, this destroys some of the semantic accuracy
of the ontology. It may be sensible when constructing an ontology
view or perspective, but is not useful for any extract that is to be
used in an application (such as a classifier), since each superclass
might contain critical information.

3.2 Downwards traversal of the hierarchy

The algorithm also goes down the class hierarchy from the Heart,
including its subclasses (in this case: UniventricularHeart). This is
especially relevant when segmenting an ontology that has already
been classified where newly inferred subclasses of a particular class
are likely to be of interest.

The property hierarchy is however never traversed downwards.
Properties are not of interest unless they are used in the class hi-
erarchy. So, if they are used, they, their superproperties and no
other properties, are included.

3.3 Sibling classes in the hierarchy

Sibling classes are not included in the extract. The Heart class’
siblings include concepts like the Lung, Liver and Kidney. It is rea-
sonable to assume that these are not relevant enough to be included
by default. The user can always explicitly select them for inclusion,
if they are of interest.

3.4 Upwards & Downwards and Upwards
from links

Having selected the classes up & down the hierarchy from the target
class, their restrictions, intersection, union and equivalent classes
now need to be considered: intersection and union classes can be
broken apart into other types of classes and processed accordingly.
Equivalent classes (defined classes which have another class or re-
striction as both their subclass and their superclass) can be included
like any other superclass or restriction, respectively. Restrictions
generally have both a type (property) and a filler (class), both of
which need to be included in the segment.

Additionally, the superproperties and superclasses of these newly
included properties and classes also need to be recursively included,
otherwise these concepts would just float in OWL hyperspace. That
is, without being attached to the hierarchy, concepts are assumed
to simply be subsumed by the top concept (>), leading to a very
messy, confusing and often semantically incorrect view of the un-
classified ontology.

Figure 5 gives an illustration of this segmentation algorithm. Start-
ing at the target of the extract, the algorithm traverses the hierarchy
upwards all the way to the root class. It also traverses it downwards



Figure 5. Traversal Up & Down and Up from links

all the way to the leaf classes. Additionally, any links across the hi-
erarchy from any of the previously traversed classes are followed.
The hierarchy is traversed upwards (but not downwards) from any
of these classes that the cross-links point to. Links pointing at other
classes from these newly traversed classes are also included. This
continues until there are no more links left to follow.

3.5 But not Downwards from Upwards links

Finally, one might also consider including the subclasses of those
classes included via links. However, doing so would result in in-
cluding the entire ontology. This is something one definitely wants
to avoid when creating an extract.

4 Constraining segment size

The segmentation algorithm outlined above produces an extract of
all related concepts to the target concept. However, with densely
interconnected ontologies such as GALEN, this new ontology is
usually only up to one fifth the size of the original. A means of
further constraining segments is needed.

4.1 Property filtering

If the aim is to produce a segment for use by a human, or specialized
application, then filtering on certain properties is a useful approach.

For example, if a user is not interested in the diseases modeled in
GALEN, he or she can specify to exclude all locative properties.
These are properties that specifically link diseases to the locations
in the body where they might occur: e.g. “IschaemicCoronary-
HeartDisease hasLocation Heart”.

The upper-level meta-properties which it may be logical to include
and/or exclude will be different for each ontology to be segmented.
These meta-properties are, in this case, actual properties, since
GALEN groups related properties together under super-properties.
The following meta-properties and their inverses were selected for
course grain property filtering:

• modifierAttribute: properties which can be used to modify a
given class such as “colour” or “status”. These are sometimes
also known as “value partitions” [6]. They are almost always
safe to include in an extract, since the class values they link to
do not themselves link onwards to other classes and therefore
will not significantly increase a segment’s size.

• constructiveAttribute: the super-property of all the follow-
ing properties.

– locativeAttribute: properties that link diseases to
anatomical locations that they are in some way related
to.

– structuralAttribute: properties linking anatomical
body structures together by physical composition.

– partitiveAttribute: properties that link classes based
on processes, divisions and other partitive relations

– functionalAttribute: properties that link classes by ac-
tion or function.

Note: The various properties could be broken down much more
elaborately. However, the point is that organizing properties under
any sensible upper-level property structure will enable some degree
of useful property filtering. A more detailed analysis of the GALEN
property hierarchy may be found in [29].

4.1.1 Removing trivially equivalent definitions

Properties are filtered by removing all restriction in which they oc-
cur. However, upon removing such restrictions from defined class,
it frequently occurs that a definition becomes indistinguishable and
therefore equivalent to another similar definition. The resultant long
chains of equivalent classes, while not wrong, are difficult to view
in ontology editors (such as Protégé OWL [14]). Trivially equiva-
lent definitions are therefore transformed into primitive classes by
the segmentation algorithm. These still occupy the correct place in
the hierarchy and are easy for editors to display.

SkinOfFrontalScalp ≡
(

SkinOfScalp u
∃ hasSpecificProximity .FrontalBone

)
SkinOfFrontalScalp ≡ SkinOfScalp

SkinOfFrontalScalp v SkinOfScalp
Figure 6. Property filtering with trivial definition removal

As shown in the progression in Figure 6, if the filtering process
removes the restriction on a class and this results in a trivial equiv-
alence, then the definition is converted into a primitive class.

4.2 Depth limiting using boundary classes

Depth limiting is a useful approach for accurately adjusting the size
of a segment so that it can, for example, be classified successfully
by automated reasoners.

A chain of links is followed to create a list of classes to include in an
extract. In doing so, each classes’ restrictions’ filler classes should
be included to produce a semantically correct extract (see Sections
2.1 and 3.4). However, if, upon reaching a certain recursion depth,
calculated from the extract’s target concept, all the links on a class
are removed, this class becomes a boundary class.

Heart v ∃ hasStructuralComponent .Pericardium
Pericardium v SerousMembrane
Pericardiumv∃ isStructuralComponentOf .CardiovascularSystem

Figure 7. Example of a boundary class

For example, one might remove the axiom in Figure 7 stating that
the Pericardium (the membrane that surrounds the heart) is a com-
ponent of the CardiovasuclarSystem (line three of the Figure), since



one may not be interested in including the CardiovascularSystem
and everything related to it in a segment of the Heart. This creates
a boundary class that is still defined in the hierarchy (under Serous-
Membrane) and therefore still makes sense within the ontology, but
has an incomplete definition.

The named superclasses of a boundary class (line two of Figure 7)
must be included in the extract in order to place classes in their
proper position in the hierarchy. These classes would otherwise all
be subsumed under the top concept (>). These superclasses are
however also boundary classes, unless they are linked to by way of
shorter recursion path along another concept, as shown in Figure 8.

The main hierarchy of “is-A” superclass relationships between
classes should not be counted when calculating the traversal depth,
since they need to be included in any case and do not substantially
increase the complexity of the segment. Subclass relations can be
ignored completely, since they are not included in the extract in the
first place (see Section 3.5). Figure 8 illustrates the entire boundary
extraction procedure.

Figure 8. Boundary extract with depth limited to ‘two’

This methodology effectively limits the size of the ontology, since
the presence of a boundary class will cause a link traversal algo-
rithm to terminate. Otherwise, in the case of a densely interlinked
ontology such as GALEN, practically the entire ontology could be
“linked-in”.

Noy’s ontology extraction research [21], also uses the boundary
class term, but defines it as any class which is in the range of any
property that is used in each restriction on each of the classes which
are targeted by the extract. The resulting list of boundary classes
is to function as a reminder to the user of other classes they might
want to include in the view they are constructing. This approach
relies on property ranges being specified in the ontology, which is
often not the case and on a graphical user interface to “prompt”
[20] the user. The approach presented here takes a more automated
approach, aiming to produce a heuristic algorithm that creates a
useful segment without much user intervention.

5 Evaluation

The utility of various segmentation strategies with regards to appli-
cations can not be evaluated at this time, because suitable applica-
tions that take advantage of segmented ontologies do not yet exist.
However, the performance of this methodology can be evaluated by
various statistical measures.

(Tests were carried out on a 2.8 Ghz Pentium 4 with 2.5 GB of
RAM running Racer 1.8.0 on Windows XP service pack 2.)

5.1 Segmentation speed

Figure 9. Time to compute a segment

Figure 9 gives a breakdown of how long various aspects of the seg-
mentation process take. The first step is loading the target ontology.
The next involves an initial pass over the ontology, scanning for
and marking the classes to include in the eventual segment extrac-
tion process. Extraction constructs a new, self-contained ontology
segment, which is then saved to disk.

As can be seen from the figure, the complete segmentation process
takes an average of one minute to complete. However, most time is
spent loading the ontology. Once the target ontology is in memory,
the segmentation itself takes only around six seconds to complete.
It can be observe that segments from large ontologies can be cre-
ated with good computational efficiency, though this is, of course,
dependent on the specific implementation of the extraction algo-
rithm.

Performance is currently not fast enough for real-time user queries.
However, the results show good potential for future optimisations,
especially if loading times can be reduced by streaming segmenta-
tion techniques and/or caching. Furthermore, segmentation is not
meant to replace querying. Instead, it enables efficient querying of
otherwise intractable ontologies.

5.2 Basic segmentation

The basic segmentation algorithm targeted around the GALEN
“Heart” concept produced the results shown in Table 1. As can be
seen from the table, the segment is roughly a quarter the size of the
original ontology, with the number of properties being reduced the
least and the number of primitive classes being reduced the most.
A similar pattern can be observed when segmenting using different
target classes.



original segment size difference
number of classes 23139 5794 25%

primitive classes 13168 2771 21%
defined classes 9971 3023 30%

number of properties 522 380 71%
filesize in KB 22022 5815 26%
Table 1. Basic segment of the Heart concept

This reduction in size is not enough to enable classification given
current memory and reasoner applications. All current tableaux
algorithm-based description logic reasoner systems stack-overflow
when attempting to classify the basic extract of GALEN. The filter-
ing and boundary extraction algorithms do however create classifi-
able ontology segments (see Section 5.3.2).

5.3 Property filtering segmentation results

A segment was produced by including only properties from each of
the main property categories identified in Section 4.1. Segments us-
ing combinations of property categories were also produced. It was
found that the combination of Partitive, Functional and Modifier
properties produced the largest ontology that could still be classified
successfully. Statistics for this combination segment are therefore
also included in the tables below.

filter total defined number of size
classes classes properties in KB

Modifier 99 10 56 63
Functional 129 17 22 57
Structural 357 29 74 258

Partitive 518 175 62 362
Locative 524 131 112 295

Part+Func+Mod 909 285 164 664
Constructive 5567 2954 284 5096

Basic seg. 5794 3023 380 5815
Original 23139 9971 522 22022
Table 2. Filtering segmentation size results

Table 2 gives an overview of the size of various property filtered
segments. As can be seen from the results, segments could be re-
duced in size by an average factor of 20 over the original ontology
and by a factor of five over the basic extraction methodology.

5.3.1 Probe classes

ProbeHeart ≡ ∃ attribute .Heart
Figure 10. Probe class use to test classification performance

The test query (probe class) in Figure 10 was introduced into every
segmented ontology to test its classification performance. An ap-
proximate measure of the degree of knowledge present in a segment
may be obtained by counting the number of new classes inferred as
subclasses of the probe. The probe effectively answers the query
“everything related to the Heart” by using the “attribute” property,
which is the top-level property in GALEN.

5.3.2 Classification tests

Table 3 shows several classification statistics.

Note: the “new inferences” column only lists new inferences under
the probe class. Many other new subclass relationships are inferred

in each segment, but these are not necessarily relevant to the ex-
tract’s target concept and were therefore not counted as part of this
evaluation.

filter defined new speed ms per new inf.
classes inf. in sec def. per def.

Structural 29 1 5 172 0.03
Modifier 10 1 1 100 0.1
Locative 131 30 7 52 0.23

Part+Func+Mod 285 85 22 77 0.30
Partitive 175 58 11 63 0.33

Functional 17 13 2 118 0.76
Constructive 2162 n/a n/a n/a n/a

Table 3. Basic segment of the Heart concept

5.3.3 Discussion

• The segment using all Constructive properties (combination
of Structural, Locative, Functional and Partitive properties)
was too large to classify.

• The Functional and Partitive segments produced the most
new inferences relative to their size. This indicates that a ma-
jority of the knowledge in GALEN is covered by these two
structures.

• As expected, the Modifier properties do not add very much
complexity to a segment and are therefore almost always safe
to include in any segment.

• Structural properties do not play a major role in the ontology,
since they do not add much information.

• Locative properties are of small, but not insignificant conse-
quence to the classification. This indicates that complexity of
the anatomical model in GALEN is far greater than the com-
plexity of disease model.

5.4 Boundary class segmentation results

5.4.1 Boundary size results

As one might expect, the boundary extraction algorithm produces
progressively smaller segments, in proportion with the boundary
cut-off. However, there seems to be no correlation between the
number of boundary classes created at each cut-off level and the
size of the resultant ontology. Figure 11 illustrates the differences
in boundary sizes.

This result indicates that the link structure of the GALEN ontology
is very interwoven and unpredictable. There seem to be no tight
group of boundary classes that limit a particular extract and there-
fore also no way to cleanly divide an ontology into modules. That
is, the complex ontological relationships cannot be cleanly divided
into fixed categories. We should therefore expect traditional parti-
tioning methodologies, such as those discussed in Section 6, to be
of limited use in this domain.

5.4.2 Boundary classification results

boundary defined new speed ms per new inf.
depth classes inf. in sec def. per def.

1 279 2 34 121 0.007
Table 4. Boundary extract classification tests



Figure 11. Boundary depth, boundary classes and segment size

Table 4 shows the results of the boundary classification testing.
Only boundary depth “one” could be successfully classified.

Boundary extraction by itself provides a very good means of con-
trolling the size of an extract, but does not seem to provide much
optimization for classification. A combination of boundary extrac-
tion and filtering segmentation allows one to control both the clas-
sifiability and size of a segment. This combination represents the
optimal segmentation strategy.

6 Related work

6.1 Overview

The idea of extracting a subset of a larger ontology is referred to
by many different names by different authors. Research regarding
views, segments, extracts, islands, modules, packages and parti-
tions may be broken down into three main categories:

1. Query-based methods
2. Network partitioning
3. Extraction by traversal

The research presented in this paper falls into category three.

6.2 Query-based methods

Many researchers, taking inspiration from the databases field, de-
fine ontological queries in an SQL-like syntax. These queries can
return sub-ontology segments as their answer-sets.

6.2.1 SparQL

The SparQL query language [31] defines a simple query mechanism
for RDF. Multiple queries are required in order to extract complex
knowledge as, for example, a class and its transitive closure (all
classes related to it). SparQL might be a good low-level tool for
implementing ontology segmentation, but is not a solution in and
of itself.

6.2.2 KAON views

Volz and colleagues define an ontology view mechanism based
upon the RQL query language [38]. They highlight RQL [1] as
the only RDF query language that takes the semantics of RDF
Schema into account. Their view system has the ability to place
each concept in its corresponding place in the complete RDF hier-
archy. This practice, similar to the algorithm presented in Section
3, gives a more complete picture of the structure of a query answer
than merely returning the relevant concepts in isolation. They do
not however provide a means of materializing a view, i.e. views
are transient: they are discarded as soon as they have served their
purpose.

6.2.3 RVL

Magkanaraki and colleagues present a similar approach to Volz’s,
except their system also allows queries to reorganize the RDFS hi-
erarchy when creating a view [18]. This allows views to be cus-
tomized on-the-fly for specific applications’ requirements. They
however also side-step the ontology updating problem by only cre-
ating virtual views. Their views are merely a collection of pointers
to the actual concepts, and are discarded after they have served their
purpose.

6.2.4 Discussion

Query-based methods provide a view mechanism similar to SQL.
This makes them intuitively familiar to computer scientists with a
background in databases. The shortcomings of these approaches
are that they provide only very low-level access to the semantics
of the ontology being queried and do not yet address the issue of
updating the original ontology when an extract is changed. Query-
based views are good for getting very small, controlled, single-use
extracts, which are tightly focused around a few concepts of inter-
est.

By contrast, the methods presented herein create self-standing, per-
sistent, multi-use ontology segments. That is, the segments have a
life of their own: they can be transformed, updated, shared, anno-
tated, plugged into applications and otherwise manipulated in myr-
iad of ways.

6.3 Network partitioning

The basic idea of partitioning comes from Herbert Simon. He as-
serts that any system has the property of near-complete decompos-
ability [32]. That is, we can always find clusters of objects that are
more related to each other than to the other objects around them.
How complete a decomposition is possible depends on the nature
of the system in question.

Researchers in networking use algorithms to organize the nodes on
a network into inter-related islands [2]. Some ontology researchers
propose applying a similar methodology to segmenting ontologies.



An ontology can, from this point of view, be viewed as a network of
nodes connected by links. The class hierarchy can be interpreted as
a directed acyclic graph (DAG) and any relations between classes
can be represented as links between the nodes (a simplified model
of the paradigm presented in Section 2.1).

6.3.1 Structure-based partitioning

Stuckenschmidt and Klein present a method of partitioning the
classes hierarchy into modules [35]. They exploit the structure of
the hierarchy and constraints on properties’ domains and ranges (for
example: the “hasGender” property might have a domain of “An-
imal” and a range of “Male or Female”) to iteratively break the
ontology up into dynamically sized modules. This method does not
take OWL restrictions, which can act as additional links between
concepts, into account. Instead it relies on the globally asserted
domain & range constraints. However, domains and ranges are op-
tional and may not therefore be asserted in a given ontology.

Structure-based partitioning is primarily meant for breaking an on-
tology into broad packages or modules so that it can be more easily
maintained, published and/or validated. However, this process de-
stroys the original ontology, leaving it decomposed into whatever
modules the partitioning algorithm deemed appropriate. Moreover,
ontologies, particularly those modeled in OWL, tend to be more
semantically rich than a simple network abstraction will capture.

6.3.2 Automated Partitioning using E-connections

Grau and colleagues [8] present a method for modularizing OWL
ontologies similar to Stuckenschmidt and Klein’s approach [35].
However, they address the issue of the original ontology being de-
stroyed by using ε-connections [15] to keep the individual modules
somewhat interconnected. The modularized ontology fragments
produced by their algorithm are formally proven to contain the min-
imal set of atomic axioms necessary in order to maintain crucial
entailments.

While Grau’s approach is formally sound, it does not seem to scale
up to complex, large ontologies. In particular, tests using a 3000-
class fragment of GALEN failed to produce a useful segmentation.
The methodology does not seem to be able to modularize ontolo-
gies that make use of an upper-ontology [9]. Since many large on-
tologies rely on such an upper ontologies to maintain a high-level
organizational structure [24], Grau’s approach is only of limited
real-world use.

6.3.3 SNARK and Vampire

MacCartney et al. use the same partitioning idea to solve a different
problem: they present a first-order logic theorem prover (SNARK)
[17], which decomposes the knowledge base into self-contained
mini-prover partitions, which then communicate with each other
using message passing techniques. The researchers thereby suc-
cessfully improve the efficiency of their reasoning algorithm when
answering queries over large knowledge bases.

Tsarkov and Horrocks [36] use a similar approach for optimizing
the classification performance of the Vampire first-order logic the-
orem prover [27] when classifying description logic ontologies.

6.4 Extraction by traversal

Ontology extraction by traversal, similar to the network partition-
ing approach, also sees the ontology as a networking/graph. How-
ever, instead of decomposing the entire graph into modules, this
methodology starts at a particular node (concept) and follows its
links, thereby building up a list of nodes (concepts) to extract. A
key difference is that this leaves the structure of the original ontol-
ogy intact: it creates an extract, not a decomposition.

6.4.1 PROMPT

Noy and Musen present an extension to the PROMPT suite [20] of
ontology maintenance tools, which are themselves plug-ins to the
Protégé ontology editor [22]. Their extraction methodology [21] fo-
cuses on traversal directives, which define how the ontology links
should be traversed. Collections of directives completely and un-
ambiguously define an ontology view and can themselves be stored
as an ontology. They also introduce the concept of boundary classes
around the edges of an extract. However, their view of boundary
classes differs from the perspective given in this paper (see Section
4.2).

Noy’s research establishes the mechanics of ontology view extrac-
tion, but does not address how her system might be used to construct
relevant, useful and computationally tractable segments.

6.4.2 MOVE

Bhatt, Wouters and company have a different focus: They present
the Materialized Ontology View Extractor (MOVE) system for dis-
tributed sub-ontology extraction [3]. It is a generic system that can
theoretically be adapted to work with any ontology format. The
system extracts a sub-ontology based on a user’s labelling of which
ontology terms to include and which to exclude. It also has the
ability to optimise an extract based upon a set of user selectable op-
timisation schemes. These schemes can produce either the smallest
possible extract, a medium size one, or include as much detail as
possible. These extracts can be further restricted by enforcing a set
of additional constraints. Their system can, for example, enforce
the semantic completeness and well-formedness of an extract [39].

However, the primary focus of Bhatt and Wouters’ architecture
is parallel processing. While, their extract system performs very
poorly when run on a single machine (17 minutes to produce an
extract from a 5000-concept ontology), it achieves optimum perfor-
mance using around five separate processors.

We argue that speed is not a critical factor in the extraction process.
Performance is too poor to facilitate an instant, on-demand extrac-
tion web-service, but not poor enough that it becomes a serious
problem. For example, extraction tests on the GALEN ontology by
these authors took in the order of two to five minutes to complete.

6.4.3 Discussion

Both MOVE and PROMPT produce a materialized view, i.e. a
self-standing ontology that has no direct connection with its ori-
gin. Both also have the notion of the transitive closure of a concept
(Wouters et al. call this semantic completeness [39]). However,
neither methodology addresses the important issue of how to up-
date the main ontology if the view is modified, how to transform
the ontology on-the-fly while extracting, nor do they discuss the
ability to classify an extract using description-logic reasoning sys-



tems. Finally, neither systems make use of meta-information about
an ontology’s semantics in determining the best extract. The user
must make a great deal of manual selections and choices for each
new extract he or she wishes to produce.

By contrast, the segmentation algorithms presented herein auto-
mates the extraction process as much as possible by taking advan-
tage of meta-information. Additionally, these methods have the
ability to transform the extracted ontology segments (see Section
4.1.1) and are optimized for enabling classification.

The key difference between the approach present here and the other
approaches is that we do not aim to create views of one type or an-
other. Instead, we aim to produce independently useful and usable
ontologies.

7 Future work

The GALEN ontology was chosen as a proof-of-concept test-case
for the segmentation techniques presented herein. The next step
is to generalise the algorithm to work well with other well-known
large ontologies and ultimately to work well with any large ontol-
ogy within the algorithm’s scope (see Section 1.5).

Such a generic algorithm will then be integrated with ontology
alignment methodologies, thereby making it possible to produce
extracts that cut across ontology borders. Such a segmentation al-
gorithm, offered as a web service, will make it possible to create
ontology segments from a web of ontologies: an otherwise un-
manageable semantic web will become tractable for computers and
comprehendible for humans.

Additionally, other applications and evaluations of the segmenta-
tion methodology (as outlined in Section 1.3) will be explored in
the future.

8 Conclusion

Ontologies with over ten-thousand classes suffer severely from
scaling problem. Segmentation by traversal is a way of overcom-
ing these difficulties. Developers can use ontology segmentation
techniques to quickly and easily create the relevant, self-standing
custom ontologies they require, instead of having to rely on the
initial authors’ decomposition. Ontology segments can be special-
ized further by only including links of specific types in the extract
(property filtering), limiting the depth of the link traversal algorithm
(boundary extraction), or a combination of both.

The methods presented take advantage of many ontology main-
tenance principles: normalisation [26], upper-ontologies [24] and
rich property hierarchies [25] are all taken into account in order to
produce more relevant segments. Other approaches to segmentation
do not take advantage of many of the semantics captured within an
OWL ontology and are therefore only of limited use.

Evaluation has shown that segmenting ontologies can decrease their
size considerably and significantly improve their performance. The
size of the GALEN ontology was reduced by a factor of 20. More-
over, segments of this ontology, which was previously impossible
to classify, were classified within seconds. Additionally, useful in-
sights into the ontology meta-structure were gained from the analy-
sis of various segments.

The complete GALEN in OWL along with a web application that
can generate custom GALEN segments is available online1.
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tributed methods. In A. Laganà, M. L. Gavrilova, and V. Ku-
mar, editors, Computational Science and Its Applications
(ICCSA), volume 3045, pages 508 – 517. Springer-Verlag
GmbH, May 2004.

[4] T. Bray. What is RDF? website reference:
http://www.xml.com/pub/a/2001/01/24/rdf.html, January
2001.

[5] S. Brin and L. Page. The anatomy of a large-scale hyper-
textual Web search engine. Computer Networks and ISDN
Systems, 30(1–7):107–117, 1998.

[6] N. Drummond, M. Horridge, H. Wang, J. Rogers,
H. Knublauch, R. Stevens, C. Wroe, and A. Rector. Design-
ing User Interfaces to Minimise Common Errors in Ontology
Development: the CO-ODE and HyOntUse Projects. In S. J.
Cox, editor, Proceedings of the UK e-Science All Hands Meet-
ing, September 2004.

[7] J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, J. Oberthaler,
and B. Parsia. National Cancer Institute’s Thésaurus and On-
tology. Journal of Web Semantics, 2003.

[8] B. C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Automatic
Partitioning of OWL Ontologies Using E-Connections. In In-
ternational Workshop on Description Logics, 2005.

[9] B. C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modulariz-
ing OWL Ontologies. In K-CAP 2005 Workshop on Ontology
Management, October 2005.
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