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1 Introduction

The idea of a natural rate of unemployment has been pioneered by Friedman (1968) and Phelps

(1968) who claim that unemployment is at its natural level when neither inflationary nor deflation-

ary pressure emanates from the labour market. This is called the non-accelerating-inflation-rate

of unemployment (NAIRU). The existence of a constant NAIRU has been questioned after the

oil price shocks of the 1970s as unemployment remained high in Europe even after inflation had

stabilised. More recently the NAIRU is assumed to be a function of labour market institutions

(see e.g. Nickell et al., 2005) and real macroeconomic variables such as real interest rates (see e.g.

Blanchard, 2003) or productivity growth (see e.g. Pissarides, 1990). As pointed out by Blanchard

and Wolfers (2000) labour market institutions also interact with macroeconomic shocks. Due to

labour market rigidities cyclical unemployment may translate into medium-run unemployment or

even become permanent. The latter is known as hysteresis. These unemployment persistence

effects can arise from insider-outsider effects in wage formation (see e.g. Blanchard and Summers,

1986) and/or depreciation of skills and search ineffectiveness of the unemployed (see e.g. Phelps,

1972).

As some of the factors driving the NAIRU are difficult to measure or even unobservable, one

approach in the recent literature is to identify a time-varying NAIRU from observed variables

using the Kalman filter and smoother. For example, Apel and Jansson (1999a,b) and Fabiani

and Mestre (2004) estimate the NAIRU from a system combining an Okun relation, a Phillips

curve and an equation for the unemployment gap with stochastic laws of motion for the NAIRU

and potential output. However, this approach has a number of shortcomings. First, NAIRU

estimates are obtained by specifying a reduced form model which essentially is a multivariate

statistical decomposition of unemployment into trend and cycle. The model’s parameters do not

have a structural interpretation, though. Second, the use of a standard Phillips curve implies that

unemployment is at its natural level when inflation has stabilised. As such, possible persistence

or hysteresis effects due to labour market rigidities are neglected. In a recent paper Logeay and

Tober (2006) combine the hysteresis approach with a time-varying NAIRU by allowing the latter

to be affected by lagged unemployment. However this ad hoc modelling of hysteresis implies that

next to cyclical shocks also shocks to the NAIRU induce hysteresis effects, i.e. as unemployment
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starts adjusting in response to a shift in the NAIRU the NAIRU itself will start shifting in response

to the changes in lagged actual unemployment. As a result, a one percent increase in the NAIRU

leads to a more than proportional increase in unemployment. There is no reason however why a

shift in the NAIRU should induce hysteresis effects. Moreover, these models typically do not allow

for permanent shifts in monetary policy as they assume a constant core inflation rate.1 Third,

calculating confidence bounds around the NAIRU point estimates in an unobserved component

model is not a trivial task as filter and parameter uncertainty need to be combined. The dominant

approach is to use simulation methods. The obtained confidence intervals are only approximations

though.

Consistent with the literature, this paper models the NAIRU as an unobserved non-stationary

process. We do not specify a reduced form equation for the deviation of unemployment from

the NAIRU but derive an equation for this unemployment gap from a simple structural model

including a Phillips curve, Okun’s law and a demand equation. The specification of the Phillips

curve allows for slow adjustment of unemployment towards the NAIRU by including elements of

persistence. Furthermore we allow for time-varying core inflation. The model is estimated in a

Bayesian framework for the euro area and the US using data for the period 1970Q1-2003Q4. The

Bayesian approach has two main advantages over standard maximum likelihood estimation. First,

it helps optimisation by down-weighting the likelihood function in regions where the parameters

do not have a structural interpretation or are inconsistent with out-of-sample information. Second,

the posterior distribution of the NAIRU can be calculated allowing for both parameter and filter

uncertainty.

The paper is structured as follows. Section 2 presents the theoretical model. The estimation

methodology is outlined in section 3. Section 4 presents the results. Section 5 concludes.

2 The model

2.1 Unemployment-inflation trade-off and the NAIRU

Consider a Phillips curve of the form

∆2pt = −θ1 (ut − u∗t )− θ11∆ut + γ(L)zt, (1)

1An exception is Domenech and Gomez (2006) who estimate simultaneously the NAIRU, core inflation, and the
output gap.
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where pt is the log of prices, such that ∆2pt is the change in inflation, ut is the unemployment rate,

u∗t is the NAIRU, and zt is a vector of cost-push shocks (e.g. import prices). The term (ut − u∗t )

represents a short-run unemployment-inflation trade-off, i.e. when ut is below u∗t inflation is rising,

and vice versa. The size of this trade-off is determined by the parameter θ1 which is a measure of

nominal rigidities in wage and price setting due to for instance wage and price adjustment costs or

staggered wage and price setting (see e.g. Layard et al., 2005, for a derivation of equation (1) from

a standard wage and price setting schedule). Stronger rigidities imply a smaller value for θ1, i.e.

a flatter Phillips curve. The term ∆ut accounts for potential unemployment persistence effects.

The inclusion of this term into the traditional Phillips curve is motivated from wage and price

behaviour depending on the change, next to the level, of unemployment (see e.g. Layard et al.,

2005; Franz, 2005). These change terms capture possible price effects of labour adjustment costs2

and possible wage effects of insider-outsider behaviour and/or duration composition effects3. As a

consequence, unemployment can deviate from its natural level even when inflation has stabilised.

The impact of persistence effects becomes more clear if we rewrite equation (1) as

ut =
θ1

θ1 + θ11
u∗t +

θ11
θ1 + θ11

ut−1 −
1

θ1 + θ11
∆2pt +

γ(L)
θ1 + θ11

zt.

This specification shows that even when inflation is stable, unemployment can be far away from

its natural rate due to persistence effects. The higher θ11 relative to θ1 the more persistent

unemployment is. The unemployment rate un
t which stabilises inflation (setting cost-push shocks

to zero) is given by

un
t = κu∗t + (1− κ)ut−1,

where κ = θ1/(θ1 + θ11). Layard et al. (2005) refer to this as the short-run NAIRU. It is a weighted

average of u∗t and ut−1. We can distinguish three cases of interest. First, if κ = 1 unemployment

is not affected by persistence effects, i.e. the short-run NAIRU un
t equals the long-run NAIRU u∗t .

Second, if 0 < κ < 1 unemployment converges to u∗t after a business cycle shock. However, the

2If these costs delay employment adjustment, marginal costs are higher in the short than in the long run (where
employment is at its optimal level). The first difference of unemployment in the price setting schedule captures the
effect of this short-run increase in marginal costs on prices.

3In the former, a transitory shock reduces the number of insiders and thus puts upward pressure on wages. This
results in a positive effect of lagged unemployment which together with the standard negative effect of contem-
poraneous unemployment gives the change term of unemployment. In the latter, the duration of unemployment
matters for aggregate wages as the long-term unemployed are less strong competitors for jobs and therefore put less
pressure on wages than the short-run unemployed. The change term now captures the idea that wage pressure is
lower when unemployment has recently risen as people that became recently unemployed are stronger competitors
for jobs.
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speed of adjustment depends on κ. In terms of policy, persistence means that once unemployment

has risen it cannot be brought back at once without a permanent increase in inflation. But it

can be reduced gradually without inflation rising. Third, κ = 0 means that cyclical shocks have a

permanent impact on unemployment. The natural rate or long-run NAIRU u∗t is not an attractor

anymore since unemployment is only affected by its own history with no tendency to revert to

an equilibrium. This extreme case, known as hysteresis, has been introduced by (Blanchard and

Summers, 1986). More recently, the existence of pure hysteresis has been criticized as being too

strong (see e.g. Blanchard, 2006), though. Given that pure hysteresis is at best doubtful, the focus

of this paper is on measuring the degree of persistence in unemployment with hysteresis only being

a limiting case of the model.

In the long run, unemployment is determined by long-run supply factors and equals u∗t . In

the short run, unemployment is determined by the interaction of aggregate supply, given by the

Phillips curve in equation (1), and aggregate demand yd
t which can be represented by

yd
t =

1
λ1

(mt − pt) +
1
λ2
xt, (2)

where mt is the nominal money stock and xt captures all exogenous real factors driving demand,

e.g. fiscal policy, relative import prices and world economic activity. This equation is simply the

reduced form of an IS-LM system. Adding and subtracting yt and taking first differences of both

sides, to get rid of the level of prices, yields

∆yd
t = ∆yt +

1
λ1

(
σd

t −∆pt

)
(3)

where σd
t = ∆mt − λ1

λ2
∆xt − λ1∆yt can be interpreted as a variable collecting demand factors,

i.e. the growth rate of the money stock and real demand factors corrected for the growth rate

of potential output. Note that as σd
t will be modelled as an unobserved variable (see section

2.2 below), specifying aggregate demand in this way does not imply that we are assuming (i)

aggregate demand to be better characterised as depending on real balances rather than on real

interest rates nor (ii) monetary policy to be better characterised by the growth of the money stock

rather than an interest rate rule. The specification in equation (2) merely serves as a way to

give an interpretation of what σd
t may be. As such, σd

t can also be interpreted as representing a

nominal interest rate.

5



The link between aggregate demand and unemployment is given by Okun’s Law

yd
t − yt = −ω(ut − u∗t ), (4)

where potential output yt is defined as the level of output that corresponds to the equilibrium

level of unemployment u∗t .

2.2 Dynamics of unobserved variables

The model outlined in section 2.1 includes the observed endogenous variables yt, ut and ∆pt and

the unobserved states yt, u∗t and σd
t . The dynamics of these unobserved states are assumed to be

given by

yt+1 = yt + ψt + η1t − ωη3t, (5)

ψt+1 = ψt + η2t, (6)

u∗t+1 = (1 + δ)u∗t − δu∗t−1 + η3t, (7)

σd
t+1 = τt + ∆η4t + η5t, (8)

τt+1 = τt + η6t, (9)

where the error terms ηit with i = 1, ..., 6 are mutually independent zero mean white noise processes

representing structural shocks.

Following Harvey (1985) and Stock and Watson (1998), among others, equations (5)-(6) model

potential output yt as a random walk with drift, with the drift term ψt varying over time according

to a random walk process. The time-variation in ψt allows for the possibility of permanent changes

in the trend growth of real output, e.g. the productivity slowdown of the early 1970s. Potential

output is further affected by structural unemployment u∗t through the term −ωη3t. This negative

relationship results from the definition of yt as the level of output that corresponds to equilib-

rium unemployment, where from equation (4) ∂ȳ
∂u∗ = −ω. Intuitively, it states that structural

unemployment erodes the output potential of the economy.

Equation (7) specifies the natural rate of unemployment u∗t as a non-stationary process, i.e.

shifts in its underlying determinants are assumed to be permanent. As a pure random walk process

would result in a non-smooth series that is hard to reconcile with the expected smooth evolution

of the structural characteristics driving the natural rate, the AR(2) specification in equation (7)
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allows for a smooth evolution of u∗t over time, i.e. the closer δ to one the smoother u∗t .
4 If δ = 0,

u∗t is a pure random walk process.

Equations (8)-(9) model the demand factor σd
t as the sum of three components: (i) an erratic

component ∆η4t; (ii) a temporary component η5t; and (iii) a level component τt driven by η6t.

The erratic component is included to capture temporary shifts in the level of demand, like e.g. a

temporary increase in government spending. The temporary component captures permanent shifts

in the level of demand. The level component captures permanent changes in monetary policy, i.e.

a permanent change in the growth rate of the money stock mt which, after correcting for trend

growth, induces a permanent change in the level of inflation ∆pt. This is due to the fact that

whenever demand differs from potential output, inflation has to adjust in order to bring demand

and supply back in line. A permanent change in the growth rate of demand therefore implies

a permanent change in the level of inflation. Thus τt is the (implicit) core inflation rate set by

the central bank. As τt is modelled as a random walk, the model allows for a time-varying core

inflation rate.

Note that not explicitly modelling the output gap and/or unemployment gap as a stationary

process seems at odds with what is common in the literature (see e.g. Apel and Jansson, 1999a,b;

Fabiani and Mestre, 2004). This literature directly specifies reduced form equations, though. In

our model we specify structural equations and use these to derive a reduced form model (see 3.1

below). In this reduced form, the persistence in the output and unemployment gap is a function

of the structural parameters in the model.

3 Estimation methodology

3.1 Reduced form and state space representation of the model

The reduced form for the observed endogenous variables yt, ut, and ∆pt, as a function of the

unobserved states and the lagged observed endogenous variables, is obtained by solving equations
4Note that in order to induce this smoothness, the natural rate of unemployment is nowadays often modelled as

an I(2) series, i.e. δ is set to one (see e.g. Orlandi and Pichelmann, 2000). We do not restrict δ to be equal to one
in equation (7) as in this case u∗t exhibits a (time-varying) drift, which would be hard to justify from an economic
perspective.
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(1), (3) and (4) as

yd
t = yt +

α

λ1

(
σd

t + λ1(yd
t−1 − yt−1)−∆pt−1 − γ(L)zt

)
+
αθ11
λ1

(u∗t − ut−1) (10)

ut = u∗t −
α

λ1ω

(
σd

t + λ1(yd
t−1 − yt−1)−∆pt−1 − γ(L)zt

)
− αθ11
λ1ω

(u∗t − ut−1) (11)

∆pt = σd
t + λ1(yd

t−1 − yt−1)− α
(
σd

t + λ1(yd
t−1 − yt−1)−∆pt−1 − γ(L)zt

)
− αθ11 (u∗t − ut−1)

(12)

where α = λ1ω/ (θ1 + θ11 + ωλ1). This reduced form can be cast into a linear Gaussian state

space model of the following general form5

yt = Zαt +Axt + εt, εt ∼ N(0,H), (13)

αt+1 = Tαt +Rηt, ηt ∼ N(0, Q), t = 1, . . . , n, (14)

where yt is a p×1 vector of p observed endogenous variables, modelled in the observation equation

(13), xt is a k×1 vector of k observed exogenous or predetermined variables and αt is a m×1 vector

of m unobserved states, modelled in the state equation (14). The vectors εt and ηt are assumed

to hold mutually independent Gaussian error terms with the former representing measurement

errors and the latter structural shocks. The exact specification of the vectors yt, xt and αt and

the matrices Z, A, T , R, H and Q that cast the model in equations (5)-(9) and (10)-(12) in the

general state space representation in equations (13)-(14) is provided in Appendix A.1.

3.2 Parameter estimation: a Bayesian framework

For given parameter matrices Z, A, T , R, H, and Q, the unobserved state vector αt can be

identified from the observations y1, . . . , yn and x1, . . . , xn using the Kalman filter and smoother

(see Appendix A.2 for technical details) . In practice these matrices generally depend on elements

of an unknown parameter vector ψ. One possible approach is to derive the loglikelihood function

for the model under study from the Kalman filter (see e.g. de Jong, 1991; Koopman and Durbin,

2000; Durbin and Koopman, 2001) and replace the unknown parameter vector ψ by its maximum

likelihood (ML) estimate. This is not the approach pursued in this paper. The fairly large number

of unknown parameters in combination with the large number of unobserved states makes the

numerical optimisation of the sample loglikelihood function quite tedious. Therefore, we analyse

the state space model from a Bayesian point of view, i.e. we use prior information to down-weight

the likelihood function in regions of the parameter space that are inconsistent with out-of-sample
5See e.g. Durbin and Koopman (2001) for an extensive overview of state space models.
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information and/or in which the structural model is not interpretable (Schorfheide, 2006). More

formally, we treat ψ as a random parameter vector with a known prior density p(ψ) and estimate

the posterior densities p(ψ | y, x) for the parameter vector ψ and p (α̂t | y, x) for the smoothed state

vector α̂t, where y and x denote the stacked vectors (y′1, . . . , y
′
n)′ and (x′1, . . . , x

′
n)′ respectively,

by combining information contained in p (ψ) and the sample data. This boils down to calculating

the posterior mean g

g = E [g (ψ) | y, x] =
∫
g (ψ) p (ψ | y, x) dψ (15)

where g is a function which expresses the moments of the posterior densities p (ψ | y, x) and

p (α̂t | y, x) in terms of the parameter vector ψ. In principle, the integral in equation (15) can be

evaluated numerically by drawing a sample of n random draws of ψ, denoted ψ(i) with i = 1, . . . , n,

from p (ψ | y, x) and then estimating g by the sample mean of g (ψ). As p (ψ | y, x) is not a density

with known analytical properties, such a direct sampling method is not feasible, though. Therefore,

we use importance sampling (see Appendix A.3 for technical details).

A second important advantage of the Bayesian framework over standard ML is that it straight-

forward to calculate the posterior densities of both the parameter vector ψ and the smoothed state

vector α̂t where the latter takes both parameter and filter uncertainty into account (see Appendix

A.4 for technical details).

4 Estimation Results6

4.1 Data

We use quarterly data for the US and the euro area from 1970Q1 to 2003Q4. US data are taken

from the OECD Economic Outlook and the International Monetary Fund (IMF) International

Financial Statistics. Euro area data, which are aggregate series for 12 countries7, are taken

from the area-wide model of Fagan et al. (2005). The unemployment rate, ut, is the quarterly

unemployment rate. For inflation, ∆pt, we use the first difference of the log of the seasonally

adjusted quarterly GDP deflator. Output, yd
t , is the log of seasonally adjusted quarterly GDP in

constant prices. As a measure for cost-push shocks in the Phillips curve we use the level and one

lag of the second difference of log import prices.
6The GAUSS code to obtain the results presented in this section is available on the authors’ webpage.
7Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, and

Spain.

9



4.2 Prior distribution of the parameters

Prior information on the unknown parameter vector ψ is included in the analysis through the

prior density p(ψ). Detailed information on p(ψ) can be found in Table 1. As stated above, the

main motivation for setting these priors is to down-weight the likelihood function in regions of

the parameter space that are inconsistent with out-of-sample information and/or in which the

structural model is not interpretable. Previous estimates as well as economic theory give us an

idea about the approximate value of the model’s parameter. However using previous studies to set

priors should be done with caution particularly if theses studies consider the same time period.

We therefore use previous estimates only as a rough indication for the prior mean but chose the

prior variance fairly loose. Okun’s Law coefficient ω measures the percentage rise in the output

gap when the unemployment gap falls by one percentage point. Okun (1970) stated that this

relation is linear and ω is roughly three. We set the prior value for ω equal to 2.5 since more

recent empirical studies found Okun’s Law coefficient somewhat lower than 3 (see e.g Orlandi

and Pichelmann, 2000) but leave a considerable amount of uncertainty around it. λ−1
1 links the

monetary transmission mechanism to output. In Gerlach and Smets (1999) the long-run value of

this parameter is found to be 1.11. However Gerlach and Smets link monetary policy to nominal

interest rates whereas here it is treated as an unobserved state. The parameter is identified by

the impact of inflation on the change in aggregate demand. The prior mean and variance for λ1

are chosen so that the 5% and 95% percentiles of the prior distribution for λ−1
1 are 0.94 and 1.35

respectively, implying a roughly unit impact of monetary policy on aggregate demand. Setting

priors on θ1 and θ11 is more difficult as the vast majority of Phillips-curve estimates does not

include a persistence measure θ11 and thus cannot be used here. Moreover, we do not want to

make these priors too informative since measuring the degree of persistence is of particular interest

in our analysis. The prior mean of both parameters are set to 0.5, implying κ = 0.5. As the model

is not identified for θ1 = 0, i.e. the Phillips curve in equation (1) is horizontal implying that u∗t

is not identified, we restrict θ1 to be positive and use a prior gamma distribution with a fairly

loose 90% confidence interval. The parameter δ is included to allow for smoothness in u∗t . We

have chosen for a not too informative prior for δ. Priors on the state variances are set so that

the resulting output gap matches with the commonly accepted timing of the business cycle with

respect to shape and frequency of the output gap. Again, we leave a considerable amount of
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uncertainty around these prior variances.

Table 1: Prior Distribution

Euro area US

Parameter Mean 90% Interval Mean 90% Interval

θ1 0.50 [0.21 - 0.89] 0.50 [0.21 - 0.89]
θ11 0.50 [-0.66 - 1.66] 0.50 [-0.66 - 1.66]
ω 2.50 [1.98 - 3.02] 2.50 [1.98 - 3.02]
λ1 0.90 [0.74 - 1.06] 0.90 [0.74 - 1.06]
δ 0.50 [0.01 - 0.99] 0.50 [0.01 - 0.99]
γ1 0.10 [-0.13 - 0.33] 0.10 [-0.13 - 0.33]
γ2 0.10 [-0.13 - 0.33] 0.10 [-0.13 - 0.33]
σ2

ε1
0.05 [0.03 - 0.08] 0.05 [0.03 - 0.08]

σ2
ε2

0.05 [0.03 - 0.08] 0.05 [0.03 - 0.08]
σ2

ε3
0.05 [0.03 - 0.08] 0.05 [0.03 - 0.08]

∗∗σ2
η1

0.80 [0.49 - 1.17] 0.80 [0.49 - 1.17]
∗∗σ2

η2
0.09 [0.06 - 0.15] 0.30 [0.19 - 0.44]

∗∗σ2
η3

0.04 [0.02 - 0.05] 2.00 [1.24 - 2.91]
σ2

η4
0.10 [0.06 - 0.15] 0.15 [0.09 - 0.22]

σ2
η5

0.15 [0.09 - 0.22] 0.24 [0.15 - 0.35]
∗σ2

η6
0.70 [0.43 - 1.02] 0.80 [0.49 - 1.16]

The prior distribution is assumed to be Gaussian for all elements in
ψ, except for θ1 and the variance parameters which are assumed to
be gamma distributed. ∗σηi = σ2

ηi
∗ 10−2, ∗∗σηi = σ2

ηi
∗ 10−4

4.3 Posterior distribution

Posterior distribution of the parameters

Table 2 presents the posterior mean and the 5% and 95% percentiles of the posterior distribution

for the euro area and the US estimates. The importance of the change term of unemployment

in the Phillips curve, as represented by θ11, is found to be much higher in the euro area than

in the US. The speed at which the short-run NAIRU un
t adjusts towards the natural rate u∗t is

measured by κ and given by θ1
θ1+θ11

. In the euro area we find that κ = 0.06, implying that the

adjustment is rather slow and thus unemployment is very persistent. The results for the US show

that κ = 0.33 and therefore US unemployment is adjusting somewhat faster.8 The finding of

higher unemployment persistence in Europe than in the US is in line with previous findings. The

posterior mean for θ11 in the euro area as well as the posterior mean of θ1 in the US lie outside

their 90% prior interval. Note that changing the prior mean or variance for these parameters does
8We obtain a posterior distribution for κ by calculating it in each of the importance samples. The 5% and 95%

percentiles are [0.03 − 0.10] for the euro area and [0.18 − 0.60] for the US.
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not affect their posterior distribution much.9 This suggests that the data are rather informative

with respect to the persistence measures in the Phillips curve. The estimates on ω, λ1, γ1 and γ2

are consistent with the literature. Figures 3 and 4 in Appendix B show the prior together with

the posterior distribution for all parameters.

Table 2: Posterior Distribution

Euro area US

Parameter Mean 90% Interval Mean 90% Interval

θ1 0.18 [0.09 - 0.29] 0.08 [0.04 - 0.12]
θ11 2.60 [1.90 - 3.43] 0.16 [0.06 - 0.26]
ω 2.15 [1.99 - 2.30] 2.37 [2.21 - 2.55]
λ1 0.97 [0.81 - 1.12] 1.01 [0.90 - 1.13]
δ 0.97 [0.96 - 0.98] 0.95 [0.91 - 0.99]
γ1 0.10 [-0.13 - 0.33] 0.11 [-0.12 - 0.33]
γ2 0.10 [-0.13 - 0.33] 0.11 [-0.12 - 0.34]
σ2

ε1
0.22 [0.18 - 0.26] 0.09 [0.06 - 0.14]

σ2
ε2

0.03 [0.02 - 0.04] 0.06 [0.04 - 0.08]
σ2

ε3
0.09 [0.05 - 0.12] 0.09 [0.07 - 0.10]

∗∗σ2
η1

0.74 [0.45 - 1.15] 0.72 [0.45 - 1.11]
∗∗σ2

η2
0.19 [0.13 - 0.27] 0.27 [0.17 - 0.42]

∗∗σ2
η3

0.07 [0.04 - 0.10] 3.16 [2.21 - 4.41]
σ2

η4
0.05 [0.03 - 0.08] 0.11 [0.07 - 0.16]

σ2
η5

0.13 [0.08 - 0.18] 0.38 [0.29 - 0.49]
σ2

η6
0.01 [0.01 - 0.01] 0.01 [0.01 - 0.01]

Note that the approximate covariance matrix Ω̂ is inflated with a
factor 1.3. With n = 10000 for the initial importance function and
all updates the probabilistic error bound for the importance sampling
estimator gn is well below 10% for all coefficients. The number of
subsequent updates of the importance density is 9 for the euro area
and 10 for the US (see Appendix A.3 for details). ∗∗σηi = σ2

ηi
∗10−4.

Posterior distribution of the states

The mean and the 5% and 95% percentiles of the posterior distribution of u∗t , yt and τt together

with ut, yt and ∆pt are plotted in Figures 1 and 2. The NAIRU for the euro area shows a clear

upward trend from the beginning of the 1970s up to the middle of the 1990s while from that

time on it is downward sloping. In contrast to earlier studies we find the euro area NAIRU to
9Overall, our experience from experimenting with alternative sets of priors and prior variances was that (i) most

changes to the priors only have a minor impact on the posterior distributions while (ii) for some of the more sizeable
changes either the estimation procedure failed to converge or the estimation results changed completely but were
no longer economically interpretable. In that sense, we believe that our results are fairly insensitive to changing
priors but we can, of course, not state that changing priors does not change the results in any circumstance. This
is our explicit aim though as we use the Bayesian technique to down-weight the likelihood function in areas of the
parameter space were the model is no longer interpretable.
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be very smooth and substantially above the actual rate of unemployment in the 1970s. This may

be explained by our persistence parameter. By neglecting persistence effects, i.e. restricting κ to

be one, the short-run NAIRU and the long-run NAIRU are identical. With κ = 0.06 however,

the short-run NAIRU follows the actual rate of unemployment more closely and therefore is more

volatile than the long-run NAIRU. This shows that if the NAIRU is used as a measure for structural

unemployment one need to take persistence effects into account and estimate the long-run rather

than the short-run NAIRU. As potential output is defined as the level of output that corresponds

to ut = u∗t , the slow adjustment of actual unemployment to the increasesd equilibrium level of

unemployment in the 1970s and the early 1980s implies a persistent positive output gap. The

estimated NAIRU for the US seems to be rather stable throughout the sample period with a

decrease of 2% in the 1990s. Comparing the actual unemployment rate with the NAIRU shows

that demand effects explain most of the unemployment variation in the US whereas the upward

drift in euro area unemployment is supply side driven. In contrast to earlier work, but consistent

with Fabiani and Mestre (2004), Figures 1 and 2 show that the NAIRU is measured fairly precise.

Both in the euro area and in the US, the core inflation rate τt decreased substantially over

time. This again highlights the need of allowing for a time-varying equilibrium inflation rate. Note

that potential output is very close to being a linear trend, i.e. there are no clear signs of a change

in the drift term. Increasing the prior mean of the variance of the innovations to this drift term

does not change the results.
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5 Conclusion

This paper estimates the NAIRU for the US and the euro area. It differs from existing studies in

that (i) we derive the NAIRU from a structural model which explains unemployment dynamics

by demand and supply factors as well as by a persistence mechanism, (ii) inflation is allowed to

have a time-varying mean, (iii) we estimate the model in a Bayesian framework which allows us

to maintain the cross sectional restrictions of the model and also provides a posterior distribution

for the NAIRU accounting for both filter and parameter uncertainty.

We found a fairly high degree of persistence in Europe while unemployment is much less

persistent in the US. Nevertheless, the increase of euro area unemployment until the late 1980s

is driven by supply side factors. Our results also indicate that neglecting persistence effects may

lead to NAIRU estimates that differ considerably from structural unemployment, i.e. the long-run

NAIRU. In contrast most of unemployment variation in the US since the beginning of the 1970s

is driven by demand shocks. Further the uncertainty around the NAIRU estimates is found to be

reasonable small.
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Appendices

Appendix A Technical details state space estimation

A.1 State space representation of the model in (10)-(9)

yt =
[
yd

t ut ∆pt

]′; xt =
[

∆pt−1 yt−1 ut−1 zt zt−1

]′;
αt =

[
yt yt−1 ψt u∗t σd

t σd
t−1 φt τt u∗t−1

]′;
A =

 − α
λ1

α −αθ11
λ1

−αγ1
λ1

−αγ2
λ1

α
λ1ω −α

ω
αθ11
λ1ω

αγ1
λ1ω

αγ2
λ1ω

α α(θ1+θ11)
ω αθ11 αγ1 αγ2

;

Z =

 1 −α 0 αθ11
λ1

α
λ1

− α
λ1

0 0 0
0 α

ω 0 α(θ1+θ11)
λ1ω − α

λ1ω
α

λ1ω 0 0 0
0 −α(θ1+θ11)

ω 0 −αθ11 α(θ1+θ11)
λ1ω −α(θ1+θ11)

λ1ω 0 0 0

;

T =



1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 (1 + δ) 0 0 0 0 −δ
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0


; R =



1 0 0 ω 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


;

εt =
[
ε1t ε2t ε3t

]′ ; ηt =
[
η1t η2t η3t η4t η5t η6t

]′ ;

H =

 σ2
ε1

0 0
0 σ2

ε2
0

0 0 σ2
ε3

; Q =



σ2
η1

0 0 0 0 0
0 σ2

η2
0 0 0 0

0 0 σ2
η3

0 0 0
0 0 0 σ2

η4
0 0

0 0 0 0 σ2
η5

0
0 0 0 0 0 σ2

η6

.
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A.2 Diffuse initialisation and exact Kalman filter and smoother

In a linear Gaussian state space model, the distribution of αt is entirely determined by the filtered

state vector at = E (αt | Yt, Xt) and the filtered state variance matrix Pt = V ar (αt | Yt, Xt),

where Yt = {y1, . . . , yt} and Xt = {x1, . . . , xt}. The filter recursion can be initialised by the

assumption that α1 ∼ N(a1, P1) where we assume

α1 = V Γ +R0η0, η0 ∼ N (0, Q0) , Γ ∼ N (0, κIr) , (A-1)

where the m × r matrix V and the m × (m− r) matrix R0 select the r elements of the state

vector that are non-stationary and the m− r elements that are stationary respectively. They are

composed of columns of the identity matrix Im and are defined so that, when taken together, their

columns constitute all the columns of Im and V ′R0 = 0. The unconditional variance matrix Q0

of the stationary elements of the state vector is positive definite and can be computed from the

model parameters. The r × 1 vector Γ is a vector of unknown random quantities which, as we let

κ→∞, is referred to as the diffuse vector. This leads to

α1 ∼ N(0, P1), P1 = κP∞ + P∗, (A-2)

where P∞ = V V ′ and P∗ = R0Q0R
′
0. The Kalman filter is modified to account for this diffuse

initialisation implied by letting κ → ∞ by using the exact initial Kalman filter introduced by

Ansley and Kohn (1985) and further developed by Koopman (1997) and Koopman and Durbin

(2003). Subsequently, the Kalman smoother algorithm is used to estimate the smoothed state

vector ât = E (αt | Yn, Xn) and the smoothed state variance matrix P̂t = V ar (αt | Yn, Xn), where

Yn = {y1, . . . , yn} and Xn = {x1, . . . , xn}. In order to account for the diffuse initialisation of α1,

we use the exact initial state smoothing algorithm suggested by Koopman and Durbin (2003).

A.3 Computational aspects of importance sampling

The idea is to use an importance density g (ψ | y, x) as a proxy for p (ψ | y, x), where g (ψ | y, x)

should be chosen as a distribution that can be simulated directly and is as close to p (ψ | y, x) as

possible. By Bayes’ theorem and after some manipulations, equation (15) can be rewritten as

g =
∫
g (ψ) zg (ψ, y, x) g (ψ | y, x) dψ∫
zg (ψ, y, x) g (ψ | y, x) dψ

, (A-3)
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with

zg (ψ, y, x) =
p (ψ) p (y | ψ)
g (ψ | y, x)

. (A-4)

Using a sample of n random draws ψ(i) from g (ψ | y, x) , an estimate gn of g can then be obtained

as

ḡn =

n∑
i=1

g
(
ψ(i)

)
zg

(
ψ(i), y, x

)
n∑

i=1

zg
(
ψ(i), y, x

) =
n∑

i=1

wig
(
ψ(i)

)
, (A-5)

with wi

wi =
zg

(
ψ(i), y, x

)
n∑

i=1

zg
(
ψ(i), y, x

) . (A-6)

The weighting function wi reflects the importance of the sampled value ψ(i) relative to other

sampled values. Geweke (1989) shows that if g (ψ | y, x) is proportional to p (ψ | y, x) , and under

a number of weak regularity conditions, gn will be a consistent estimate of g for n → ∞. As an

importance density g (ψ | y, x), we take a large sample normal approximation to p (ψ | y, x), i.e.

g (ψ | y, x) = N
(
ψ̂, Ω̂

)
(A-7)

where ψ̂ is the mode of p (ψ | y, x) obtained from maximising

log p (ψ | y, x) = log p (y | ψ) + log p (ψ)− log p (y) (A-8)

with respect to ψ̂ and where Ω̂ denotes the covariance matrix of ψ̂. Note that p (y | ψ) is given by

the likelihood function derived from the Kalman filter and we do not need to calculate p (y) as it

does not depend on ψ.

As any numerical integration method delivers only an approximation to the integrals in equa-

tion (A− 3), we monitor the quality of the approximation by estimating the probabilistic error

bound for the importance sampling estimator gn ((Bauwens et al., 1999) chap. 3, eq. 3.34). This

error bound represents a 95% confidence interval for the percentage deviation of gn from g. It

should not exceed 10%.

Note that the normal approximation in equation (A− 7) selects g (ψ | y, x) in order to match

the location and covariance structure of p (ψ | y, x) as good as possible. One problem is that the

normality assumption might imply that g (ψ | y, x) does not match the tail behaviour of p (ψ | y, x).

If p (ψ | y, x) has thicker tails than g (ψ | y, x), a draw ψ(i) from the tails of g (ψ | y, x) can imply an

explosion of zg
(
ψ(i), y, x

)
. This is due to a very small value for g (ψ | y, x) being associated with
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a relatively large value for p (ψ) p (y | ψ), as the latter is proportional to p (ψ | y, x). Importance

sampling is inaccurate in this case as this would lead to a weight wi close to one, i.e. gn is deter-

mined by a single draw ψ(i). This is signalled by instability of the weights and a probabilistic error

bound that does not decrease in n. In order to help prevent explosion of the weights, we change

the construction of the importance density in two respects (Bauwens et al., 1999, chap. 3). First,

we inflate the approximate covariance matrix Ω̂ by multiplying it by a factor 1.3. This reduces the

probability that p (ψ | y, x) has thicker tails than g (ψ | y, x). Second, we use a sequential updating

algorithm for the importance density. This algorithm starts from the importance density defined

by (A− 7), with inflation of Ω̂, estimates posterior moments for p (ψ | y, x) and then defines a new

importance density from these estimated moments. This improves the estimates for ψ̂ and Ω̂. We

continue updating the importance density until the weights stabilise. The number of importance

samples n was chosen to make sure that the probabilistic error bound for the importance sampling

estimator gn does not exceed 10%.

A.4 Posterior distribution of parameter and states

An estimate ψ̃ for the posterior mean E [ψ | y, x] of the parameter vector ψ is obtained by set-

ting g
(
ψ(i)

)
= ψ(i) in equation (A− 5) and taking ψ̃ = gn. An estimate α̃t for the posterior

mean E [α̂t | y, x] of the smoothed state vector α̂t is obtained by setting g
(
ψ(i)

)
= α̂

(i)
t in equa-

tion (A− 5) and taking α̃t = gn, where α̂
(i)
t is the smoothed state vector obtained from the

Kalman smoother using the parameter vector ψ(i). In order to calculate the 5th and 95th per-

centiles of the posterior densities of both the parameter vector ψ and the smoothed state vector

α̂t, let F (ψj | y, x) = Pr
(
ψ

(i)
j ≤ ψj

)
with ψj denoting the j-th element in ψ. An estimate

F̃ (ψj | y, x) of F (ψj | y, x) is obtained by setting g
(
ψ(i)

)
= Ij

(
ψ

(i)
j

)
in equation (A− 5) and

taking F̃ (ψj | y, x) = gn, where Ij
(
ψ

(i)
j

)
is an indicator function which equals one if ψ(i)

j ≤ ψj

and zero otherwise. An estimate ψ̃5%
j of the 5th percentile of the posterior density p (ψ | y, x) is

chosen such that F̃
(
ψ5%

j | y, x
)

= 0.05. An estimate α̃5%
j,t of the 5th percentile of the jth element

of the posterior density p (α̂t | y, x) is obtained by setting g
(
ψ(i)

)
= α̂

(i)
j,t−1.645

√
P̂

(i)
j,t in equation

(A− 5) and taking α̃5%
j,t = gn, where α̂(i)

j,t denotes the j-th element in α̂
(i)
t and P̂

(i)
j,t is the (j, j)th

element of the smoothed state variance matrix P̂
(i)
t obtained using the parameter vector ψ(i).

The 95th percentiles are constructed in a similar way. As such the posterior distribution of the
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smoothed state vector α̂ take both parameter and filter uncertainty into account.

Appendix B Prior and Posterior distribution
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