
Exploiting symmetry on parallel architectures

Lewis Benjamin Stiller

A dissertation submitted to The Johns Hopkins University in conformity with the

requirement for the degree of Doctor of Philosophy.

Baltimore, Maryland

1995

Copyright c
 1995 by Lewis Benjamin Stiller,

All rights reserved.

2

Abstract

This thesis describes techniques for the design of parallel programs that solve well-structured

problems with inherent symmetry.

Part I demonstrates the reduction of such problems to generalized matrix multiplication

by a group-equivariant matrix. Fast techniques for this multiplication are described, in-

cluding factorization, orbit decomposition, and Fourier transforms over �nite groups. Our

algorithms entail interaction between two symmetry groups: one arising at the software

level from the problem's symmetry and the other arising at the hardware level from the

processors' communication network.

Part II illustrates the applicability of our symmetry-exploitation techniques by presenting

a series of case studies of the design and implementation of parallel programs.

First, a parallel program that solves chess endgames by factorization of an associated di-

hedral group-equivariant matrix is described. This code runs faster than previous serial

programs, and discovered a number of results.

Second, parallel algorithms for Fourier transforms for �nite groups are developed, and pre-

liminary parallel implementations for group transforms of dihedral and of symmetric groups

are described. Applications in learning, vision, pattern recognition, and statistics are pro-

3

posed.

Third, parallel implementations solving several computational science problems are de-

scribed, including the direct n-body problem, convolutions arising from molecular biology,

and some communication primitives such as broadcast and reduce. Some of our imple-

mentations ran orders of magnitude faster than previous techniques, and were used in the

investigation of various physical phenomena.

Contents

Table of Contents 4

I Foundations 11

1 Introduction 12

1.1 Overview of thesis : 16

2 Parallel computing 20

2.1 Parallel computing: Hardware : 20

2.2 Parallel computing: Software : 24

3 Group theory and parallel processing 29

3.1 Basic de�nitions : 30

3.2 Groups and matrices : 34

3.3 Cayley graphs and interconnection networks : : : : : : : : : : : : : : : : : : 37

3.4 Parallel group-theoretical algorithms : 42

4 Linear algebra and parallel processing 46

4.1 Background : 48

4.2 Graph problems and semirings : 51

4.3 Tensors and programs : 53

4

5

4.3.1 Tensor products: Introduction : 54

4.3.2 Code generation: Conversion from factorization to code : : : : : : : 56

4.3.3 Example: Matrix multiplication by a tensor product : : : : : : : : : 59

5 Exploiting symmetry: Mathematical framework 63

II Applications 67

6 Orbit decomposition and its application to the analysis of chess endgames 68

6.1 Motivation and background : 70

6.1.1 Search : 70

6.1.2 Human analysis : 74

6.1.3 Friedrich Amelung and Theodor Molien: A historical note : : : : : : 77

6.1.4 Computer endgame analysis : 82

6.2 Tensor products and chess endgames : 85

6.2.1 De�nitions : 87

6.2.2 Group actions : 89

6.3 Endgame algorithm : 90

6.3.1 Factorizing the unmove operator : 90

6.3.2 Exploiting symmetry : 93

6.3.3 Control structure : 98

6.4 Implementation notes : 99

6.4.1 Captures and pawns : 99

6.4.2 Database : 100

6.5 Results : 102

6.5.1 Chess results : 102

6.5.2 Timing : 108

6.6 Future work : 109

6.7 A best play line : 111

6

7 Group fast Fourier transforms and their parallelization 114

7.1 Classical Fourier transforms : 117

7.2 Group Fourier transforms: Foundations : 121

7.2.1 Basic de�nitions : 121

7.2.2 An algebra viewpoint : 123

7.3 Fast group Fourier transform algorithms: Background : : : : : : : : : : : : 126

7.4 Parallel group Fourier transforms : 129

7.4.1 Abelian case : 129

7.4.2 General case: Background : 130

7.4.3 A parallel algorithm for general groups : : : : : : : : : : : : : : : : : 131

7.4.4 Group circulants : 139

7.4.5 Applications : 141

7.5 Dihedral group transforms : 145

7.6 String matching : 149

7.6.1 Background : 149

7.6.2 Mathematical formulation : 152

7.6.3 Reducing generalized matrix multiplication to matrix multiplication
over C : 158

7.6.4 The application of group FFTs to parallel string matching : : : : : : 162

7.7 Future work : 164

8 Equivariant factorization of Abelian groups 166

8.1 Fortran 90 : 167

8.2 n-body simulation : 172

8.3 Parallel pre�x and an application from computational biology : : : : : : : : 178

9 Conclusion and future work 183

A List of symbols 186

7

Bibliography 189

8

Acknowledgments

An interdisciplinary project, such as this one, depends for its success on the cooperation

and assistance of many individuals and institutions.

Foremost, the author thanks his advisor, Simon Kasif, who patiently assisted the author in

the formulation, presentation, and development of a number of ideas herein.

Noam Elkies provided invaluable chess advice and suggestions throughout the 6-piece

project. He also designed the mutual-zugzwangs algorithm. Burton Wendro� made possible

much of the work, and also developed and implemented the vectorized Cray algorithm.

The author's collaborators in the work on scienti�c computing, Luke Daemen, Angel Garc��a,

and Jim Gubernatis, patiently explained the physics and chemistry background of their

research. Hans Berliner and David Waltz were supportive of the chess work before any new

results came out of it, and long before the 6-piece code was able to be run. Richard Draper

helped to point the author in the direction of a tensorial approach to parallel computing,

and helped the author understand more clearly the symmetry aspects of the work. Luke

Daemen gave Cray implementations of important parts of the n-body code. Ken Thompson

9

provided numerous details and timings of his endgame code. John Roycroft provided much

of the historical information about endgame analysis. S. Rao Kosaraju and Paul Callahan

contributed useful ideas about string-matching.

The author's collaborators in the work on parallelization of shortest-word problems in group,

Jon Bright and Simon Kasif, uncomplainingly did the lion's share of work on the paper.

The author is also grateful to the following for many useful conversations and sugges-

tions: Alan Adler, Murray Campbell, Michael Fellows, Charles Fiduccia, Roger Frye, Ralph

Gasser, Thomas Hawkins, Feng-Hsiung Hsu, S. Muthukrishnan, Daniel Rockmore, Steven

Salzberg, Jonathan Schae�er, and Johannes Tausch.

Assistance in translating many of the non-English sources was provided by Peter Jansen,

Michael Klepikov, George Krotko�, John Roycroft, Claudia Salzberg, Boris Statnikov, and

the sta� of the Cleveland Public Library.

Access to most of the manuscripts, rare books and chess journals cited in the paper was ob-

tained during the author's visit to the John Griswold White Collection of Chess, Orientalia

and Fine Arts, located at the Cleveland Public Library, 325 Superior Avenue, Cleveland,

OH 44414. The author thanks Alice N. Loranth and Motoko B. Reece of the Cleveland

Public Library for their assistance during his visits to the collection.

Harold van der Heijden graciously provided all studies in his database of approximately

36,000 endgame studies in which certain pawnless 6-piece endgames arose.

The National Library of Latvia in Riga (Latvijas Nacion�al�a Bibliot�eka) assisted in providing

10

copies of a number of articles by Friedrich Amelung; Kenneth Whyld helped narrow down

the search for these to the city of Riga.

Parallel and high-performance vector computer facilities were graciously provided by the

Advanced Computing Laboratory of the Los Alamos National Laboratory, Los Alamos, NM

87545. The author was assisted in the benchmarking by application engineers from Thinking

Machines Corporation. The work on parallel group Fourier transforms was supported in part

by the Army Research O�ce contract number DAALO3-89-C-0038 with the University of

Minnesota Army High Performance Computing Research Center (AHPCRC) and the DoD

Shared Resource Center at the AHPCRC.

The author was supported during the writing of this thesis under U.S. Army Grant DAAL03-

92-G-0345.

11

Part I

Foundations

12

Chapter 1

Introduction

Parallel processing has had a major impact on the development of computer science. There

is an extensive literature on parallel architectures, parallel programming languages, and

parallel algorithms, which has achieved insight into the capabilities and limitations of par-

allel machines. However, the diversity and complexity of parallel architectures have created

a fundamental challenge for programmers, namely, the e�cient mapping of algorithms to

the parallel environment. Although e�cient practical algorithms for the solution of many

speci�c problems on particular parallel architectures are known, the development of a gen-

eral methodology for the design of parallel algorithms that are practical and e�cient on a

wide variety of architectures is an active area of research.

This thesis is a step in that direction. We propose a paradigm for structuring and designing

programs for parallel computers. Our paradigm is described informally and advocated by

means of a collection of case studies on massively parallel architectures.

13

The intuitive motivation for our paradigm is that we are striving for a uniform method

of eliciting the underlying algebraic structure in the problems to be solved. The existence

of some algebraic structure is particularly important in the context of parallel comput-

ing, insofar as parallel computers typically perform more e�ciently on highly structured

computations than they do on unstructured computations.

Typically, the algebraic structure takes the form of a group of transformations that leave

invariant salient computational characteristics de�ning the problem. In addition to parallel

algorithms for exploiting this symmetry, a theme that permeates this thesis is the primacy

of symmetry considerations in a broad range of applications, including string matching,

particle simulation, and communication primitives.

Our method comprises the following two main steps:

First: The problem is translated into a generalized matrix multiplication problem; that is,

a matrix multiplication problem in which addition and multiplication are replaced by more

general operators. The formulation of a problem within the context of matrix multiplication

has several advantages. For example, highly optimized linear algebra libraries for parallel

machines can be used, and the considerable machinery of multilinear algebra techniques

can often be brought to bear upon the new formulation.

Second: Symmetry in the original problem will be captured by symmetry in the matrix

into which the problem has been translated; mathematically, the associated matrix will

commute with a group of permutation matrices.

14

These invariant matrices admit several parallelizable techniques for their e�cient multipli-

cation.

The �rst technique is simply factorization; namely, we factor the matrix into simpler matri-

ces, for example, into matrices that represent primitive operations supported by the target

architecture. This technique emphasizes the use of the tensor product to extract paral-

lelism, and was strongly in
uenced by the success of the tensor-product formulation of

parallel signal-processing algorithms.

The second technique for the manipulation of invariant matrices is called orbit decomposi-

tion. Orbit decomposition is a formalization of the familiar technique of caching computa-

tions in order to reuse the data later. Orbit decomposition can somtimes induce a particular

routing pattern in the parallel architecture: a Cayley graph. This Cayley graph is a graph-

ical representation of the symmetry inherent in the original problem. As it happens, the

network connecting the individual processors in a number of classes of parallel machines

is also, in many cases, a Cayley graph; our methodology thereby gives rise to an interac-

tion between a Cayley graph arising at the software level, from symmetry considerations,

and a Cayley graph arising at the hardware level, from the interconnection network of the

processors.

The third technique we use for manipulation of invariant matrices is group Fourier trans-

forms. These generalize the familiar discrete Fourier transformations, the Cooley-Tukey

implementation of which has been in
uential in many areas of computer science. Group

Fourier transforms are based on techniques of group representation theory, which can be

15

loosely viewed as the use of matrices to model symmetry, and have undergone energetic

development by a number of earlier researchers. This earlier work has demonstrated many

applications for general group Fourier transforms, in areas such as machine learning, VLSI

design, vision, random walks, and graph algorithms, and has provided fast algorithms for

many classes of �nite groups. Although some amount of mathematical machinery, primarily

basic representation theory, is necessary to understand these fast algorithms, we have tried

to carefully encapsulate areas of this thesis which require such knowledge. Their salient

feature for our purposes is that they allow fast parallel algorithms for multiplication by in-

variant matrices. Work-e�cient parallel group Fourier transform algorithms are introduced

in this thesis, improving on several suboptimal constructions in the literature.

These three techniques|factorization, orbit-decomposition, and group Fourier transforms|

are the tools we use to exploit symmetry.

Before continuing with the overview of the thesis, we emphasize two main points:

First, it should be clear that there are many classes of problems to which the paradigm

we propose does not readily apply. For example, problems with unstructured data-access

patterns, or data-access patterns that are not known at compile-time, would be a poor match

for this approach. Typical examples of such problems include open-ear decomposition in

graph problems, forward alpha-beta search with pruning heuristics, and several classes of

combinatorial optimization problems. Nevertheless, our paradigm can be used to solve

structured subproblems of an unstructured problem. For example, the adaptive multipole

method is a dynamic tree algorithm for particle simulation to which we cannot usefully

16

apply our ideas, but even the adaptive multipole method must, at some point, call a direct

\brute-force" particle simulation routine at which point our ideas apply. Similarly, although

the parallelization of alpha-beta chess programs is beyond the scope of this work, the leaf-

evaluation subroutines of such programs typically rely on a specialized endgame module of

the type described in this thesis.

Second, we remark that the �eld of parallel processing is changing so fast, and with such a

complex interconnection between economic, technological, hardware, and software factors,

that we cannot claim that our paradigm is the last word on the topic. In Part II, therefore,

we will not focus solely on our parallelization techniques. Instead, we will also describe a

number of applications that, we hope, will be seen to have a beauty and interest independent

of the ultimate viability of our main program; these case studies will also be useful considered

only as examples of the successful design and implementation of parallel algorithms.

1.1 Overview of thesis

Part I presents the mathematical underpinnings of our work and gives some background on

parallel processing.

Chapter 2 provides a bird's-eye view of parallel processing. Section 2.1 describes a few

common hardware con�gurations and introduces some interconnection networks. Section

2.2 discusses the problems of programming parallel machines and describes several parallel

programming models.

17

Chapter 3 reviews basic group theory and examines the previous work on the relation-

ship between groups and parallel processing, particularly the work on the application of

Cayley graphs as the interconnection networks of a parallel machine. Some parallel group-

theoretical algorithms, such as �nding a composition series for a group, are also discussed.

This chapter also describes related work by Bright, Kasif, and Stiller in the area of exhaus-

tive search using group models, which resulted in the best known theoretical algorithm for

parallel knapsack.

Chapter 4 reviews some basic linear algebra and its interaction with parallel processing,

highlighting the role of the tensor product in expressing parallel and vector algorithms.

Chapter 5 concludes Part I. It describes the programming methodology whose application

will be illustrated in Part II of this thesis.

Part II surveys several applications of the framework described in Part I.

Chapter 6 illustrates the orbit decomposition, which is appropriate when both the operator

and the data are invariant. Both factorization and orbit-decomposition are used in a parallel

program that solves chess endgames. The algorithm entails routing along the Cayley graph

of the dihedral group of order 8, one of the smallest non-Abelian groups. Signi�cant speedup

over previous implementations on the small problems we studied was observed, but timing

comparison for the larger instances versus other techniques is not available, since these

problems are currently extremely time-consuming when solved using classical techniques.

This chapter also contains a survey of new results discovered by the program, and presents

historical information on the development of chess endgame analysis, some of which has

18

been published here for the �rst time.

Chapter 7 introduces group Fourier transforms and describes several applications. The

group Fourier transform generalizes the classical Fourier transform to the case in which

the indexing is performed over an arbitrary �nite group. After recapitulating earlier work

in the area, an e�cient parallelization of group Fourier transform is presented, improving

on previous parallel group Fourier transform algorithms. Potential applications for parallel

algorithms in learning, VLSI design, pattern-matching, analysis of ranked data in statistics,

random walks on groups, and graph theory are brie
y presented. In order to illustrate a

typical application, the parallel group Fourier transform algorithms are applied to gener-

alized string matching problems, whose associated matrices have entries in a domain with

little algebraic structure, and to which, therefore, group representation techniques do not

directly apply. Preliminary massively parallel implementations of dihedral and symmetric

group Fourier transforms are described.

Chapter 8 illustrates factorization by case studies of several scienti�c-computing applica-

tions. The symmetry groups that are considered in this chapter are Abelian, as contrasted

with previous chapters, which consider non-Abelian symmetry groups. The speci�c imple-

mentations are:

1. The communication primitives from Fortran 90 are described within a multilinear-

algebraic formulation, and it is shown how this formulation led to simple techniques

for speeding them up in practice on several parallel architectures.

19

2. A parallel direct n-body solver, which uses special-purpose microcode and factoriza-

tion techniques for the modeling of
ux vortices in superconductors, is described. Our

techniques resulted in speedup of approximately one order of magnitude compared to

the previous methods in use for solving this problem on the CM-200.

3. The parallel pre�x primitive, a common tool in parallel processing algorithms re-

search, is developed within our framework, and the standard logarithmic time algo-

rithm for parallel pre�x is rederived. This derivation is then used in the design of

an implementation for computing statistical properties of binary strings arising from

a computational biology application. Once again, signi�cant speedup was observed

compared to previous methods.

Finally, Chapter 9 presents conclusions and ideas for future work.

20

Chapter 2

Parallel computing

2.1 Parallel computing: Hardware

Parallel computation refers to the utilization of multiple processors acting in concert to

solve a single problem. The earliest reference known to this problem arguably comes from

General L. F. Menabrea's 1842 commentary on the analytical engine, quoted in [374, p. 8]:

Likewise, when a long series of identical computations is to be performed,
such as those required for the formation of numerical tables, the machine can
be brought into play so as to give several results at the same time, which will
greatly abridge the whole amount of the processes.

It has been argued as well that the ENIAC, the �rst general-purpose electronic computer,

was highly parallel, insofar as it comprised a large number of independent functional units

[339,495].

In 1959, Holland proposed a collection of independently executing processors that fore-

shadowed many later developments [376]. The early RW-400 computer also used some

21

parallelism, as the following quotation from Porter's 1960 Datamation article illustrates:

The RW-400 Data System is a new design concept. It was developed to
meet the increasing demand for information processing equipment with adapt-
ablility, real-time reliability and power to cope with continuously-changing in-
formation handling requirements. It is a polymorphic system including a va-
riety of functionally-independent modules. These are interconnectable through
a program-controlled electronic switching center. Many pairs of modules may
be independently connected, disconnected, and reconnected, in microseconds
if need be, to meet continuously-varying processing requirements. The system
can assume whatever con�guration is needed to handle problems of the mo-
ment. Hence it is best characterized by the term `polymorphic'|having many
shapes [606, pp.8{9].

The 1962 Conferences of the American Federation of Information Processing Societies con-

tained a number of parallel computer designs, including the D825, a coarse-grained machine

intended for use in military applications [52], and the highly in
uential SOLOMON sys-

tem [697]. SOLOMON was intended primarily for use in military applications and utilized

an array-based design comprising 210 processors interconnected in a square grid. Its design

was extremely in
uential on further SIMD architectures, such as the DAP and the ILIAC

IV [137].

The mid-eighties saw the introduction of the Connection Machine family of massively-

parallel architectures. The CM-1 and CM-2/200 each had up to 64K bit-serial processors,

and their introduction and support software had a substantial impact on the development

of the �eld. A number of other parallel processors have also been introduced, such as the

N-Cube and the Intel Paragon. Several in
uential vendors have recently stopped producing

massively-parallel machines, however, raising questions about the viability of very-large-

scale parallel processing [438].

22

There are several taxonomies by which parallel computers are classi�ed. Determinants

characterizing current parallel processors are: MIMD vs. SIMD;1 shared-memory vs. local-

memory; the type of interconnection network used; the number and type of the individual

processors.

There are also a large number of theoretical models which purport, to varying degrees, to

represent the real complexity of algorithm execution on parallel architectures. These range

from models in which communication overhead is entirely neglected, such as the CREW

PRAM [786], to models in which the interconnection network becomes paramount, such as

on arrays of automata [460]. Most of our results will be based on timing measurements

on actual machines, and we will try to avoid excessive formality in the description of a

theoretical model; although the algorithms we give are easily parallelizable on a PRAM,

they are parallelizable on a wide class of other models as well.

For speci�city, we brie
y describe the architecture on which many of the algorithms de-

scribed here were implemented: the CM-2/200 family. The CM-2 comprises 216 bit-serial

processors clocked at 7 MHz and driven from a front-end workstation. The CM-200 di�ers

mainly in being clocked at 10 MHz. It comprises 212 chips, interconnected in a 12-cube2

1 Processors such as the CM-200 are SIMD: each processor executes the same set of instruc-

tions (the taxonomic distinction SIMD/MIMD/SISD/MISD seems to be due to Flynn [298]). The

NCUBE, Intel Paragon, CM-5, and others are MIMD, in which each processor executes a di�erent

control thread; in many applications, however, these processors execute primarily in SIMD mode.

2 A k-cube can be thought of as the set of binary strings of length k, with a direct communication

link between any two nodes with unit Hamming distance. Alternatively, it is the vertices and edges

23

000

001

101 111

011

010

110100

Figure 2.1: Embedding of a one-dimensional torus (i.e., a circle) by Gray coding the coor-
dinates of each element of the grid. This �gure illustrates a 3-bit Gray code, which can be
thought of as an embedding of a cycle of length 8 into a 3-cube.

with 16 processors for chip. However, nearly all the system software supports the model of

there being 216 processors connected in a 16-cube, which is the model we shall assume for

the purposes of this thesis.3 Each processor is driven from a single pipelined instruction

stream, and contains up to 1 MBIT DRAM. The system-software supports virtual con�g-

uration of the processors in a k-dimensional torus using familiar techniques for embedding

grids in hypercubes (see Figure 2.1) [333,371].

The CM-2 can also be con�gured in slicewise mode, which permits more e�cient utilization

of the Weitek
oating point units. In this mode, the bit-serial structure is ignored, and

the computer is envisioned as comprising 211 32-bit processors. This mode of operation

is particularly interesting because both vectorization and parallelization issues must be

of the unit cube in Euclidean k-space.

3 The on-chip location of the processors only makes a di�erence in certain fairly obscure details

of the chess endgame algorithm; this issue will be addressed in Chapter 6.

24

addressed in order to attain high bandwidth. Our scienti�c applications utilized slicewise

mode, and our non-scienti�c applications used bit-serial mode.

The CM-2 is an extreme model of parallelism, insofar as it comprises large numbers of

weak, SIMD processors. Therefore, successful implementation of an algorithm on the CM-

2 tends to imply that the algorithm is parallelizable as well in stronger computational

models, assuming the bandwidth and size is comparable. For example, the CM-5 is a

MIMD architecture with a more powerful interconnection network and processors than

the CM-2, but our results to apply to this kind of architecture as well [502, 503, 745].

Representative CM-5 and Cray timings are presented in Chapter 8 and CM-5 group Fourier

implementations are described in Chapter 7.

2.2 Parallel computing: Software

As mentioned section 2.1, the ENIAC itself had a parallel design. It is interesting and

instructive that the ENIAC was soon recon�gured to operate in serial mode, primarily

because of the di�culty of its programming. In the words of Burks, one of the original

designers:

The ENIAC's parallelism was relatively short-lived. The machine was com-
pleted in 1946, at which time the �rst stored program computers were already
being designed. It was later realized that the ENIAC could be reorganized in
the centralized fashion of these new computers, and that when this was done it
would be much easier to put problems on the machine: : :Thus the �rst general-
purpose electronic computer, built with a parallel decentralized architecture,
operated for most of its life as a serial centralized computer [150] [374, p. 10].

25

Software issues remain the primary obstacle to greater penetration of highly-parallel com-

puting. The plethora of variant high-performance architectures, combined with the rapidity

with which architectures and their operating-system interfaces changes, has only increased

the magnitude of the problem of attaining high-bandwidth on end-user applications: hence

the so-called \parallel software crisis." A number of tools and programming paradigms have

been proposed to alleviate the parallel software crisis.

The parallel programming paradigm most relevant to the methodology advocated in this

thesis is data-parallel programming. Data parallelism is a style of coding advocated partic-

ularly for SIMD massively parallel architecture; the term was coined in an in
uential 1986

paper by Hillis and Steele [367], who gave data-parallel solutions for several classic prob-

lems such as computing the sum of an array of numbers, general parallel pre�x algorithms,

regular-language parsing, and several graph algorithms.

The data-parallel coding paradigm is intended to act on large amounts of data with com-

paratively few threads of control. Many SIMD languages directly support this paradigm,

such as CM-LISP [705], Paralation LISP [656], *LISP [743], C* [635], NESL [133], and

ILIAS [522], and it is implicitly supported by the array functions of Fortran 90 [658]. Gary

Sabot has discussed general methods for adding data-parallelism capabilities to an arbitrary

language using the paralation model [657].

The success of the data-parallel paradigm inspired both the implementation of computer

languages which directly supported it, and formal semantic treatment of data-parallel con-

structs.

26

There have also been a number of formal approaches to data parallel coding, many of which

have been implicitly inspired by Backus' famous Turing award lecture, in which he advocated

using algebraic primitives to model the interaction of complex operators [77]. Many of the

attempts to formalize the data-parallel style have the
avor of a formal version of APL,

which contained already most of the key data parallel programming constructs [395].

The Bird-Meertens theory of lists is one of the most well-known of these [127{130]. This

posits as its fundamental data-type the list, and gives primitives, such as
atten, reduce,

concatenation, and so on to manipulate them. It is possible to derive an algebraic theory

of such operations of considerable expressiveness.

The Bird-Meertens theory of lists can be generalized to encompass the theory of categorical

data-types [88, 692, 693, 695]. In the theory of categorical data-types, data values are pre-

sumed to take their values from a particular category, which is usually presumed to have

some additional structure, such as being Cartesian closed. Many constructions in stan-

dard programming languages, such as ordered-pair and arrays of arbitrary data-type, can

then be expressed as operations on the underlying category. Since programming language

functions can be considered to be functors, algebraic tools can be utilized in deriving and

verifying programs. There have also been a number of attempts to build a general theory

of arrays [109,404,493,568,569], most of which are closely related to APL and to the Bird-

Meertens theory of lists. Although these methodologies are extremely general and powerful,

they tend to sacri�ce peak performance.

27

Finally, it is worthwhile asking why the programmer should need to concerned at all with

the parallelization of the code. In fact, the most ambitious parallel programming paradigm

is to use parallelizing compilers, which, ideally, reschedule and distribute the computation

in such a way that the source code, which can be written as if for a sequential machine,

executes e�ciently on the target machine [806,829]. Parallelizing compilers include systems

such as Fortran D [370], SUPERB [827], and Vienna Fortran [176,828]. A survey, including

additional references, is in Amarasinghe et al. [25].

Current parallelizing compilers, however, are fairly limited in the kinds of code that they

can e�ciently parallelize [220, 622, 767,805]. Such compilers tend to perform better when

the parallel structure of the algorithm is transparent in the source program.

Because our paradigm requires explicit restructuring of the algorithm by the programmer,

it is much more limited in scope than a full parallelizing compiler would be. There are

several reasons why this smaller goal was pursued, rather than striving directly to build

a parallelizing compiler. First, many of the applications we considered were intended to

be solved by end-users, such as physicists or scientists, and it was necessary to use the

existing production languages, which require parallelization speci�ed by the programmer,

in order to solve their problems as rapidly as possible|for deriving fast programs on end-

user machines, hand-parallelization is more e�ective than current parallelizing compilers.

Second, parallelizing compilers produce much more e�cient code when the algorithm used

is as transparently parallel as possible, and this situation seems likely to continue in the

near future. Third, we think that many of our techniques readily lend themselves to auto-

28

matic implementation, using group theoretical software such as GAP [669] and MAGMA,

and, thus, our restructuring algorithms could perhaps be implemented as part of the loop-

transformation phase of a parallelizing compiler [81,82].

29

Chapter 3

Group theory and parallel

processing

Group theory provides a convenient and powerful language for the analysis of symmetry,

and it therefore is one of the fundamental tools of this thesis. This chapter provides basic

background material on group theory and also introduces the notion of a Cayley graph,

which is a graph associated in particular way with a group. Cayley graphs provide a

connection between group theory and graph theory, and have proven to be useful in the

analysis of the interconnection networks on parallel processors; in fact we will see that

many interconnection networks are Cayley graphs. The Cayley graphs that will arise in the

applications discussed in Part II of the thesis, by contrast, will arise at the software level;

the implementation of these algorithms on a parallel architecture therefore may entail an

embedding of a Cayley graph arising from problem symmetry into a Cayley graph arising

from the physical interconnection network of the parallel architecture.

30

3.1 Basic de�nitions

The material in this subsection comprises some standard facts on �nite group theory, most

of which are contained in elementary texts on the subject.4

A group is a triple hG; e; �i where G is a set and � is a binary, associative and invertible

function �:G� G! G with left and right identity e 2 G:5

The history of the de�nition is long and fascinating. Some authors have claimed that

group-theoretical ideas are implicit in symmetrical designs found in geometrical ornaments

thousands of years ago. Manuel Moschopulos used permutation-like operations in his 14th-

century analysis of magic squares, and Levi ben Gershon, in \Practice of the Calculator,"

1321, computed the number of permutations of n elements. These early usages are so

remote from contemporary understanding, and were so isolated from the mainstream of

4 The text by Wielandt on permutation groups is considered a classic, and is relevant to our

work [802]. We found Rotman's monograph to be clear and useful [641]. For more advanced refer-

ences, particularly to applications of wreath products and multifarious applications to combinatorial

problems, we recommend Kerber's monograph [439]. Deep structural information is contained in

the reference [64]. We will only need basic results from the representation theory of �nite groups,

for which Serre [678] is a standard textbook, and Collins [197] provides a careful and leisurely intro-

duction. Fulton and Harris' monograph is a lucid and apposite introduction to the topic [310]; see

Coleman for a concrete descriptions of induced representations [195]. For a more abstract point of

view, the standard reference is Curtis and Reiner [214].

5 We usually just call the group itself G, since the identity and law of multiplication will normally

be clear from the context. Instead of writing �(g; h), for g; h 2 G, we write g � h, or even gh.

31

development, however, that, in my opinion, they should not be considered to be relevant

examples or discoveries of groups; if there is a relation to the modern conception of groups,

it is an extremely tenuous one [809, pp.18{19]. The modern concept of an abstract group is

more properly considered to have arisen from the work of Galois on permutation groups of

roots of polynomials, as well as the work of Vandermonde, Lagrange, Ru�ni, Abel, Serret,

Jordan, Cayley, Klein, and others. For a complete discussion of the issues, the reader is

referred to the texts [172,792,809].

A group G acts on a �nite set X if to each g 2 G and x 2 X is associated a unique gx 2 X

such that ex = x and g(g0x) = (gg0)x.

If H � G and if H forms a group under the inherited multiplication in G then H is called

a subgroup of G. The group generated by a set of elements in G is the intersection of all

subgroups of G containing that set.

Because each g in a group acting on X induces a permutation of the elements of X , in this

case one can think of G as being a permutation group, that is, a group whose elements

are permutation and whose multiplication is composition. Although (in accordance with

modern conventions) we have de�ned the notion of action in terms of the abstract axioma-

tization of group, historically the notions of a permutation and transformation group long

preceded any explicit axiomatization [809, pp.230{251]. We will often elide the distinction

between the elements of a group and the transformations of X that they induce.

The notions of group and group action are closely associated with the concepts of symmetry

and of invariance. Informally, consider a property that may be possessed by the elements

32

of a set X . Let S be a set of one-to-one transformations from the set to itself each member

of which sends any element in the set to another element that has the given property if

and only if the �rst element does. For example, suppose that X is the set of vertices of

the unit cube in Euclidean 3-space R3, thus X = f(i; j; k): i; j; k 2 f0; 1gg. Color the 4

bottom vertices, f(i; j; 0)g, red, and color the 4 top vertices blue. Let r be the operation of

rotating the cube counterclockwise 90� about its vertical axis (the line parallel to the z-axis

and passing through (12 ;
1
2 ; 0)), and let f be the operation of re
ecting the cube about the

plane parallel to the yz-axis and bisecting the cube (i.e., the plane normal to the x axis and

passing through the point (12 ;
1
2 ; 0)). Then it is easy to see that r and f induce one-to-one

mappings from X to itself, and that each sends a red vertex to another red vertex, and

a blue vertex to another blue vertex. Therefore, the property of vertex color is invariant

under f and r, so that it is invariant under the group generated by the fr; fg, which, by the

way, is a group of 8 elements called D4.

If x 2 X and G acts on X then Gx := fgx: g 2 Gg is called the orbit of x, and Gx :=

fg 2 G: gx = xg is called the stabilizer of x. Any two orbits are disjoint or identical, and

the number of elements (order) in Gx is the order of the group divided by the order of the

stabilizer of x. If Gx = G then x is called invariant or equivariant. The set of orbits is

called the orbit space X=G: The size of the orbit space might be much less than the size of

X , and, in the presence of symmetry, computations on the domain X can often be replaced

by equivalent computations on the domain X=G: This computational savings represents an

important motivation for considering symmetry.

33

An action that has only one orbit is called transitive. In the example above, the D4 action

has two orbits, namely the set of red vertices and the set of blue vertices. The stabilizer

D4v of any vertex v contains 2 elements, the identity and a re
ection about some plane;

however, these stabilizers can be di�erent as v varies. For example, jD4j = 8, and, for any

vertex, jD4vj = 2; there are, thus, 8
2 = 4 elements in the orbit of v, which, of course, is

correct.

Any subgroup H � G acts on G by left multiplication. The orbit of a group element g 2 G is

Hg and is called a (right) coset of x and H; the number of these cosets is jGj
jHj . The conjugate of

g by h is h�1gh; a group acts on itself by conjugation, as well as on its set of subgroups. Any

subgroup �xed by the conjugation action is called normal . The cosets of a normal subgroup

H form the quotient group G=H under the natural multiplication of cosets gH � g0H = (gg0)H.

If G and G0 are two groups, then a homomorphism f :G ! G0 is a function from G to G0

that sends the identity of G to the identity of G0 and for which f(g � h) = f(g) � f(h).

If f is one-to-one and onto then it is called an isomorphism and G and G0 are said to be

isomorphic. Because an isomorphism of groups preserves group structure, it can be thought

of as a renaming of the group elements, and isomorphic groups, therefore, are not normally

considered to di�er in any essential way.

The direct product of groups G � G0 is the group of ordered pairs of elements from G and

G0, with multiplication de�ned component-wise:

(g; g0) � (h; h0) = �
g � g0; h � h0�

34

The cyclic group Cn is any group isomorphic to the group of integers modulo n, Zn under

addition. The symmetric group Sn is the group of permutations of the integers f0; 1; : : : ; n�

1g with multiplication given by composition of permutations.

An Abelian group is a group whose multiplication operation is commutative: gg0 = g0g for

all g; g0 2 G. It can be shown that any �nite Abelian group is isomorphic to a direct product

of cyclic groups.

Now, suppose that G acts on two sets X and Y , and that there is a function f :X ! Y .

We say that f is equivariant (or invariant) if f(gx) = gf(x) for all x 2 X and g 2 G.

This condition can also be phrased by saying that f commutes with G. This de�nition

is important because it formalizes the notion that f \respects" any symmetry in X . If f

is equivariant then f induces a well-de�ned function f=G:X=G ! Y=G, and so f may be

replaced, in a way, with the function with a smaller domain.

It is worth remarking that the notion of an invariant f is a special case of the notion of an

invariant point of a group action; G acts on the set of functions Y X via conjugation, and f

is an invariant of that action.

3.2 Groups and matrices

Recall that a vector space V over the complex numbers C is an Abelian group on which

the additive and multiplicative groups of C each act and for which r(v � w) = rv � rw

and r0 = 0, where r 2 C and 0;v;w 2 V. We consider only �nite dimensional vector-

35

spaces here, each of which has a basis of n elements whose linear combinations uniquely

generate the space. The linear transformations from a vector space Vn of dimension n

to a vector space Vm of dimension m is, given a basis for the spaces, uniquely associated

with a an invertible n �m complex matrix M: In the sequel, therefore, we will frequently

identify a matrix and its associated linear transformation, and we will frequently identify

n-dimensional spaces of C with complex n-tuples.

Let feni gn�1
i=0 and femi gm�1

i=0 be bases for Vn and Vm respectively. The direct sum Vn�Vm is

the n+m dimensional vector space of ordered pairs of elements from Vn and Vm. The tensor

product Vn
Vm is the mn-dimensional space whose basis elements are feni
 emj gn�1;m�1
i;j=0

[530, 531]. The tensor power
NjV is V
 � � �
 V, with j factors. The symmetric power

SymjV is the subspace of
NjVn whose basis is given by all elements of the form

n
eni1
 � � �
 enij : 0 � i1 � i2 � � � � � ij � n� 1

o
:

Let Mn
m be the set of m � n complex matrices, and let M 2 Mn

m be an m � n matrix,

M = (Mij)
m�1;n�1
i=0;j=0 . Let us write I for the index set 0; 1; : : : ; m� 1 of the rows of M, and J

for the index set 0; 1; : : : ; n� 1 of the columns. Now suppose that G acts on both I and J .

We say that M is G-equivariant if

(8i 2 I) (8j 2 J) (8g 2 G)Mij = Mgi;gj:

If I = J = G and G acts on itself by left multiplication, then a G-equivariant matrix is

called a G-circulant. A Cn-circulant is thus the usual circulant matrix|constant on the

diagonals with wraparound [223].

36

In order to see the relationship between the de�nition of G-equivariant matrices and our

earlier de�nitions, we de�ne the concept of group representation.

Let V be a vector space over C of dimension n; V can be thought of as the space of n-tuples

of complex numbers. An invertible linear transformation from V onto itself corresponds

to a nonsingular matrix in a natural way, and the linear transformation and its associated

matrix will often be identi�ed in the sequel. The nonsingular n� n matrices form a group

GLn under matrix multiplication. A group homomorphism � from G to GLn is called a

representation of G of degree n. The matrix corresponding to the linear transformation

that permutes the basis elements has precisely one \1" in each row and column with its

other entries being 0; such a matrix is called a permutation matrix. A representation �

such that �(g) is always a permutation matrix is called a permutation representation. A

representation can also be thought of as an action by a group G on V in which the map

induced by each g 2 G is a linear transformation of V (or an n� n matrix).

Now given two permutation representations of G, � and �, of degrees n and m with asso-

ciated spaces V and W respectively, and given a linear map M:V ! W, the following are

equivalent:

� M is equivariant with respect to the G actions on V and W.

� M � �(g) = �(g) �M, for all g 2 G.

� M is G-equivariant.

.

37

Representation theory will be discussed in more detail in Chapter 7, where it will be used

in the context of fast group Fourier transforms.

3.3 Cayley graphs and interconnection networks

Group theory has been used extensively in the design and modeling of interconnection

networks for parallel computers. These interconnection networks can connect processors to

memory modules or, in the cases we consider here, processors to one another.

An interconnection can be viewed graphically as follows: each processor, together with

its local memory, is represented as a vertex in the interconnection graph, and wires phys-

ically linking processors are represented as edges connecting the corresponding vertices.

More complicated models are also possible, in which some vertices represent, for example,

switches.

It is often of interest to know how di�cult it is to route a given permutation of the processors

given a speci�ed interconnection network. In a series of classic papers from the early 1960s,

Vaclav E. Bene�s, whose original motivation was the analysis of telephone switching networks,

showed that group theoretical concepts could be used to analyze the set of permutations

routed by a network [102{104].

The Cayley graph of a group G with respect to a subset S � G is a directed graph in which

each edge is colored from a set of jSj colors [800]. The vertices of the graph are the elements

of G, and there is an edge from vertex g to vertex g0 whenever there is some h 2 S such

38

that hg = g0; in this situation, the edge between g and g0 is colored h. In practice the term

Cayley graph is normally reserved for the situation when S generates G, which is equivalent

to requiring that the Cayley graph be connected; this is reasonable, since a disconnected

interconnection network is rarely useful in a multiprocessing environment.

Beginning from at least the 1960s a number of interconnection networks were proposed and

implemented. These interconnection networks were designed to minimize cost and maximize

the number of permutations that could be routed within a �xed time. As early as 1984,

Carlsson, Sexton, Shensa, and Wright showed that Cayley graphs could be used to model

interconection networks [162]. Later, Carlsson, Cruthirds, Sexton, and Wright observed

that important classes of networks were Cayley graphs and thereby were able to simplify

analysis and modeling of networks [160,163].

Group theory was explicitly proposed as a foundation for the modeling and analysis of

interconnection networks in an unpublished manuscript of Carlsson, Fellows, Wright and

Sexton (1985) [161], where the utility of a group-theoretical approach to network design,

network description, network simulation, and scheduling was advocated. Fellows' 1985

dissertation discussed many of these matters in more detail, including analyses of families

of interconnection networks including hypercubes, tori, cube-connected cycles, butter
y

networks [282].

Akers and Krishnamurthy (1984, 1987) [14,15] observed that group graphs had good fault-

tolerance capabilities.

We now consider several concrete examples of Cayley graphs.

39

The hypercube was introduced in section 2.1. It is a popular interconnection network in

which processors are at the vertices of a unit cube in Rk: In fact, the hypercube of dimension

k is simply the Cayley graph for the cross product of k copies of the cyclic group C2 with

respect to the generating set f(1; 0; 0; : : : ; 0); (0; 1; 0; : : : ; 0); : : : ; (0; : : : ; 0; 1)g.

A Cayley graph of a non-commutative group is shown in, Figure 3.1, where the Cayley

graph for the order 8 dihedral group D4 (see section 3.1) with respect to the generators

fr; fg. The problem of embedding this D4 Cayley graph into a hypercube arises in Chapter

6; (compare �gure 6.4).

The cube-connected cycles, which were shown to be capable of a wide class of computa-

tions, particularly the so-called ASCEND-DESCEND algorithms (which include fast Fourier

transforms) in the early 1980s by Franco P. Preparata and Jean Vuillemin [610] in a famous

paper, are wreath products of cyclic groups.

Fred Annexstein, Marc Baumslag, and Arnold L. Rosenberg generalized the Cayley graph

construction to group action graphs. If G acts on X , and if S � G generates G, then group

action graph corresponding to G; S and X is the graph whose nodes are the elements X

and for which, for each x 2 X and g 2 S, there is an edge from x to gx: They studied many

embedding, routing, and simulation problems and presented formal methods for simulating

the certain kinds of group action graphs by others; they also studied the de Bruijn [609] and

shu�e-exchange networks [721], in addition to the networks described above [54{56,636].

Based on this early work, a wide class of Cayley graphs (and group action graphs) has been

proposed as possible interconnection networks. Richard N. Draper initiated the study of

40

e r

r2r3

fr3

f fr

fr2

f f

ff

r

r

r

r

r

r

r

r

Figure 3.1: Cayley graph for D4. Solid lines correspond to rotation 90� and dotted lines
correspond to re
ection about the horizontal bisector. The generators are fr; fg with rela-
tions fr4 = e; f4 = e; rf = f3rg. Each node is labeled with a word whose product is the group
element at that node.

41

supertoroidal networks, which are networks that are the Cayley graph of the semidirect

product of cyclic groups [248]. Routing algorithms and simulation algorithms were given;

the methods display an interesting mixture of group-theoretical, graph-theoretical, and

computational techniques [147,148,245,246]. The twisted hypercube network has also been

shown to be a group graph [261,267,826].

Cayley graphs have been particularly studied from the point of view of being classes of

graphs with small diameter, a common concern in interconnection network design [184,

250,274]. Lowell Campbell et al. have shown that even almost \randomly chosen" Cayley

graphs of non-Abelian linear groups (groups of matrices whose elements lie in a �nite �elds)

have surprisingly low diameter for their size [156].

Other applications of Cayley graphs, including some to game-playing, are described in

Cooperman, Finkelstein, and Sarawagi [202].

Our work di�ers from much of the work on interconnection networks insofar as we are

concerned primarily with Cayley graphs that arise at the software level. Our Cayley graphs

arise when the problem to be solved is phrased as a G-equivariant matrix M; it will be seen

to be necessary to embed this Cayley graph into the target architecture, which may have

an interconnection network that is also a Cayley graph, but normally of a group that has

no relation to the group of symmetries of the problem(see Chapters 6 and 7) [708]. The

embedding of Cayley graphs in Cayley graphs is a special case of the problem of �nding

Hamilton cycles in Cayley graphs [55], and is related to the class of problems analyzed by

Fellows in his dissertation [282].

42

On the other hand, it is worth noting that there are many classes of architectures which

are not Cayley graphs or group action graphs. The most notorious of these is, perhaps, the

de�nitely unsymmetric Internet architecture. The fat-tree topology of the CM-5 is another

well-known example [502,503]. Many of the graphs considered in the theoretical community,

such as the immensely complex network of expanders used in the sorting algorithm of

Ajtai, Koml�os and Szemer�edi, are highly nonsymmetric as well. An analysis of relationships

between group theoretical techniques and expander graphs is contained in the survey article

by Bien (1989) [124].

3.4 Parallel group-theoretical algorithms

We now brie
y discuss the subject of parallelization of computations in �nite groups.

There is a considerable body of literature for sequential algorithms for computation in �-

nite (permutation) groups [152, 684], particularly permutation groups, which we can only

very brie
y touch upon here. The kinds of questions that have been addressed in the

sequential literature involve �nding structural aspects of a group (such as �nding a com-

position series, a Sylow subgroup, the centralizer, the commutator subgroup, and so on)

and solving word problems in the group, particularly testing the membership of a per-

mutation in a permutation group. These algorithms tend to rely on �nding a sequence

of generators of the group element for which any group element has a reasonably short

and e�ectively computable representation [251]. The notion of a strong generating set has

proven to be especially useful for such computations [144,203,405]. Group-theoretical algo-

43

rithms have been especially important in two applications: polynomial-time testing of graph

isomorphism [70,317,523] and exploiting symmetry in backtrack searches of combinatorial

objects [143,153,266,479,483,508]. The proof of the nonexistence of a projective plane of or-

der 10 was one of the most dramatic illustrations of the utility of the \isomorph rejection"

method in backtrack search [451, 481, 482]. Many of these algorithms have been imple-

mented in the two premier contemporary group-computation systems: GAP and MAGMA

(MAGMA is the latest version of Cannon's famous CAYLEY program).

The �rst parallel algorithm for permutation group algorithms seems to be implicit in the

logspace solutions of certain word problems due to Lipton and Zlacstein in 1977 [515]; there

is a close connection between problems solvable in log space and parallelizable algorithms

in certain theoretical models of parallelization. In a classic and fairly deep paper by L�asl�o

Babai, Eugene M. Luks, and �Akos Seress, it was shown that a number of permutation group

algorithms were in NC, that is, they could be solved in polylogarithmic time on a polynomial

number of processors [71]. The algorithms include �nding the order of a permutation group,

�nding the center, and so on, and rely on the classi�cation theorem for �nite simple groups.

S. Waack has explored parallel complexity of classes of linear groups [791] and surveys other

results in [790], and Jin-Yi Cai has given e�cient algorithms for another class of groups [154].

However group-theoretical algorithms are notoriously di�cult to analyze because of their

sensitivity to choice of data representation and distribution; this matter is discussed in more

detail in Sims' monograph [685]. In the parallel case the situation is even trickier to analyze

because of the added complexity of accounting for di�erent architectures and data-layouts.

44

In a more computational vein, we remark that even the backtrack searches by Clement

Lam et al. for projective planes of a given order were concerned with vectorization, and

many of their speedup techniques would apply in a parallel environment as well [482,741].

Group-theoretical algorithms were implemented on a Connection Machine by Bryant W.

York and Ottorino Ori (1993) and used to enumerate buckminster fullerenes [817]. York

et al. have exploited potential parallelism in group-theoretic computation, which, roughly

speaking, can come at a high level from parallelization of the main algorithm itself, or

at a low level from parallelizing the manipulations of individual large permutations, with

particular reference to the Connection Machine family [204,474,816].

Finally, in joint work with Jonathan Bright and Simon Kasif, the author has explored par-

allel algorithms for solving the shortest word problem in groups.6 [142] This problem is easy

to phrase. The input is a �nite set S of permutations from a permutation group G and an

additional permutation g. The output is the shortest expression of g as a composition of

permutations from S. For example, if S was the set of permutations corresponding to single

moves applied to a Rubik's cube, and g was the permutation corresponding to a particular

mixed-up state of the cube, then the algorithm would output, in theory, the shortest se-

quence of moves that would unmix the cube. The method used was a fairly straightforward

parallelization of the sequential algorithm Fiat, Shamir, Moses, and Shimshoni [289]. This

algorithm is, in turn, a generalization to non-Abelian groups of the well-known algorithm of

Schroeppel and Shamir for solving certain classes of NP-complete problems [671]. The idea

6 Of course this problem, in general, is recursively unsolvable.

45

is fairly simple and can be, perhaps, most easily understood through an example. Suppose

we wish to �nd out if a particular state of Rubik's cube can be solved in 20 moves. We

generate all states that can be reached in 10 moves from the initial state, and all states

that can be reached in 10 moves from the target state, and see if they intersect; this is a

parallelization of bi-directional search [604]. Each of these two sets can be generated in

sorted order by computing the permutations corresponding to all states reachable within

5 moves, and composing them appropriately; a parallel algorithm only needs to be careful

about generating the sets in parallel. Surprisingly, this simple idea, when applied to the

case of an Abelian group, resulted in the fastest known parallel algorithm from a theoretical

point of view for the knapsack problem, into the parallelization of which considerable e�ort

had been directed [174,177,285{287,423,498,513].

46

Chapter 4

Linear algebra and parallel

processing

In order to apply group-theoretical ideas in a uniform setting, the methodology advocated

in this thesis �rst attempts to convert the problem into a linear algebra setting, namely

to the multiplication by a matrix M over an appropriate domain. There are a number of

potential advantages and disadvantages inherent in this formulation. First, we consider

some potential disadvantages:

1. No such formulation may be possible. For example, the problem of playing full-chess

appears to be di�cult to formulate in this way.

2. The formulation might obfuscate the underlying computational structure of the prob-

lem. For example, in certain general unstructured graph problems, it is probably

considerably simpler to act directly on the graph, rather than on a sparse-matrix rep-

resentation of the adjacency matrix. Similarly, tree algorithms are usually much more

47

easily understood in terms of trees directly than in terms of their adjacency matrices.

3. Additional mathematical machinery may be required, namely the tools of linear alge-

bra. This tends to be less of a problem for physical scientists, who are familiar with

the matrix algebra terminology, but could be a problem in other domains.

On the other hand, there are compensating advantages that in some cases make the formu-

lation useful:

1. Library implementations of linear algebra primitives tend to be highly tuned and very

e�cient in practice. Rapid execution of such primitives tends to be a motivating factor

in design tradeo�s in the architecture, so that the user can normally expect they will

execute at good bandwidth. We will demonstrate the utility of this observation when

we describe some almost paradoxical, but nonetheless quite fast, parallel programs for

the n-body problem (see Chapter 8).

2. A large repertoire of familiar and powerful mathematical techniques is available for the

manipulation of particular classes of matrices. These include numerous factorization

identities, group representation theory, and the huge body of work on matrix algebra;

much of this is probably more familiar to end users than, for example, more general

techniques from formal semantics.

3. Conversion to any one notation tends to elicit the common computational themes of

disparate applications.

48

4. Code generation from a factorization of a matrix, as we shall see below, is straightfor-

ward, and parallel algorithms targeted to di�erent classes of machines can easily be

derived by changing the factorization.

The speci�c tradeo�s depend on the problem, although we strive, in our selection of case

studies, to emphasize that the approach, although not universal, is more general than it

might appear.

Section 4.1 brie
y reviews the development of linear algebra primitives on parallel machines.

Section 4.2 describes the generalization of linear-algebra ideas to semirings, and outlines

some brief examples from graph theory. Section 4.3 informally de�nes the matrix language

in which many of our algorithms will be expressed. The fundamental primitive for expressing

parallelism will be the tensor product
.

4.1 Background

Linear algebra has long been recognized as one of the cornerstones of parallel processing,

as the following excerpt, taken from a 1962 article by Slotnick, Borck, and McReynolds,

describing the SOLOMON computer, exempli�es [697, p. 97]:

The SOLOMON (Simultaneous Operation Linked Ordinal MOdular Net-
work), a parallel network computer, is a new system involving the interconnec-
tions and programming, under the supervision of a central control unit, of many
identical processing elements (as few or as many as a given problem requires),
in an arrangement that can simulate directly the problem being solved.

The parallel network computer shows great promise in aiding progress in cer-
tain critically important areas limited by the capabilities of current computing

49

systems. Many of these technical areas possess the common mathematical de-
nominator of involving calculations with a matrix or mesh of numerical values,
or more generally involving operations with sets of variable which permit simul-
taneous independent operation on each individual variable within the set. This
group is typi�ed by the solution of linear systems, the calculation of inverses
and eigenvalues of matrices, correlation and autocorrelation, and numerical so-
lution of systems of ordinary and partial di�erential equations. Such calculations
are encountered throughout the entire spectrum of problems in data reduction,
communication, character recognition, optimization, guidance and control, or-
bit calculations, hydrodynamics, heat
ow, di�usion, radar data processing, and
numerical weather forecasting.

Since then, of course, a tremendous body of research has centered on the parallelization of

matrix primitives, and one of the earliest envisioned applications of APL was, in fact, the

modeling of microcode-level parallelization [394,396].

An important characteristic of modern linear-algebra manipulation is its reliance on a

standard library of subroutines, the so-called BLAS (Basic Linear Algebra Subprograms)

set [243,520], which has been extended to LINPACK and LAPACK [520,521].

Linear algebra primitives are particularly important for the e�ective programming of parallel

computers, both because they are the computational bottleneck for large classes of codes,

and because of the di�culty of programming in a lower-level. The LAPACK library has

been extended to ScaLAPACK, a scalable high-performance computing library intended to

provide explicit support for programmers who use matrix primitives in their code [181,244,

410].

Matrix multiplication is easily parallelizable in the PRAM model in logarithmic time

and with optimal work. Even subcubic algorithms of Strassen [725, 726] and Copper-

50

smith and Winograd [205] may be e�ciently parallelized in this model [586, 588]. The

Coppersmith-Winograd O
�
n2:376

�
time algorithm is not practical for reasonable matrix

sizes, but Strassen's algorithm has been shown to result in real speedups on vector ma-

chines [78].

Much of our work depends on fast parallel algorithms and implementations for matrix

multiplication [789]. Most e�cient matrix multiplications algorithms have their basis in a

simple systolic algorithm given by Cannon [159]. Practical algorithms must contend with

issues of matrix layout [229,510], pipelining, and constant factors in the minimization of

communication overhead [115, 304, 324]. Implementations of hypercube algorithms on the

Connection Machine, on which we have relied, in large measure, for our speedups, must

take account of a number of complications, such as local vectorization, memory hierarchies,

and the simultaneous utilization of multiple interconnection wires from a processor [354,

372,372,412].

We also make use of BLAS functions such as outer-product routines, based on all-to-all

broadcast [146] and transpositions [263]. It is a point worth reemphasizing that even a

routine like all-to-all broadcast, which sends a copy of the data in each processor to all

the other processors and which is, theoretically speaking, quite trivial, is extremely di�cult

to implement at peak bandwidth on a parallel architecture, primarily because of constant-

factor pipelining and microcode-level-parallelism issues that are almost always elided in

theoretical models [414, 540]. Thus, in the factorization portion of our main program, we

typically factor down to one of the BLAS routines, but it would not be e�cient, from a

51

software-engineering point of view, to recode fundamental BLAS operations at the end-user

level.

On the other hand, because the original motivation for BLAS was scienti�c computation,

BLAS routines are typically designed to operate over the �eld of complex numbers, whereas

many of our applications required this functionality over semirings. However, since most

of the BLAS complexity for the routines that we have discussed involve data-movement,

these are easy to modify for the case when the matrix entries are from a semiring, and this

observation, implemented in custom microcode, was part of the reason for the speed of our

N -body code (see Chapter 8); in other cases we implicitly embedded our semiring into C

and acted there. The next section discusses these matters in greater detail.

4.2 Graph problems and semirings

There are several methodologies for the study of graph problems which use linear-algebraic

concepts, and which demonstrate the utility of linear algebraic methods in unstructured

problems. We discuss here two of these: algebraic graph theory and path-algebra theory.

In algebraic graph theory, graph-theoretical questions are explored by analyzing the adja-

cency matrix of the graph as a complex matrix. For example, bounds on the eigenvalues

of the adjacency matrix for a graph can yield a bound on the graph's diameter [185], and

bounds on the eigenvalues of the Laplacian of a graph [145, pp.38{43], which is related to its

adjacency matrix, can be used in graph partitioning algorithms [352]. There are several ex-

52

cellent surveys of the �eld, and the related area of algebraic combinatorics, by Biggs [125],

by Godsil [335], and by Brualdi and Ryser [145]. If the spaces V and W are considered

as vector spaces over C whose dimension is the number of vertices in the graph, then the

adjacency matrix M becomes a complex linear transformation, thereby reducing to the for-

mulation that we give. When the graph has some symmetry given by an automorphism

group G, then G will induce a symmetry of M. By applying group Fourier transformations

to M, information on graph-theoretical properties of certain graphs has been derived, using

serial algorithms [476].

Path-algebra theory, a form of semiring theory, like algebraic graph theory, analyzes graphs

via their adjacency matrices. However, whereas algebraic graph theory views the entries

in the adjacency matrix as lying in a �eld, such as C , in path-algebra theory the matrix

entries are considered to be elements of a weaker domain, such as a semiring.

Formally, a semiring is de�ned as an ordered triple (R;+; �) such that R is a set, (R;+) is a

commutative monoid, R; � is a monoid, and � distributes over +:7 The most commonly aris-

ing example of a semiring is a boolean algebra, although the semiring (R;min;+) frequently

arises in the context of optimization problems [504].

7 There are many slightly di�erent de�nitions of \semiring." The introduction to Golan's survey

contains a description of some of the variants. In particular, what we call \semiring" is called a

\quasiring" in the popular textbook by Cormen, Leiserson, and Rivest. On the other hand, some

authors use the term \quasiring" to mean something else entirely [288, 688] A path algebra is a

semiring with some additional in�nitary closure conditions, whose precise form will not concern us

here.

53

Semirings, in various ways, have been proposed as a way to unify a number of path-�nding

algorithms [1, 499, 736,737, 814]. For example, consider the problem �nding the smallest-

weight path between two nodes in a weighted directed graph of n nodes. It is easy to

see that this is reducible to logn matrix multiplications in the semiring (R;min;+). Since

matrix-multiplication is inherently parallelizable, this algorithm is easier to parallelize, and

has fewer threads of control, than a parallelization of straightforward breadth-�rst search.

Our work in the applications of chess endgames and some of our work in string-matching

use matrices whose entries are in a semiring, and so path-algebra ideas are implicit here.

Semirings have been used in a number of parallel graph algorithms; see the surveys [541,

587,589,640]. The utility of the path algebra/semiring formulation in parallel algorithms is

a natural consequence of our formulation of the generalized operator M.

4.3 Tensors and programs

We have seen that BLAS routines provide e�cient execution of certain primitive matrix

operations, and that the algorithms can, by generalizing the domain in which the matrix

entries lie, encode wide classes of graph-theoretical algorithms. This section explores in

more detail the relationship between a matrix factorization, whether over a semiring or

over the complex numbers, and parallel processing. This material is taken directly from the

body of work in signal processing pertaining to the relationship between the tensor product

and parallelism, and identities useful in the derivation of factorization.

54

The general theme is quite simple, namely, a factorization of our operator matrix M in

terms of primitive operators like
;+, and �, is mapped to a code sequence suitable for

execution on a parallel architecture. By modifying the factorization, code suitable for

variant architectural parameters can be derived.

4.3.1 Tensor products: Introduction

Let Vn be the space of length n vectors with entries in a �eld F: We let feni gni=1 be the

\standard basis", that is, eni is the vector whose ith component is 1 and whose other

components are 0.

An element of Vn may be thought of as a length n array whose elements are in F, or as an

n� 1 matrix over F [530].

The mn basis elements of Vn
 Vm, feni
 emj gn�1;m�1
i=0;j=0 , are ordered by

eni
 emj 7! emn
mi+j :

In this manner an element of Vn
Vm may be considered to be a vector of length mn with

elements drawn from F. Let Mn
m be the space of n�m matrices over F. In the following, a

linear transformation will be identi�ed with its matrix representation in the standard basis.

Let Mn = Mn
n. Let In be the n� n identity transformation of Vn:

Write diag(v0;v1; : : : ;vn�1) � diag(v) for the diagonal matrix in Mn whose diagonal ele-

ments are taken from the coordinates of v:

55

If A 2Mn
m and B 2Mn0

m0 , the matrix of the tensor product A
 B 2Mnn0
mm0 is given by

A
 B =

0BBBB@
A11B A12B � � � A1mB

A21B A22B � � � A2mB
...

... � � � ...
An1B An2B � � � AnmB

1CCCCA (4.1)

The importance of the tensor-product to our work in parallel processing inheres in the

following identity, for B 2Mm: [408]

(In
 B)

0BBBB@
v0
v1
...

vnm�1

1CCCCA =

0BBBBBBBBBBBBBBBBBBBB@

B �
0B@ v0

...
vm�1

1CA
B �
0B@ vm

...
v2m�1

1CA
...

B �
0B@ v(n�1)m

...
vnm�1

1CA

1CCCCCCCCCCCCCCCCCCCCA

(4.2)

Suppose n = ml. The n-point stride l permutation matrix Pnl is the n � n matrix de�ned

by

Pnl (v
w) = w
 v;

where v 2 Vm and w 2 Vl. The e�ect of Pnl on a vector is to stride through the vector,

taking m steps of size l. For example, taking m = 3; l = 2; and n = 6, we have:

P6
2

0BBBBBBB@

v0
v1
v2
v3
v4
v5

1CCCCCCCA
=

0BBBBBBB@

v0
v2
v4
v1
v3
v5

1CCCCCCCA
(4.3)

Stride permutations are important due to the following Commutation Theorem [758]:

56

Theorem 1

Pnl (A
 B)Pnm = B
 A

where A 2Mm; B 2Ml; and n = ml:

This theorem, which is easy to prove even when the entries are from a semiring, allows the

order of evaluation in a tensor product to be varied. We shall see in the next subsection that

some evaluation orders naturally correspond to vectorization, and some to parallelizations;

the Commutation Theorem will be the method by which one type of execution is traded o�

for another.

4.3.2 Code generation: Conversion from factorization to code

This subsection describes the relationship between the matrix representation of a formula

and the denoted machine code. Because many of the algorithms to be presented will be pre-

sented in the tensorial manner, with the code-generation phase only represented implicitly,

this subsection is fundamental to this dissertation.

The matrix notation we use is nothing more than an informal notation for describing algo-

rithms. It di�ers from standard notations primarily in its explicit denotation of data distri-

bution, communication, and operation scheduling. Whereas most high-level languages, and

even special-purpose parallel languages, leave the distribution of data over the processors

and the scheduling of operations within processors to the discretion of the compiler, the

notation we use, at least potentially, encodes all such scheduling. This has both advan-

57

tages and disadvantages: although it gives the programmer a �ner level of control, which

can be important for time-critical applications, it requires some conscious decision-making

over data-distribution that is unnecessary in some other languages. On the other hand, the

functional nature of the notation does make it potentially amenable to compiler reordering.

The most serious disadvantage is its narrowness of application. Originally developed for

signal processing codes, this work demonstrates its wider application, but there are many

applications which would not easily fall under its rubric.

The target architecture of the language is a machine comprising m parallel processors, each

with shared memory. However, it is easy to see that the results go through also, with an

extra communication step or two, on local-memory machines. Each processor may also have

vector capabilities, so that computations within the processors should be vectorized. We

do not assume restrictions on the vector length capability of the processors.

User data is always stored conceptually in the form of a vector0BBBB@
v0
v1
...

vn�1

1CCCCA :

Assuming that m divides n, elements v0; : : : ;v n
m
�1 are stored in processor 0, elements

v n
m
; : : : ;v 2n

m
�1 are stored in processor 1, and so on. Matrices are stored in column-major

order. It is assumed that certain general classes of speci�c matrices are already implemented

on the architecture, in particular, the stride permutations and any speci�c permutations

corresponding to the interconnection network.

Let B 2 Ml and let code(B) be any sequence of machine instructions that computes the

58

result of left-multiplication by B. That is, code(B) is a program that takes as input an

array v of l elements of F, and returns as output the array B � v of l elements of F, where

vectors are identi�ed with their coordinates in the standard basis.

Given code(B) and code(B0) for two matrices B and B0; it is easy to compute some

code(B+ B0). Simply let code(B+ B0) be the program that, given its input array v, �rst

runs as a subroutine code(B) on v (saving the result), then runs code(B0) on v, and then

returns the coordinate-wise sum of the arrays that are returned by these two subroutine

calls.

Similarly, given code(M) and code(M0); it is easy to �nd code(M �M0), assuming the

dimensions of M and M0 are compatible: run code(M) on the result of running code(M0)

on the argument v.

Of course, code(Il) is the code that returns its argument, an l-vector.

Consider a parallel processor with m processors, p1; : : : ; pm, each with some local memory.

We make the convention that a length ml array will be stored with its �rst l elements in

processor p1, its second l elements in processor p2, and so on.

Given this convention, one can interpret code(Im
 B) as code that runs on thism-processor

architecture. To construct code(Im
 B), load code(B) in each pi. When called on a length

ml array v, pi runs code(B) on the l elements of v that are stored in its local memory,

and outputs the result to its local memory. Equation 4.2 shows that this will compute the

tensor product. Similar rules can be derived when the number of processors is di�erent

59

from m.

The code corresponding to A
 Il, for A 2 Mm, is a bit more subtle. The interpretation

of code(A
 Il) is as the code corresponding to A; except that it operates on l-vectors

rather than on scalars. This code can be constructed (loosely speaking) from code(A) by

interpreting the length ml argument array v as being an element of the m-module over the

ring Fl. This corresponds closely to hardware primitives on certain vector architectures.

The relation

A
 B = (A
 Il) (Im
 B) (4.4)

can be used to compute general tensor products.

By combining a �xed set of transformations re
ecting the hardware primitives of the un-

derlying architecture with combining rules like +, � and
, and some simple tensor product

identities, concise expressions that can be translated into e�cient code for certain classes

of functions can be de�ned [345].

4.3.3 Example: Matrix multiplication by a tensor product

In order to illustrate the process of translation from tensor-product formulas into code we

will describe a simple example taken from [345].

As above, let A 2 Mm and B 2 Ml. Let M = A
 B 2 Mn, where n = ml. This subsection

describes the development of fast algorithms to compute w = Mv, where v;w 2 Vn, on

various architectures. Except for the fact that the entries in the matrices considered here

60

lie in arbitrary semirings, the exposition in this section closely follows the signal-processing

paper of Granata, Conner, and Tolimieri [345, pp.44{47].

We consider several target architectures. For each target architecture, we give a factorization

and generated code.

The �rst target architecture to be considered is a serial machine. The associated factoriza-

tion is

M = A
 B (4.5)

= (AIm)
 (IlB) (4.6)

= (A
 Il) (Im
 B) (4.7)

= (Pnl (Im
 A)Pnm) (Il
 B) (4.8)

The term Im
B, as explained earlier, represents a loop of the function B over l contiguous

length m segments of its length n argument.

The term

Pnl (Im
 A)Pnm

represents a similar loop for A, except that the argument is reordered before being passed to

A. Of course, on a serial machine this reordering can always be folded into the computation

for A, but for clarity we write it out in the serial code for w = Mv, below:

for i = 0 to l � 1 /* For each segment* /

temp(im : im + l � 1) = B � v(im : im + l � 1) /* Call B on that segment */

61

temp = P
n
m � temp /*Compute the stride permutation*/

for i = 0 to m� 1

w(il : il +m � 1) = A � temp(il : il +m � 1)

w = P
n
l �w

Note that this method requires time proportional tom2+l2, which is normally much smaller

than the n2 brute-force method; more to the point, the method uses existing, and possibly

highly optimized, software for A and for B in order to generate the code for M.

The next target architecture is a vector machine. The vector machine is presumed, as

primitives, to be able to perform arbitrary operations on vectors, and we presume a primitive

load-stride operation.

The expression B
 Il corresponds to the routine named by B performed on vectors of length

s instead of scalars, assuming that the code for computing B uses only linear operations,

namely multiplication by a constant and vector addition. Because the focus of this thesis

is on parallelism and not vectorization, we will skip the code for this section.

The third architecture that we consider is that of a 16-processor SIMD machine, and assume

that m = l = 64, so that M 2M4096.

The associated factorization is

M = P4096
64 (I64
 A)P4096

64 (I50
 B) (4.9)

=
�
P4096
64 (I16
 I4
 A)

� �
P4096
64 (I16
 I4
 B)

�
(4.10)

62

The terms I4
A and I4
B correspond to looping calls that are executed within each of the

16 processors. The I16 terms indicate that the identical code is executed in each processor.

The stride terms can be implemented via a reindexing on a shared-memory machine, and

via permutation on a local memory machine. It is clear that when each processor is itself

a vector processor, then the I4
 A term can be rewritten using the vectorization methods

described above.

Another simple class of examples is provided by classical fast Fourier transform algorithms,

which will be discussed in more detail in section 7.1.

63

Chapter 5

Exploiting symmetry:

Mathematical framework

This chapter describes in more detail the programming methodology that will be adopted

in Part II of this thesis.

The problems we will solve will have the following two parts:

1. A function M:V! W. Here V and W are simply some domains of objects.

2. A group G acting on V and on W. V;W are spaces in which the data items lie.

The group will express the symmetry of M in the sense that we are guaranteed that,

8g 2 G, g �M = M � g.

The methodology used to solve a problem presented in this manner may be divided into

two main techniques:

First, we set up the problem in a generalized linear-algebraic formulation. We suppose that

64

the data items in V are uniquely denoted by some set of n features, which take values in

some algebraic structure F. Similarly, we suppose that data items in W are denoted by m

distinct features taking values in F. The operator M is considered to be an m � n matrix

over some algebraic structure F. Of course, this formulation is often not possible, but it

may be possible for some portion of the computational problem to be solved. The matrix

M normally has a special structure that re
ects the structure of the problem.

Second we exploit the symmetry in M. Because M arose from a problem with a symmetry

expressed by a symmetry group G, if the G action is linear in F, then we get a representation

�V and �W of G on V and W. Then we have the formulas

(8g 2 G)�W (g) �M = M � �V (g)

We mainly consider the case where �V and �W are permutation representations; that is, they

only permute the features to be considered, and their matrices are permutations matrices.

We use three main tools to exploit the symmetry. Which of these tools to use, and in what

contexts, depends on details of the problem. These tools are:

Factorization The matrix M will be factored using the operators of matrix multiplica-

tion, direct sum, and Kronecker product. Each such factorization induces a parallel

algorithm on a particular architecture; by modifying the factorization, we can derive

algorithms for variant architectures.

Orbit decomposition By choosing only a single element from each orbit of the G action,

we can reduce the computational requirements of computing Mv for v 2 V. This

65

decomposition induces a new operator, and in some cases induces a parallel algorithm

whose communication pattern is characterized by a Cayley graph of G.

Group Fourier transform For certain groups G a fast group Fourier transform exists.

This is a generalization of the ordinary discrete Fourier transform whose application

block-diagonalizes the operator M; by computing the G-Fourier transform of M and

the operand v, we will be able to compute the product Mv faster than we would

otherwise have been able to do.

Although our machinery and problem statement might seem overly limiting, we hope to

illustrate, by means of several case studies, that symmetry considerations are implicit in a

broad range of problems.

Brie
y, though, here is how the symmetry groups G arise, for various applications.

In the chess endgame code, the operator M acts on sets of chess positions. These sets

correspond to binary vectors in a natural way. Now, consider a chess position P having no

pawns. Suppose we list all the positions that White could move to from the position P , and

then we apply some symmetry transformation of the chessboard|rotation or re
ection|to

each of these positions, and call the resulting set S. Now, �rst apply the same transformation

to P , and then, �nd each position to which White could move, from the transformed P , and

call the resulting set S0. It is a consequence of the rules of chess that (ignoring castling)

when there are no pawns, S = S0. Thus, our resulting matrix M will commute with the

symmetry group of the square, and M is D4-invariant.

66

In the case of n-body simulation, that is, the problem of simulating the motions of n-

particles moving through space, the symmetry group is G = Cn. It arises because if the

particles are cyclically shifted, then the forces on them are cyclically shifted as well. Thus,

the matrix representing the sum of forces on each particle is Cn invariant.

In the case of string-matching, the symmetry arises as follows. If the text is rotated, then

the sets of positions at which a given pattern string occurs in the text string will be rotated

in the same way, assuming we allow the pattern to wraparound appropriately. Thus, the

match matrix M in the case of classical string-matching will be Cn-invariant.

The next part will discuss these and other applications in greater detail, but it should be

clear that our formulation, although undoubtedly highly limited in scope, is not as limited

as it might appear at �rst.

67

Part II

Applications

68

Chapter 6

Orbit decomposition and its

application to the analysis of chess

endgames

The simplest way to exploit the symmetry of a problem has probably been used, in one

sense, by almost every programmer, and consists simply in avoiding the recomputation of

expressions that have already been computed.

Speci�cally, we are given some set of data that is symmetric, and we wish to compute

some function of the data. If the function \respects" the symmetry of the data, informally

speaking, then we only need to store a part of the data, namely, one orbit-representative

from each orbit of the action of the symmetry group on the data. We call this \orbit

decomposition."

Unfortunately this symmetry-exploitation paradigm can result in less regular data-access

patterns compared to the algorithms that do not exploit symmetry. While this constitutes

69

only a minor inconvenience on scalar machines, such irregularity can severely undermine

the performance of parallel or vector codes.

This chapter describes the methods for e�ciently implementing an orbit decomposition

problem on a parallel architecture. The domain of application comes from chess endgames|

the problem is to determine whether a particular chess endgame with a small number of

pieces can be won for White|and the salient symmetry characteristic was the invariance

under a non-commutative group. The resulting algorithm reduces to an embedding of the

Cayley graph for the symmetry group of the problem into the parallel architecture.

Section 6.1 provides an overview of some of the background and motivation for the prob-

lem. Although the analysis of chess endgames has a long history, much of the historical

information is unfamiliar to many people, and previous researchers had overlooked or un-

derestimated the signi�cance of the work of a number of key contributors to the early stages

of computer endgame analysis. Subsection 6.1.1 contrasts the chess endgame problem with

other classic search problems in arti�cial intelligence. Subsection 6.1.2 provides a brief

overview of some of the pre-computer work in these endgames. Subsection 6.1.3 focuses

particularly on two endgame analysts from the early 1900s whose work had been ignored or

underestimated by previous researchers: Friedrich Amelung and Theodor Molien. Amelung

was the �rst to carry out detailed investigations of one of the six-piece endgames we solved,

and Molien was the �rst to provide an (approximate) statistical characterization of a pawn-

less endgame. Interestingly, comparatively recent research by Hawkins and Kanunov has

shown that Molien was also extremely in
uential in the development of group representa-

70

tion theory. Subsection 6.1.4 surveys previous computer analysis of the type we perform.

Although most of this material was known, we feel that previous researchers in the area

may have given insu�cient credit to Richard Bellman, whose papers from as early as 1961

sketched a retrograde analysis algorithm and predicted its applicability to the complete

analysis of checkers.

Section 6.2 outlines the relationship between tensor products and chess endgames, and

introduces the basic notation. Section 6.3 describes the main endgame algorithm, and

subsection 6.3.2 speci�cally discusses symmetry exploitation.

Implementation issues are considered in section 6.4 and section 6.5 presents some of the

results that were discovered by the program.

Section 6.6 concludes with ideas for future work.

6.1 Motivation and background

6.1.1 Search

Search is one of the oldest and most fundamental problems in arti�cial intelligence. In

its most general form, we are given some object and a set of operations, each of which

changes the state of the object, and we want to �nd a sequence of operations to apply to

the object, satisfying certain criteria (such as having least cost) that takes the object into

some goal state. For example, an automated theorem prover might prove a theorem by

71

continually deriving new results until the theorem itself is proven; an airline computer may

wish to plan its schedule of
ights by continually adding new
ights until some coverage

and cost requirements are met; a vision system might try a number of transformations of

some digital representation of an object until a match against a �xed template is attained;

a puzzle solver might try to �nd the shortest sequence of moves that solve a puzzle, such

as the 15-puzzle.

In their full generality, most of these problems that arise in arti�cial intelligence are NP-

hard and are, thus, unlikely to be solved exactly in sub-exponential time. In order to

make progress on these problems, arti�cial intelligence practitioners deploy an array of

simpli�cations and tricks.

One approach is approximation: look for suboptimal solutions, instead of trying to �nd the

best solution.

Another approach is to use heuristics|rules-of-thumb|to guide the search into promising

areas. The most popular such algorithm is A* and its variants [231, 457, 596]. There are

several parallelizations of A*-like algorithms [213,231,272]. This approach can work well if

good heuristics are available, but, of course, that is not always the case.

One might also try techniques such as simulated annealing, genetic hillclimbing, or neural-

networks to try and guide the search.

The full-chess problem is simply to program a computer to beat humans at chess. It

dates back at least to Babbage, as is discussed later, although modern approaches follow

72

a combination of heuristics and alpha-beta pruning. The heuristics assign to each node

in the game-tree a value approximating its goodness. The alpha-beta pruning techniques

eliminate approximately a factor of square-root of the number of nodes in the tree by

improving on the brute-force minimax algorithm. Production chess programs deploy an

array of auxiliary sophisticated pruning techniques, such as singular extensions, null-move

cuto�s, killer-move, history, and many others [595, 596].8 Alpha-beta search is simply a

re�nement of the classic brute-force strategy of Shannon [679] which considers, from any

given position, each move; then each of the opponents replies; then each reply to each such

reply, and so on. The algorithm dynamically prunes nodes that can be proven not to a�ect

the value of the original position. Even though it is called \brute-force," the algorithm only

examines roughly the square-root of the number of all possibilities up to a certain depth.

The upshot of all this is that, given the root node, it can be complicated to determine which

nodes in the game tree need to be searched, and, therefore, it is di�cult to avoid searching

redundant nodes in a parallel program [80]. There are a number of theoretical models

of game-tree search in which speedup has been predicted to occur (e.g. [16, 23, 284, 292]),

but the many di�cult-to-model vagaries of the distribution of chess-tree node values and

their interaction with complex tree-pruning and move-evaluation heuristics have obviated

much of this work [158,533{535]. Nevertheless, there are successful coarse-grained parallel

chess-searchers, such as the ParaPhoenix work of Schae�er [663] and the Cray codes of

Hyatt et al. and of Warnock and Wendro� [382,388,389]. There are only a few massively

8 The origins of alpha-beta are somewhat controversial. The reader is referred to Knuth and

Moore's article (1975) for historical background [449].

73

parallel full-chess players. The �rst was the NCUBE WAYCOOL of Felten and Otto [283];

currently the CM-5 programs of Berliner, Leiserson, Kuszmaul, McConnell, Kaufmann et

al. [473] and the Transputer's Zugzwang of Feldmann, Monien, Mysliwietz, and Vornberger

are the strongest [277{281], although a custom VLSI massively parallel machine is under

development and is predicted to be very strong [380{382]. On the other hand, there is

considerable implicit parallelism in the VLSI architectures of Thompson and, on a di�erent

level, of Berliner and Ebeling [113,198,258].

Despite its super�cial similarity, the work reported here takes a sharply di�erent approach

to parallelism than do parallel tree searchers. First, we generate moves backward, starting

from the mating positions; second, we do not use heuristics; third, we do not use pruning.

Generating operators backwards has also been used in the context of symbolic protocol

evaluation [377], and is an important feature of bi-directional search [604].

Finally, we say a few words about the beautiful work on exploiting symmetry in forward-

search problems using techniques of isomorph-rejection [153]. This work uses backtracking

combined with symmetry considerations to avoid exploring a state that can be proven by

symmetry to have been already eliminated [479,482,483]. It achieved its most spectacular

success in Lam's proof of the nonexistence of a �nite projective plane of order 10 [481].

Some attention has been given as well to parallelization and vectorization of this style of

backtracking, which impinges upon computational group theory [741, 817]. Parallel algo-

rithms for bi-directional search problems in the presence of symmetry were discussed in

section 3.4 [142].

74

It is noteworthy that many games, such as chess, checkers, Hex, and others, have been proven

to be PSPACE or even EXP-TIME complete [305, 619, 620,627, 724], using the machinery

of alternating Turing machines, a powerful game-like generalization of non-deterministic

Turing machines [173,720]. This suggests that an algorithm that scales to n � n boards

cannot improve substantially on the one we give of analyzing all nodes in the state-space

[763].

6.1.2 Human analysis

Endgame analysis appears to date from at least the 9th century, with al-`Adl��'s analysis

of positions from KRKN9 [6, plate 105] and KRNKR [6, plate 112]. However, the

rules were slightly di�erent in those days, as stalemate was not necessarily considered a

draw. The oldest extant collection of compositions, including endgames, is the Alfonso

manuscript, ca. 1250, which seems to indicate some interest during that time in endgame

study [600, pp.111{112].

Modern chess is generally considered to have begun roughly with the publication, probably

in 1497, of Luis Ramirez de Lucena's Repetici�on de amores y arte de ajedrez [226].10 Ruy

Lopez de Sigura's 1561 book brie
y discusses endgame theory, but its main impact on this

9 In listing the pieces of an endgame, the order will be White King, other White pieces, Black

King, other Black pieces. Thus, KRKN is the same as KRkn, and comprises the endgame of White

King and White Rook against Black King and Black Knight

10 Ironically, this work does not contain the famous \Lucena position" from KRPKR, which seems

to have been �rst published by Alessandro Salvio in 1634, who attributed it to Scipione Genovino.

75

work would be the introduction of the controversial 50-move rule, under which a game that

contains 50 consecutive moves for each side without the move of a pawn or a capture could

be declared drawn [227, pp.55{56] [646].

Pietro Carrera's 1617 Il gioco de gli scacchi discussed a number of fundamental endgames

such as KQKBB, and certain 6-piece endgames such as KRRKRN and KRRKRB

[164, Book 3, p. 176{178]. A number of other authors of the time, such as Philip Stamma

(1737), Fran�cois-Andr�e D. Philidor (1749), and Gioacchino Greco (1624,) began developing

the modern theory of endgames [347, 602, 702]. Giovanni Lolli's monumental Osservazioni

teorico-pratiche sopra il giuoco degli scacchi (1763) would be one of the most signi�cant

advances in endgame theory for the next 90 years [518, 643]. Lolli analyzed the endgame

KQKBB, and he agreed with the earlier conclusion of Salvio (1634) that the endgame was

a general draw for White [660]. This assessment would stand substantially unchanged until

Kenneth Thompson's computer analysis demonstrated the surprising 71 move win [753].

Notwithstanding this error, Lolli did manage to discover the unique KQKBB position in

which White to play draws but Black to play loses [518, pp.431{432].

Bernhard Horwitz and Josef Kling's 1851 Chess Studies contained a number of in
uential

endgame studies, although their analysis of KBBKN was questioned by A. John Roycroft

(1972) [445, pp.62{66] [643, p. 207]. The Horwitz and Kling assessment was de�nitively

shown to be incorrect by the independent 1983 computer analyses of Thompson and Ofer

Comay [645,751].

Alfred Crosskill (1864) [212] gave an analysis of KRBKR in which he claimed a win in

76

more than 50 moves was required; this was con�rmed by computer analysis of Thompson.

The Crosskill analysis was the culmination of a tradition of analysis ofKRBKR beginning

at least from the time of Philidor [602, pp.165{169].

A generation later, Henri Rinck and Aleksei Troitzky were two of the most in
uential

endgame composers of their time. Troitzky is well-known for his analysis of KNNKP|he

demonstrated that > 50 move wins were at times required [766]. Rinck was a specialist in

pawnless endgames, composing more than 500 such studies [625,626], including some with

6 pieces. Troitzky summarized previous work in the area of KNNKP, beginning with

a problem in KNKP from the 13th-century Latin manuscript Bonus Socius [228], and

reserved particular praise for the systematic analysis of this endgame in an 18th-century

manuscript by Chapais [175]. (An early version of the program reported in this chapter

resulted in the �rst published solution for the entire endgame [707].)

The 20th century saw the formal codi�cation of endgame theory by scholars such as Johann

Berger (1890) [106], Andr�e Ch�eron (1960) [178], Machgielis [Max] Euwe (1940) [269], Reuben

Fine (1941) [291], Yuri L. Averbakh (1982) [68], and many others. Some work focusing

particularly on pawnless 6-piece endings has also appeared, for example, [107,456,642].

Currently the Informator Encyclopedia of Chess Endings series [539], which now uses some

of Thompson's computer analysis, is a standard reference. John Nunn has written several

books based on that work [581,583].

Additional historical information can be found in the references [341,378,572,643].

77

6.1.3 Friedrich Amelung and Theodor Molien: A historical note

This subsection discusses the work of Friedrich Amelung and Theodor Molien as it pertains

to pawnless chess endgame analysis.

Friedrich Ludwig Amelung (March 11, 1842{March 9, 1909) was a Latvian chess player

and author who edited the chess column of the Riga newspaper D�una-Zeitung. He studied

philosophy and chemistry at the University of Dorpat from 1862 to 1879, and later became a

private teacher and director of a mirror factory [507, p.11] [45,391]. He published a number

of endgame studies and analyses of endgames, and began a systematic study of pawnless

endgames. For example, he explored the endgame KQKRN in detail [36,37]; this endgame

was shown to have unexpected depth, requiring up to 46 moves to win, in later work by the

author [707]. He also published an article on KBNKN and KBBKN [28], which were

not exhaustively analyzed until the 1980s [707,753].

However, his main interest to our work actually inheres in two major projects: an analysis

of the 4-piece endgame KRKN, which appeared in 1900 [30{35], and his studies of certain

pawnless 6-piece endgames [38{44].

Amelung's 1900 analysis of KRKN was signi�cant because it contained the �rst histogram

known to the author of a pawnless endgame or, for that matter, of any endgame [34, pp.265{

266]. This table listed the approximate number of positions in KRKN from which White

could win and draw in 2{5 moves, 5{10 moves, 10{20 moves, and 20{30 moves. Such tables

have been a mainstay of computer-age endgame analysis, of course. The existence of this

78

early analysis does not appear to have been known to contemporary workers, although it

appeared in a widely read and in
uential publication, Deutsche Schachzeitung.

Even more intriguing, however, is Amelung's comment that an even earlier, exact numerical

analysis, containing the number of win-in-k moves for each k of a four-piece chess endgame

was known, and was due to \Dr. Th. Mollien, der Mathematiker von Fach ist"; that is, to

the professor \Th. Mollien."

Theodor Molien(September 10, 1861{December 25, 1941)11 was born in Riga.12 His father,

Eduard, was a philologist and teacher, and Theodor eventually became
uent in a num-

ber of languages, including Hebrew, Greek, Latin, French, Italian, Spanish, Portuguese,

English, Dutch, Swedish, and Norwiegian, as well as German and Russian, of course. \If

you read a hundred novels in a language," Molien liked to say, \you will know that lan-

guage. [422, p.9]"13 He studied celestial mechanics at Dorpat University (1880{1883) and

also took courses from Felix Klein in Leipzig (1883{1885). His doctoral dissertation, which

was published in Mathematische Annalen [556,557] proved a number of the fundamental

11 There are a number of variant English spellings of Molien's name: Molin [86], Mollin [35, p.5],

Mollien [34, p.265], and Molien [27, 29]. His biography gives his name as Fedor �duardoviq

Molin (Fedor Eduardovich Molin) [422]. We will refer to him as Theodor Molien in conformity

with his publications [556{559,562].

12 Molien's biographical information has been taken from Kanunov [422], which was translated for

this project by Boris Statnikov.

13 <Proqita$ite sto romanov na kakom-libo �zyke,|l�bil govorit~ on pozdnee,|i Vy

budete znat~ �tot �zyk.>

79

structure theorems of group representation theory, including the decomposability of group

algebras into direct sums of matrix algebras, which is crucial to our own work in Chapter

7.

Molien's early papers on group representation theory [556{559,562], despite their impor-

tance, were obscure and di�cult to understand. Indeed, his papers anticipated Frobenius'

classic paper on the determinant of a group-circulant matrix [308], a fact which Frobe-

nius readily admitted [359], although he had tremendous di�culty understanding Molien's

work (letter to Alfred Knezer, May 6, 1898). In a letter to Dedekind, February 24, 1898,

Frobenius wrote:

You will have noticed that a young mathematician, Theodor Molien in Dor-
pat, has independently of me considered the group determinant. He has pub-
lished, in volume 41 of of the Mathematische Annalen a very beautiful but dif-
�cult to read work \On systems of higher complex numbers [557]," in which he
investigated non-commutative mulltiplication and obtained important general
results of which the properties of the group determinant are special cases.14

Despite these results, and despite Frobenius' support, Molien was rejected from a number

of Russian academic positions, partly because of the Czarist politics of the time (according

to Kanunov) and, at least in one case, because the committee considered his work too

theoretical and without practical applications [422, pp.35{36]. After studying medieval

14 \Sie werden bemerkt haben, da�sich ein jungerer Mathematiker Theodor Molien in Dorpat
unabh�angig von mir mit der Gruppendeterminante besch�aftigt hat. Er hat im 41. Bande der
Mathematischen Annalen eine sehr sch�one, aber schwer zu lesende Arbeit `Ueber Systeme h�oherer
complexer Zahlen' ver�o�entlicht, worin er die nicht commutative Multiplication untersucht hat und
wichtige allgemeine Resultate erhalten hat, von denen die Eigenschaften der Gruppendeterminant
specielle F�alle sind. [Excerpt from a transcription by Walter Kaufmann B�uhler of a letter from
Frobenius to Dedekind dated February 24, 1898. A copy of this transcription was kindly provided
by Thomas Hawkins, Department of Mathematics, Boston University, and is excerpted here with
the permission of Springer-Verlag.]"

80

mathematical manuscripts at the Vatican Library in 1899 [422, p.35], he accepted a post at

the Tomsk Technological Institute in Siberia where he was cut o� from the mathematical

mainstream and became embroiled in obscure administrative struggles (he was, in fact,

brie
y �red). His remaining mathematical work had little in
uence and he spent most of

his time teaching.

Thus, Molien's work was unknown or underestimated in the West for a long while, for

example, Wussing's classic 1969 text barely mentions him [809]. With the publication of

Thomas Hawkins series of articles on the history of group representation theory [357{359],

the signi�cance of Molien's contributions became better-known, and van der Waerden's

1985 history of algebra gives Molien due credit [792, pp.206{209,237{238].

Although it is not mentioned in Kanunov's biography, before Molien moved to Tomsk, he

was one of the strongest players in Dorpat and was particularly known for his blindfold play

(Ken Whyld, personal communication, 1995). He was president of the Dorpat chess club,

and several of his games were published in a Latvian chess journal, Baltische Schachbl�atter,

edited, for a time, by Amelung [27] [96, p.8]; one of his games (which he lost) won a \best-

game" prize in the main tournament of the Jurjewer chess club in 1894 [563].

Molien's numerical studies ofKRKB are alluded to several times in the chess journals of the

time (about 1900) [29,560] [35, p.5] [34, p.265]. In 1898 he published four chess studies [561]

based on his research into the endgame KRKB [35, p.5]. However, we have not been able

to locate a publication of his complete results, despite the historical signi�cance of such a

document.

81

In any case, it seems to me to be an interesting coincidence that within a span of a few

years Molien performed groundbreaking work in two apparently unrelated areas: group

representation theory and quantitative chess endgame analysis, although his work in both

areas was mostly ignored for a long time. Furthermore, major parts of my thesis continue

along two paths �rst blazed by Molien: this chapter reports on work that continued Molien's

quantitative analysis of pawnless chess endgames; Chapter 7 continues Molien's work on

the decomposition of �nite group algebras.

We now continue with our discussion of chess endgame history proper, and in particular,

Amelung's work on pawnless endgames, of which his work on KRBKNN deserves special

mention. Partly in response to the �rst edition of Johann Berger's in
uential 1890 man-

ual of endings [106, 167{169], in 1902 Amelung published a three-part series in Deutsche

Schachzeitung, perhaps the premier chess journal of its time, analyzing the endings of King,

Rook and minor piece (N or B) against King and two minor pieces [38{40], and repre-

sented a continuation of Amelung's earlier work with Molien on the endgame KRKN [34].

Amelung indicated that the endgame KRBKNN was particularly interesting, and in 1908

he published a short article on the topic in F�ur Haus und Familie, a biweekly supplement to

the Riga newspaper D�una-Zeitung, of which he was the chess editor [41]. Amelung's interest

in this endgame was so great that he held a contest in D�una-Zeitung for the best solution

to a particular example of this endgame [43]. A solution was published the next year [44],

but Amelung died that year and was unable to continue or popularize his research. Conse-

quently, succeeding commentators dismissed many of his more extreme claims, and his work

82

seemed to pass into oblivion. It is discussed in the 1922 edition of Berger [107, p.223{233],

but Amelung's work was criticized by the mathematician and chess champion Machgielis

[Max] Euwe in his titanic 1940 study of pawnless endgames [270, pp.50{53].15

Indeed, D�una-Zeitung turned out to be an elusive newspaper; I was not able to locate any

references to it in domestic catalogues and indices; the only copy I was able to �nd was

archived at the National Library of Latvia. In addition to the remark about Molien, the

research reported here argues for a renewed appreciation of the accuracy and importance

of Amelung's work.

6.1.4 Computer endgame analysis

Although some have dated computer chess from Charles Babbage's brief discussion of au-

tomated game-playing in 1864, his conclusion suggests that he did not appreciate the com-

plexities involved:

In consequence of this the whole question of making an automaton play any
game depended upon the possibility of the machine being able to represent all
the myriads of combinations relating to it. Allowing one hundred moves on each
side for the longest game at chess, I found that the combinations involved in

15 Euwe wrote \Dit eindspel [KRBKNN] biedt de sterkste partij zeer goede winstkansen. F.

Amelung ging zelfs zoo ver, dat hij de verdediging als kansloos beschouwde, maar deze opvatting

schijnt ojuist te zijn [270, p.50]", i.e., \This endgame [KRBKNN] o�ers the stronger side excellent

winning chances. F. Amelung went so far as to say that the defense was hopeless, but this assessment

seems to be untrue." (Translation from the Dutch is by Peter Jansen; translation into German is

available in Euwe [271, Volume 5, Page 55].)

83

the Analytical Engine enormously surpassed any required, even by the game of
chess. [74, p. 467]

Automated endgame play appears to date from the KRK construction of Leonardo Torres-

Quevedo. Although some sources give 1890 as the date in which the automaton was de-

signed, it was exhibited at about 1915 [97, 683].16 Quevedo's automaton, which, unlike

most later work, could move its own pieces, used a rule-based approach [731,761], like that

of Barbara J. Huberman's 1968 thesis [385]. By contrast, we are concerned with exhaustive

analysis of endgames, in which the value of each node of the state-space is computed by

backing up the game-theoretic values of the leaves.

The mathematical justi�cation for the retrograde analysis chess algorithm was already im-

plicit in the 1912 paper of Ernst Zermelo [819]. Additional theoretical work was done by

John von Neumann and Oskar Morgenstern (1944) [788, pp.124-125].

The contemporary dynamic programming methodology, which de�nes the �eld of retrograde

endgame analysis, was discovered by Richard Bellman in 1965 [101].17 Bellman's work was

the culmination of his work reported as early as 1961:

Checkers and Chess. Interesting examples of processes in which the set of all
possible states of the system is indescribably huge, but where the deviations are
reasonably small in number, are checkers and chess. In checkers, the number of
possible moves in any given situation is so small that we can con�dently expect a
complete digital computer solution to the problem of optimal play in this game.

16 \Torres believes that the limit has by no means been reached of what automatic machinery can

do, and in substantiation of his opinions presents his automatic chess-playing machine" [731, p. 298].

17 Bellman's article, strangely enough, is not generally known to the computer game community,

and it is not included in Herik's bibliography. [780]

84

In chess, the general situation is still rather complex, but we can use the method
described above to analyze completely all pawn-king endings, and probably all
endings involving a minor piece and pawns. Whether or not this is desirable is
another matter [100, p.3].

Bellman had considered game theory from a classical perspective as well [98, 99], but his

work came to fruition in his 1965 paper [101], where he observed that the entire state-space

could be stored and that dynamic programming techniques could then be used to compute

whether either side could win any position. Bellman also sketched how a combination of

forward search, dynamic programming, and heuristic evaluation could be used to solve much

larger state spaces than could be tackled by either technique alone. Bellman predicted that

checkers could be solved by his techniques, and the utility of his algorithms for solving

very large state spaces has been validated by Jonathan Schae�er et al. in the domain of

checkers and Ralph Gasser in the domain of Nine Men's Morris [320,478,664]. On the other

hand, 4 � 4 � 4 tic-tac-toe has been solved by Patashnik (1980) using forward search and

a variant of isomorph-rejection based on the automorphism group computation of Silver

(1967) [591,681].

The �rst retrograde analysis implementation was due to Thomas Str�ohlein, whose important

1970 dissertation described the solution of several pawnless 4-piece endgames [667,727,728].

E. A. Komissarchik and A. L. Futer (1974) studied certain special cases of KQPKQ,

although they were not able to solve the general instance of such endgames [453]. J. Ross

Quinlan (1979) analyzed KRKN from the point of view of a machine learning testbed [611,

612]. Hans Berliner and Murray S. Campbell studied the Sz�en position of three connected

85

passed pawns against three connected passed pawns by simplifying the promotion subgames

[112]. Campbell has begun to extend this idea to wider classes of endgames [157] . Peter J.

Jansen has studied endgame play when the opponent is presumed to be fallible [400{402]. H.

Jaap van den Herik et al. have produced a number of retrograde analysis studies of various

4-piece endgames, or of endgames with more than 4 pieces whose special structure allows the

state-space size to be reduced to about the size of the general 4-piece endgame [234,778,781].

Danny Kopec has written several papers in the area as well [454].

The �rst retrograde analysis of general 5-piece endgames with up to one pawn was due to

Thompson (1986) [753]. The signi�cance of this work was twofold. First, many more moves

were required to win certain endgames than had previously been thought. Second, the

Thompson work invalidated generally accepted theory concerning certain 5-piece endgames

by demonstrating that certain classes of positions that had been thought to be drawn

were, in fact, won. The winning procedure proved to be quite di�cult for humans to

understand [553]. The pawnless 5-piece work of Thompson was extended to all pawnless

5-piece endgames and many 5-piece endgames with one pawn by an early version of the

program discussed in this paper.

6.2 Tensor products and chess endgames

This section describes the chess endgame algorithm in a generalization of the tensor prod-

uct formalism described in Section 4.3. The parallel chess endgame algorithm should be

contrasted with the vast body of work on parallel forward search and in particular parallel

86

alpha-beta chess searching (references). The problem considered is easier to parallelize than

forward search because of the absence of pruning. Some progress toward the problem of

using combined forward and backward search in parallel searching in the context of sym-

metry is reported in work by Jonathan Bright, Simon Kasif, and the author, where the

best-known bound on parallel knapsack algorithms is also improved [142].

Small chess endgames present a particularly interesting challenge to our multilinear-

algebraic parallel-program design methodology:

� The formalism for the existing multilinear algebra approach had been developed to

exploit parallelization of linear transformations over a module. This formalism needed

to be generalized so that it would work over Boolean algebras.

� The symmetry under a noncommutative crystallographic group had to be exploited

without sacri�cing parallelizability.

� The state-space size of 7:7 � 109 nodes was near the maximum that the target archi-

tecture could store in RAM.

The remainder of this chapter describes the resolution of these problems, and reports on

the following two main domain results:

1. Table 1 gives equations de�ning the dynamic programming solution to chess endgames.

Using the techniques described in this paper, the factorizations can be modi�ed to

produce e�cient code for most current parallel and vector architectures.

87

2. Table 2 presents a statistical summary of the state space of several 6-piece chess

endgames. This table could not have been generated in a practicable amount of time

using previous techniques.

6.2.1 De�nitions

For the sake of simplicity of exposition, captures, pawns, stalemates, castling, and the

50-move rule will be disregarded unless otherwise stated.

Let S be an ordered set of k chess pieces. For example, if k = 6 then one could choose

S = hk;K;Q;R;q;ri:

An S-position is a chess position that contains exactly the k pieces in S. We write S =

hS1; S2; : : : ; Ski: An S-position can be viewed as an assignment of each piece Si 2 S to a

distinct square of the chessboard (note that captures are not allowed).

Vn is the space of length n Boolean vectors. The space of 8 � 8 Boolean matrices is thus

C � V8
 V8. Let feig8i=1 be the standard basis for V8:

Let
NjV be the jth tensor power of V, i.e., V
 � � �
V, with j factors.

Let B �NkC. B is called the hyperboard corresponding to S: It can be thought of as a cube

of side-length 8 in R2k: Each of the 64k basis elements corresponds to a point with integer

coordinates between 1 and 8.

Each basis element of C is of the form ei
 ej for 1 � i; j � 8. Any such basis element,

therefore, denotes a unique square on the 8� 8 chessboard. Any element of C is a sum of

88

distinct basis elements, and therefore corresponds to a set of squares [801].

Each basis element of B is of the form c1
c2
� � �
ck ; where each cs is some basis element

of C. Since each cs is a square on the chessboard, each basis element of B can be thought of

as a sequence of k squares of the chessboard. Each position that is formed from the pieces

of S is thereby associated with a unique basis element of B. Any set of positions, each of

which is formed from pieces of S, is associated with a unique element of B : the sum of the

basis elements corresponding to each of the positions from the set.

This correspondence between sets of chess positions and elements of B forms the link be-

tween the chess algorithms and the tensor product formulation. In the following, the dis-

tinction between sets of chess positions formed from the pieces in S and elements of the

hyperboard B will be omitted when the context makes the meaning clear.

If p 2 fK;Q;R;B;Ng is a piece, then the unmove operator Xp;s is the function that,

given an S-position P returns the set of S-positions that could be formed by unmoving Ss

in P as if Ss were a p.

Xp;s can be extended to a linear18 function from elements of B to itself, and thereby

becomes an element of M64k :

The core of the chess endgame algorithm is the e�cient computation of the Xp;s. The

following subsections describe a factorization of Xp;s in terms of primitive operators. The

18 Technically the unmove operators are only quasilinear, since the Boolean algebra is not a ring,

and thus B is not a module.

89

ideas of subsection 4.3.2 may then be used to derive e�cient parallel code from this factor-

ization.

6.2.2 Group actions

This subsection introduces a few group actions [310]. We will use the group-theoretic

terminology both to give concise descriptions of certain move operators and to describe

the exploitation of symmetry. There is a close correspondence between multilinear algebra,

combinatorial enumeration, and group actions which motivates much of this section [547{

550].

The symmetric group on k elements Sk acts on B by permuting the order of the factors:

s

kO
s=1

cs =
kO

s=1

css;

for s 2 Sk and cs 2 C.

The dihedral group of order 8, D4, (see section 3.1) acts on C by

r(ei
 ej) = e8�j+1
 ei (6.1)

f(ei
 ej) = ei
 e8�j+1 (6.2)

Thus, r rotates the chessboard counterclockwise 90� and f
ips the chessboard about the

horizontal bisector.

D4 acts diagonally on B :

d

kO
s=1

cs =
kO

s=1

dcs

90

Let C4 be the cyclic group generated by r.

A group G acting on Vn and Vm acts on Mm
n by conjugation: (gM)v = g(Mg�1(v)). We

let Z
G

x =
X
g2G

gx:

The notation
R
G
x is intended to represent the group average of x with respect to G [310, p.

6]. It is a �xed point of the G action: g
R
G
x =

R
G
x for all g 2 G:

6.3 Endgame algorithm

This section presents the endgame algorithm using the notation developed in Section 6.2.

Subsection 6.3.1 gives the fundamental factorization. Subsection 6.3.2 describes the mod-

i�cation of the equations of Table 6.1 to exploit symmetry. Subsection 6.3.3 describes the

control structure of the algorithm.

6.3.1 Factorizing the unmove operator

We de�ne E8 to be the unit one-dimensional 8� 8 end-o� shift matrix. The unit multidi-

mensional shift along dimension s is de�ned by

Us 2M64k � I64s�1
 (E8
 I8)
 I64k�s:

Such multidimensional shifts are commonly used in scienti�c computation.

91

XR;s =

Z
C4

LUs(I64k + LUs)
6 (6.4)

XN;s = L

Z
D4

Us � (r(U2
s)) (6.5)

XB;s =
Z
D4

LUs(I64k + LUsrUs)
6 (6.6)

XK;s = L

Z
C4

Us + UsrUs (6.7)

XQ;s = XR;s +XB;s (6.8)

(6.9)

Table 6.1: These equations de�ne the core of a portable endgame algorithm. By modi-
fying the factorizations, code suitable for execution on a wide range of high-performance
architectures can be derived.

Fix a basis fcig64i=1 of C, and de�ne

L 2M64k � diag

0@Z
Sk

X
i1<���<ik

ci1
 � � �
 cik

1A (6.3)

Certain basis elements of B do not correspond to legal S-positions. These \holes" are

elements of the form
Nk

s=1 cs such that there exist distinct s; s0 for which cs = cs0 : If v 2 B

then Lv is the projection of v onto the subspace of B generated by basis elements that are

not holes.

Table 6.1 de�nes the piece-unmove operators.

Figure 6.1 illustrates the computation of the integrand in the expression for XR;1 in Table

6.1. This corresponds to moving the R to the right. The average over C4 means that the R

must be moved in 4 directions. For example, conjugation by r of the operation of moving

the R right corresponds to moving the R up: if one rotates the chessboard clockwise 90�,

moves the R right, and then rotates the chessboard counterclockwise 90�, the result will be

92

Z Z Z Z
Z Z Z Z
Z Z Z Z
Z Z Z Z
Z Z Z Z
ZRZ ZKZ
Z Z Z Z
Z Z Z Z

Z Z Z Z
Z Z Z Z
Z Z Z Z
Z Z Z Z
Z Z Z Z
Z ZRZKZ
Z Z Z Z
Z Z Z Z

Z Z Z Z
Z Z Z Z
Z Z Z Z

Z Z Z Z
Z Z Z Z

Z S ZKZ
Z Z Z Z

Z Z Z Z

Z Z Z Z
Z Z Z Z
Z Z Z Z
Z Z Z Z
Z Z Z Z
Z Z SKZ
Z Z Z Z
Z Z Z Z

e 3

e 3

e 6

e 3

e4

e3

e6

e3

e5

e

3

e

6

e

3

Figure 6.1: Unmoving the R to the right from the position at bottom results in the three
positions center. Here, S = hR;Ki: Each position corresponds to a point in the hyperboard,
top. The bottom position is e2
 e3
 e6
 e3: The new positions are e3
 e3
 e6
 e3;
e4
 e3
 e6
 e3; and e5
 e3
 e6
 e3: e6
 e3
 e6
 e3 is illegal and is zeroed out by L:

93

the same as if the R had been moved up to begin with.

As explained in section 4.3, by varying the factorization, code suitable for varying archi-

tectures can be derived. For example, if the interconnection architecture is a 2-dimensional

grid, then only Us for s = 1 can be directly computed. By using the relations Us = (1 s)U1

and Xp;s = (1 s)Xp;1; equations appropriate for a grid architecture can be derived. Here

(1 s) 2 Sk interchanges 1 and s.

These equations are vectorizable as well [698]. The vectorized implementation of Table 1

by Burton Wendro� et al. has supported this claim [799].

Other factorizations appropriate for combined vector and parallel architectures, such as a

parallel network of vector processors, can also be derived [434].

6.3.2 Exploiting symmetry

The game-theoretic value of a chess position without pawns is invariant under rotation and

re
ection of the chessboard. Therefore, the class of positions considered can be restricted

to those in which the k is in the lower left-hand octant, or fundamental region, of the

chessboard (Figure 6.2).

The chess positions with thek in its fundamental region correspond to points in a triangular

wedge in the hyperboard.

Algebraically, because each Xp;s is a �xed point of the D4 action, we need only consider

94

Z Z Z Z
Z Z Z Z
Z Z Z Z

Z Z Z Z
Z j Z Z

Z jkZ Z
jkj Z Z

jkjkZ Z

Figure 6.2: The chessboard may be rotated 90� or re
ected about any of its bisectors
without altering the value of a position without pawn. Therefore, the location of the k
may be restricted to the 10 squares shown, called a fundamental region.

the 10 � 64k�1-space:

B0 � C=D4

Ok�1

C

rather than the 64k-space B: We suppose that the �rst piece of S, the piece corresponding

to the �rst factor in the expression for B0, is the k.

When pieces other than the k are moved, the induced motion in the hyperboard remains

within the wedge. Thus, the induced functions X0
p;s:B

0 7! B0 have the same form as Table

6:1 when s � 1.

However, when the k is moved outside its fundamental region, the resulting position must

be transformed so that the k is in its fundamental region. This transformation of the

chessboard induces a transformation on the hyperboard (Figure 6.3).

95

Z Z Z Z
Z Z Z Z
KZnm Z Z
Z Z Z Z
Z Z Z Z
ZBZkZ Z
S Z Z Z
Z Z Z Z

Z Z Z Z
Z Z Z Z
KZnm Z Z
Z Z Z Z
Z Z Z Z
ZBZ j Z
S Z Z Z
Z Z Z Z

ZZZZ
ZZZZ
KZnmZZ
ZZZZ
ZZZZ
ZBZjZ
SZZZ
ZZZZ

Figure 6.3: Only a wedge in the hyperboard is physically stored. To compute the e�ect
of moving the k outside the squares to which it is restricted, a communication pattern
is induced in the hyperboard. In this example, the k in the lower chessboard is moved,
reaching the position at the upper right. This position must be re
ected about the vertical
bisector, yielding the position at upper left. These three positions correspond to three points
in the hyperboard, only the �rst and third of which are physically stored. The Black-to-
move position at bottom requires 222 moves against best play for White to win (see Table
2).

96

Algebraically,

X0
k;1

=
X
d2D4

X0
k;1d

Ok�1

d (6.10)

where X0
k;1d

2M10:

The sum over d 2 D4 corresponds to routing along the pattern of the Cayley graph of D4

(see Figure 6.4).

This is a graph whose elements are the 8 transformations in D4, and whose edges are labeled

by one of the generators r or f. An edge labeled h connects node g to node g0 if hg = g0.

The communication complexity of the routing can be reduced by exploiting the Cayley

graph structure [708]. The actual communication pattern used is that of a group action

graph, which looks like a number of disjoint copies of the Cayley graph, together with some

cycles [800].

The problem of parallel application of a structured matrix to a data set invariant under

a permutation group has been studied in the context of �nite-element methods by Danny

Hillis and Washington Taylor as well. Although their terminology is di�erent from our

terminology, their general ideas are similar [368]. The method we use turns out to be

similar to the orbital exchange method, which is used to compute the FFT of a data set

invariant under a crystallographic group [49,50,757].

It is interesting to note that exploiting symmetry under interchange of identical pieces can

be handled in this notation: j identical pieces correspond to a factor SymjC in the expression

for C; where Symj is the jth symmetric power of C: [310, pp.472{475]

97

Z s Z Z
Z Z Z Z
ZBZ j Z
Z Z Z Z
Z Z M J
Z ZNZ Z
Z Z Z Z
Z Z Z Z

Z

s

Z

Z

Z

Z

Z

Z

Z
B
Z

j

Z

Z

Z

Z

Z

Z

Z

M

J

Z

Z
N
Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

ZsZZ
ZZZZ

ZBZjZ
ZZZZ

ZZMJ
ZZNZZ

ZZZZ
ZZZZ

Z

s

Z

Z

Z

Z

Z

Z

Z
B
Z

j

Z

Z

Z

Z

Z

Z

Z

M

J

Z

Z
N
Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z s Z Z
Z Z Z Z
ZBZ j Z

Z Z Z Z
Z Z M J

Z ZNZ Z
Z Z Z Z
Z Z Z Z

Z
s
Z
Z

Z
Z
Z
Z

Z
B
Z
j
Z

Z
Z
Z
Z

Z
Z
M
J

Z
Z
N
Z
Z

Z
Z
Z
Z

Z
Z
Z
Z

ZsZZ
ZZZZ
ZBZjZ

ZZZZ
ZZMJ

ZZNZZ
ZZZZ

ZZZZ

Z
s
Z
Z

Z
Z
Z
Z

Z
B
Z
j
Z

Z
Z
Z
Z

Z
Z
M
J

Z
Z
N
Z
Z

Z
Z
Z
Z

Z
Z
Z
Z

Figure 6.4: The Cayley graph for D4. Each node is pictured by showing the e�ect of its
corresponding transformation on a position in KBNNKR; thus, the chess value of each of
these nodes is the same. Solid lines correspond to r, and rotate the board counterclockwise
90�. Dotted lines correspond to f, and
ip the board horizontally. The position shown arose
during a game between Anatoly Karpov and Gary Kasparov in Tilburg, October 1991.

98

There are e�cient algorithms, in general, for performing the purely algebraic operations

required, as well as languages, such as GAP, MAGMA, and AXIOM, that are suitable for

the denotation of the algebraic structures used [152, 684, 685]. The groups encountered

here are so small, however, that computer-assisted group-theoretic computation was not

required.

6.3.3 Control structure

For i � 1 we de�ne vi 2 B to be vector of positions from which White to move can

checkmate Black within i moves (i.e., i White moves and i Black moves). Thus, v1 is the

vector of positions from which White can checkmate Black on the next move. v2 is the set

of positions from which White can either checkmate Black in one move or can move to a

position from which any Black reply allows a mate-in-one, and so on.

The overall structure of the algorithm is to iteratively compute the sets v1;v2; ::: until some

i is reached for which vi = vi+1. Then v = vi is the set of positions from which White can

win, and i is the maximin value of the set S: the maximum, over all positions from which

White can win, of the number of moves required to win that position [727,753].

The method for computing vi from vi�1 is called the backup rule. Several backup rules

have been used in various domains [478, 664]. They are all characterized by the use of an

unmove generator to \unmove" pieces, or move them backward, possibly in conjunction

99

with more traditional move generators. We let

XWhite �
X

fs:Ss is Whiteg

XSs;s (6.11)

XBlack �
X

fs:Ss is Blackg

XSs;s (6.12)

The backup rule used is:

vi+1 =XWhite(XBlack(vi)): (6.13)

Here, v denotes the complement of v.

6.4 Implementation notes

6.4.1 Captures and pawns

The algorithms developed so far must be modi�ed to account for captures and pawns.

Each subset of the original set of pieces S induces a subgame, and each subgame has its

own hyperboard [101]. Without captures, moving and unmoving are the same, but when

captures are considered they are slightly di�erent. The equations for Xp;s developed in

the preceding section refer to unmoving pieces, not to moving them [753]. Unmoving pieces

cannot capture, but they can uncapture, leaving a piece in their wake. This is simulated

via interhyperboard communication.

The uncapture operation can be computed by using tensor products, corresponding to the

parallel broadcast (see section 8.1). An uncapture is the product from left to right of an

100

unmove operator in the parent game, a diagonal matrix, a sequence of stride matrices, and

a broadcast. The broadcast is a tensor product of copies of an identity matrix with the

1� 64 matrix of 1's.

Each pawn position induces a separate hyperboard. Pawn unpromotion induces communi-

cation between a quotient hyperboard and a full hyperboard, which is implemented again

by multiplication by D4.

6.4.2 Database

There are two values that can be associated with a position: distance-to-mate and distance-

to-win.

The distance-to-mate is the number of moves by White required for White to checkmate

Black, when White plays so as to checkmate Black as soon as possible, and Black tries to

avoid checkmate as long as possible [819]. Although the distance-to-mate might seem like

the natural metric to use, it can produce misleadingly high distance values because the

number of moves to mate in trivial subgames, like KRK, would be included in the count

of something like KRKN. In fact, in KRKN, it does not matter for most purposes how

many moves are required to win the subgame KRK, once White captures the N, as long

as the N is captured safely [616].

The more usual distance-to-win metric is simply the number of moves required by White to

force conversion into a winning subgame. In practice, this metric is more useful when the

101

position has no pawns. It also is the metric of relevance to the 50-move rule. If a particular

position has a distance-to-win of m;, then against perfect play the win value would be

altered by an m0 move rule for m0 > m. Although our program has implemented distance-

to-mate metric for 5-piece endgames, the results presented here use the more conservative

distance-to-win metric.

The max-to-win for a set of pieces (i.e., an endgame) is the maximum, over all positions

using those pieces from which White can win, of the distance-to-win of that position.

The distance-to-win of each point in the hyperboard can be stored so that a 2-ply search

permits optimum play.

By Gray coding this distance, the increment of the value can be done by modifying only

one bit.

Curiously, the motif of embedding Cayley graphs into Cayley graphs arises several times in

this work. Gray codes, which can be viewed as embedding the Cayley graph for Z2n into

that of Zn2 , are used both for implementing U (and, therefore, Xp;s) and for maintaining

the database. Embedding the Cayley graph for D4 in that of Zn2 arises during unpromotion

and moving the K. Because many interconnection networks are Cayley graphs or group

action graphs [56,246,248,636], this motif will reappear on other implementations.

102

6.5 Results

6.5.1 Chess results

The combinatorially possible pawnless 5-piece games and many 5-piece games with a single

pawn were solved using an early version of the current program. This work resulted in the

�rst publication of the 77-move KBNKN max-to-win, which at the time was the longest

known pawnless max-to-win [707]. Some endgames were solved under the distance-to-mate

metric as well. The distance-to-mate results were not particularly illuminating. The state

space size is approximately 121 � 106 nodes for a single pawnless 5-piece endgame under the

Thompson symmetries, in which one representative from the 462 orbits of the D4 action on

the nonadjacent positions of the two kings is stored.

Several pawnless 6-piece endgames were also solved. The state-space size per endgame was

6,185,385,360 nodes, although the size of each hyperboard is 462 � 644, or about 7:7 � 109:

Table 6.2 presents statistical information about some pawnless 6-piece endgames.

The percent-win can be misleading because of the advantage of the �rst move in a random

position|White can often capture a piece in one move|and because it includes positions

in which Black is in check.

The max-to-win values were signi�cantly higher than previously known endgames. No 5-

piece endgame had a max-to-win over 100, and most of the nontrivial ones had max-to-wins

of approximately 50. KRNKNN has the longest known max-to-win of 243, although it is

103

Game W Wins %W Z Game W Wins %W Z

KRNknn 243 4821592102 78 18176 KQkbbn 63 5257968414 85 6670

KRBknn 223 5948237948 96 456 KRRkrb 54 4529409548 73 1030

KRNkbn 190 4433968114 72 8030 KRNkbb? 52 1015903231 65 256

KQNkrr 153 5338803302 86 1858 KQkbbb 51 5058432960 82 2820

KRNkbb 140 4734636964 77 1634 KBNNkr 49 3302327120 53 1270

KRRNkq 101 5843483696 94 1520 KQQkqr 48 5689213742 92 32

KRBNkq 99 4242312073 69 1010 KQBkqb 46 4079610404 66 22

KRBkbn 98 5359504406 87 1478 KQQkqq 44 5122186896 83 32

KNNNkb 92 5324294232 86 6300 KRBBkq? 44 1185941301 75 396

KQRkqr 92 5125056553 83 243 KBBknn? 38 981954704 63 1662

KNNNkn 86 5834381682 94 12918 KRRkbb? 37 1483910528 94 26

KQBkrr 85 5707052904 92 342 KQBkqn 36 4213729734 68 78

KRRBkq 82 5935067734 96 388 KQknnn 35 4626525594 75 17688

KRBkbb? 75 1123471668 72 95 KQBkqr 32 3825698576 62 6

KQRkqb 73 5365200098 87 1410 KQNkqb 32 3789897570 61 35

KRRkrn 73 5023789102 81 1410 KNBBkn 31 6130532196 99 58

KQNNkq 72 5808880660 94 2228 KQNkqn 29 3920922433 63 152

KQRkqn 71 5553239408 90 1780 KQNkqr 27 3533291870 57 3

KBBBkr 69 4944693522 80 48 KRRkrr 18 4136045492 67 16

KBBNkr? 68 1497242834 95 83 KBBNkq? 12 970557572 62 18

KRRRkq 65 6054654948 98 6

Table 6.2: Endgame description, maximin, number of wins, percent-win, and number of mu-
tual zugzwangs for certain 6-piece endgames. The symmetries considered are the Thompson
symmetries in which the one representative from each of the 462 orbits of the non-adjacent
king-positions is stored, except for endgames with a ?, which indicates that the two bishops
were constrained to lie on squares of opposite colors. A state-space size of 6,185,385,360 for
normal endgames and 1,570,867,920 for endgames with a ? was used. Thus, for example,
there is really only a single mutual zugzwang in KRRRkq, but it is counted 6 times.

104

not a general win.

We remark that KRBKNN is a general win, with 223 moves required to win in the worst

case. KRBKNN was called \known to be a draw" by Roycroft, a leading endgame expert,

in 1972 (KBBKN, which was considered a draw by most players, was only \controversial

or unknown" according to the same source). Most of the standard works concurred with the

opinion thatKRBKNN was not a general win [270, pp.50{53], [178, p. 417], [106, pp.167{

169], [291, p. 521]. Ch�eron, however, seems to reserve judgment.

The 50-move rule would a�ect the value of each endgame listed with max-to-win of 50 or

more. The 92-move win in KQRKQR is somewhat surprising too.

A mutual zugzwang is closely related to a game whose Conway value is 0: it is a position in

which White to move can only draw, but Black to move loses. Such positions seem amusing

because, particularly when no pawns are involved, chess is a very \hot" game in the sense

of Winning Ways [110].

Unlike the \maximin" positions (see appendix) whose analysis is fairly impenetrable, the

mutual zugzwangs can sometimes be understood by humans.

An example may help clarify this concept. Figure 6.5 shows a mutual zugzwang discovered

by the program, in KBNNKR. The Black R is trapped on h8,19 since g8 is guarded by

the B on a2, and the N's guard each other. If the Black R were to capture a N, then

19 The columns of a chessboard are conventionally lettered from left to right with letters going

from a to h; the rows of the chessboard are numbered from 1 to 8 reading up the page. Thus, h8

is the square on the upper right corner of the board.

105

Z Z M s
Z Z Z ZN
Z Z Z Z

Z Z Z Z
Z Z Z Z

Z Z Z Z
BZkZ Z Z
J Z Z Z

Figure 6.5: Mutual zugzwang: White to play draws, but Black to play loses

it would in turn be captured, and the resulting subgame of KBNK would be winning for

White. The position seems to be a race between Kings to see who will reach the upper right

corner area �rst. If the Black K reaches g7 or e8 �rst, the Black R can sacri�ce itself for a

White N, and then the Black K captures the other White N, leaving the drawn endgame

KBK. On the other hand, if the White K reaches g7 �rst, it simply captures the Black

Rh8. Note also that neither N can move, as the R would immediately capture the other

N.

It is not di�cult to see that Black to play loses: White gets in �rst. For example, 1 : : :Kc3

2 Kb1 Kd4 3 Kc2 Kc5 (If 3: : :Ke5? 4 Ng6+ wins the R) 4 Kd3 Kd6 5 Ke4 Kc7 (If

Ke7? 6 Ng6+ wins) 6 Kf5 Kd8 7 Kg6 Ke8 8 Kg7 and White wins.

However, White to move from the position in Figure 6.5 must move the B. 1 Bb1+ Kc3

forces 2 Ba2 Kc2, since other moves by White on the second move allow the Rh8 to

escape via g7. Chess theory, con�rmed by the program, shows that this general position in

106

Z Z Z Z
l Z Z Z
Z Z l Z

Z Z Z Z
Z Z Z Z

Z Z Z Z
Z Z ZQL

j Z Z ZK

Figure 6.6: Mutual Zugzwang. If Black moves the Qa7 then Qhg1 or Qa2 mates. If the

Qf6 moves then Qb2 or Qf1 will mate. If Kb1 then Qc2 mates. Thus, any Black move
loses. On the other hand, if White moves �rst then Black can force the draw.

KBNNKR is drawn. Any other move of the B on move 1 allows Black to win the race.

For example, 1 Bf7 Kc3 2 Kb1 Kd4 3 Kc2 Kc5 4 Kd3 Kd6 5 Ke4 Ke7! draws.

Figure 6.7 shows an endgame composed by Elkies based on the computer-discovered mutual

zugzwang of Figure 6.6 [264] [654, Number 546]. Although non-chessplayers may have

di�culty understanding the analysis of his position, it follows accepted aesthetic practice

in the art of endgame composition by avoiding the use of promoted pieces in the original

position and by striving for a natural appearance.

The program was used to analyze a game between Anatoly Karpov and Gary Kasparov that

occurred during an elite tournament in Tilburg. The players reached the position shown in

Figure 6.4. After playing on for 50 moves a draw was reached, but an exhaustive analysis

by the 6-piece program was necessary to prove that a win was not missed [709], since it

107

Z Z L Z
Z Z ZPZb
Z Z Z Z

Z Z Z ZK
Z Z Z Z

ZqZ Z j
o Z ZBZ

Z Z Z Z

Figure 6.7: Elkies, American Chess Journal 1(2) 1994. White to play and win. \1 Qg7+
Not 1 Qd6+? Kxg2 2 f8/Q (interpolating further checks does not help) when 2: : :Qh3+
3 Kg5 Qe3+ forces either perpetual check or a queen trade, drawing. 1: : :Kh2 2 f8/Q.
If 2 Qe5+ Kxg2 3 f8/Q Qh3+ 4 Kg5 b1/Q with Kh1 and Be4 draws, but now 2: : :b1/Q
loses to 3 Qf4+Kg1 4Be4+ and mate. Thus, Black tries for perpetual check, and not with
2: : :Qd1+? 3 Bf3. 2: : :Qb5+ 3 Kh6 Qb6+ 4 Bc6! Not yet 4 Kxh7 b1/Q+ 5 Kh8

Qb8! drawing. Now Black must take the bishop because 4 : : :Qe3+ 5 Qg5Qxg5+ 6 Kxg5
b1/Q 7 Qf2+ mates. 4: : :Qxc6+ 5 Kxh7 b1/Q+. So Black does manage to give the
�rst check in the four-queen endgame, but he is still in mortal danger. 6Kh8 Kh1! Black
not only cannot continue checking, but must play this modest move to avoid being himself
checked to death! For instance, 6 : : :Qg2 7 Qc7+ Kg1 8 Qfc5+ Kh1 9Qh5+ and the
Black king soon perishes from exposure. But against the quiet 6: : :Kh1 White wins only
with 7 Qfg8!!, a second quiet move in this most tactical of endgames, bringing about" the
rotated version of the KQQKQQ mutual zugzwang. (Quotation from Elkies' analysis)

108

was unclear whether a draw could have been obtained. In fact, however, pawnless 6-piece

endgames almost never arise in tournament play.

6.5.2 Timing

The implementation was on a 64K processor CM-2/200 with 8 GBytes RAM. The processors

were interconnected in a hypercube and clocked at 7MHz (10 MHz for the CM-200). The

CM-2 6-piece code required approximately 1200 seconds for initialization and between 111

and 172 seconds to compute Ki+1 from Ki. Exact timings depend on S (for instance, as is

clear from Table 1, XQ;s is slower than either XR;s or XB;s) as well as run-time settable

factorization choices and load on the front end.

Per-node time per endgame (time to solve the endgame divided by number of nodes in the

state-space) is faster by a factor of approximately 6 �103 than timings of di�erent endgames

reported using classical techniques [579,753,779,781] based on the 5-piece timings of the

code reported here.

In unpublished personal communication Thompson has indicated that the per-node time

of the fastest serial endgame code is currently only a factor of approximately 7 � 102 times

slower than that of the code reported in this paper (depending on the endgame) [754].

Unfortunately, direct comparison of 6-piece timing against other work is, of course, not

currently possible since 6-piece endgames could not have been solved in a practicable amount

of time using classical techniques on previous architectures. However, with larger and

109

faster serial machines, and with enough spare cycles, 6-piece endgames are in fact coming

within reach of classical solution techniques. This would permit a more informative timing

comparison.

Thus, although per-node timing comparisons based on radically di�erently sized state-spaces

are not very meaningful, the large per-node timing di�erential of the current program

compared to classical programs does tend to support the hypothesis that the techniques

reported here lend themselves to e�cient parallel implementation.

The only program with per-node time of comparable speed to the author's CM-200 imple-

mentation is Burton Wendro�'s et al. vectorized implementation of Table 1 [799], although

this implementation currently solves only a single 4-piece endgame.

The CM-200 source code implementing Table 1 is currently available from

ftp.cs.jhu.edu:pub/stiller/snark.

6.6 Future work

The main historical open question is to �nd out what was Molien's exact contribution to

the history of numerical chess endgame analysis, and to locate and check his analysis of

KRKB. Kanunov [422, p.6] refers to private papers held by Molien's daughter; currently

we are trying to locate these papers in the hope that they might shed light on the questions

raised in subsection 6.1.3. Amelung himself is also a �gure about whom little is known, and

the remarks here would seem to suggest that a detailed reassessment of his contribution to

110

the endgame study would be desirable.

The question of Molien and Amelung's contributions to quantitative endgame analysis is

part of the larger historical question of pre-digital precursors to computer chess algorithms.

In addition to the work of Babbage, Molien, Amelung, Zermelo, and Quevedo, we remark

that K. Schwarz, in a little-known 1925 article in Deutsche Schachzeitung, argued for a

postional evaluation function similar to the squares-attacked heuristic used in some full-

chess programs [673].

From a computational point of view, it might seem that the next logical step in the evolution

of the current program should be the exhaustive solution of pawnless 7-piece endgames. In

fact, in my opinion a more promising approach would be to follow up on the suggestions

�rst made by Bellman [100, 101, 112] and solve endgames with multiple pawns and minor

pieces. Such an approach would combine heuristic evaluation of node values corresponding

to promotions with the exhaustive search techniques described here. Although the use of

heuristics would introduce some errors, the results of such a search would, in my opinion,

have considerable impact on the evaluation of many endgames arising in practical play.

Even more speculatively, it is also possible to search for certain classes of endgames con-

sidered artistic by endgame composers; such endgames typically depend on a key mutual-

zugzwang or domination position some moves deep in the tree.

111

6.7 A best play line

Distance-to-win (conversion) metric is used. Equioptimal moves are parenthesized. For

technical reasons the last move in the line is omitted.

Z Z ZNZ
Z Z ZKS
ZnZ Z Z

Z Z Z Z
Z Z Z Z

Z Z Z Z
ZnZ Z Z

ZkZ Z Z

1Kf7-e6 Nc6-b4 2Ke6-e5 Nb4-d3 3Ke5-e4 Nd3-f2 4Ke4-f3 Nf2-d3
5Kf3-e2 Nc2-b4 6Ke2-e3 Kb1-b2 7Ke3-d4 Nd3-f4 8Kd4-c4 Nb4-d5
9Rg7-h7 Nd5-e3 10Kc4-d4 Ne3-c2 11Kd4-e4 Nf4-e6 12Ke4-e5 Ne6-g5

13Rh7-h5 Nc2-e1 14Ke5-f5 Ng5-f3 15Kf5-e4 (Kf5-f4) Nf3-d2 16Ke4-e3

Nd2-b3 17Rh5-h1 Ne1-c2 18Ke3-d3 Nb3-c1 19Kd3-e4 Nc1-b3 20Rh1-

h3 Nb3-c5 21Ke4-e5 Nc2-e1 22Ng8-f6 Ne1-d3 23Ke5-d6 Nc5-b7
24Kd6-c7 Nb7-c5 25Kc7-c6 Kb2-c2 26Rh3-h2 Kc2-b3 (Kc2-c3) 27Kc6-d5

Kb3-b4 28Kd5-d4 (Rh2-h4) Nd3-f4 29Rh2-h4 Kb4-b5 30Nf6-e8 Nc5-
b3 31Kd4-e4 Nf4-g6 32Rh4-h7 Nb3-c5 33Ke4-d4 Ng6-f4 34Ne8-d6

Kb5-c6 35Rh7-h6 Nc5-b3 36Kd4-e4 Nf4-e6 37Ke4-e5 Ne6-d4 38Rh6-
h3 Nb3-c5 39Nd6-c8 Nd4-c2 40Rh3-c3 Nc2-b4 41Ke5-d4 Nb4-a6

42Rc3-c2 Kc6-d7 43Nc8-b6 Kd7-d6 44Nb6-c4 Kd6-c6 45Nc4-e3 Kc6-
d6 46Ne3-f5 Kd6-e6 47Nf5-g7 Ke6-f7 48Ng7-h5 Nc5-e6 49Kd4-e5

Na6-b4 50Rc2-e2 Nb4-d3 51Ke5-e4 Nd3-b4 52Re2-b2 Kf7-g6 53Nh5-

g3 Ne6-g5 54Ke4-d4 Ng5-e6 55Kd4-c4 Nb4-a6 56Rb2-f2 Ne6-g5
57Rf2-f1 Na6-c7 58Ng3-e2 Ng5-f7 59Ne2-f4 Kg6-g5 60Kc4-d4 Nc7-

b5 61Kd4-c5 Nb5-d6 62Nf4-e6 Kg5-g6 63Ne6-f8 Kg6-g5 64Kc5-d5

Nd6-f5 65Rf1-b1 (Rf1-a1) Nf5-g3 66Rb1-b7 Nf7-h6 67Rb7-g7 Kg5-f4

68Nf8-e6 Kf4-f3 69Rg7-b7 Ng3-h5 70Rb7-b4 Nh5-f6 71Kd5-d4 Nf6-
h5 72Kd4-d3 Nh6-g4 73Ne6-g5 Kf3-g3 74Ng5-e4 Kg3-h4 75Rb4-a4

Nh5-f4 76Kd3-d4 Nf4-e6 (Nf4-e2) 77Kd4-d5 Ne6-f4 78Kd5-d6 Nf4-h3
79Ra4-a8 Ng4-f2 80Ne4-c5 Kh4-g5 81Kd6-e5 Nf2-g4 82Ke5-d4 Nh3-f4

83Nc5-e4 Kg5-g6 84Ra8-a6 Kg6-f5 85Ra6-a5 Kf5-e6 86Ne4-c5 Ke6-e7

112

87Ra5-a7 Ke7-f6 88Kd4-e4 Kf6-g5 89Ra7-a5 Nf4-h5 90Nc5-e6 Kg5-g6

91Ra5-b5 Kg6-f7 92Ne6-c5 Kf7-e7 93Rb5-b2 Ke7-d6 94Nc5-b7 Kd6-e7
95Rb2-a2 Nh5-g7 96Ra2-e2 Ke7-d7 97Re2-g2 Ng7-e8 98Ke4-f4 Ng4-f6

99Kf4-e5 Kd7-e7 100Rg2-e2 Ke7-d7 101Nb7-a5 Nf6-g4 102Ke5-f5 Ng4-
h6 103Kf5-g6 Nh6-g8 104Na5-c4 Ne8-c7 105Kg6-f7 Ng8-h6 106Kf7-f6

Nh6-g8 107Kf6-e5 Ng8-e7 108Re2-d2 Kd7-c6 109Rd2-c2 Nc7-a6 (Ne7-g6)
110Nc4-e3 Kc6-d7 111Rc2-d2 Kd7-c6 112Rd2-d6 Kc6-b5 113Rd6-h6

Ne7-c8 114Ke5-d4 (Rh6-h5) Na6-b4 115Rh6-h5 Kb5-c6 116Ne3-c4 Nc8-e7

117Rh5-h6 Kc6-c7 118Rh6-h7 Kc7-d7 119Kd4-e5 Nb4-d5 120Nc4-d6
(Nc4-d2) Kd7-c6 121Nd6-e4 Ne7-g6 122Ke5-f5 Ng6-f8 123Rh7-h6 Kc6-c7

124Rh6-h1 Nf8-d7 125Rh1-b1 Nd7-b8 126Kf5-e5 Nd5-e3 127Ke5-d4 Ne3-
f5 128Kd4-d5 Nf5-e3 129Kd5-c5 Nb8-d7 130Kc5-d4 Ne3-g4 131Rb1-c1

Kc7-d8 132Rc1-e1 Ng4-f6 133Ne4-g5 (Ne4-d6) Kd8-c7 134Ng5-f7 Nd7-f8
135Re1-f1 Nf6-g4 136Rf1-g1 Ng4-f6 137Rg1-e1 Kc7-d7 138Kd4-e5 Nf6-e8

139Nf7-h8 Kd7-e7 140Ke5-d5 Ke7-d7 141Re1-f1 Ne8-c7 142Kd5-e5 Nf8-
e6 143Nh8-g6 Ne6-c5 144Rf1-b1 Kd7-c6 145Ng6-e7 Kc6-d7 146Ne7-f5

Kd7-c6 147Nf5-d4 Kc6-d7 148Rb1-d1 Nc7-a6 149Nd4-f5 Kd7-c6 150Rd1-

h1 Na6-b4 151Rh1-h6 Kc6-d7 152Ke5-d4 Nc5-e6 153Kd4-c4 Nb4-a6
154Rh6-h7 Kd7-c6 155Rh7-h1 Na6-c7 156Rh1-d1 Nc7-e8 157Nf5-e7

Kc6-c7 158Kc4-d5 Ne6-f8 159Ne7-g8 Kc7-d7 160Kd5-c5 Kd7-e6 (Kd7-
c7) 161Rd1-e1 Ke6-d7 162Re1-e7 Kd7-d8 163Re7-a7 Nf8-d7 164Kc5-c6

Nd7-e5 165Kc6-d5 Ne5-g6 166Ra7-h7 Ne8-c7 167Kd5-c6 Ng6-e5 168Kc6-
d6 Ne5-c4 169Kd6-c5 Nc4-e5 170Rh7-h5 Ne5-f7 171Kc5-c6 Nc7-e6

172Rh5-a5 Kd8-e8 173Ng8-f6 Ke8-e7 174Nf6-d5 Ke7-f8 175Kc6-d7 Ne6-
d4 176Nd5-f4 Nf7-h6 177Ra5-d5 Nd4-f5 178Kd7-e6 Nf5-g7 179Ke6-f6

Nh6-g8 180Kf6-e5 Ng8-h6 181Rd5-a5 Nh6-g4 182Ke5-d4 (Ke5-d5) Kf8-
f7 183Ra5-a7 Kf7-f6 184Kd4-e4 Ng7-e8 185Ra7-a6 Kf6-g7 186Ra6-b6
(Nf4-g2) Ng4-f6 187Ke4-f5 Nf6-d7 188Nf4-e6 Kg7-f7 189Ne6-g5 Kf7-f8

190Rb6-a6 Ne8-g7 191Kf5-g6 Nd7-e5 192Kg6-h7 Ng7-e8 193Ra6-e6

Ne5-f7 194Ng5-f3 Nf7-d6 195Kh7-g6 Nd6-f5 (Nd6-c8) 196Re6-e1 Nf5-

e7 197Kg6-g5 Kf8-f7 198Nf3-e5 Kf7-g7 199Ne5-g4 Kg7-f8 200Ng4-h6

Ne7-d5 201Nh6-f5 Kf8-f7 202Re1-e2 (Re1-e4Re1-e5) Nd5-b6 203Re2-e7

Kf7-f8 204Re7-e1 Nb6-d5 205Re1-e5 Nd5-b6 (Ne8-c7) 206Kg5-g6 Ne8-
c7 207Nf5-d6 Nb6-d5 208Re5-e1 Nc7-e6 (Nd5-f4Nd5-e7Nd5-b4) 209Kg6-f5

Ne6-c7 210Kf5-e5 Nd5-b4 (Kf8-e7) 211Re1-f1 Kf8-e7 212Rf1-f7 Ke7-d8
213Nd6-b7 Kd8-c8 214Nb7-c5 Nc7-b5 215Rf7-g7 (Rf7-h7)Kc8-d8 216Rg7-

b7 Nb4-c6 217Ke5-e6 Kd8-c8 218Rb7-h7 Nc6-b4 219Nc5-a4 Nb4-a6
220Ke6-d5 Nb5-c7 221Kd5-d6 Nc7-e8 222Kd6-e7 Ne8-c7 223Rh7-h6

Na6-b8 224Na4-b6 Kc8-b7 225Nb6-c4 Nb8-c6 226Ke7-d6 (Ke7-d7)Nc6-b4
227Rh6-h8 Nb4-a6 228Rh8-h7 Kb7-c8 229Nc4-a5 Kc8-d8 230Na5-c6

Kd8-c8 231Nc6-e7 Kc8-d8 232Ne7-d5 Nc7-e8 233Kd6-c6 Na6-b8 234Kc6-

b5 Ne8-d6 235Kb5-c5 Nd6-c8 236Rh7-h8 Kd8-d7 237Nd5-f6 Kd7-c7
238Rh8-h7 Kc7-d8 239Rh7-b7 Nb8-a6 240Kc5-c6 Nc8-e7 241Kc6-b6

113

Na6-b4 242Rb7-d7

114

Chapter 7

Group fast Fourier transforms and

their parallelization

One of the most powerful and elegant tools for symmetry exploitation is the group Fourier

transform. This chapter describes new fast algorithms for parallel group Fourier transforms

and presents several new applications to string matching.

The group Fourier transform is a generalization of the classical Fourier transform to the case

in which the index set, instead of being Zm, is a general �nite group, G. This notion will

be explained in detail later in the chapter, but for now, let us try to understand, in general

terms, one kind of relationship between symmetry and the classical Fourier transform.

Suppose we want to compute some (linear) function M on a vector of points v. Assuming

thatM is an n�n matrix, then brute-force multiplication ofM by v will take n2 operations.

But if we have the following additional information on M then we can do better; suppose,

for instance, that if we cyclically shift v to the left, getting a new vector w, then Mw is the

115

cyclic shift ofMv; these cyclic shifts, of course, form a cyclic group of order n. In that case,

we can compute Mv in O (n logn) time by operating in the frequency domain; that is, by

�rst Fourier transforming both v and the �rst column of M and then pointwise multiplying

the results. The classical Fourier transform can therefore be thought of as a transform that

elicits the underlying symmetry of the operator M when this symmetry is a cyclic group.

In general, however, one can imagine transformations on v far more general than cyclic

shifts. When the set of transformations form a group G commuting with M, then, once

again, it is more e�cient to operate in the spectral domain. We take the G-Fourier transform

of the �rst column of M and of v, and \pointwise" multiply these, although the points, in

this case, are in fact matrices. In this way, the G-Fourier transform can be thought of as the

function that exposes the underlying symmetry ofM. Just as the classical Fourier transform

is often used to model time-invariant properties of a signal, so the G-Fourier transform can

be used to model the G-invariant properties of an input.

The format of this chapter will be as follows.

Section 7.1 provides a brief overview of the fascinating history of the classical Fourier trans-

form, which is simply a group Fourier transform for Abelian groups. Then we will brie
y

present some of the classical fast Fourier transform (FFT) algorithms in the tensor product

notation developed in section 4.3.

Section 7.2 provides a brief review of group representation theory and the basics of group

Fourier transform theory. The concept of an irreducible group representation is introduced,

and the group Fourier transform is formally de�ned. Subsection 7.2.2 then rede�nes the

116

group Fourier transform in an entirely equivalent way using the concepts of group algebras;

this formulation lets us more easily understand the matricial structure of group Fourier

transforms.

Section 7.3 describes the fast group Fourier transforms algorithms. Although these algo-

rithms are not as fast as classical FFT algorithms, they are still considerably faster than

the brute-force n2 algorithm for many classes of groups. In the case where the group G is

Abelian, we see that the new algorithms reduce to the Cooley-Tukey FFT algorithm.

Section 7.4 describes the parallelization of the group FFT algorithms. Subsection 7.4.1

reviews parallelization of classical FFT algorithms, and subsection 7.4.2 outlines previous

work on parallel group Fourier transforms for general �nite groups. Subsection 7.4.3 presents

a parallelization of the group fast Fourier transforms, and describes a preliminary parallel

Sn tranform. Subsection 7.4.4 discusses in more detail the application to group circulants.

The section concludes in subsection 7.4.5, where applications of group FFTs to learning,

random walks on groups, analysis of ranked data, and group �lters are presented.

Section 7.5 illustrates the ideas developed so far by describing the development of a simple

parallel dihedral group FFT implementation.

Section 7.6 describes a new class of applications for group FFT algorithms: generalized

string matching. Many earlier string-matching algorithms are brought under a single uni-

fying rubric of generalized matrix multiplication, and the symmetry of the original prob-

lem is modeled by the symmetry of the matrix. These generalized matrix multiplication

problems are particularly interesting because, despite their almost complete lack of alge-

117

braic structure, the group FFT algorithms can still be used. Subsection 7.6.1 presents a

brief background of string-matching problems, subsection 7.6.2 describes the mathematical

underpinnings of our model for string matching, subsection 7.6.3 gives algorithms for per-

forming certain kinds of generalized matrix multiplication algorithms, and subsection 7.6.4

describes a class of new parallel string-matching algorithms.

Section 7.7 concludes with some open problems and suggestions for future work.

7.1 Classical Fourier transforms

The history of fast Fourier transforms is somewhat convoluted, so to speak, but nevertheless

worthy of remark. Three summaries of the history of varying focus are contained in the

references by Goldstine [340], by Cooley, Lewis, andWelch [199] and by Heidemann, Johnson

and Burrus [361].

Abelian fast Fourier transform theory has its roots in Carl Friedrich Gauss' 19th-century

posthumous paper [323]. Gauss considered the problem of interpolating a trigonometric

series as part of a general investigation of interpolation techniques. Unfortunately, due

to language, notational, and terminological di�culties, it is di�cult for the contemporary

reader to discern the modern FFT in Gauss' presentation, although it was pointed out by

Goldstine [340, p.247{258].

An O (n logn) FFT was rediscovered by Runge, in the early 1900s [652], and re�ned into a

usable algorithm by Danielson and Lanczos in a famous 1942 paper, which, however, had

118

been forgotten [218,219]. Danielson and Lanczos were interested in X-ray analysis, and the

following excerpt from the introduction to their �rst paper [218, pp.365{366] gives a vivid

an entertaining picture of the computational conditions under which they labored.

One of the more recent applications of Fourier analysis occurs in the quan-
titative investigation of liquids by x-rays following the theory of Zernike and
Prins. Although the following method was developed for this application, it
is equally applicable to any problem requiring a Fourier analysis. If a modern
mechanical analyzer (e.g. Henrici [362] or Michelson [552]20) is available, the
evaluation of a Fourier integral presents no di�culty. It is our purpose to show
that, for occasional analysis at least, one need not depend upon such costly
instruments, even when the required number of coe�cients is very large. Like
all other arithmetical methods we make use of the symmetry of the trigono-
metric functions in the four quadrants of a circle. The great reduction in the
number of operations, which this allows, has been pointed out by Runge [652].
Since, however, the labor varies approximately as the square of the number of
ordinates, the available standard forms become impractical for a large number
of coe�cients. We shall show that, by a certain transformation process, it is
possible to double the number of ordinates with only slightly more than double
the labor.

In the technique of numerical analysis the following improvements suggested
by Lanczos were used: (1) a simple matrix scheme for any even number of
ordinates can be used in place of available standard forms; (2) a transposition
of odd ordinates into even ordinates reduces an analysis for 2n coe�cients to
two analyses for n coe�cients; (3) by using intermediate ordinates it is possible
to estimate, before calculating any coe�cients, the probable accuracy of the
analysis; (4) any intermediate value of the Fourier integral can be determined
from the calculated coe�cients by interpolation. The �rst two improvements
reduce the time spent in calculation and the probability of making errors, the
third tests the accuracy of the analysis, and the fourth improvement allows the
transform curve to be constructed with arbitrary exactness. Adopting these
improvements the approximate times for Fourier analyses are: 10 minutes for
8 coe�cients, 25 minutes for 16 coe�cients, 60 minutes for 32 coe�cients, and
140 minutes for 64 coe�cients: : :"

The algorithms of Gauss, Runge, and Danielson-Lanczos were fundamentally the famous

20 The devices of Henrici and Michelson-Stratton to which the authors allude were based on enor-
mous mechanical Fourier analyzer due to Kelvin dating from the 1800s [362].

119

Cooley-Tukey algorithm, and should be distinguished from the 1958 prime-factor algorithm

of Good and the (independently) 1963 work of Thomas, which reduced the case where n

was a product of distinct primes to the FFTs of the prime factors of n [343,749].

In any case, the e�ect of the paper of Cooley-Tukey, backed up by their implementation,

was signi�cant. Until then most FFT implementations used quadratic algorithms, and

considerable CPU time was used computing FFT's. The discovery and simple exposition of

their O (n logn) algorithm had a considerable impact on the development of digital signal

processing and Fourier analysis techniques.

The modern formulation of the discrete Fourier transform (DFT) is given an input vector

of complex numbers (v0; : : : ;vn�1)
T, compute the product Fnv, where Fn is the n � n

DFT-matrix whose rsth component is !rs, where ! is a primitive nth root of unity (for

example, e2�i=n). Our presentation in the remainder of this section will closely follow the

exposition in [759, pp.16{20].

Let n = ml. The Singleton (1967) [689] mixed-radix version of the Cooley-Tukey (1965)

fast Fourier transform [200] can be expressed recursively,

Fn = (Fm
 Il)Tl(Im
 Fl)P
n
m: (7.1)

where Tl is a diagonal matrix encoding the twiddle factors:

Tl =
m�1M
j=0

�
diag

�
1; !; : : : ; !l�1

��j
:

This can be interpreted as a mixed parallel/vector algorithm (see section 4.3). Given an

input vector v, Pnmv forms a list of m segments, each of length l. The Im
Fl term performs

120

m l-point FFTs in parallel on each segment. Tl just multiplies each element by a twiddle

factor. Finally, the Fm
 Il term performs an m-point FFT on vectors of size l.

The commutation theorem can be used to derive a parallel form

Fn = Pnm (Il
 Fm)P
n
l Tl (Im
 Fl)P

n
m; (7.2)

and a vector form

Fn = (Fm
 Il)TlP
n
m (Fl
 Im) : (7.3)

In 1968, Marshall C. Pease developed an FFT that could be derived by unrolling the recur-

sion in Equation 7.2 [598].

The vectorized Korn-Lambiotte FFT (1979) can be derived by unrolling Equation 7.3 [459,

598].

By using the commutation theorem and varying the factorization, many di�erent FFT

algorithms have been derived, with di�erent tradeo�s between parallelization and vector-

ization [66,69,170,344,407].

The Fourier transform diagonalizes circulant matrices: given an n�n circulant matrix M it

can be shown that FnMF
�1
n is diagonal. Therefore, computation ofMv reduces to performing

a backward and forward Fourier transform; that is, Fourier transforms implement circular

convolution [719].

121

7.2 Group Fourier transforms: Foundations

This section brie
y introduces some of the mathematical underpinnings of the group Fourier

transform theory. For a more leisurely introduction, we recommend the survey [189]. An

introduction from an engineering perspective is in [771]. Cli�ord theory and the theory

of induced representations is clearly introduced in [195]. The exposition here follows the

approach of [240].

7.2.1 Basic de�nitions

A representation of a �nite group G is a group-homomorphism � from G into the group

of invertible linear transformations of an n-dimensional complex vector-space Vn (also see

subsection 3.2). This latter group, GLn, may be identi�ed with the multiplicative group

of nonsingular n � n matrices over the complex numbers. If V has a subspace W such

that �(g)(W) = W for all group elements g, then W is said to be invariant under �. A

representation whose only invariant subspaces are V and 0 is said to be irreducible.

Suppose � and �0 are two representations of degrees n and n0 associated with vector-spaces

Vn and Vn0 : Then we say that � and �
0 are equivalent if there is an isomorphism f : Vn ! Vn0

such that f � �(g) = �0(g) � f for all g 2 G. The direct sum of � and �0 is the representation

of degree n + n0 with associated vector-space Vn � Vn0 such that (� � �0)(g)(v � v0) =

�(g)(v)� �0(g)(v0).

It is a fact that any representation � is equivalent to the direct sum of irreducible represen-

122

tations. There are only a �nite number (up to isomorphism) of irreducible representations

of any �nite group G. We write d� for the degree of the representation �, and we let R be

a complete set of inequivalent irreducible representations over G. The following relation is

fundamental: X
�2R

d2� = jGj: (7.4)

Most representation-theoretic questions over �nite groups thereby reduce to the study of

irreducible representations.

Any representation of G is equivalent to a direct sum of irreducible representations of G; the

representation theory of �nite groups is thereby normally reduced to the study of irreducible

representations.

Let f be any function from G into C . Then the Fourier transform of f is the function f̂

that assigns to the degree d� representation � the d� � d� matrix:

f̂(�) =
X
g2G

f(g)�(g):

The G-Fourier transform problem is to compute f̂(�) for a complete set of irreducible

representations R:

Suppose that f and f 0 are two functions from G into C . Their G-convolution (or just

convolution), f ?G f
0, is the function from G into C de�ned by

f ?G f
0(g) =

X
hh0=g

f(h)f 0(h0):

Note that, when G is a cyclic group of order n, the group convolution reduces to the familiar

123

circular convolution [11]

f ?Cn f
0(i) =

n�1X
j=0

f(j)f 0(i� j):

Recall that one of the fundamental properties of the classical Fourier transform is that it

turns convolution into a pointwise product. The G-Fourier representation has a similar

function, but applied to G-convolution.

There are two important properties of the G-Fourier transform.

First, the G-Fourier transform is invertible:

f (g) =
1

jGj
X
�2R

trace
�
f̂(�)�

�
g�1

��
:

Second, the G-Fourier transform turns convolution into element-wise product, where the

elements multiplied are d� � d� matrices. Thus, to compute f ?G f 0, we compute the G-

Fourier transforms f̂ ; f̂ 0, multiply corresponding pairs of matrices, and inverse G-Fourier

transform the result. Assuming that multiplication of a k � k matrix takes time O
�
k3
�
,

the total time for the convolution is therefore O
�P

�2R d3�

�
plus the time to compute two

G-FFTs and one inverse G-FFT. Note that the sum is bounded above by jGj32 , insofar as

the sum of the squares of the degrees of the irreducible representations is jGj.

7.2.2 An algebra viewpoint

This subsection presents the G-Fourier transform in an alternative but equivalent frame-

work.

124

The space of functions fromG into C forms an algebra, C [G]; under element-wise addition and

convolution product. An algebra is a vector space A over C on which a binary, associative

multiplication with unit is de�ned that distributes over + and satis�es (�a)b = �(ab) for

� 2 C and a; b 2 A [253, p. 1]. For example, the set of d � d complex matrices forms a

matrix algebra in which the product is simply the usual matrix product. The dimension

of a matrix algebra is its dimension as a vector space over C , and is thus the square of the

number of rows or columns in its matrices.

The direct sum of two matrix algebras A and A0 is the algebra whose underlying vector

space is A�A0 and for which multiplication is de�ned component-wise. It is a fundamental

theorem of representation theory that the space of G-functions under convolution is algebra-

isomorphic to a direct sum of matrix algebras [166, 557, 558].21 The dimensions of the

components of the direct sum are fd2i gki=0, where di ranges over the degrees of the irreducible

representations of G and k is the number of distinct irreducible representations of G. The

G-Fourier transform can also be viewed as the matrix of the isomorphism between the two

vector spaces of dimension jGj: The complexity of computing the G-Fourier transform of a

function f 2 C [G] is called the complexity, TG, of G. We should be more careful de�ning the

model to which TG refers. The most common model used is the linear complexity, which is

the minimal time-complexity of any straight-line arithmetic program over C that computes

the Fourier transform, although sometimes we also bound the size of the numbers that can

be manipulated by the straight-line program. Since this is only an informal presentation,

21 One of the founders of the theory of algebras and representation theory was Theodor Molien,

whose contributions are discussed in subsection 6.1.3.

125

we will be a bit careless, although we remark that obviously TG = O
�
jGj2

�
, insofar as this

is an upper bound on the complexity of multiplication by a jGj � jGj matrix.

A Fourier transform and its inverse together give an algorithm for computing group convo-

lution: given f; f 0, compute their group Fourier transform, getting two elements of the asso-

ciated jGj dimensional matrix algebra; then multiply these vectors component-wise (where

the components are block matrices of dimensions di�di), and then take the inverse Fourier

transform of the product. The complexity of the multiplication step is bounded above by

P
i d

3
i , where, as usual, the di range over the degrees of a complete set of irreducible rep-

resentations of G. It can be shown the complexity of the inverse Fourier transform is in

fact within a small constant factor of the complexity of the Fourier transform, so that fast

group Fourier transforms yield fast convolutions [189]. The exact time complexity of the

convolution depends on the degrees of the irreducible representations of the group, although

it is clearly bounded above by O
�
jGjpjGj� when G admits a fast Fourier transform, since

the sum of the squares of the di is jGj:

When G is cyclic, then the G-Fourier transform is simply the standard Fourier transform

matrix of order n. To see this, observe that a one-dimensional representation is obviously

irreducible, and therefore the representation that sends j 2 Zn to the 1 � 1 matrix (!kj)

is an irreducible one-dimensional representation of Zn for k = 0; : : : ; n � 1; these form a

complete set of one-dimensional representations.

126

7.3 Fast group Fourier transform algorithms: Background

The �rst person to consider non-Abelian group Fourier transforms seems to have been

Karpovsky (1977) who considered the case of fast G-Fourier transforms when G was the

direct product of subgroups each of which had a fast FFT [428]. Similar results were

considered by Atkinson (1977) [65].

However, the �rst nontrivial G-Fourier transform algorithms are due to Beth, who gave

O
�
jGj3=2

�
time algorithms for the case when G is solvable [119, 120]. Beth also described

several potential applications of these techniques [118].

When G is \close" to being Abelian, then, not surprisingly, fast G-Fourier transforms also

exist. Clausen gave O (jGjpolylogjGj) time algorithms for the case when G is metabelian

(a metabelian group is one that has Abelian normal subgroup H � G such that G=H is

also Abelian; this class includes the group of symmetries of a k-gon, generalized quaternion

groups, and groups for which there is a prime p such that jGj is a power of p and smaller

than p6, as are groups whose order is a product of distinct primes) [186]. This work was

independently performed and also generalized by Rockmore [630], who showed that if H

were normal in G, and G=H was Abelian, then

TG = O

� jGj
jHj � TH + jGj log

� jGj
jHj
��

:

The most important speci�c class of G considered are the symmetric groups Sn. Fourier

transforms for Sn have been shown by Persi Diaconis to have signi�cance for the analysis of

ranked data [239] [238, pp.141{160]; Diaconis' work has been an important motivation for

127

the �eld, in fact. Any �nite group G is a subgroup of some Sn, and some important groups,

such as the alternating groups, are such big subgroups that a fast Sn-Fourier transform

automatically yields a fast group transform for that group. Rockmore seems to have been the

�rst to give a TSn = O (jSnj polylog jSnj) algorithm for the problem [628], and re�nements

continue to be discovered [187, 190, 631]. In practice, S10 transforms require about 20

minutes on a Sparc 1 [187].

When G is a wreath product by a symmetric group, e�cient transform algorithms have

been given by Rockmore [632]. Recently, Maslen and Rockmore have applied the concept

of adapted group diameter to the generation of e�cient group Fourier transforms for a wide

range of groups, including the groups above, in addition to general linear groups over a

�nite �eld [537].

Fast G-Fourier transform algorithms (G-FFTs) all use the same general structure. Suppose

we want to compute the G-FFT of a function f :G! C . First, a subgroup H � G is chosen.

Next, several jGj-FFTs of functions f1; : : : ; fk:H ! C are computed, possibly recursively,

for some functions f1; : : : ; fk. Finally, the G-FFT of f is computed from the H-FFTs.

Mathematically, suppose that H has index k in G, and let X be a set of coset representatives

for H in G. Let � # H denote the restriction of � to H; note that this is in turn a representation

for H. Let fg:H! C be de�ned by h 7! f(gh). We have:

f̂ (�) =
X
g2G

f(g)�(g) (7.5)

=
X
x2X

X
h2H

f(xh)�(xh) (7.6)

128

=
X
x2X

�(x)
X
h2H

f(xh)�(h) (7.7)

=
X
x2X

�(x)
X
h2H

fx(h)�(h) (7.8)

=
X
x2X

�(x)f̂x (� # H) : (7.9)

It can be shown that the complete set of irreducible representations R of G can always

be chosen so that any representation � 2 R is equal to a direct sum of irreducible repre-

sentations of H, (not merely equivalent). Such a set of representations is called adapted to

H.

Assuming R is adapted, we have thereby reduced the computation of f̂(�) to the computa-

tion
n
f̂(�)

o
, for a complete set of irreducible representations of H. Of course, this process

can be iterated through a chain of subgroups.

Now, when G = C2k then choosing the natural length-k chain of subgroups recovers the

Cooley-Tukey FFT. If G is Abelian, then the G-Fourier transform can be computed from the

structure theorem for Abelian groups. It can be shown that the G1�G2-Fourier transform

is the tensor product of the Fourier transforms for G1 and G2. Since every Abelian group

is the direct product of cyclic groups, whose Fourier transforms were computed above, the

Fourier transform of an Abelian group is simply the tensor product of a number of copies

of ordinary classical Fourier transforms, possibly with some permutations of the data. It is

easy to see that the classical results now show that TG = O (jGj log jGj) for Abelian G.

129

7.4 Parallel group Fourier transforms

7.4.1 Abelian case

The problem of parallelization of the classical Fourier transform (which is equivalent, we

have seen, to the problem of parallelizing the G-Fourier transform for Abelian G) has been

an active and important area of research since the seminal paper by Marshall Pease [598].

The Pease FFT might arguably be characterized as an early motivation for the construction

of high-speed parallel computers, as his 1968 paper on the topic argued for the feasibility

of highly-parallel FFT implementations, concluding \it would be possible to build a spe-

cial purpose parallel computer to calculate the Fourier transforms of large sets of data at

extremely high speed: : : [598]."

Unlike some classes of parallel algorithms, FFTs have been implemented on many physical

machines and have been shown to attain high bandwidth in practice, and they are used in

real applications. Indeed, the FFT is clearly parallelizable in a theoretical sense using O (n)

processors and O (logn) time, so most of the considerable body of literature on parallel FFT

concentrates on reducing the constant factors in implementations. An excellent case-study

of the CM-2 parallelization is by Johnsson, Krawitz, Frye, and Macdonald, who describe

some of the aggressive coding tricks and data-reorganization permitting high-bandwidth

FFT on the CM-2 [419]; see also [4, 421] for other CM-2 implementations. Swarztrauber

provides a summary of some algorithms, and Johnsson, Jacquemin, and Ho describe a

high-radix FFT [7, 417,733]. Scalability issues are discussed by Gupta and Kumar [353].

130

Averbuch, Gabber, Gordissky, and Medan discuss the MIMD case, and Munthe-Kaas also

discusses the problem [69,570]. The vector case has been treated by, for example, Korn and

Lambiotte [459] and Schwarztrauber [732]. Mou and Wang (1993) provide a fairly recent

analysis from a communication-theoretic point of view [567].

7.4.2 General case: Background

Much less attention has been devoted to the problem of parallelizing G-Fourier transforms

for general �nite G.

In the most general formulation, one could imagine an algorithm that, given an arbitrary

�nite group G, presented in terms of a generating set, for example, computes the G-Fourier

transform matrix for G, as well as a fast algorithm for its application. This problem might

arise in a situation in which the symmetry of the problem is not known a priori, but must

be computed on-line. For most applications that have arisen to date, the structure of G is

known o�-line, and has not been considered even sequentially. In other cases, the irreducible

representations of G would need to be computed [71,73].

Instead, we consider the case where G is �xed and known ahead of time, and thus we do not

consider the time required to analyze the structure of G and to �gure out a good G-Fourier

transform. We know of only a few previous treatments of this problem.

Roziner, Karpovsky, and Trachtenberg considered the case in which Gwas the direct product

131

of subgroups [650]. This case is quite trivial, however, because, it is easy to see that

FG1�G2
= FG1

 FG2
; (7.10)

therefore, the tensor-product parallelization techniques of section 4.3 apply. Note that

equation 7.10, when iterated, recovers the fast algorithm for the Walsh transform, which

is FCk
2
. Roziner et al. give numerical examples when one of the factors is the quaternion

group, and con�rm that very fast execution is possible; faster, in fact, than for FFTs of

Abelian groups of the same size [650].

Clausen and Gollmann have considered the case of the VLSI implementations for the sym-

metric group, using ideas similar to the implementation we give below [191].

Diaconis and Rockmore sketch a parallel algorithm in a subsection of their paper [240,

pp.326{328]. However, their algorithm has quadratic worst-case work complexity.

7.4.3 A parallel algorithm for general groups

Our presentation will closely follow the sequential presentation of Maslen and Rockmore

(1995) [537].

Observe that multiplication by FG can be performed in logarithmic time using O
�
jGj2

�
processors, as it consists of multiplication of a jGj � jGj-matrix by a vector of length jGj.

In fact, however, all of the known fast Fourier transform algorithms are parallelizable using

standard techniques from parallel processing because they can be viewed as factorizations

of FG in terms of simple sparse matrices.

132

In order to analyze parallelizability, we use the linear circuit model of computation. A

linear circuit is a weighted directed acylic graph with three types of nodes: input, output,

and interior. Each input node has in-degree 0, each output node has out-degree 0. Each

node v in a linear circuit is associated with a linear form L(v) in its inputs as follows. The

linear form associated to input node x is x. Let E be the set of edges, and w(e) 2 C be the

weight associated with edge e 2 E. The linear form associated to a node v is

X
fu:(u;v)2Eg

w(e)L(u):

Given a circuit G, its size jGj is number of edges in G, and its depth D (G) is the length

of the longest path in G. Clearly, given a circuit G of size s and depth d and given scalars

x1; : : : ; xn, the value of the linear form corresponding to each output node of the circuit can

be computed on a PRAM with s processors in time O (d log s):

Let H < G and let X be a set of coset representatives for H in G. We letMG (X) be a circuit

that computes
P

x2X �(x)Fx(�) for inputs being d� � d� matrices Fg(�) for each � 2 R and

x 2 X . Thus, this circuit has jGjjX j inputs and jGj outputs.

Theorem 2 Let H < G, let R be a complete set of irreducible representations for G, let

X be a set of coset representatives for H in G, and let CH compute FH for a complete set

of irreducible representations for H to which R is adapted. Then there is a circuit CG

computing FG that satis�es

jCGj � 2jGj+ jGj
jHj jCHj+ jMG (X)j; (7.11)

133

and

D (CG) � 2 +D (CH) +D (MG (X)): (7.12)

Proof: This follows easily from equation 7.9.

Iterating this construct, we see that, (cf. [537, Theorem 2.2])

Theorem 3 Let G0 < G1 < � � � < Gk = G be a subgroup chain in G, and let Xi, i = 1; : : : ; k

be a set of coset representatives for Gi�1 in Gi. Then there is a circuit CG satisfying

jCGj � jGj

2k +

jCG0
j

jG0j +
kX
i=1

jMGi (Xi)j
jGij

!

and

D (CG) � 2k +

D (CG0

) +
kX
i=1

D (MGi (Xi))

!
:

Proof: Unroll the recursion in Theorem 2.

The method we have illustrated here for translating statements about the sequential time

complexity of G-FFTs into statements about their parallel complexity is easy to apply to

most of the sequential algorithms. This is because these algorithms rely on a chain of

subgroups, so that their depth of recursion is normally at most logarithmic.

We now outline the separation of variables technique [537] and show how it yields paral-

lelizable sub-quadratic algorithms for many classes of groups.

The key to further speedups in a G-FFT is to speed up the computationMGi (Xi), and this

depends upon the matrices f�(xi): xi 2 Xig having some special form. This special form is

given by the following generalization of Schur's Lemma.

134

Theorem 4 Schur's Lemma: Let H < G and suppose that � is a representation for G such

that � # H is the direct sum

�1 � �1 � � � � � �r � � � � � �r;

where the multiplicity of �i is mi. Suppose that A is a d� � d� matrix commuting with the

matrices �(h), for each h 2 H. Then there are mi �mi matrices Bi such that

A =
rM

i=1

Bi
 Id�i
:

Proof: This can be shown by modifying the usual proof of Schur's Lemma.

Schur's Lemma gives a parallel analogue of a result of Maslen and Rockmore [536, Corollary

4.4]:

Theorem 5 Let K � H be subgroups of G and let R be a complete set of irreducible rep-

resentations of G adapted to H and K. For each � 2 R let F (�) be a d� � d� matrix. Let

h 2 H commute with each element of K. Then the set

f� (h) � F (�) : � 2 Rg

can be computed by a linear circuit of size jGjM(H;K) and depth O (log jGj), where M(H;K)

is the maximum multiplicity of an irreducible representation of K in the restriction to K of

a representation in R.

Proof: Each row of �(h) contains at most M(H;K) nonzero entries by Schur's Lemma,

since �(h) commutes with each �(k), for k 2 K:

135

Now it follows from equation 7.9 that if we assume the existence of a fast FFT for a sub-

group H of G then the main computational obstacle to a rapid evaluation of a G-FFT is

multiplication by the matrices �(x); as x ranges over a complete set of coset representa-

tives for H in G and � ranges over irreducible representations. The complexity of this key

subcomputation is expressed by MG (X).

The remainder of this section describes ways in which the complexity of this computation

may be bounded. It is certainly the case that if �(x) were of a particularly simple form|

for example, diagonal, block-diagonal, or sparse|then of course the complexity of matrix

multiplication by �(x) could be reduced from the brute-force. In general, however, the �(x)

are not \nice" in this sense.

Our strategy, therefore, is to express each �(x) as a product of \nice" matrices. The form

of each of these \nice" factors is given by Schur's Lemma: it is a direct sum of tensor

products. In other words, we have a collection of nice matrices (given by Schur's Lemma),

and we want to express our �(x) as products of these matrices. This problem is similar to

the problem in permutation group theory in which a given group element is to be expressed

as a product of generators, and indeed permutation group terminology will provide a useful

notation for our results (once again we are following the sequential development of Maslen

and Rockmore [537]).

A strong generating set with respect to a chain feg = G0 < � � � < Gn = G is a set S such

that S \ Gi generates Gi for all i [72, 684]. Our strategy will be to �nd a strong generating

set for G whose representations have a nice form, and then to express the �(x) as a product

136

of these.

Let
i be the minimum length such that the set of products of �
i elements from S \ Gi

generates coset representatives for Gi�1 in Gi. The adapted diameter
fS; fGigni=0g of the

chain fGig relative to the strong generating set S is
Pn

i=1
i: Let Gg be the largest subgroup

in the chain containing g, and G0
g be the largest subgroup in the chain that commutes with

g. Let

M(S) = max
n
M
�
Gg;G

0
g

�
: g 2 S

o
:

Intuitively, M(S) is a measure of the \badness" (from the point of view of Schur's Lemma)

of the representations of the generators in S, and
fS; fGigni=0g is a measure of how many

times this \badness" occurs in the expression for an arbitrary element of G: In order to get

fast parallel G-FFTs, we will try to choose strong generating sets with \nice" generators for

such that elements of G can be expressed in a reasonably small number of such generators.

Formally, the following parallel version of a sequential result now follows [537, Corollary

3.3]:

Theorem 6 Let S be a strong generating set for G relative to the chain feg = G0 < � � � <

Gn = G: Then there is a circuit computing FG in size bounded above by

�jGj
 (S; fGigni=0)M(S)

and depth bounded above by

O(
 (S; fGigni=0) polylogjGj;

137

where � is the maximum of the indices of Gi�1 in Gi.

Proof: This follows from Theorem 5, the de�nition of adapted diameter, and Schur's

Lemma.

We now describe strong generating sets for several classes of groups and obtain e�cient

parallel algorithms on application of Theorem 6 [537].

If G is Abelian, take S = G and �x any chain of subgroup feg = G0 < � � �< Gn = G. Then

 (S; fGigni=0)M(S) = n. Since n may be bounded by O (log jGj) Theorem 5 recovers the

parallelization of the Cooley-Tukey FFT.

When G = Sn, a symmetric group, then we can use the subgroup chain feg = S1 < S2 <

� � � < Sn, where Sk is identi�ed with the stabilizer of fk+1; : : : ; ng. By choosing the strong

generating set S to be the transpositions f(i i+ 1)g, and using Young's seminormal form

for the representations, it follows from the representation theory of the symmetric group

thatM(S) = 2 and the adapted diameter is polylogarithmic; the existence of an polylogjGj

time Sn-FFT algorithm using jGj processors for symmetric groups now follows [399,659].22

22 A very preliminary version of the forward Sn Fourier transform has been implemented in CM

Fortran on a CM-5. The Young seminormal forms are computed using the serial C code of Baum

and Clausen, which they graciously provided to the author [190]. Steven Skiena's Mathematica

package Combinatorica.m was also used in some of the Young tableaux computations [690, Chapter

2]. This preliminary version requires 86 seconds to compute an S11-FFT using a 512-node partition

of a CM-5. This timing is about 14 times faster than the previously reported serial time for an S10

FFT, which is 11 times smaller. Our S10 code, however, is only about 80 times faster than the serial

138

When G is GLn(q), the group of nonsingular matrices over a �nite �eld of order q, then

it can be shown that there exists a strong generating set S with polylogarithmic adapted

diameter and M(S) = jGjO(1)=n [167,537].

This technique extends to parallelizing other published G-FFT algorithms, most of which

rely on applications of Cli�ord theory, which predicts the representations of G in terms of

the representations of a normal subgroup N. We brie
y consider the case of a solvable group

G, which is a group for which there is a chain feg = G0 < G1 < cdots < Gn = G where each

Gi is normal in Gi+1 and the factor groups Gi+1=Gi are cyclic of prime order. A factor group

Gi+1=Gi acts by conjugation on the representations of Gi and each orbit must have either a

single element or jGi+1=Gij elements. By Cli�ord theory, a Gi+1-irreducible representation

is either an extension of a Gi-irreducible representation or is itself the induction of jGi+1=Gij

distinct irreducible representations of Gi. In either case the corresponding MGi+1 (X) can

be computed in a circuit of size O
�
jGi+1j3=2

�
and depth polylogjGi+1j leading to a size

jGj3=2 and depth polylogjGj circuit.

Finally, in the case of monomial groups|groups with representations all of whose matrices

have only one nonzero entry in each row or column|a size O (jGjpolylogjGj) and depth

polylogjGj circuit exists. Because supersolvable groups (solvable groups whose Gi are normal

in G) and metabelian groups are monomial, they have e�cient parallel group FFTs.

Our discussion is summarized in the following theorem:

code. We expect the �nal version of our Sn-code to run much faster than the current version and

to solve S12-FFTs [746].

139

Theorem 7 There exist circuits of size jGjpolylogjGj and depth polylogjGj for the following

classes of groups:

� Abelian groups

� Symmetric groups Sn [188,190,628].

� Metabelian groups [91,186,630].

� Supersolvable groups [189, pp.109{123].

Futhermore, there exist circuits of size jGj3=2 and depth polylogjGj for solvable G, and size

jGjjGjO(1)=n for general GLn(q).

7.4.4 Group circulants

The de�nitions of G-circulant matrix and of G-invariant matrix were contained in section

3.2, and arose also in the context of the chess move generator matrix. It is not di�cult to

see that multiplication by a G-invariant matrix is equivalent to G-convolution; this is the

connection between fast group Fourier transforms and the exploitation of symmetry.

Suppose that M = (Mgg0)g;g02G is an n� n matrix whose rows and columns are indexed by

the elements of an n-element group G, and that Mg;g0 = Mhg;hg0 for all g; g
0; h0 2 G.

Let v be any C -vector also indexed by the elements of G; thus, v can be thought of as an

140

element of C [G]. The gth component of the product M � v is given by

(M � v)g =
X
h2G

Mg;hf(h) (7.13)

=
X
h2G

Mh�1g;ef (h) (7.14)

= (v ?G Me) (g); (7.15)

where Me is the eth column of M. Hence M � v = v ?Me. Note that the equivalence of

group-convolution and multiplication by a group circulant holds even when addition and

multiplication are replaced by arbitrary operators.

It is now not di�cult to see that the Fourier transform matrix block diagonalizes a G-

circulant, where the sizes of the blocks are di � di. This can be used to derive fast mul-

tiplication algorithms for G-circulant matrices when G admits a fast Fourier transform.

Indeed, given a G-circulant matrix M and a vector v, we compute the G-Fourier transform

v̂ of v, which is a map assigning to each irreducible representation � of G of degree d�

a d� � d� matrix, compute the G-Fourier transform M̂e; multiply corresponding matrices.

The inverse G-Fourier transform of the result will be the desired product. The inverse G-

Fourier transform is within a constant factor of the complexity of the G-Fourier transform,

so that the complexity of convolution, which would by jGj2 by brute force, becomes the

sum 3TG +
P

� d
3
�, where the sum is over all irreducible representations �. If we let d�G de-

note
P

�2R d�� , then group convolution requires time O
�
d3G + (TG)

�
assuming a cubic matrix

multiply. Since d3G � jGj3=2 this gives an jGj3=2 time complexity for group convolution for

the classes of groups considered so far; since matrix multiplication is parallelizable these

141

can be computed in circuits of polylogarithmic depth.

This block-diagonalization property of G-Fourier transforms is the basis for a wide range of

applications, which are discussed in the next section.

7.4.5 Applications

Several years after the publication of famous 1965 Cooley-Tukey paper on the fast Fourier

transform [200] the IEEE Transactions on Audio and Electroacoustics published a \Spe-

cial issue on the fast Fourier transform and its application to digital �ltering and spectral

analysis," which contained the in
uential survey [193], the historical summary [199], and a

number of other interesting articles, including a spectral analysis of the song of the killer

whale. A brief article by Emanuel Parzen, \Informal comments on the uses of power spec-

trum analysis," provided a clear motivation for applications of the classical fast Fourier

transform:

I would like to o�er a �nal idea that may be useful. People are very often
interested in classifying patterns or records (for example, cardiograms). That is,
one may want to decide whether a cardiogram is from a \good" patient. Various
techniques are being considered for examining the record and performing some
kind of analysis on it. It seems to me that one ought to consider taking a
Fourier transform of these records, and work with that in the same role. That
is, whenever someone thinks of a time domain approach to a problem, one
should consider taking the Fourier transform of the time record of that sample
and use that. Similarly, when one talks about pattern recognition in the plane,
people are interested in recognizeing the various letters of the alphabet. I have
always wondered why they do not take a two-dimensional Fourier transform
of the data; this might avoid some positioning problems. These are some of
the ideas that have come to mind as I listened to talks on pattern-recognition
problems. [590, p.76]

142

One way to understand Parzen's suggestions is to realize that analysis of a time-dependent

function (time series) should be invariant to shifts in time; for instance, if analysis of a cer-

tain cardiogram suggests a prognosis, then the same prognosis is indicated if the cardiogram

were taken a few minutes earlier or later. The engineering notion of the \time-domain" is,

in our language, a particular instance of cyclic group invariance. Similarly, recognition of

a character in the plane should be invariant under two-dimensional shifts of the character,

hence Parzen's suggestion to take a two-dimensional Fourier transform of that data. The

Fourier transform has the operational e�ect of making computation of invariant functions

easier and of eliminating noise|irrelevant data|in the pattern.

This idea, of course, can be applied to more general groups using the machinery of group

Fourier transforms; we thus have implicit parallelizations of such applications. Given any

G-invariant function of data, if one �rst takes the G-Fourier transform of the data, then

the function will be easier to compute. In fact, it will often depend only on the largest few

Fourier coe�cients.

Diaconis has given several applications in probability and statistics of these ideas [238,239].

For example, he considers the analysis of an election in which each voter ranks all the

candidates in order [238, p. 142]. Any voter is essentially choosing a permutation in Sk,

where there are k candidates. By taking the Sk-Fourier transform of the voters' choices,

clusters of signi�cant data are easier to see. Another example comes from the analysis of

random walks on groups, as would arise, for example, in modeling the number of random

transpositions required to shu�e a deck of cards well; the matrix of transition probabilities

143

is S52-circulant, and the Fourier transform of this matrix lets us, for example, �nd the

eigenvalues.

The notion that the G-Fourier transform selects key features is fundamentally the motivation

behind the work on group-�lters, which attempt to recover an input signal after it has been

distorted by noise. Karpovsky and Trachtenberg have applied G-Fourier transforms to

�ltering and error detection [429,430,437,762]. Lenz [505,506] and Eberly and Wenzel [259]

have used similar techniques, in the pattern-recognition in the plane, although Lenz' work

is oriented more toward the continuous case, particularly of rotation groups, which we do

not consider in this dissertation.

The theoretical motivation for some of the intuitive arguments we have presented may lie

in the area of learning theory. Linial, Mansour, and Nisan have demonstrated connections

between the learnability of a function and its Fourier coe�cients [514]. Fourier transforms

(still over Abelian groups, however) have been shown to be useful in a variety of learning

problems, such as learning decision trees [443,472]. As explained by Clausen and Baum [189,

Chapter 11], these ideas can be used as well when it is expected that the data would exhibit

some non-Abelian invariance.

Rockmore and La�erty have used fast Fourier transforms of linear groups over �nite �elds

to explore the eigenvalues of their Cayley graphs; this can give information about graph-

theoretical properties of these graphs, such as their diameter [185, 476]. In fact, the adja-

cency matrix of the Cayley graph of G with respect to a set of generators S is the G-Fourier

transform of the characteristic function of S at the regular representation for G.

144

A problem similar to fast manipulation of G-circulant matrices is the fast manipulation

of G-equivariant matrices. Suppose that the rows and columns of an n � n matrix M are

indexed by an n-element set I on which G acts, and suppose that M is G-equivariant. The

block-diagonalization of M can easily be reduced to the case where M is G-circulant as

follows. First suppose that the G action is �xed-point free. Let O be a complete set of

orbit representatives for the G action on I . Now, when jOj = jI=Gj = 1, then the G action

is transitive and can be handled by previous techniques. When jOj > 1, the only di�culty

is notational. By reordering I , one decomposes M into jOj2 G-circulant blocks each of size

jGj � jGj.

This idea has been extended recently to the case of an action that is not �xed-point free

by Georg and Tausch [328]. G-Fourier transforms for G-equivariant matrices have been

used in exploiting symmetry in the numerical solution of partial di�erential equations via

�nite-element, �nite-di�erence, or boundary-element methods. These methods construct a

matrix M whose symmetry re
ects the underlying symmetry in the problem: M is normally

G-equivariant. Often a linear system of the form Mv = b must be solved, and M must

be eigensolved. Because an application of G-Fourier transform block-diagonalizes M, the

methods here will apply to this problem [19, 20, 22, 326{328, 738]. However, in most of

this work the symmetry groups G to be considered are fairly small, and fast G-Fourier

transform techniques are not necessary. The case of actions that may have �xed points has

been considered by Georg and Tausch [328]. Healey and Treacy have considered the problem

in the context of the mechanics of symmetrical structures [360]. An alternative approach,

145

e r r2 r3 f fr fr2 fr3

W0 1 1 1 1 1 1 1 1

W1 1 1 1 1 �1 �1 �1 �1
W2 1 �1 1 �1 1 �1 1 �1
W3 1 �1 1 �1 �1 1 �1 1

T
1 0

0 1

! 0

0 !3

�1 0

0 �1

!3 0

0 !

0 1

1 0

0 !3

! 0

0 �1

�1 0

0 !

!3 0

Table 7.1: The values of a complete set of irreducible inequivalent complex representations
of D4 at each element of D4, where ! = e2�i=4 is a primitive 4th root of unity. Each entry
in this table is really a matrix: 1� 1 matrices for the Wi and 2� 2 matrices for T .

which is more like the orbit-decomposition algorithm of Chapter 6, was demonstrated in

the case of �nite-di�erence methods described by Hillis and Taylor [368].

7.5 Dihedral group transforms

We begin, by way of example, by considering D4, a group which was discussed in Section

3.1 and played a fundamental role in Chapter 6. It is generated by fr; fg where r4 = f2 = e

and rf = fr3: Fourier transforms for dihedral groups have been considered by Valenza [771],

although he does not describe a fast algorithm. Vision applications are described in [259].

There are exactly �ve irreducible representations of D4. Four of them, W0;W1;W2;W3; are

of degree 1, and one of them, T , is of degree 2. The values of the representations on each

element of D4 are shown in Table 7.1.

The inequivalence of each of the representations in the R = fW0;W1;W2;W3; Tg follows

from the fact that their characters are inequivalent. That R is a complete set of irreducible

146

representations follows from the fact that the sum of the squares of their degrees, 12+12+

12 + 12 + 22 = 8 = jD4j:

Let f :D4 ! C be an element of the group algebra C [D4]; we will think of f as being an

element of C 8, that is, as a complex 8-vector under the ordering of D4 given by the top row

of Table 7.1.

The D4-Fourier transform bf of f is the function whose value at � is

bf(�) = X
g2D4

f(g)�(g):

The group D4 has a normal cyclic subgroup

N = fe; r; r2; r3g:

Since N is cyclic, its representations are all one-dimensional and are given by Table 7.5.

Note that the entries of Table 7.5 form the matrix representation of the classical length-4

discrete Fourier transform:

F4 =

0BBB@
1 1 1 1
1 ! �1 !3

1 �1 1 �1
1 !3 �1 !

1CCCA ;

where ! is a primitive 4th root of unity.

Let ff(d) = f(fd):

If h is any function (or representation) on D4, we write h # N for the restriction to N of h.

We can represent the D4-Fourier transform of f at � in terms of the N-Fourier transforms

147

e r r2 r3

C0 1 1 1 1

C1 1 ! �1 !3

C2 1 �1 1 �1
C3 1 !3 �1 !

Table 7.2: The values of a complete set of irreducible inequivalent complex representations
of N at each element of N (! = e2�i=4 is a primitive 4th root of unity.)

of the f # N and ff # N as follows:

bf (�) =
X
d2D4

f(d)�(d) (7.16)

=
X
d2N

f(d) (� # N) (d) + �(f)
X
d2N

ff(d) (� # N) (d) (7.17)

= \f # N (� # N) + �(f)\f # N (� # N) : (7.18)

The restrictions are given by the following equations:

W0 # N = C0 (7.19)

W1 # N = C2 (7.20)

W2 # N = C0 (7.21)

W3 # N = C2 (7.22)

T # N = C1 � C3: (7.23)

148

The matrix form of FD4
is given by

FD4
=

0BBBBBBBBBBBB@

1 1 1 1 1 1 1 1
1 1 1 1 �1 �1 �1 �1
1 �1 1 �1 1 �1 1 �1
1 �1 1 �1 �1 1 �1 1
1 ! �1 !3 0 0 0 0
0 0 0 0 1 !3 �1 !

0 0 0 0 1 ! �1 !3

1 !3 �1 ! 0 0 0 0

1CCCCCCCCCCCCA
:

Equations 7.16 and 7.19 yield a factorization

FD4
= ((I2
 F2)� I4) � P � (I2
 F4); (7.24)

where P is an 8� 8 permutation matrix. Explicitly,

P = (P4
2 �

0BBB@
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1CCCA) � P8
2:

In the language of section 4.3, equation 7.24 denotes the program that, given an input

vector of length 8, �rst performs two parallel FFTs of length 4, and then two parallel FFTs

of length 2; the permutations can be thought of as a readdressing.

A similar analysis shows that

FD2k
= ((I2
 F2)� I4k�4) �Q � (I2
 F2k); (7.25)

where Q is a permutation matrix and D2k is a dihedral group of order 4k. Indeed, D2k has

a normal cyclic subgroup of index 2, and it has 4 one-dimensional representations and k�1

2-dimensional representations with restriction properties similar to that for D4 [214, pp.333-

340].

149

Equation 7.25 lends itself immediately to a parallel implementation using the techniques

of section 4.3. The implementation was coded by running two separate copies of the CM-

5 CM Fortran CMSSL FFT [409, 418] [748, Chapter 10].23 Since there is no canonical

order for the rows of the Dn-FFT, the permutation Q was chosen to be simply a tensor

product of I2 with a bit-reversal permutation, thereby allowing the library FFT to leave

its arguments in bit-reversed order. The program currently performs a D227-FFT over C in

about 2.9 seconds on a 512 node CM-5. Thus, the input and output vectors each comprises

228 complex numbers with 32-bit real and imaginary parts (i.e., the input vector is about

2� 109 bytes).

7.6 String matching

This section describes the application of G-Fourier transforms to generalized string match-

ing. Subsection 7.6.1 presents some background on the problem, and the next subsection

describes its formulation and solution in our model.

7.6.1 Background

This subsection brie
y describes a few aspects of the area of string matching; of course, an

enormous amount of work has been omitted from this description.

23 The author thanks Roger Frye for his advice on attaining peak performance from the library

FFT routines.

150

The earliest systematic approaches to the problem of text searching seems to have been the

construction of concordances for Biblical texts, which date from the 13th century. Most

early computer applications were, of course, numerical in nature; but one of the �rst articles

on nonnumerical computing to appear in the Journal of the Association for Computing

Machinery also contained the earliest use known to the author of the word \string" to

mean a sequence of symbols manipulated by computer:

Areas are set aside for shuttling strings of control �elds back and forth until a
completely sorted sequence is obtained. Optimum results are realized (both with
respect to time and memory space) under two string merging since the extra
program steps required for greater than two string merging are more costly than
the savings in passes over the data. [307, p. 147]

The modern concept of \string matching," however, seems to date from about the mid-

1960s, when the function was used in text editors.

One of the earliest algorithms that did better than brute-force was due to Ken Thompson,

who gave an algorithm for matching regular expressions in 1968 [750]. Thompson's elegant

algorithm converted the pattern into an automaton, and thence into a sequence of instruc-

tions in IBM 7094 machine language that, together with run-time calls, searched for the

original pattern.24

A crucial breakthrough was provided by Peter Weiner's famous \Linear pattern matching

algorithm" [797]. Weiner gave a linear-time algorithm using \bi-trees," an early form of

24 \It is assumed that the reader is familiar with regular expressions [444] and the machine lan-

guage of the IBM 7094 computer [207]" wrote Thompson in the article, which appeared in the

Communications of the ACM [750].

151

su�x trees, for the classical string-matching problem. Su�x trees were streamlined in work

by McCreight (1976) [542].

Knuth, Morris, and Pratt's famous paper [448] gave an automata-based linear pattern

matching algorithm, which, although it appeared in 1977, was based on much earlier work.

This paper not only laid the foundation for a wide class of automata-based algorithms,

but also contained some interesting historical information (pp.338{340). For example, they

describe the following amusing incident:

One of the authors (J. H. Morris) was implementing a text editor for the CDC
6400 computer during the summer of 1969, and since the necessary bu�ering
was rather complicated he sought a method that would avoid backing up the
text �le. Using concepts of �nite automata theory as a model, he devised an
algorithm equivalent to the method presented above [i.e., the KMP algorithm],
although his original form of presentation made it unclear that the running time
was O(m+ n). Indeed, it turned out that Morris' routine was too complicated
for other implementors of the system to understand, and he discovered several
months later that gratuitous \�xes" had turned his routine into a shambles. [448,
p.338]

Knuth, Morris, and Pratt trace the development of algorithms like theirs, which avoid

backing up after a mismatch, to work by E.N. Gilbert from 1960 on comma-free codes [334];

Gilbert had needed algorithms for quickly recognizing strings that signaled the beginning

of a block of codewords. They use a generalization of a lemma on periodicity properties of

strings which originally appeared in a 1962 article by Lyndon and Sch�utzenberg [527]; also

see [470].

These algorithms are fundamentally automata-based [209]. They have considerable
exibil-

ity for solving a wide range of combinatorial questions about strings, for example, matching

152

multiple patterns [9], repetition-detection [60,528], also see [10]. A detailed complexity anal-

ysis is contained in the pair of articles [315, 316]. By contrast, the algorithms we present

will be based on generalizations of convolution-based algorithms, such those of [2,295]. The

Aho-Corasick technique has been applied to array-matching, in which each column is though

of as a single character in a very large alphabet [46,47,79,126]. For multi-dimensional ap-

proximate algorithms see [48,462]. Parallelization is discussed in [59,484,785]. This is also

related to parallel language recognizers, see [460] for grid methods. Fast heuristic methods

are given in [139]; similar is [211]. For randomized algorithms see [425]; Harrison (1971)

did early work on hashing as well [356].

Intensive work continues in the areas of computing combinatorial properties of strings, mo-

tivated especially by genome applications; the Combinatorial Pattern Matching conference

proceedings contain additional references [57,58,210].

7.6.2 Mathematical formulation

In order to apply the group formulation it is necessary to formalize the notion of string

matching.

A string over a �nite alphabet � is a map s: f0; : : : ; m� 1g ! �. We call m the length of

the string and write si = s(i). We will always deal with two strings, p and t, the pattern

and the text, of lengths m and n respectively. These may be over di�erent alphabets, �P

and �T, respectively.

153

The classical string-matching problem is to �nd all occurrences of �P in �T. This formu-

lation can be generalized in several ways:

1. The de�nition of a \match" between a pattern character and a text character can be

generalized to predicates other than simple equality.

2. The requirement that each character in the pattern match each character in the text

can be generalized to allow partial matches.

3. The allowable operations on the pattern to align it with the text can be modi�ed from

the default one of \rigid sliding."

These modi�cations are formalized as follows.

We are given two operators, a character comparison operator �: �P � �T ! R, and a

combining operator �:R � R ! R: We assume that � is associative, but no restrictions

are placed on the operator �. The character comparison operator formalizes generalized

comparisons between the pattern and the text, and the combining operator formalizes the

notion of allowing partial matches.

There are several ways to formalize the notion of generalized alignments. We make the

simplifying assumption that m = n, which can always be done by adding an identity for �

to R and padding the pattern with don't cares. Let X = f0; : : : ; n� 1g; thus, p; t:X ! �.

We call p and t strings on X . The support of a string on X is the set of elements in X

that are not don't cares. Now we de�ne an alignment set A to be a set of permutations

of X . Each alignment a 2 A, a:X ! X induces a mapping of the set of strings on X by

154

(a(s))j = sa(j).

We de�ne the generalized product of two strings on X as follows:25

s�
�
s0 = �x2X

�
sx � s0x

�
:

The generalized string matching problem for alignment set A and comparison operation �
�

is to compute a(p)�
�
t for each a 2 A.

In the classical exact string-matching problem the character comparison operator is � �P�

�T ! f0; 1g, where �P = �T
Sf�g and � is a \don't care" character that matches any

element of �T. Thus (� � �0) = 1 i� � = � or � = �0. In this case, the combining operator

is simply boolean AND (^), X = Zn is a �nite cyclic group, A = Zn is identi�ed with the

set of translations of X (a(x) = x + a mod n), and the pattern is restricted to containing

no �s inside an interval of length m containing its support.

The formulation we gave is built upon the theoretical framework of Muthukrishnan, Palem

and Ramesh in the area of non-standard stringology [574, Chapter 3] [575,576], who consider

general classes of character comparison operations and combining functions. They consider

arbitrary match relations �. They thereby obtain a graph that they call the matching graph

of the problem. This is a bipartite graph whose nodes are the disjoint union of �P and

�T and for which there is an edge from pattern element x to text element y whenever x

matches y. They relate the complexity of the matching problem for a given match relation

to graph-theoretical properties of the match-graph. For example, they show that if the

25 This notation is taken from [295].

155

matching-graph can be covered by k disjoint cliques, then a pattern of size m can be

matched against a text of size m using log(k) linear boolean convolutions of size n and m,

again using Fischer-Paterson techniques.

More general character comparison operations, combiners, and alignments have been con-

sidered by a number of authors. We review these generalizations now:

First: General character comparison operations were considered by Fischer and Paterson

in their seminal 1973 paper [295]. They consider string matching when �P contains a

special \don't care" character � that matches any character in the alphabet [295]. For

example, the pattern string ab�d would match the text strings abcd and abgd and so on.

Fischer and Paterson reduce the problem of string matching with don't cares to integer

multiplication. This gives an O (log (j�j)n logm log logm) bit-complexity algorithm. The

doubly-logarithmic factor arises because they are using the Sch�onhage-Strassen integer mul-

tiplication algorithm [670], which uses the FFT over a �nite ring and recursively uses FFT's

to perform the arithmetic required in the larger FFT's.

Abrahamson pursued the idea of generalized string matching further [2]. He considered the

case where a pattern character can denote subsets of elements from �T. For example, the

pattern element hajbjci matches a text character of either a, b, or c. The pattern string

dehajbjcif would match texts decf and deaf but not dedf. Abrahamson also permitted

complements of subsets of characters in �T in the pattern, using the notation [ajbjc] to

denote all the characters in � except for a, b, and c. Thus, the pattern element [] is

equivalent to Fischer-Paterson's don't care symbol.

156

Abrahamson showed that such \generalized" patterns of size m could be matched against

a text of size n in time O (n
p
mpolylog(m)) time. His method was similar to Fischer-

Paterson's: he reduced the problem to O (
p
m) convolutions (as compared to the O (log(m))

reduction used by Fischer-Paterson). Perhaps the major di�culty in discussing string

matching with subsets is notational: there are several slightly di�erent metrics for the

\length" of the pattern that one can use. These are the total number of symbols (including

brackets), the length of a string against which it can be matched, and the number of actual

alphabet symbols. Like most other authors, in order to simplify the notation we will just

assume in the sequel that these measures are all linearly related; many of the results do go

through for other patterns though.

Second: General combining operations are typically used in forms of approximate match-

ing. Approximation algorithms, in which only a certain number of mismatches are allowed

between the pattern and the text, have been considered in [312,313,485]; an application to

nucleotide sequence matching is in [491]; see [662] for other applications in biology. How-

ever, our formulation does not encompass models in which characters in the pattern may

match 0 characters in the text, or in which characters may be inserted in the text. This

is the k-di�erences problem, and is often used in biological applications [488, 491, 662]. A

survey is in [314]; see [196,206,208] for parallelizations.

In counting matching the combining operator is replaced by addition, so that the goal is

to count the number of mismatches at each alignment; this problem was also considered

by Fischer and Paterson and others. In threshold matching, the combining operator is

157

normally max or min, and the character comparison operator takes values in the positive

reals.

Third: The class of allowed alignments can be broadened. In classical string matching, the

pattern and the text are both linear strings. The pattern rigidly slides along the text until

a match is attained. Equivalently, one can view the text as being arranged in a circle, and

the pattern is slid along the circle, which as we have seen, is equivalent to group matching

over a cyclic group.

The case of string matching over an Abelian group is equivalent, by the structure theorem

on Abelian groups, to array matching, in which the pattern and the text are rank k arrays,

where the group is the direct product of k cyclic groups. Array matching algorithms were

initiated by Bird and Baker [79,126], who use automata techniques in the style of [9]; also

see [46,47,390,427]. Of course, the modi�cations can be combined; for example, for multi-

dimensional approximate algorithms see [48,462]; array matching is typically studied for its

application to image processing [490]; also see [735].

Some general classes of alignments do not form groups. The most important of these is tree-

matching [256,375,461], for which Kosaraju used a combination of convolution and su�x-

tree based techniques in the ordered labeled case [461]; the motivation for tree-matching

was originally from logic programming [375]. Other forms of tree matching are considered

in [18,424,529,783].

Very general group alignments have recently been considered in the context of the mapping

of molecular structures with speci�c 3-dimensional structures; this set forms a group, more

158

precisely, the legal alignments of the molecules forms a group, but the group may not be

known a priori, so our techniques may not be applicable [294].

For additional references see [574] and the recent Conferences on Combinatorial Pattern

Matching.

An important case of the general alignment problem addressed in this section is the case

when the alignments form a permutation group, that is, there is a permutation group G

acting on f0; : : : ; n� 1g. For speci�city, suppose that initially the pattern p is aligned with

the text elements t0 : : : tm�1. Each group element g 2 G induces an alignment of the pattern

p in the text sending pi to pgi.

7.6.3 Reducing generalized matrix multiplication to matrix multiplica-

tion over C

In the previous subsection, we formulated the concept of a generalized string-matching

problem over an arbitrary alignment set. Such a problem has a natural expression as a

generalized matrix multiplication problem in which the symmetry in the associated matrix

re
ects the symmetry in the alignment set A. For example, if the set of alignments forms a

group G; then the matrixM will be G-invariant. We would like to use the G-FFT algorithms

of section 7.4. However, these algorithms only work when the matrix entries are from a

�eld, for example C .

Therefore, in order to apply the parallel group FFT algorithms to the problem of group

159

string matching, we �rst reduce the problem of generalized matrix multiplcation to matrix

multiplication over C .

We consider several types of generalized matrix multiplication problems arising from exact

matching with don't cares, counting matching with don't cares, exact matching with general

match relations, counting matching with general match relations, and Abrahamson-style-

matching.

We write the generalized matrix product to be computed as M�
�
v, which we sometimes

abbreviate to Mv, where M is an n � n matrix with entries in �P, v is an n-vector with

entries in �T, and + and � are replaced by � and � respectively:�
M�
�
v

�
i
= (Mi;0 � v0) � � � �� (Mi;n�1 � vn�1) :

As explained above, in exact-matching with don't cares, �P = �T
Sf�g, R=f0; 1g. For this

case, generalized matrix multiplication is no harder than complex matrix multiplication:

Theorem 8 The generalized matrix multiplication M�̂v can be performed in one complex

matrix multiplication.

Proof: Let ! be a primitive max(j�Tj; 3)th root of unity. Construct a complex matrix eM
by replacing every occurrence in M of the jth symbol in �T by !j , and every occurrence

of � by 0. Similarly, construct ev by replacing each occurrence of the jth symbol in �T by

!�j . Let ci be the number of �s in the ith row of M. The product of two roots of unity

equals 1 if and only if the roots are conjugate. Therefore, the ith component of the product

eMev equals n � ci if and only if the ith row of M matches v.

160

Remark: Because we are performing exact complex arithmetic, as is standard in the analy-

sis of G-FFTs, it is natural to ask whether our algorithms in fact require too much precision

to be practical in a �xed-precision implementation (this point was raised by Kosaraju in per-

sonal communication). In the cyclic case, this question has been addressed by Knuth [447,

pp.290{295], and the underlying stability of the classical FFT algorithms should make pre-

cision requirements reasonable in �xed-point implementations. We have not studied the

precision issue in the case of general G-FFTs, although we doubt it would be a problem

(also see, e.g. [566,633,634]). If, in fact, precision were a problem than the matter would be

easily remedied by performing boolean G-convolution using G-FFTs over a suitable �nite

�eld F, as the group-algebra decomposition goes through for appropriate �nite �elds as well,

given some minor conditions on the �elds.

We now consider counting-matching, in which the number of mismatches must be computed.

In this problem, we use the same character comparison operator �, but we interpret the

domain R = N, the natural numbers. We let the combining function � be addition. We

now have:

Theorem 9 M+�v can be performed in j�Tj+ 1 complex matrix multiplications.

Proof: For each symbol � 2 �T, construct
gM� by replacing each occurrence of � in M by

a 1 and every other symbol by a 0; similarly for fv�. It is then easy to see that

�
M+�v

�
i
=

X
�2�T

�gM�fv��
i
+ ci;

where the ci are as in Theorem 8.

161

Finally, we consider matching in the style of Abrahamson. In this problem, �P comprises

two disjoint copies, �P1
and �P2

of the set of subsets of �T. The character comparison

operator � is de�ned as follows. If p 2 �P1 then

p � � =

(
1 if � 2 p
0 otherwise.

Similarly, if p 2 �P2
then

p � � =

(
0 if � 2 p

1 otherwise.

Abrahamson-style matching is somewhat more complex than classical exact matching:

Theorem 10 Computation of M+�v requires n2=s matrix multiplications and additional

overhead of ns for positive integer s.

Proof: We follow the method of Abrahamson [2]. First, write M = M+ + M�, where M+

comprises only positive pattern elements and a 0 symbol matching no element of �T, and

M� comprises only negative pattern elements and 0's. Then Mv = M+v+M�v, so that it

su�ces to consider left multiplication by M+ and M� separately.

Let M+
�s be M

+ restricted to symbols that occur at most s times in M+ (for some arbitrary

integer s, to be speci�ed later) and let M+
>s be M

0 restricted to symbols that occur more

than s times in M+. That is, to construct M+
�s we delete from any pattern element each

symbol that occurs more than s times in M+, leaving 0's unaltered.

First we compute M+
�s
+�v. Each entry in v will point to a list of all the (at most s) symbols

that match it. There are thus at most ns match pairs between entries in M and entries in v,

162

each of which is associated with at most one entry in the product Mv. Therefore, the total

time to compute M+
�sv is, up to possibly logarithmic factors, O (ns): We remark that if M

is G-circulant then this time is reduced by a factor of jGj, assuming that G-multiplication

and G-inversion is fast.

In order to compute M+
>s+�v, we observe that there are at most n2

s distinct symbols in M+
>s.

We can loop over these and thereby compute M+
>s+�v in n2

s matrix multiplications of n� n

complex matrices by complex n-vectors.

Putting these two parts together, we see that computation of M++�v can be done in O
�
n2

s

�
matrix multiplications and additional overhead of O (ns), where the overhead decreases

linearly with the size of the invariance group.

A similar method works for computing M�. This proves the theorem.

7.6.4 The application of group FFTs to parallel string matching

Theorems 8 and 10 have shown that when the set of alignments forms a group G, the related

matching problems can be reduced to a a generalized multiplication by a G-circulant matrix,

which then reduces to a series of multiplications by complex G-circulants. Informally, one

says that the reductions of Fischer-Paterson and Abrahamson preserve symmetry.

This now easily yields algorithms for string matching on groups, because multiplication by

the resulting G-circulants can be performed in via fast and parallelizable G-FFTs.

We let PG be the number of processors required to perform G-convolution in polylogarithmic

163

time. We have seen that PG is of the order of d3(G) for symmetric, alternating, metabelian,

supersolvable, and monomial groups and that PG is of the order of max(jGj3=2; d3(G)) for

solvable groups, where, of course, we may replace d3(G) by d�(G), for � the exponent of

matrix multiplication, if we are willing to use the asympotically fast matrix multiplication

algorithms.

Theorem 11 Exact string matching with don't cares over a group G can be performed using

PG processors in polylogarithmic time. Abrahamson-style string matching can be performed

using max(PG; jGj3=2) processors in polylogarithmic time.

Proof: Choose s = n3=2 in Theorem 10.

The Abrahamson and Fischer-Paterson reductions respect tensor products; when Ik

M is de�ned in the obvious manner, then the reductions given by the theorems re-

duce (Ik
M) �
�
v to a generalized multiplication of complex matrices of the form�

Ik
 eM�w. This latter product can be performed via fast matrix-multiplication, such

as by Coppersmith-Winograd. For example, n length n patterns can be matched against n

length n strings, even in the presence of don't cares, in sub-cubic time; this idea is similar to

Valiant's well-known reduction of context-free language recognition to a very general form

of matrix multiplication [772].

164

7.7 Future work

The preliminary Sn-FFT implementation needs to be polished. We expect to improve our

preliminary timings by a factor of at least three, and to compute S12-FFTs.

The exact complexity of group Fourier transforms for arbitrary �nite groups continues to

be open. A promising line of attack along these lines might be to use the Classi�cation

theorem for �nite simple groups. Good algorithms for many of the in�nite classes of �nite

groups are known [537], and, from a complexity-theoretic point of view, the complexity of

FFTs for the sporadic simple groups can be folded into the constant factor. Given a group

G and a maximal normal subgroup H, then the quotient G=H must be simple. It is tempting

to apply Cli�ord theory to try to derive good G-FFTs from the inductively good FFTs of

the factors G=H and H. (In fact, it is an easy consequence of the classi�cation theorem

that G has a subgroup of size at least
pjGj [293]. This result combines with the usual

arguments from Frobenius reciprocity [189], to give an O (G)1:75, even without using fast

matrix-multiplication algorithms.)26

In string matching, the main area for further research would be to apply convolution tech-

niques to more general classes of pattern-matching problems. It would also be of interest to

describe a uni�ed mathematical theory that specializes to su�x-trees, in some sense. We

have seen that multiplication by a group-equivariant matrix can be peformed by transform-

26 Michael Clausen, in recent personal communication with the author, has announced that the

large subgroups predicted by the Classi�cation Theorem do in fact yield an O
�
jGj

1:44
�
time algo-

rithm for general G-FFTs when Coppersmith-Winograd matrix multiplication bounds are used.

165

ing the operands into spectral space and performing a pointwise product there. Similarly,

a su�x-tree based approach �rst transforms the text into a su�x tree, and applies a very

simple matching algorithm on the su�x tree.

Finally, it would be interesting to obtain empirical results on the e�cacy of group Fourier-

transform based learning algorithms.

166

Chapter 8

Equivariant factorization of

Abelian groups

Each of the problems considered in this chapter will be phrased as an appropriate G-

invariant mapping over spaces V and W where G is Abelian. The associated matrix M will

be factored into primitives that correspond to the basic computational primitives supported

by the machine.

The applications we consider here are:

1. Describing Fortran 90 communication intrinsics. There are two parts to this appli-

cation: �rst, we write down explicit matrix representations of common Fortran 90

intrinsics and observe that they correspond to G-equivariant matrices for appropriate

G. The goal of this formulation is simply to try to elucidate the fundamental primi-

tives in Fortran 90. Second, we make the simple observation that, on some compilers,

it can be faster to use external linear algebra routines than to use the Fortran 90

167

reduction and broadcast operator. Despite its triviality this amounts to a technique

for speeding up reduction and broadcast on various architectures. Some timings for

Cray, CM-5 and CM-200 will be given to support this.

2. The next implementation is of n-body simulation. A direct method is used, as, even in

the context of multipole or other tree methods, direct solvers are useful at the leaves.

By applying the new Fortran 90 communication intrinsics, we implemented and sped

up an direct n-body solver for the analysis of
ux dynamics in superconducting thin-

�lms. This implementation used a semiring version of a tuned tensor-product routine.

3. Finally, we describe parallelization of a convolution arising in the analysis of protein

simulation in water. This involved an interesting application of nested scans, for which

we provide a G-invariant matrix formulation. The speci�c convolution we solved was

counting the number of contiguous subsequences of length k, k = 1; : : : ; n in a binary

string of length n.

Although these applications are fairly straightforward, the symmetry is not immediately

apparent, and the speedup that was obtained was comparatively high.

8.1 Fortran 90

Fortran has undergone signi�cant changes since its introduction but remains the most widely

used and important language for the design of high-performance scienti�c computing ap-

plications. There are a number of proposed extensions to the hoary Fortran 77 standard,

168

including High-performance Fortran, Fortran D, Fortran 90 and many vendors' proprietary

extensions to Fortran, such as Cray Fortran and CM-Fortran. By the same token, the

e�ciency of many standard scienti�c programs are tied to their e�ciency as Fortran code.

This section analyzes several representative Fortran 90 communication intrinsics. They will

be presented as matrices and factored.

The Fortran 90 de�nition of CSHIFT is as follows. Given a (Fortran) rank k array A, a

positive integer D, and a distance to shift S, CSHIFT(A; DIM = d; SHIFT = s) is the rank k

array obtained by circularly shifting the kth dimension of A to the right a distance s.

For example, when v is a 1-dimensional array, which is to say, a vector, then we can write

A =

0BBBB@
v0
v1
...

vn�1

1CCCCA

CSHIFT(v; DIM = 1; SHIFT = 1) =

0BBBBBB@
v1
v2
...

vn�1

v0

1CCCCCCA (8.1)

Let us write CSHIFT(v) or just Cv for CSHIFT(v; DIM= 1; SHIFT = 1).

Then C may be written as a matrix:

C =

0BBBB@
0 1 0 0 � � � 0
0 0 1 0 � � � 0
...

...
...

...
. . .

...
1 0 0 0 � � � 0

1CCCCA (8.2)

Note that C is invariant under the cyclic group Cn.

169

Now, let A be a rank k vector with dimensions (d1; :::; dk). Then the corresponding matrix

to compute the generalized CSHIFT(A,i,s) is simply

i�1O
j=1

Idj
 Cdi

kO

j=i+1

Idj

.

Implementation of CSHIFT on a hypercube is equivalent to embedding a grid in a hypercube,

a problem which, in its simplest form, can be easily solved by Gray coding the coordinates,

as observed by Gilbert in 1958 [333], also see section 2.1. When the grid size is not a

power of two and the dilation needs to be minimized then good embeddings are still known

[171, 371]. Therefore, any matrix that can be factored in terms of CSHIFTs is a priori

e�ciently computable.

Collecting terms in the tensor product, we get the matrix of

IQ
j<i

dj

 Cdi
 IQ

j>i
dj

It is possible to use this factorization to derive parallel algorithms for implementing CSHIFT

on a hypercube and other networks, by factoring the permutation matrices implemented by

the hypercube, for example, as has been explicitly carried out by Kaushik, et al. [434,435].

Similar equations obtain for EOSHIFT, which is de�ned just like CSHIFT except that there is

no wraparound, instead, 0s are �lled in.

Given a rank k array A, SUM(A; dim = r) is the rank k � 1 array formed by summing along

the rth dimension of A.

170

Let Kn be a column vector of 1s of length n. When A is a rank 1 array, then SUM(A; DIM =

1) = KT �A.

Suppose A is an n�m matrix. Then by our convention above, A is stored as an nm vector.

SUM(A; DIM = 1) is the m-vector that is the sum of the rows of A, and therefore can be

computed by taking the sum of each column independently. Therefore, SUM(A; DIM = 1) =

Im
 Kn
T �A.

This is also KT � A, where A is considered as a matrix; similarly SUM(A; DIM = 2) can be

written as A �K in matrix form. This formulation has the additional advantage that it seems

more canonical than the somewhat esoteric syntax of the Fortran 90 SUM.

The PROD intrinsic behaves just like SUM, but taking products rather than sums. This can be

handled easily in our framework, using an appropriate semiring, for example, (R;max;�).

The SUM and PROD intrinsics are instances of the reduction primitive used in data-parallel

programming, and our formulation thus applies to general reductions as well.

We next consider the FORTRAN 90 version of the broadcast primitive, the SPREAD. Given

a 1-dimensional array A of length n,

SPREAD(A; DIM = 1; NCOPIES= m)

is the n�m matrix formed from the copies of A. It can be seen to equal the tensor product

K
 A. Similarly, SPREAD(A; DIM = 2; NCOPIES = m) is the tensor product A
 K.

Interestingly, these formulations also result in faster running times for SUM and SPREAD on 3

classes of machines that we tried. These were a massively-parallel hypercube, the CM-200,

171

n 1024 2048 4096 8192

SUM 19.8 70.9 275 |
MATMUL 4.21 7.39 11.6 28.4

SPREAD 13.1 43.7 159 622

 5.59 11.0 28.7 100.0

Table 8.1: Timings in milliseconds for certain FORTRAN 90 intrinsics versus equivalent
algebraic formulation for varying n. Timings were obtained on one sequencer (512 nodes)
of a CM-200 running slicewise CM FORTRAN 1.1. SUM failed due to insu�cient memory
on the n = 8K problem.

n 128 256 512 1024

SUM 0.892 3.012 11.844 44.096

MATMUL 0.216 0.840 3.396 13.148

Table 8.2: Timings in milliseconds for SUM vs. matrix vector multiplication. Timings were
performed on a Cray X-MP/24 by L. L. Daemen of Los Alamos National Laboratory. The
CALMATH (Cray Assembly Language Mathematical Library) was used.

a message-passing fat-tree, the CM-5, and a vector machine, the Cray Y-MP. These results

are summarized in the accompanying tables

One interpretation of this curious set of timings is that the fundamental operations of inner-

product and outer-product were optimized more carefully than reduction and broadcast.

n 256 512 1024 2048

SUM 15.1 72.1 348 1392

MATMUL 4.1 69.6 21.7 78.8

Table 8.3: Timings in milliseconds for SUM and MATMUL for varying n. Timings were obtained
on a 32 node partition of a 1K node CM-5, OS version 7.1.5, CMF version CM5 SPARC 1.2.
Timings were provided by Thinking Machines Corporation engineer W. Weseloh. (Much
faster hardware units should soon be available for the CM-5.)

172

8.2 n-body simulation

(Note: Some of the material in this section originally appeared in a joint paper with L.

Daemen and J. Gubernatis which appeared in Journal of Computational Physics, 115(2)

December, 1994 [717].)

Simulating the properties of n particles, mutually interacting through a pairwise force, is one

of the oldest problems in computational physics, and have been implemented on electronic

computers since 1957, when the UNIVAC simulated 32 particles at 300 interactions per

hour.

These simulations can yield information inaccessible by other means and lead to insight and

predictive behavior for a wide range of problems and properties. This section reports on

several simple procedures that reduced by an order of magnitude the computation time of

the implementation of such a simulation on the massively parallel CM-200. The design of

these procedures illustrates the theory outlined in previous sections, and no use of symmetry

characteristics is needed.

In n-body simulations, the positions of the particles Xi are evolved in time by numerically

integrating the equations of motion. The problem typically reduces to solving a system of

�rst-order di�erential equations of the form:

dPi
dt

= Gi +Hi

173

where Gi is the net force on particle i due to its interaction with all other particles and

Pi is the momentum of particle i. This force is de�ned by Gi =
P

j 6=i Fij with Fij being

the pairwise force between particles i and j and Hi being the net force on particle i due

to all other interactions. Often, Fij depends only on the distance between the particles,

i.e., Fij = F (jXi �Xj j). This force might be, for example, Coulomb's law or the Lennard-

Jones interaction. The Hi may be, for example, external �elds or random forces simulating

contact with a heat bath. The equations of motion can be integrated by a variety of means;

the computation bottleneck, however, is the computation of the Gi.

Two frequently used classes of techniques for computing Gi are tree methods and direct

methods. The tree methods recursively decompose the system of particles into subsystems

and express the interaction between the subsystems by a multipole expansion [348, 350].

These methods are particularly suitable for large systems because their asymptotic com-

plexity is proportional to O (nlogn) for adaptive methods or proportional to O (n) for non-

adaptive methods. The direct method, on the other hand, simply sums the forces between

all paris of particles so its complexity is proportional to O
�
n2
�
. However, the proportion-

ality constant for the direct method is smaller than that for the multipole methods.

One of the �rst parallel n-body codes was described in an intriguing 1985 paper by Ap-

plegate, Douglas, G�ursel, Hunter, Seitz and Sussman where they describe the construction

of a \digital orrery." The digital orrery comprised n = 10 \planet" computers, each of

which stored the force on a single planet. They were interconnected in a ring, which was

circulated to compute the all-pairs interaction. The intended domain of study of the digital

174

orrery was the study of certain open problems in orbital mechanics [338,577,803,804]. Each

planet computer was housed on its own board, and the ten boards were stored in a box of

a cubic foot, drawing 150 watts of power. The attained rate of speed was was comparable

to high-performance parallel computers of the time, such as that of the ILIAC IV, on this

problem: 10 MFlops [137].

Since that time, of course, parallel n-body simulation has become an active and important

area of research. Much of it has focused on the harder problem of simulating tree codes.

The seminal paper on Connection Machine simulations is Hillis and Barnes (1987) [366].

They give three algorithms: a massively parallel variant of the digital orrery, computing all

the forces using O
�
n2
�
processors, and a hierarchical algorithm based on a tree embedding

of the tree used in the Barnes-Hut tree algorithm [84], although an implementation is only

sketched. Zhao and Johnsson have implemented the parallel multipole method [349,823] on

the CM-2, using some aggressive coding tricks [824]. Sometimes the structure of the problem

permits long-range forces to be ignored or otherwise simpli�ed, and this can permit e�cient

implementation [95,519], also see [94,795].

The direct method is often used instead of the asymptotically more e�cient multipole

method because

1. The multipole expansion may be unknown.

2. The system is su�ciently small that the direct method is faster than the multipole

method.

175

Other methods use domain-decomposition approaches and Monte-Carlo approaches, which

are outside the scope of this section. However, note that some of the domain-decomposition

methods neglect the higher-order force in the Lennard-Jones interaction, which is not pos-

sible for general forces.

In addition, at some su�ciently �ne granularity in the decomposition in the multipole

method, the direct method becomes faster because of the lower proportionality factor and,

thus, becomes preferred. This crossover generally is true at the leaves in a multipole meth-

ods. Thus e�cient implementation of the direct method is an essential aspect of any direct

net force computation.

The parallel calculation of the net force has a computation part and a communication part.

The computation part is mainly concerned with the calculation of Fij . Its optimization,

which normally involves the computation of some function of the distance between Xi

and Xj is essentially architecture independent. On a parallel machine, once the distance

between the particles is known, this force can often be computed with no inter-processor

communication.

The optimization of the communication part of the direct solver is the main result of this

section. It depends on the the structure of the direct solver. Two common methods are

used: one is the \all-to-all broadcast method";the other is what we will call the \Fortran

90" method.

The all-to-all broadcast method presumes that the locations X of the particles are dis-

tributed throughout the nodes of the architecture. A local copy Y of X is made; then for

176

each Yi a Hamiltonian path through the processor network is computed. The location of

each particle is then successively routed along its path which ensures that each particle

location will eventually be transmitted through each processor. The force on a particle

is computed simply by summing the pairwise interactions of all the particles that pass

through the processor in which it is stored. For systems with a small number of particles,

this method performs poorly on the CM-200 because of processor under-utilization.

The Fortran 90 method involves the use of standard Fortran 90 intrinsics, such as SUM and

SPREAD. If A is a matrix, then SUM(A; DIM = 2) is the vector whose ith element is the sum of

the ith row of A. If X is an n-dimensional vector, then SPREAD(X; DIM = 2; NCOPIES= n) is

the n� n matrix A whose ijth element is Xi. Similarly, SPREAD(X; DIM = 1; NCOPIES = n)

is the matrix whose ijth component is Xj . The Fortran 90 method for computing the net

force on each particle in a one-dimensional system is shown in the following pseudo-code:

S1=SPREAD(X,DIM=1,NCOPIES=n)
S2=SPREAD(X,DIM=2,NCOPIES=n)
R=ABS(S2-S1)
F=FUNC(R)
G=SUM(F,DIM=2)

The ijth element of the matrix R is the distance between particles at positions Xi and

Xj . This matrix is then used to obtain the forces Fij from the user-de�ned function FUNC.

Finally, SUM is used to sum the forces.

Although the Fortran 90 method has the advantage of portability to any platform, the

communication functions SUM and SPREAD are fairly slow. Furthermore, the SPREAD and

SUM syntax seems to lack a certain naturalness. The �rst optimization trick that we treid

177

was to replace the communication operations of the Fortran 90 method with inner and outer

products. Since these products are basic vector (matrix) computational tools, we thought

it was reasonable to assume that they would be well optimized on the CM-200.

The FORTRAN 90 formulation of the previous code is then:

K=1
S1=OPROD(K,X)
S2=OPROD(X,K)
R=ABS(S2-S1)
F=FUNC(R)
G=MATMUL(F,K)

The �nal optimization involved special purpose microcode but is based on the simple ob-

servation that the displacement Xi � Xj between two particles can be interpreted as the

outer sum of the vectors X and �X , which could be computed by trivially replacing the

multiplication call in the outer-product routine with an addition call. Using this routine,

we can replace the two outer-product calls in the code by a single outer-sum call, and our

pseudo-code becomes

K=1
D=OSUM(X,-X)
R=ABS(D)
F=FUNC(R)
G=MATMUL(F,K)

Compared to the original pseudo-code, which was essentially the original Fortran 90 coding,

the new code reduced the computation time by a factor of 10.

In conclusion, the direct net force computation in the n-body problem was formulated in

178

terms of fast primitives that are well-suited to the target architecture. The communica-

tion overhead of the direct n-body solver was reduced by one order of magnitude. The

method consisted in replacing Fortran 90 intrinsics by inner- and outer-product functions.

In one case, a routine which was a small modi�cation to the library outer-product rou-

tine was made to convert it to an outer-sum routine. The technique was implemented and

tested on a molecular dynamics problem geared toward the study of
ux line dynamics in

superconducting thin �lms.

8.3 Parallel pre�x and an application from computational

biology

This section discusses the parallelization of an application that arose from computational

biology. After some preprocessing, it is possible to see that the problem is equivalent

to computing a certain statistic on strings, namely, �nding the number of substrings of

contiguous 1s of length l, for l = 1; : : : ; n. The associated matrix has the symmetry of a

cyclic group, and can be factored into the product of two parallel pre�x matrices.

The dynamics of water molecules around biomolecules have been studied a number of

authors.27

Techniques such as high resolution neutron di�raction, X-ray crystallography, and multidi-

27 A more detailed presentation, particularly of the physical motivation, is contained in the joint

work with Angel Garc��a [319,718]; also compare [318,739].

179

mensional NMR techniques have been used to study the characteristics of water-molecules

around a protein [319].

Insight into the structures that are formed is often obtained by studying the amount of

time an individual water molecule is near a particular protein site, or within the \hydration

shell" of the protein site (atom). The hydration shell is simply a sphere of some �xed radius

r.

The time-dependent behavior of water molecules is studied by means of the following func-

tion of time [675,676]. We let P�;j(t) = 1 if the jth water molecule is within the hydration

shell of the protein site � at time t. We let P 0
�;j(t; t

0) = 1 if the jth water molecule was

never outside the hydration shell of the protein site at �:

In the molecular dynamics simulation, the time variable is discretized and the positions of

the water molecules are computed at times t1; t2; t3; : : : ; tn, where n is the number of states

in the simulation. The function P�;j is thereby discretized into a binary sequence of length

n.

It is necessary to compute for each i the number of binary subsequences of length i in the

resulting sequence.

This is performed as follows. First, the vector v of all elements of the sequence of length

precisely i are computed, that is, that are not a member of any subsequence.

The parallel pre�x, or SCAN, of a vector v is de�ned to be the sequence of partial sums of

v [475]:

180

(Tv)0 � v0 + v1 + � � �+ vn�2 + vn�1

(Tv)1 � v1 + � � �+ vn�2 + vn�1

(Tv)i � vi + vi+1 + vi+2 + � � �+ vn�1; (0 � i � n � 1) :

However,

(Tv)i = (E0v)i + (E1v)i + � � �+ (En�iv)i

=
��
E0 + E1 + � � �+ En�i

�
v
�
i

=

0@n�1X
j=0

Ejv

1A
i

:

Hence,

T =
n�1X
j=0

Ej :

Scans are often de�ned over general associative operators, and have been proposed as a

fundamental primitive for parallel architectures [131, 132, 464]. Their matrix expression is

implicit in [450] but this work is the �rst known to the author to make the matrix form

explicit; parallel recurrence solvers were also considered in=citemeyer:parallel.

Note that although the scan matrix is not quite circulant, it can be padded by a factor of two

to make it C2n-circulant. This padding, which essentially is a way of introducing periodic

boundary conditions, is similar to the trick used to make the string matrix circulant.

In order to derive an e�cient algorithm for multiplication by T it is necessary to factor T,

which is equivalent to factoring its above polynomial representation. Since En = 0 we are

181

factoring in the ring Z[x]
xn [492]. Assume n = 2k.

1 + E = 1+ E

(1 + E)(1 + E2) = 1 + E+ E2 + E3

(1 + E)(1 + E2)(1 + E4) = 1 + E+ � � �+ E6 + E7

k�1Y
j=0

�
1 + E2

j
�

=
2k�1X
j=0

Ej :

Therefore,

log2 n�1Y
j=0

�
In + E2

j
�

=
n�1X
j=0

Ej

= T:

On an n-node hypercube, left multiplication of a vector by E2
j
is constant time, as is left

multiplication by In + E2
j
[333, 371]. Each term in the product is thus constant time, and

there is logarithmic number of terms, so parallel pre�x is logarithmic time. Of course, an

O (n logn) algorithm is easy to derive directly [475] or by using, for instance, Cn-fast Fourier

transforms [758].

The advantage of the factorization approach is that it applies in the case when scans are

implemented as a primitive operation on the machine [131,365,742], as exempli�ed below.

By using certain simple parallel pre�x operations the problem can be reduced to the fol-

lowing: given a vector v, compute the vector Mv, where Mv is de�ned so that

(Mv)i = vi + 2vi+1 + 3vi+2 + � � �+ (n� i+ 1)vn; 1 � i � n

.

182

Let E and T be the previously de�ned shift and parallel pre�x operators. Then M is a linear

transformation which satis�es

M = E0 + 2E1 + 3E2 + � � �+ (n� 2)En�1:

This polynomial can be factored:0@ nX
j=0

Ej

1A2

=

0@n�1X
j=0

(j + 1)Ej

1A +
X
k=n

akE
k

The right hand term vanishes because En=0. Therefore,

M =
n�1X
j=0

(j + 1)Ej

=

0@n�1X
j=0

Ej

1A2

= T2:

Hence, M = T2 and can be computed by two iterated applications of parallel pre�x.

By using the methodology of this paper, we were able to parallelize the application and

perform in approximately 6 hours an analysis computation that would have taken approx-

imately 800 hours of time on a vector minisupercomputer using the previous techniques.

This allowed analyses to be performed on many more protein sites than had been possible.

Detailed results are included in [718].

183

Chapter 9

Conclusion and future work

This thesis described techniques for the design of parallel programs that solve well-

structured problems with inherent symmetry.

Part I demonstrated the reduction of such problems to generalized matrix multiplication

by a group-equivariant matrix. Fast techniques for this multiplication were described, in-

cluding factorization, orbit decomposition, and Fourier transforms over �nite groups. Our

algorithms entailed interaction between two symmetry groups: one arising at the software

level from the problem's symmetry and the other arising at the hardware level from the

processors' communication network.

Part II illustrated the applicability of our symmetry-exploitation techniques by presenting

a series of case studies of the design and implementation of parallel programs.

First, a parallel program that solved chess endgames by factorization of an associated di-

hedral group-equivariant matrix was described. This code ran faster than previous serial

184

programs and discovered a number of results in its domain.

Second, parallel algorithms for Fourier transforms for �nite groups were developed and

preliminary parallel implementations for group transforms of dihedral and of symmetric

groups were described. Applications in learning, vision, pattern recognition and statistics

were proposed.

Third, parallel implementations solving several computational science problems were de-

scribed, including the direct N-body problem, convolutions arising from molecular biology,

and some communication primitives such as broadcast and reduce. Some of our imple-

mentations ran orders of magnitude faster than previous techniques, and were used in the

investigation of various physical phenomena.

The next logical stage in the development of our paradigm is the implementation of software

tools to support its application.

One way to approach an implementation of the ideas in this paper is by analogy with the

work of Soicher on GRAPE [700]. GRAPE is a graph-manipulation package, in which each

graph is associated with a subgroup of its automorphism group. We propose to extend this

idea to general arrays; we propose to build a general BLAS-like package for the manipulation

of arrays in which each array also comes with an associated group of invariances.

A complementary approach would be the implementation of our algorithms as part of the

loop transformation phase of an optimizing parallelizing compiler [81,82,511]. Once a com-

piler detects a group invariance, it could call, for example, a group convolution algorithm.

185

Automatic implementation of group FFTs would present little di�culty, but �nding good

heuristics to factorize the matrices would probably not be feasible, so that user compiler-

directives would be required.

It would also be interesting to explore generalizations of the tensor-product formulation

to nonlinear operators. Suppose that A and B are arbitrary maps from m-tuples to m-

tuples. It is natural to de�ne Il
A to be the map from ml-tuples to ml-tuples obtained by

running A simultaneously on l contiguous length m segments. We can de�ne A
 Il by the

Commutation Theorem to be

A
 Il � Pnm(Il
 A)Pnl :

We can then de�ne the tensor product of arbitrary operators on tuples by analogy with

equation 4.4:

A
 B � (A
 Il) (Im
 B) :

Of course, it is unclear whether anything is gained by the added generality.

Finally, and more speculatively, the ubiquity and centrality of symmetry considerations

in a number of disparate applications might argue for the utility of a symmetry-theoretic

classi�cation of computational problems. This line of speculation would soon lead into

category-theoretic considerations, insofar as one views a functor as a kind of generalization

of a group action (since a group action is simply a functor from a one-object category in

which each morphism is invertible).

186

Appendix A

List of symbols

General

Rk k-dimensional Euclidean space
C The complex numbers
A;B;M Matrices
Fn Discrete Fourier transform of degree n
In n� n identity matrix
Pmn Stride permutation
Kk Vector of k ones
G;H Finite groups
e Identity element of a group
H < G H is a subgroup of G
jGj Number of elements in G

X; Y Sets

;Nk Tensor product, kth tensor power
� Direct sum of vector spaces or matrices
AT Transpose of A
diag(v) Diagonal matrix with v's elements on diagonal
Symj Symmetric power
D4 The dihedral group of order 8
r 90� rotation element of D4

f Flipping operation, element of D4

Cn The cyclic group of order n
Sk The symmetric group of order k
GF2 The �nite �eld of order 2
X=G Orbit space for G-action on X
Vn;Wm Vector space of dimensions n,m
F A �eld

187

Zk The integers modulo k
Mn

m The set of m� n matrices
Xp;i Unmove operator for ith piece according to the rules of p
i; j; k;m;n; l Positive integers.
g; h Group elements
v;w Vectors
f = O (polylog(g)) f is at most polylogarithmic in g

Chapter 6

XWhite;XBlack Unmove predecessor functions
p Generic chess piece type
Xp;s Unmove operator of p on the sth coordinate
C V8
 V8

B
NkCR

G
x

P
g2G gx

s Element of Sk

Chapter 7

FG Fourier matrix of G
�; � Group representations of degrees d�; d�
� # H Restriction of � to H

 Adapted diameter of a group
S Strong generating set
G An acyclic arithmetic circuit
D (G) Depth of G
jGj Size of G
M(G;H) Maximum multiplicity of irreducible rep. of H in restriction of one in G

R Complete set of adapted irreducible representations of G
p Pattern string
t Text string
� Finite alphabet
�T;�P Text and pattern alphabets
� Character
s String
� Don't care character
� Exact-match (with don't cares)
� Subset matching (Abrahamson)
� Generalized combining operator

188

� Generalized character-comparison

�

�
Matrix multiplication with generalized +;�

Chapter 8

EOSHIFT End-o� shift function (E)
CSHIFT Circular shift function
SUM +-reduction function
OSUM Outer sum function
SPREAD Broadcast function
SCAN Parallel pre�x function (T)
MATMUL Matrix multiplication function

189

Bibliography

[1] Syed Kamal Abdali and Benjamin David Saunders. Transitive closure and related
semiring properties via elimination. Theoretical Computer Science, 40(2{3):257{274, 1985.

[2] Karl Raymond Abrahamson. Generalized string matching. SIAM Journal on Computing,
16(6):1039{1051, December 1987.

[3] D. Adams. Cray T3D system architecture overview. Technical report, Cray Research Inc.,
September 1993. Revision 1.C.

[4] George B. Adams, E.C. Bronson, Thomas L. Casavant, L.H. Jamieson, and Ray A.
Kamin. Experiments with parallel fast Fourier transforms. In Magdy A. Bayoumi, editor,
Parallel Algorithms and Architectures for DSP applications, volume 149 of The Kluwer In-
ternational Series in Engineering and Computer Science. VLSI, Computer Architecture, and
Digital Signal Processing, pages 49{75. Kluwer Academic, Dordrecht, Netherlands, 1991.

[5] Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith, and
Jerrold L. Wagener. Fortran 90 Handbook: Complete ANSI/ISO Reference. McGraw-Hill
Book Co., New York, 1992.

[6] [ú
 Í�Y
�ªË
�
@]. d� 	' �Q¢

�
�Ë@ H. A��J»�, n.d. (al-`Adl��, Book of Chess. Photographic copy of Arabic manusi-

cript).

[7] Ramesh C. Agarwal, Fran Goertzel Gustavson, and Mohammed Zubair. An ef-
�cient parallel algorithm for the 3-D FFT NAS parallel benchmark. In Proceedings of the
Scalable High-Performance Computing Conference, pages 129{133, Knoxville, TN, 23{25 May
1994. IEEE Computer Society Press, Los Alamitos, CA, 1994.

[8] Dharma P. Agrawal. Graph theoretical analysis and design of multistage interconnection
networks. IEEE Transactions on Computers, C-32:637{648, July 1983.

[9] Alfred Vaino Aho and Margaret John Corasick. E�cient string matching: an aid to
bibliographic search. Communications of the ACM, 18(6):333{340, June 1975.

[10] Alfred Vaino Aho, Daniel S. Hirschberg, and Jeffrey David Ullman. Bounds on
the complexity of the longest common subsequence problem. Journal of the Association for
Computing Machinery, 23(1):1{12, January 1976.

[11] Alfred Vaino Aho, John Edward Hopcroft, and Jeffrey David Ullman. The
Design and Analysis of Computer Algorithms. Addison-Wesley Series in Computer Science
and Information Processing. Addison-Wesley Publishing Company, Reading, MA, 1974.

190

[12] W. Ahrens. Mathematische Schachfragen [mathematical chess questions]. 1902 throughout.

[13] Miklos Ajtai, J. Koml�os, and E. Szemer�edi. An O(n logn) sorting network. In Proceed-
ings of the Fifteenth Annual Symposium on Theory of Computing, pages 1{9, Boston, MA,
25{27 April 1983. Association for Computing Machinery, New York, 1983.

[14] Sheldon B. Akers and Balakrishnan Krishnamurthy. Group graphs as intercon-
nection networks. In The Fourteenth International Conference on Fault-Tolerant Computing:
Digest of Papers: FTCS-14, pages 424{427, Kissimmee, FL, 20{22 June 1984. IEEE Computer
Society Press, Silver Spring, MD, 1984.

[15] Sheldon B. Akers and Balakrishnan Krishnamurthy. On group graphs and their fault
tolerance. IEEE Transactions on Computers, C-36(7):885{888, July 1987.

[16] Selim George Akl, David T. Barnard, and Ralph J. Doran. Simulation and analysis
in deriving time and storage requirements for a parallel alpha-beta pruning algorithm. In
Proceedings of the Ninth IEEE International Conference on Parallel Processing, pages 231{
234, Columbus, OH, 26{29 August 1980. IEEE Computer Society Press, Los Alamitos, CA,
1980.

[17] Selim George Akl, David T. Barnard, and Ralph J. Doran. Design, analysis and
implementation of a parallel tree search algorithm. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-4(2):192{203, March 1982.

[18] Tatsuya Akutsu. A linear time pattern matching algorithm between a string and a tree.
In Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Combinato-
rial Pattern Matching: 4th Annual Symposium. Proceedings, volume 684 of Lecture Notes in
Computer Science, pages 1{10, Padova, Italy, 2{4 June 1993. Springer-Verlag, Berlin, 1993.

[19] Eugene Leo Allgower, Klaus B�ohmer, Kurt Georg, and Rick Miranda. Exploiting
symmetry in boundary element methods. SIAM Journal on Numerical Analysis, 29(2):534{
552, April 1992.

[20] Eugene Leo Allgower, Klaus B�ohmer, Kurt Georg, and Rick Miranda. Exploiting
symmetry in boundary element methods. SIAM Journal on Numerical Analysis, 29:534{552,
1992.

[21] Eugene Leo Allgower, Klaus B�ohmer, and Martin Golubitsky, editors. Bifurcation and Sym-
metry: Cross In
uence Between Mathematics and Applications, volume 104 of International
Series of Numerical Mathematics. Birkh�auser Verlag, Basel, Germany, 1992.

[22] Eugene Leo Allgower, Kurt Georg, and Rick Miranda. Exploiting permutation
symmetries with �xed points in linear equations. In Proceedings of the 22nd AMS-SIAM
Summer Seminar on Applied Mathematics: Exploiting Symmetry in Applied and Numerical
Analysis, volume 29 of Lectures in Applied Mathematics, pages 23{36, Colorado State Uni-
versity, 26 July{1 August 1992. American Mathematical Society, Providence, Rhode Island,
1992.

[23] Ingo Alth�ofer. A parallel game tree search algorithm with linear speedup. Journal of
Algorithms, 15(2):175{198, September 1993.

[24] Ingo Alth�ofer and Bernhard Walter. Weak zugzwang: statistics on some chess
endgames. International Computer Chess Association Journal, 17(2):75{77, June 1994.

191

[25] Saman P. Amarasinghe, Jennifer M. Anderson, Monica S. Lam, and Amy W. Lim.
An overview of a compiler for scalable parallel machines. In Utpal Banerjee, David Gelernter,
Alexandru Nicolau, and David A. Padua, editors, Languages and Compilers for Parallel Com-
puting: Sixth International Workshop: Proceedings, volume 768 of Lecture Notes in Computer
Science, pages 253{272, Portland, OR, 12{14 August 1993. Springer-Verlag, Berlin/Heidelberg,
1994.

[26] Gene Myron Amdahl. Limits of expectation. International Journal of Supercomputer
Applications, 2(1):88{94, Spring 1988.

[27] [Friedrich Ludwig Amelung?]. Baltische Schachpartien aus den Jahren 1858 bis 1892, Par-
tie 114 [Baltic chess games from the years 1892 to 1858, Game 114]. Baltische Schachbl�atter,
4:266{267, 1893. Score of consultation Theodor Molien and A. Hasselblatt v. Friedrich
Amelung.

[28] Friedrich Ludwig Amelung. Das Endspiel von zwei O�zieren gegen einen Springer [The
endgame of two pieces against a rook]. Baltische Schachbl�atter, 4:290{297, 1893.

[29] Friedrich Ludwig Amelung. Ausz�uge aus den Briefen von A. Ascharin an F. Amelung
[Excerpts from the letters of A. Ascharin to F. Amelung]. Baltische Schacbl�atter, 5:12{38,
1898.

[30] Friedrich Ludwig Amelung. Das Endspiel von Thurm gegen Springer (Fortsetzung) [The
endgame of rook against knight (continuation)]. Deutsche Schachzeitung, 55(2):37{41, Febru-
ary 1900.

[31] Friedrich Ludwig Amelung. Das Endspiel von Thurm gegen Springer (Fortsetzung) [The
endgame of rook against knight (continuation)]. Deutsche Schachzeitung, 55(4):101{105, April
1900.

[32] Friedrich Ludwig Amelung. Das Endspiel von Thurm gegen Springer (Fortsetzung) [The
endgame of rook against knight (continuation)]. Deutsche Schachzeitung, 55(5):134{138, May
1900.

[33] Friedrich Ludwig Amelung. Das Endspiel von Thurm gegen Springer (Fortsetzung) [The
endgame of rook against knight (continuation)]. Deutsche Schachzeitung, 55(7):198{202, July
1900.

[34] Friedrich Ludwig Amelung. Das Endspiel von Thurm gegen Springer (Schluss) [The
endgame of rook against knight (conclusion)]. Deutsche Schachzeitung, 55(9):261{266,
September 1900.

[35] Friedrich Ludwig Amelung. Das Endspiel von Thurm gegen Springer [The endgame of
rook against knight]. Deutsche Schachzeitung, 55(1), January 1900.

[36] Friedrich Ludwig Amelung. Das Endspiel von Thurm und Springer gegen die Dame [The
endgame of rook and knight against queen]. Deutsche Schachzeitung, 56(7):193{197, July
1901.

[37] Friedrich Ludwig Amelung. Das Endspiel von Thurm und Springer gegen die Dame [The
endgame of rook and knight against queen]. Deutsche Schachzeitung, 56(8):225{229, August
1901.

192

[38] Friedrich Ludwig Amelung. Die Endspiele mit Qualit�atsvortheil, insbesondere das End-
spiel von Thurm und L�aufer gegen L�aufer und Springer [The endgames with exchange ad-
vantage, especially the endgame of rook and bishop against bishop and knight]. Deutsche
Schachzeitung, 57(9):265{268, September 1902.

[39] Friedrich Ludwig Amelung. Die Endspiele mit Qualit�atsvortheil, insbesondere das End-
spiel von Thurm und L�aufer gegen L�aufer und Springer (Fortsetzung) [The endgames with
exchange advantage, especially the endgame of rook and bishop against bishop and knight
(continuation)]. Deutsche Schachzeitung, 57(10):297{300, October 1902.

[40] Friedrich Ludwig Amelung. Die Endspiele mit Qualit�atsvortheil, insbesondere das End-
spiel von Thurm und L�aufer gegen L�aufer und Springer (Schluss) [The endgames with exchange
advantage, especially the endgame of rook and bishop against bishop and knight (conclusion)].
Deutsche Schachzeitung, 57(11):330{332, November 1902.

[41] Friedrich Ludwig Amelung. Das Endspiel von Turm und L�aufer gegen zwei Springer
[The endgame of rook and bishop against two knights]. D�una-Zeitung (Feuilleton-Beilage:
F�ur Haus und Familie), 40:52{53, 16{29 February 1908.

[42] Friedrich Ludwig Amelung. Endspiel 1028. Deutsches Wochenschach, 24(14):130, 5 April
1908.

[43] Friedrich Ludwig Amelung. L�osungspreis-endspiel Nr. 178 [Solution prize-endgame No.
178]. D�una-Zeitung (Feuilleton-Beilage: F�ur Haus und Familie), 63:87, 15{28 March 1908.

[44] Friedrich Ludwig Amelung. L�osung des Preisendspiels Nr. 178 [Solution of prize endgame
No. 178]. D�una-Zeitung (Feuilleton-Beilage: F�ur Haus und Familie), 13:20{21, 17{30 January
1909.

[45] [D�una-Zeitung]. Friedrich Ludwg Amelung. D�una-Zeitung (Feuilleton-Beilage: F�ur Haus
und Familie), 70:76{78, 28 March{10 April 1909.

[46] Amihood Amir and Gary Benson. Two-dimensional periodicity and its applications. In
Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, pages 440{
452, Orlando, FL, 27{29 January 1992. ACM Press, New York, 1992.

[47] Amihood Amir, Gary Benson, and Martin Farach. Alphabet independent two dimen-
sional matching. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
pages 59{67, Victoria, B.C., Canada, 4{6 May 1992. ACM Press, New York, 1992.

[48] Amihood Amir and Gad M. Landau. Fast parallel and serial multidimensional approxi-
mate array matching. Theoretical Computer Science, 81(1):97{115, 22 April 1991.

[49] Myoung An, James William Cooley, and Richard Tolimieri. Factorization method
for crystallographic Fourier transforms. Advances in Applied Mathematics, 11(3):358{371,
September 1990.

[50] Myoung An, Chao Lu, E. Prince, and Richard Tolimieri. Fast Fourier transforms
for space groups containing rotation axes of order three and higher. Acta Crystallographica,
A48(Part 3):346{349, May 1992.

[51] Thomas Anantharaman, Murray S. Campbell, and Feng-hsiung Hsu. Singular ex-
tensions: adding selectivity to brute force searching. In Proceedings: 1988 Spring Symposium
Series: Computer Game Playing, pages 8{13, Stanford University, Stanford, CA, 22{24 March
1988. American Association for Arti�cial Intelligence.

193

[52] James P. Anderson, Samuel A. Hoffman, Joseph Shifman, and Robert J.
Williams. D825: A multiple-computer system for command and control. In Proceedings
of the 1962 Fall Joint Computer Conference, volume 22 of AFIPS Conference Proceedings,
pages 86{96, 1962.

[53] H.C. Andrews and J. Kane. Kronecker matrices, computer implementations, and gener-
alized spectra. Journal of the Association for Computing Machinery, 17(2):260{268, April
1970.

[54] Fred S. Annexstein, Marc Baumslag, and Arnold Leonard Rosenberg. Group
action graphs and parallel architectures. Technical Report COINS Technical Report 87-133,
University of Massachusetts, 1987.

[55] Fred S. Annexstein and Marc Baumslag. Hamiltonian circuits in Cayley digraphs.
Technical Report COINS 88-40, University of Massachusetts Computer and Information Sci-
ence Department, Amherst, MA, 20 April 1988.

[56] Fred S. Annexstein, Marc Baumslag, and Arnold Leonard Rosenberg. Group
action graphs and parallel architectures. SIAM Journal on Computing, 19(3):544{569, June
1990.

[57] Alberto Apostolico, Maxime Crochemore, and Zvi Galil, editors. Combinatorial Pattern
Matching: 4th Annual Symposium, volume 684 of Lecture Notes in Computer Science, Padova,
Italy, 2{4 June 1993. Springer-Verlag, Berlin/New York, 1993.

[58] Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Mandber, editors. Combinato-
rial Pattern Matching: Third Annual Symposium, volume 644 of Lecture Notes in Computer
Science, Tucson, AZ, 29 April{1 May 1992. Springer-Verlag, Berlin/New York, 1992.

[59] Alberto Apostolico, C. Iliopoulos, Gad M. Landau, Baruch Schieber, and Uzi
Vishkin. Parallel construction of a su�x tree with applications. Algorithmica, 3(3):347{365,
1988.

[60] Alberto Apostolico and Franco P. Preparata. Optimal o�-line detection of repeti-
tions in a string. Theoretical Computer Science, 22(2{3):297{315, 1983.

[61] Andrew W. Appel. An e�cient program for many-body simulation. SIAM Journal on
Scienti�c and Statistical Computing, 6(1):85{103, January 1985.

[62] James H. Applegate, Michael R. Douglas, Yekta G�ursel, Peter Hunter,
Charles Lewis Seitz, and Gerald Jay Sussman. A digital orrery. IEEE Transactions
on Computers, C-34(9):822{831, September 1985.

[63] V. L. Arlazarov and A. L. Futer. Computer analysis of a rook endgame. In J. E
Hayes, Donald Michie, L. J. Mikulich, and Ellis Horwood, editors, Machine Intelligence 9.
Ellis Horwwod Ltd., Chichester, England, 1979.

[64] Michael Aschbacher. Finite Group Theory, volume 10 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge/New York, 1986.

[65] Michael D. Atkinson. The complexity of group algebra computations. Theoretical Com-
puter Science, 5(2):205{209, 1977.

[66] Louis Auslander and Richard Tolimieri. Ring structure and the Fourier transform.
Mathematical Intelligencer, 7(3):49{52, 54, 1985.

194

[67] Louis Auslander and Richard Tolimieri. Ambiguity functions and group represen-
tations. In Group Representations, Ergodic Theory, Operator Algebras, and Mathematical
Physics: Proceedings of a Conference in Honor of George W. Mackey (21{23 May 1984:
Berkeley, CA), volume 6 of Mathematical Sciences Research Institute Publications, pages 1{
10. Springer-Verlag, New York, 1987.

[68] �ri$i L~voviq Averbah [Yuri Lvovich Averbakh]. Xahmatnye Okonqani�;
Ferzevye [Chess endings: queen]. Fizkul~tura i sport, Moskva, 2nd edition, 1982.

[69] Amir Averbuch, Eran Gabber, Boaz Gordissky, and Yoav Medan. A parallel FFT
on a MIMD machine. Parallel Computing, 15(1{3):61{74, September 1990.

[70] L�aszl�o Babai, D.Yu. Grigoriev, and D.M. Mount. Isomorphism of graphs with
bounded eigenvalue multiplicity. In Proceedings of the Fourteenth Annual ACM Symposium
on Theory of Computing, pages 36{41, San Francisco, CA, 5{7 May 1982. ACM Press, New
York, 1982.

[71] L�aszl�o Babai, Eugene Michael Luks, and �Akos Seress. Permutation groups in NC.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages 409{420,
New York, 25{27 May 1987. ACM Press, New York, 1987.

[72] L�aszl�o Babai, Eugene Michael Luks, and �Akos Seress. Fast management of per-
mutation groups. In Proceedings of the 29th Annual Symposium on Foundations of Computer
Science, pages 272{282, White Plains, NY, 24{26 October 1988. IEEE, Washington, DC, 1988.

[73] L�aszl�o Babai and Lajos R�onyai. Computing irreducible representations of �nite groups.
Mathematics of Computation, 55(192):705{722, October 1990.

[74] Charles Babbage. Games of skill. In Passages From the Life of a Philosopher, pages
465{471. Longman, Green, Longman, Roberts, and Green, London, 1864.

[75] Roland C. Backhouse and B. A. Carr�e. Regular algebra applied to path-�nding prob-
lems. Journal of the Institute of Mathematics and its Applications, 15(2):161{186, April 1975.

[76] Roland C. Backhouse, J.P.H.W. van den Eijnde, and A.J.M. van Gasteren. Cal-
culating path algorithms. Science of Computer Programming, 22(1{2):3{19, April 1994.

[77] John W. Backus. Can programming be liberated from the von Neumann style? A functional
style and its algebra of programs (1977 ACM Turing Award Lecture). Communications of the
ACM, 21(8):613{641, August 1978.

[78] David H. Bailey, K. Lee, and H.D. Simon. Using Strassen's algorithm to accelerate the
solution of linear systems. Journal of Supercomputing, 4(4):357{371, January 1991.

[79] Theodore Paul Baker. A technique for extending rapid exact-match string matching to
arrays of more than one dimension. SIAM Journal on Computing, 7(4):533{541, November
1978.

[80] Henri E. Bal and Robert van Renesse. A summary of parallel alpha-beta search results.
International Computer Chess Association Journal, 9(3):146{151, September 1986.

[81] Utpal Banerjee. Loop Transformations for Restructuring Compilers: the Foundations.
Kluwer Academic, Boston, MA, 1993.

[82] Utpal Banerjee. Loop Parallelization, volume 2 of Loop Transformations for Restructuring
Compilers. Kluwer Academic, Boston, MA, 1994.

195

[83] C.R. Banger. Construction of Multidimensional Arrays as Categorical Data Types. PhD
thesis, Queen's University, Kingston, Canada, 1994.

[84] Josh Edward Barnes and Piet Hut. A hierarchical O(N logN) force calculation algo-
rithm. Nature, 324:446{449, 4 December 1986.

[85] Gerhard Barth. An alternative for the implementation of the Knuth-Morris-Pratt algo-
rithm. Information Processing Letters, 13(4,5), End 1981.

[86] J.G. Bashmakova. Molin, Fedor Eduardovich, volume 3, pages 1739{1740. Charles Scrib-
ner's Sons, New York, 1991.

[87] Kenneth Edward Batcher. Design of a massively parallel processor. IEEE Transactions
on Computers, C-29(9):836{840, September 1980.

[88] F. Baude and David Benson Skillicorn. Vers de la programmation parall�ele structur�e
fond�ee sur la th�eorie des cat�egories. Techniques et Sciences de l'Informatique, 13(4):525{537,
1994.

[89] Ulrich Baum. Existence and e�cient constructions of fast fourier transforms on supersolv-
able groups. Computational Complexity, 1(3):235{256, 1991.

[90] Ulrich Baum and Michael Clausen. Some lower and upper complexity bounds for gen-
eralized Fourier transforms and their inverses. SIAM Journal on Computing, 20(3):451{459,
June 1991.

[91] Ulrich Baum, Michael Clausen, and B. Tietz. Improved upper complexity bounds
for the discrete Fourier transform. Applicable Algebra in Engineering, Communication and
Computing, 2(1):35{43, 1991.

[92] Gilbert Baumslag. Topics in Combinatorial Group Theory. Lectures in Mathematics.
Birkh�auser, Basel, Boston, Berlin, 1993.

[93] Marc Baumslag and Arnold Leonard Rosenberg. Processor-time tradeo�s for Cayley
graph interconnection networks. In The Sixth Distributed Memory Computing Conference
Proceedings, pages 630{636, Portland, OR, 28 April{1 May 1991. IEEE Computer Society
Press, Los Alamitos, CA, 1991.

[94] David M. Beazley and Peter S. Lomdahl. Message-passing multi-cell molecular dynam-
ics on the Connection Machine 5. Parallel Computing, 20(2):173{195, February 1994.

[95] David M. Beazley, Peter S. Lomdahl, P. Tamayo, and N. Gr�nbech-Jensen. 50
giga
ops molecular dynamics on the connection machine. In Howard Jay Siegel, editor, Pro-
ceedings of the Eighth International Parallel Processing Symposium, Cancun, Mexico, 26{29
April 1994. IEEE Computer Society Press, Los Alamitos, CA, 1994.

[96] [Carl Behting and Paul Kerkovius?]. Das zweite Baltische Schachturnier [The second
Baltic chess tournament]. Baltische Schachbl�atter, 9:1{24, 1902.

[97] Alex G. Bell. Torres y Quevedo. In The Machine Plays Chess?, Pergamon Chess Series,
chapter 2, pages 8{11. Pergamon Press, Oxford, 1978.

[98] Richard Ernest Bellman. On a new iterative algorithm for �nding the solutions of games
and linear programming problems. Technical Report P-473, The RAND Corporation, U.S.
Air Force Project RAND, Santa Monica, CA, 1 June 1954.

196

[99] Richard Ernest Bellman. The theory of games. Technical Report P-1062, The RAND
Corporation, Santa Monica, CA, 15 April 1957.

[100] Richard Ernest Bellman. On the reduction of dimensionality for classes of dynamic
programming processes. Technical report, The RAND Corporation, Santa Monica, CA, 7
March 1961.

[101] Richard Ernest Bellman. On the application of dynamic programming to the determina-
tion of optimal play in chess and checkers. Proceedings of the National Academy of Sciences
of the United States of America, 53(2):244{246, February 1965.

[102] Vaclav Edvard Bene�s. Optimal rearrangeable multistage connecting networks. Bell System
Technical Journal, 43(4, Part 2):1641{1656, July 1964.

[103] Vaclav Edvard Bene�s. Permutation groups, complexes, and rearrangeable connecting net-
works. Bell System Technical Journal, 43(4, Part 2):1619{1640, July 1964.

[104] Vaclav Edvard Benes�. Mathematical theory of connecting networks and telephone tra�c,
volume 17 of Mathematics in Science and Engineering. Academic Press, New York, 1965.

[105] A.van Bergen. An ulti-mate look at the KPK data base. International Computer Chess
Association Journal, 8(4):216{218, December 1985.

[106] Johann Berger. Der Turm und ein leichter O�zier gegen zwei leichte O�ziere [Rook and
minor piece against two minor pieces]. In Theorie und Praxis der Endspiele: Ein Handbuch
f�ur Schachfreunde, pages 167{169. Veit and comp., Leipzig, 1890.

[107] Johann Berger. Theorie und Praxis der Endspiele: Ein Handbuch f�ur Schachfreunde [The-
ory and practice of the endgame: a handbook for chessplayers]. Vereinigung Wissenschaftlicher
Verleger Walter de Gruyter & Co., Berlin, Leipzig, 2nd edition, 1922.

[108] Johann Berger. Theorie und Praxis der Endspiele: ein Handbuch f�ur Schachfreunde [The-
ory and practice of the endgame: a handbook for chessplayers]. Olms, Zurich, 1981.

[109] Klaus Berkling. Arrays and the lambda calculus. In Lenore M. Restifo Mullin et. al.,
editor, Arrays, Functional Languages and Parallel Systems, pages 1{17. Kluwer Academic
Publishers, 1991.

[110] Elwyn Ralph Berlekamp, John Horton Conway, and Richard K. Guy. Winning
Ways For Your Mathematical Plays. Volume 1: Games in General. Academic Press, London
and New York, 1982.

[111] Hans Jack Berliner. Backgammon computer program beats world champion. Arti�cial
Intelligence, 14(2):205{220, September 1980.

[112] Hans Jack Berliner and Murray S. Campbell. Using chunking to solve chess pawn
endgames. Arti�cial Intelligence, 23(1):97{120, May 1984.

[113] Hans Jack Berliner and William Henry Carl Ebeling. The SUPREM architecture:
a new intelligent paradigm. Arti�cial Intelligence, 28(1):3{8, February 1986.

[114] Robert Bernecky. Compiling APL. In Lenore M. Restifo Mullin et. al., editor, Arrays,
functional languages and parallel systems, pages 19{33. Kluwer Academic Publishers, Boston,
MA, 1991.

[115] J. Berntsen. Communication e�cient matrix multiplication on hypercubes. Parallel Com-
puting, 12(3):335{342, December 1989.

197

[116] Dmitri P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Englewood Cli�s, NJ, 1987.

[117] Dmitri P. Bertsekas and John N. Tsisiklis. Parallel and Distributed Computation:
Numerical Methods. Prentice Hall International, London, 1989.

[118] Thomas Beth. Verfahren der schnellen Fourier-Transformation: die allgemeine diskrete
Fourier-Transformation: ihre algebraische Beschreibung, Komplexit�at und Implementierung
[Methods of fast Fourier transforms: the general discrete Fourier transform: its algebraic
description, complexity and implementation], volume 61 of Leitf�aden der angewandten Math-
ematik und Mechanik, Teubner Studienb�ucher: Informatik. B.G. Teubner, Stuttgart, 1984.

[119] Thomas Beth. On the computational complexity of the general discrete Fourier transform.
Theoretical Computer Science, 51(3):331{339, 1987.

[120] Thomas Beth. Generalized Fourier transforms. In Rainer Jan�en, editor, Trends in Com-
puter Algebra: International Symposium Bad Neuenahr, May 19{21, 1987: Proceedings, vol-
ume 296 of Lecture Notes in Computer Science, pages 92{118. Springer-Verlag, Berlin, 1988.

[121] Said Bettayeb, Zevi Miller, and Hal Sudborough. Embedding k-D meshes into opti-
mum hypercubes with dilation 2k�1 (extended abstract). In Michel Cosnard, Afonso Ferreira,
and Joseph Peters, editors, Proceedings of the First Canada{France Conference on Parallel
and Distributed Computing: Theory and Practice, volume 805 of Lecture Notes in Computer
Science, pages 73{80, Montr�eal, Canada, 19{21 May 1994. Springer-Verlag, Berlin, 1994.

[122] Gyan Bhanot and Srikanth Sastry. Solving the Ising model on a 5 � 5 � 4 lattice
using the Connection Machine. Technical Report TMC-43, Thinking Machines Corporation,
Cambridge, MA, November 1989.

[123] Sandeep Nautam
Bhatt, F. Chung, Frank Thomson Leighton, and Arnold Leonard Rosenberg.
Optimal simulation of tree machines. In Proceedings of the 27th Annual IEEE Symposium
on Foundations of Computer Science, pages 274{282, Toronto, Ontario, 27{29 October 1986.
IEEE Computer Society Press, Washington, DC / Los Angeles, CA, 1986.

[124] Frederic Bien. Constructions of telephone networks by group representations. Notices of
the American Mathematical Association, 36(1):5{22, January 1989.

[125] Norman Biggs. Algebraic Graph Theory. Cambridge Mathematical Library. Cambridge
University Press, Cambridge, England, 2nd edition, 1993.

[126] Richard S. Bird. Two dimensional pattern matching. Information Processing Letters,
6(5):168{170, October 1977.

[127] Richard S. Bird. An introduction to the theory of lists. In Manfred Broy, editor, Proceedings
of the NATO Advanced Study Institute on Logic of Programming and Calculi of Discrete
Design, volume 36 of NATO Advanced Science Institutes Series, Series F: Computer and
Systems Sciences. Springer-Verlag, Berlin, 1987, Marktoberdorf, Germany, 29 July{10 August
1986.

[128] Richard S. Bird. Algebraic identities for program calculation. Computer Journal,
32(2):122{126, April 1989.

198

[129] Richard S. Bird and Oege de Moor. From dynamic programming to greedy algorithms.
In Berhard M�oller, Helut A. Partsch, and Steve Schuman, editors, Formal Program Develop-
ment: IFIP TC2/WG 2.1 State-of-the-Art report, volume 755 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin/New York, 1993.

[130] Richard S. Bird, Jeremy Gibbons, and Geraint Jones. Formal derivation of a pattern
matching algorithm. Science of Computer Programming, 12(2):93{104, July 1989.

[131] Guy E. Blelloch. Scans as primitive parallel operations. In Sartaj Sahni, editor, Proceed-
ings of the Sixteenth International Conference on Parallel Processing, pages 355{362, Penn-
sylvania State University, 17{21 August 1987. Pennsylvania State University Press, University
Park, PA, 1987.

[132] Guy E. Blelloch. Vector Models for Data-Parallel Computing. Arti�cial Intelligence. MIT
Press, Cambridge, MA, 1990.

[133] Guy E. Blelloch. NESL: a nested data parallel language. Technical Report CMU-CS-
92-193, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, January
1992.

[134] Guy E. Blelloch. Pre�x sums and their applications. In John H. Reif, editor, Synthesis of
Parallel Algorithms, pages 35{60. Morgan Kaufmann Publishers, San Mateo, CA, 1993.

[135] C. De Boor. E�cient computer manipulation of tensor products. ACM Transactions on
Mathematical Software, 5(2):173{182, 1979.

[136] Shekhar Borkar, Robert Cohn, George Cox, Sha Gleason, Thomas Gross, Hsing-
Tsung Kung, Monica S. Lam, Brian Moore, Craig Peterson, John Pieper, Linda
Rankin, Ping Sheng Tseng, Jim Sutton, John Urbanski, and Jon Webb. iWarp:
an integrated solution to high-speed parallel computing. In Proceedings: Supercomputing '88,
pages 330{339, Orlando, FL, 14{18 November 1988. IEEE Computer Society Press, Washing-
ton, DC, 1988.

[137] W.J. Bouknight, Stewart A. Denenberg, David E. McIntyre, J.M Randall,
Amed H. Sameh, and Daniel L. Slotnick. The ILIAC IV system. Proceedings of the
IEEE, 60(4):369{388, 1972.

[138] Charles Leonard Bouton. Nim, a game with a complete mathematical theory. Annals of
Mathematics, 3(2):35{39, 1902.

[139] Robert Stephen Boyer and J Strother Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):762{772, October 1977.

[140] Richard Peirce Brent. The parallel evaluation of general arithmetic expressions. Journal
of the Association for Computing Machinery, 21(2):201{206, April 1974.

[141] Clay P. Breshears and Michael Allen Langston. MIMD versus SIMD computation:
experience with non-numeric parallel algorithms. In Trevor N. Mudge, Veljko M. Milutinovic,
and Lawrence Hunter, editors, Proceedings of the Twenty-Sixth Hawaii International Confer-
ence on Systems Sciences, volume 2, pages 298{307, Wailea, HI, 5{8 January 1993. IEEE
Computer Society, Los Alamitos, CA, 1993.

[142] Jonathan Bright, Simon Kasif, and Lewis Benjamin Stiller. Exploiting algebraic
structure in parallel state space search. In Proceedings of the Twelfth National Conference
on Arti�cial Intelligence, volume 2, pages 1341{1346, Seattle, Washington, 31 July{4 August
1994. AAAI Press / The MIT Press, Menlo Park/Cambridge, 1994.

199

[143] Cynthia A. Brown, Larry Finkelstein, and Paul Walton Purdom, Jr. Backtrack
searching in the presence of symmetry. In Teo Mora, editor, Proceedings of the 6th Inter-
national Conference on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,
volume 357 of Lecture Notes in Computer Science, pages 99{110, Rome, Italy, 4{8 July 1988.
Springer-Verlag, Berlin, 1989.

[144] Cynthia A. Brown, Larry Finkelstein, and Paul Walton Purdom, Jr. A new base
change algorithm for permutation groups. SIAM Journal on Computing, 18(5):1037{1047,
October 1989.

[145] Richard Anthony Brualdi and Herbert John Ryser. Combinatorial Matrix Theory,
volume 39 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, England, 1991.

[146] Jean-Philippe Brunet and S. Lennart Johnsson. All-to-all broadcast with applications
on the Connection Machine. International Journal of Supercomputer Applications, 6(3):241{
256, Fall 1992.

[147] Duncan A. Buell. Broadcast and total exchange in supertoroidal networks. Technical
Report SRC-TR-91-048, Supercomputing Research Center, Bowie, MD, 6 November 1991.

[148] Duncan A. Buell. Supertoroids, FFT butter
ies, and cube-connected-cycles. Technical Re-
port SRC-TR-91-045, Supercomputing Research Center, 17100 Science Drive, Bowie, Mary-
land, 20 August 1991.

[149] Jerry R. Burch, Edmund Melson Clarke, Kenneth L. McMillan, David L. Dill,
and L.J. Hwang. Symbolic model checking: 1020 states and beyond. Information and
Computation, 98(2):142{170, June 1992.

[150] Alice R. Burks and Arthur Walter Burks. The ENIAC: �rst general-purpose electronic
computer. Ann. Hist. Comput., 3(4):310{399, 1981.

[151] Michael Bussieck, Hannes Hassler, Gerhard J. Woeginger, and Uwe T. Zimmer-
mann. Fast algorithms for the maximum convolution problem. Operations Research Letters,
15(3):133{141, April 1994.

[152] Gregory Butler. Fundamental Algorithms For Permutation Groups, volume 559 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin/New York, 1992.

[153] Gregory Butler and Clement Wing Hong Lam. Isomorphism testing of combinatorial
objects. Journal of Symbolic Computation, 1(4):363{381, December 1985.

[154] Jin-Yi Cai. Parallel computation over hyperbolic groups. In Proceedings of the 24th Annual
Symposium on Theory of Computing, pages 106{115, Victoria, B.C, Canada, 4{6 May 1992.
Association for Computing Machinery, New York, 1992.

[155] Larry J. Campbell, Luke L. Daemen, James E. Gubernatis, and Lewis Benjamin
Stiller. Computer simulations of
ux dynamics in superconducting thin-�lms, August 1992.

[156] Lowell Campbell, Gunnar Erik Carlsson, Michael J. Dinneen, Vance Faber,
Michael Ralph Fellows, Michael Allen Langston, James W. Moore, Andrew P.
Mullhaupt, and Harlan B. Sexton. Small diameter symmetric networks from linear
groups. IEEE Transactions on Computers, 41(2):218{220, February 1992.

[157] Murray S. Campbell. Chunking as an abstraction mechanism. Technical Report CMU-
CS-88-116, Carnegie-Mellon University, 22 February 1988.

200

[158] Murray S. Campbell and Thomas Anthony Marsland. A comparison of minimax tree
search algorithms. Arti�cial Intelligence, 20:347{367, 1983.

[159] Lynn Elliot Cannon. A Cellular Computer to Implement the Kalman Filter Algorithm.
PhD thesis, Montana State University, 1969.

[160] Gunnar Erik Carlsson, J.E. Cruthirds, Harlan B. Sexton, and Christopher G.
Wright. Interconnection networks based on a generalization of cube-connected cycles. IEEE
Transactions on Computers, C-34(8):769{772, August 1985.

[161] Gunnar Erik Carlsson, Michael Ralph Fellows, Harlan B. Sexton, and Christo-
pher G. Wright. Group theory as an organizing principle in parallel processing. Unpub-
lished manuscript, December 1985.

[162] Gunnar Erik Carlsson, Harlan B. Sexton, M.J. Shensa, and Christopher G.
Wright. Algebraic techniques in systolic array design. Technical Report NOSC TR 942,
Naval Ocean Systems Center, San Diego, CA 92152{5000, February 1984.

[163] Gunnar Erik Carlsson, Harlan B. Sexton, and Christopher G. Wright. Node-
transitive networks. Technical Report TN 1380, Naval Ocean Systems Center, San Diego, CA
92152{5000, March 1985.

[164] Pietro Carrera. Del gioco de gli scacchi [The game of chess], volume 3. [Gionanni de
Rossi?], [Trento?], 1617.

[165] J. Carrier, Leslie Greengard, and Vladimir Rokhlin. A fast adaptive multipole
algorithm for particle simulations. SIAM Journal on Scienti�c and Statistical Computing,
9(4):669{686, July 1988.

[166] �Elie Cartan. Sur les groups bilin�eaires et les syst�emes de nombres complexes [On bilinear
groups and systems of complex numbers]. Ann. Fac. Sc. Toulouse, 12, 1898.

[167] Roger William Carter. Simple Groups of Lie Type, volume 28 of Pure and Applied
Mathematics: A Series of Texts and Monographs. John Wiley & Sons, London/New York,
1972.

[168] Arthur Cayley. On the theory of groups, as depending on the symbolic equation �n = 1.
Philosophical Magazine, 7:123{130, 1854.

[169] Arthur Cayley. On the theory of groups, as depending on the symbolic equation �n = 1.
Philosophical Magazine, 7:131{132, 1854.

[170] R.M. Chamberlain. Gray codes, fast Fourier transforms, and hypercubes. Parallel Com-
puting, 6(2):225{233, February 1988.

[171] Mee Yee Chan. Embedding of grids into optimal hypercubes. SIAM Journal on Computing,
20(5):834{864, October 1991.

[172] Bruce Chandler and Wilhelm Magnus. The History of Combinatorial Group Theory:
A Case Study in the History of Ideas, volume 9 of Studies in the History of Mathematics and
Physical Sciences. Springer-Verlag, New York, 1982.

[173] Ashok Kumar Chandra, Dexter Campbell Kozen, and Larry Joseph Stockmeyer.
Alternation. Journal of the Association for Computing Machinery, 28(1):114{133, January
1981.

201

[174] Henry Ker-Chang Chang and Jonathan Jen-Rong Cheng. A parallel algorithm for
the knapsack problem with memory/processor tradeo� M2P = O(2n=2). International J. of
High Speed Computing, 4(2):109{120, June 1992.

[175] Chapais. Essais analytiques sur les �echecs, avec �gures [analytical essay on chess, with illus-
trations], [ca. 1780].

[176] Barbara Chapman, Piyush Mehrotra, and Hans P. Zima. Programming in Vienna
Fortran. Scienti�c Programming, 1(1):31{50, Fall 1992.

[177] Gen-Huey Chen and Jin-Hwang Jang. An improved parallel algorithm for 0/1 knapsack
problem. Parallel Computing, 18(7):811{821, 1992.

[178] Andr�e Ch�eron. Nouveau trait�e complet d'�echecs: La �n de partie [New complete treatise of
chess]. Yves Demailly, Lille, France, 1952.

[179] Andr�e Ch�eron. Lehr- und Handbuch der Endspiele [Textbook and handbook of the
endgame]. S. Engelhardt, Berlin, 2 edition, 1960, 1970. Enlarged and revised edition of
Nouveau traite complet d'echecs, la �n de partie.

[180] Wai-Mee Ching. Automatic parallelization of APL-style programs. APL90 Conference
proceedings, APL Quote Quad, 20(4):76{80, July 1990.

[181] Jaeyoung Choi, Jack J. Dongarra, Roldan Pozo, and David W. Walker. ScaLA-
PACK: a scalable linear algebra library for distributed memory concurrent computers. In
Proceedings of the Fourth Symposium on the Frontiers of Massively Parallel Computation:
Frontiers '92, McLean, VA, 1992. IEEE Computer Society Press, Los Alamitos, CA, 1992.

[182] Jaeyoung Choi, Jack J. Dongarra, and David W. Walker. The design of a paral-
lel, dense linear algebra software library: reduction to Hessenberg, tridiagonal and bidiagonal
form. In Jack J. Dongarra and Bernard Tourancheau, editors, Proceedings of the Second Work-
shop on Environments and Tools for Parallel Scienti�c Computing, pages 98{111, Townsend,
Tennessee, 25{27 May 1994. Society for Industrial and Applied Mathematics, Philadelphia,
1994.

[183] Daniel Le M�etayer Chris Hankin and David Sands. A parallel programming style and
its algebra of programs. In Arndt Bode, Mike Reeve, and Gottfried Wolf, editors, PARLE '93:
Parallel Architectures and Languages Europe: 5th International PARLE Conference, volume
694 of Lecture Notes in Computer Science, pages 367{390, Munich, Germany, 14{17 June
1993. Springer-Verlag, Berlin, 1993.

[184] David V. Chudnovsky, Gregory V. Chudnovsky, and Monty Montague Denneau.
Regular graphs with small diameter as models for interconnection networks. In Svetlana
Kartashev and Steven I. Kartashev, editors, Proceedings: Third International Conference on
Supercomputing, volume 3, pages 232{239, Boston, MA, 15{20 May 1988. International Su-
percomputing Institute, St. Petersburg, FL, 1988.

[185] Fan Rong King Chung. Diameters and eigenvalues. Journal of the American Mathematical
Society, 2(2):187{196, April 1989.

[186] Michael Clausen. Fast Fourier transforms for metabelian groups. SIAM Journal on Com-
puting, 18(3):594{593, June 1989.

[187] Michael Clausen. Fast generalized Fourier transforms. Theoretical Computer Science,
67(1):55{63, 5 September 1989.

202

[188] Michael Clausen and Ulrich Baum. Fast Fourier transforms for symmetric groups.
In Larry Finkelstein and William Kantor, editors, Groups and Computation: Workshop on
Groups and Computation, volume 11 of DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Science, pages 27{40, Rutgers, NJ, 7{10 October 1991. American Mathematical
Society, Providence, RI, 1993.

[189] Michael Clausen and Ulrich Baum. Fast Fourier Transforms. Bibliographisches Institut
Wissenschaftsverlag, Mannheim, 1993.

[190] Michael Clausen and Ulrich Baum. Fast Fourier transforms for symmetric groups:
theory and implementation. Mathematics of Computation, 61(204):833{847, October 1993.

[191] Michael Clausen and Dieter Gollmann. Spectral transforms for symmetric groups|
fast algorithms and VLSI architectures. In Claudio Moraga, editor, Proceedings of the Third
International Workshop on Spectral Techniques, pages 67{85, University of Dortmund, F.R.G.,
4{6 October 1988.

[192] P. Clote and E. Kranakis. Boolean functions, invariance groups, and parallel complexity.
SIAM Journal on Computing, 20(3):553{590, June 1991.

[193] William T. Cochran, James William Cooley, David L. Favin, Howard D. Helms,
Reginald A. Kaenel, William W. Lang, George C. Maling, Jr., David E. Nelson,
Charles M. Rader, and Peter D. Welch (G-AE Subcommittee on Measurement
Concepts). What is the fast Fourier transform? IEEE Transactions on Audio and Electroa-
coustics, AU-15(2):45{55, June 1967.

[194] Richard Cole and Uzi Vishkin. Approximate and exact parallel scheduling with applica-
tions to list, tree, and graph problems. In Proceedings of the 27th Annual IEEE Symposium
on Foundations of Computer Science, pages 478{491, Toronto, Ontario, 27{29 October 1986.
IEEE Computer Society Press, Washington, DC / Los Angeles, CA, 1986.

[195] Albert John Coleman. Induced Representations With Applications to Sn and GL(n), vol-
ume 4 of Queen's Papers in Pure and Applied Mathematics. Queen's University, Kingston,
Ontario, 1966.

[196] J. F. Collins and A. F. W. Coulson. Applications of parallel processing algorithms for
DNA sequence analysis. Nucleic Acids Research, 12(1 Part 1):181{192, 11 January 1984.

[197] Michael John Collins. Representations and Characters of Finite Groups, volume 22 of
Cambridge Studies in Applied Mathematics. Cambridge University Press, Cambridge, Eng-
land/New York, 1990.

[198] J. H. Condon and Kenneth Lane Thompson. Belle chesse hardware. In Peter W. Frey,
editor, Chess Skill in Man and Machine, pages 201{210. Springer-Verlag, 1977.

[199] James William Cooley, Peter A.W. Lewis, and Peter D. Welch. Historical notes on
the fast Fourier transform. IEEE Transactions on Audio and Electroacoustics, AU-15(2):76{
79, June 1967.

[200] James William Cooley and John Wilder Tukey. An algorithm for the machine calcu-
lation of complex Fourier series,. Mathematics of Computation, 19(90):297{301, April 1965.

[201] Gene Cooperman and Larry Finkelstein. Combinatorial tools for computational group
theory. In Larry Finkelstein and William Kantor, editors, Groups and Computation: Work-
shop on Groups and Computation, volume 11 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 53{86, Rutgers, NJ, 7{10 October 1991. American
Mathematical Society, Providence, RI, 1993.

203

[202] Gene Cooperman, Larry Finkelstein, and Namita Sarawagi. Applications of Cayley
graphs. In Applied Algebra, Algebraic Algorithms, and Error-correcting Codes : 8th Interna-
tional Conference, AAECC-8: Proceedings, volume 508 of Lecture Notes in Computer Science,
pages 367{378, Tokyo, Japan, 20{24 August 1990. Berlin, Springer-Verlag, 1991.

[203] Gene Cooperman, Larry Finkelstein, and Namita Sarawagi. A random base change
algorithm for permutation groups. In ISSAC '90: Proceedings of the International Symposium
on Symbolic and Algebraic Computation, Tokyo, Japan, August 20{24 1990. ACM press, New
York, 1990.

[204] Gene Cooperman, Larry Finkelstein, and Bryant Whittier York. A parallel im-
plementation of group membership and the method of random subproducts. In Proceedings of
the First Summer Institute on Issues and Ostacles in the Practical Implementation of Parallel
Algorithms and the Use of Parallel Machines, Hanover, NH, 23{27 June 1992. Dartmouth
Institute for Advanced Graduate Studies in Parallel Computation, Dartmouth College, 1992.

[205] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progres-
sions. Journal of Symbolic Computation, 9(3):251{280, March 1990.

[206] Nolan G. Core, Elizabeth W. Edmiston, Joel Haskin Saltz, and Roger M. Smith.
Supercomputers and biological sequence comparison algorithms. Computers and Biomedical
Research, 22(6):497{515, December 1989.

[207] International Business Machines Corporation. IBM 7094 Principles of Operation.
IBM Systems Reference Library. IBM, Poughkeepsie, NY, 1963.

[208] A. F. W. Coulson, J. F. Collins, and A. Lyall. Protein and nucleic acid sequence
database searching: a suitable case for parallel processing. The Computer Journal, 30(5):420{
424, October 1987.

[209] Maxime Crochemore. Optimal factor transducers. In Alberto Apostolico and Zvi Galil,
editors, Proceedings of the NATO Advanced Research Workshop on Combinatorial Algorithms
on Words, volume 12 of NATO Advanced Science Institutes Series F: Computer and Systems
Sciences, pages 31{43, Maratea, Italy, 18{22 June 1984. Springer-Verlag, Berlin/New York,
1985.

[210] Maxime Crochemore and Dan Gus�eld, editors. Combinatorial Pattern Matching: 5th Annual
Symposium, volume 807 of Lecture Notes in Computer Science, Asilomar, CA, 5{8 June 1994.
Springer-Verlag, Berlin/New York 1993.

[211] Maxime Crochemore and Dominique Perrin. Two-way string-matching. Journal of the
Association for Computing Machinery, 38(3):651{675, July 1991.

[212] [Alfred Crosskill]. The rook and bishop against rook. The Chess-Player's Magazine,
2:305{311, 1864.

[213] Van-Dat Cung and Bertrand Le Cun. An e�cient implementation of parallel A*. In
Michel Cosnard, Afonso Ferreira, and Joseph Peters, editors, Proceedings of the First Canada-
France Conference on Parallel and Distributed Computing: Theory and Practice, volume 805
of Lecture Notes in Computer Science, Montr�eal, Canada, 19{21 May 1994. Springer-Verlag,
Berlin, 1994.

[214] Charles W. Curtis and Irving Reiner. Representation Theory of Finite Groups and
Associative Algebras, volume 11 of Pure and Applied Mathematics: A Series of Texts and
Monographs. John Wiley & Sons, 1962.

204

[215] Robert Cypher and Jorge L. C. Sanz. The SIMD Model of Parallel Computation.
Springer-Verlag, New York, 1994.

[216] Luke L. Daemen, James Edward Gubernatis, and Larry J. Campbell. Flux lattice
melting in superconducting thin �lms. Unpublished, December 1991.

[217] E. Denning Dahl. Mapping and compiled communication on the Connection Machine sys-
tem. In Proceedings of the Fifth Distributed Memory Computing Conference, pages 756{766,
Charleston, South Carolina, 8{12 April 1990. IEEE Computer Society, Los Alamitos, CA,
1990.

[218] Gordon Charles Danielson and Cornelius Lanczos. Some improvements in practical
Fourier analysis and their application to X-ray scattering from liquids. Journal of the Franklin
Institute, 233(4):365{380, April 1942.

[219] Gordon Charles Danielson and Cornelius Lanczos. Some improvements in practical
Fourier analysis and their application to X-ray scattering from liquids (continued from april
issue). Journal of the Franklin Institute, 233(5):435{452, May 1942.

[220] Alain Darte, Tanguy Risset, and Yves Robert. Loop nest scheduling and transforma-
tions. In Jack J. Dongarra and Bernard Tourancheau, editors, Environments and Tools for
Parallel Scienti�c Computing, volume 6 of Advances in Parallel Computing, pages 309{332.
North-Holland, Amsterdam, 1993.

[221] Jack Winfred Davidson and Christopher Warwick Fraser. Automatic generation
of peephole optimizations. In Proceedings of the SIGPLAN '84 Symposium on Compiler Con-
struction, pages 111{116, Montr�eal, Canada, 17{22 June 1984. Association for Computing
Machinery, New York, 1984.

[222] Marc Davio. Kronecker products and shu�e algebra. IEEE Transactions on Computers,
C-30(2):116{125, February 1981.

[223] Philip J. Davis. Circulant Matrices. John Wiley & Sons, New York, 1979.

[224] Thomas Rayner Dawson and W. Hundsdorfer. Retrograde Analysis. Whitehead and
Miller, Leeds, 1915.

[225] Pilar de la Torre and Clyde P. Kruskal. Towards a single model of e�cient compu-
tation in real parallel machines. In Emile H.L. Aarts, Jan van Leeuwen, and M. Rem, editors,
PARLE '91: Parallel Architectures and Languages Europe, volume 505{506 of Lecture Notes
in Computer Science, pages 6{24, Eindhoven, Netherlands, 1991. Springer-Verlag, Berlin/New
York, 1991.

[226] Luis Ramirez de Lucena. Repetici�on de Amores y Arte de Ajedrez [treatise on love and the
game of chess]. Salamanca, ca. 1497. Facsimile reprint Colecci�on Joyas Bibliogr�a�cas:Madrid,
Spain. 1953.

[227] Ruy Lopez de Sigura. Libro de la invencion liberal y arte del juego del axedrez [The book
of liberal invention and the art of the game of chess]. Alcala, 1561.

[228] [Nicholas de St Nicholai?]. Bonus Socius [good companion], 13th century.

[229] Eric F. Van de Velde. Data redistribution and concurrency. Parallel Computing, 16(2{
3):125{138, December 1990.

[230] Nicolaas Govert deBruijn. A combinatorial problem. Proceedings of the Koninklijke
Nederlandse Akademie van Wetenschappen (A), 49(Part 2):758{764, 1946.

205

[231] Rina Dechter and Judea Pearl. Generalized best-�rst search strategies and the op-
timality of A*. Journal of the Association for Computing Machinery, 32(3):505{536, July
1985.

[232] Wolgang Decker. Sports and Games of Ancient Egypt. Yale University Press, New Haven,
1992.

[233] Eliezer Dekel, David Nassimi, and Sartaj Sahni. Parallel matrix and graph algorithms.
SIAM Journal on Computing, 10(4):657{673, November 1981.

[234] Sito T. Dekker, H. Jaap van den Herik, and I.S. Herschberg. Complexity starts at
�ve. International Computer Chess Association Journal, 10(3):125{138, September 1987.

[235] Sito T. Dekker, H. Jaap van den Herik, and I.S. Herschberg. Perfect knowledge
revisited. Arti�cial Intelligence, 43(1):111{123, April 1990.

[236] Arthur L. Delcher and Simon Kasif. E�cient parallel term matching and anti-
uni�cation. Journal of Automated Reasoning, 3(3):391{406, 1992.

[237] James W. Demmel, Michael T. Heath, and Henk A. van der Vorst. Parallel linear
algebra. In Acta Numerica 1993, pages 111{197. Cambridge University Press, Cambridge,
England, 1993.

[238] Persi Diaconis. Group Representations in Probability and Statistics, volume 11 of Lecture
Notes|Monograph Series. Institute of Mathematical Statistics, Hayward, CA, 1988.

[239] Persi Diaconis. A generalization of spectral analysis with application to ranked data. Annals
of Statistics, 17(3):949{979, September 1989.

[240] Persi Diaconis and Daniel Nahum Rockmore. E�cient computation of the Fourier
transform on �nite groups. Journal of the American Mathematical Society, 3(2):297{332,
April 1990.

[241] John D. Dixon. Constructing representations of �nite groups. In Larry Finkelstein and
William Kantor, editors, Groups and Computation: Workshop on Groups and Computation,
volume 11 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 113{126, Rutgers, NJ, 7{10 October 1991. American Mathematical Society, Providence,
RI, 1993.

[242] Michael Dixon and Johann de Kleer. Massively parallel assumption based truth mainte-
nance. In Proceedings of the Seventh National Conference on Arti�cial Intelligence, volume 1,
pages 199{204, Saint Paul, MN, 21{26 August 1988. Morgan Kaufmann, Palo Alto, CA, 1988.

[243] Jack J. Dongarra, Jeremy du Croz, Sven Hammarling, and Iain Duff. A set of level
3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1):1{17,
March 1990.

[244] Jack J. Dongarra, Fran Goertzel Gustavson, and A. Karp. Implementing linear
algebra algorithms for dense matrices on a vector pipeline machine. SIAM Review, 26(1):91{
112, January 1984.

[245] Richard Noel Draper. A fast distributed routing algorithm for supertoroidal networks.
Technical Report SRC-TR-91-032, Supercomputing Research Center Institute for Defense
Analyses, Bowie, MD, 24 July 1990.

[246] Richard Noel Draper. A fast distributed routing algorithm for supertoroidal networks.
Technical report, Supercomputing Research Center, July 1990.

206

[247] Richard Noel Draper. Lecture on chess endgames and integral transforms and the paper by
Lewis Stiller \Group graphs and computational symmetry on massively parallel architecture".
Unpublished notes, 14 March 1991.

[248] Richard Noel Draper. An overview of supertoroidal networks. Technical Report SRC-
TR-91-035, Supercomputing Research Center, Bowie, Maryland, 17 January 1991.

[249] Richard Noel Draper. An overview of supertoroidal networks. In Proceedings of the
3rd Annual ACM Symposium on Parallel Algorithms and Architectures, pages 95{102, Hilton
Head, SC, 21{24 July 1991. ACM Press, Baltimore, MD, 1991.

[250] Richard Noel Draper and Vance Faber. The diameter and mean diameter of su-
pertoroidal networks. Technical Report SRC-TR-90-004, Supercomputing Research Center,
Bowie, MD, 1990.

[251] James R. Driscoll and Merrick Lee Furst. Computing short generator sequences.
Information and computation, 72:117{132, 1987.

[252] James R. Driscoll and Dennis M. Healy Jr. Computing fourier transorms and convo-
lutions on the 2-sphere. Manuscript, 24 August 1992.

[253] Yurij A. Drozd and Vladimir V. Kirichenko. Finite Dimensional Algebras. Springer-
Verlag, Berlin, 1994.

[254] Meir Drubin. Kronecker product factorization of the FFT matrix. IEEE Transactions on
Computers, C-20(5):590{593, May 1971.

[255] Jianzhong Du and Joseph Y.-T. Leung. Complexity of scheduling parallel task systems.
SIAM Journal on Discrete Mathematics, 2(4):473{487, November 1989.

[256] Moshe Dubiner, Zvi Galil, and Edith Magen. Faster tree pattern matching. Journal
of the Association for Computing Machinery, 41(2):205{213, March 1994.

[257] Nancy Eaton. The historical development of matrices and determinants. Master's thesis,
San Jose State College, Department of Mathematics, June 1969.

[258] William Henry Carl Ebeling. All the Right Moves: A VLSI Architecture for Chess. ACM
Distinguished Dissertations. MIT Press, Cambridge, MA, 1987.

[259] David Eberly and Dennis Wenzel. Adaptation of group algebras to signal and image
processing. CVGIP: Graphical Models and Image Processing, 53(4):340{348, July 1991.

[260] The Editors. Thompson: quintets with variations. International Computer Chess Associa-
tion Journal, 16(2):86{90, June 1993.

[261] K. Efe. The crossed cube architecture for parallel computing. IEEE Transactions on Parallel
and Distributed Systems, 3(5):512{524, September 1992.

[262] Jack A. Eidswick. Cubelike puzzles|what are they and how do you solve them? American
Mathematical Monthly, 93(3):157{176, March 1986.

[263] Jan-Olof Eklundh. A fast computer method for matrix transposing. IEEE Transactions
on Computers, C-21(7):801{803, July 1972.

[264] Noam David Elkies. Chess art in the computer age. American Chess Journal, 1(2):48{52,
September 1993.

207

[265] Noam David Elkies. On numbers and endgames. In Richard Nowakowski, editor, Pro-
ceedings of the 1994 Workshop on Combinatorial Games, Berkeley, CA, 11{22 July 1994. To
appear.

[266] Thomas Ellman. Abstraction via approximate symmetry. In Proceedings of the Thirteennth
International Joint Conference on Arti�cial Intelligence, volume 2, pages 916{921, Chambery,
France, 28 August{3 September 1993. Morgan Kaufmann Publishers, San Mateo, CA, 1993.

[267] Abdol-Hossein Esfahanian, Lional M. Ni, and Bruce Eli Sagan. The twisted N-cube
with application to multiprocessing. IEEE Transactions on Computers, 40(1):88{93, January
1991.

[268] P.M. Flanders et al. E�cient high speed computing with the distributed array processor.
In D.J. Kuch, Duncan Lawrie, and Ahmed Sameh, editors, Proceedings of the Symposium on
High Speed Computer and Algorithm Organization, pages 113{127, University of Illinois, 13{15
April 1977. Academic Press, New York, 1977.

[269] Machgielis Euwe. Het Eindspel [The endgame]. G.B. van Goor Zonen's Uitgevers-
maatschappij, 's-Gravenhage;Batavia, 1940.

[270] Machgielis Euwe. Stukken Tegen Stukken II [Pieces against pieces II], volume 5 of Het
Eindspel. G.B. van Goor Zonen's Uitgeversmaatschappij, 's-Gravenhage;Batavia, 1940.

[271] Machgielis Euwe. Das Endspiel [The endgame]. Das Schach-Archiv, F.L. Rattman, Ham-
burg, 1957.

[272] Matthew Evett, James Hendler, Ambujashka Mahanti, and Dana Nau. PRA*: A
memory-limited heuristic search procedure for the Connection Machine. In Proceedings of the
Third Symposium on the Fontiers of Massively Parallel Computations, pages 145{149, College
Park, MD, 8{10 October 1990. IEEE Computer Society Press, Los Alamitos, CA, 1990.

[273] Lynn Forest Ten Eyck. Crystallographic fast Fourier transforms. Acta Crystallographica,
Section A: Crystal Physics, Di�raction, Theoretical and General Crystallography, A29(Part
2):183{190, 1 March 1973.

[274] Vance Faber, James W. Moore, and William Y.C Chen. Cycle pre�x digraphs for
symmetric interconnection networks. Networks, 23(7):641{649, October 1993.

[275] Albert F�assler and Eduard L. Stiefel. Gruppentheoretische Methoden und ihre An-
wendung [Group-theoretical methods and their application]. B. G. Teubner, Stuttgart, 1979.

[276] Albert F�assler and Eduard L. Stiefel. Group theoretical methods and their applications.
Birkh�auser, Boston, 1992. translated revised edition.

[277] Rainer Feldmann. Spielbaumsuche mit Massiv Parallelen Systemen [Game-tree search with
massively parallel systems]. PhD thesis, University of Paderhorn, 1993.

[278] Rainer Feldmann, Burkhard Monien, Peter Mysliwietz, and O. Vornberger.
Distributed game-tree search. International Computer Chess Association Journal, 12(2):65{
73, June 1989.

[279] Rainer Feldmann, Burkhard Monien, Peter Mysliwietz, and O. Vornberger.
Distributed game tree search. In Vipin Kumar, Laveen N. Kanal, and P.S. Gopalakrishnan,
editors, Parallel Algorithms for Machine Intelligence and Vision, pages 66{101. Springer-
Verlag, 1990.

208

[280] Rainer Feldmann, Burkhard Monien, Peter Mysliwietz, and O. Vornberger. A
fully distributed chess program. In Don F. Beal, editor, Advances in Computer Chess 6, Ellis
Horwood Series in Arti�cial Intelligence, pages 1{27. Ellis Horwood, New York/London, 1991.

[281] Rainer Feldmann, Peter Mysliwietz, and Burkhard Monien. Studying overheads in
massively parallel min/max-tree evaluation (extended abstract). In 6th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures (SPAA), pages 94{103, Cape May, NJ, 27{29
June 1994. ACM Press, New York, 1994.

[282] Michael Ralph Fellows. Encoding graphs in graphs. PhD thesis, University of California
at San Diego, Department of Computer Science, San Diego, CA, 1985.

[283] Edward W. Felten and Steve William Otto. Chess on a hypercube. In Third Con-
ference on Hypercube Concurrent Computers and Applications, volume 2, pages 1329{1341,
Pasadena, CA, 19{20 January 1988. ACM Press, New York, 1988.

[284] Chris Ferguson and Richard Earl Korf. Distributed tree search and its applications
to alpha-beta pruning. In Proceedings of the Seventh National Conference on Arti�cial Intel-
ligence, volume 2, pages 128{132, Saint Paul, MN, 21{26 August 1988. American Association
for Arti�cial Intelligence, Los Altos, CA,1988.

[285] Afonso G. Ferreira. E�cient parallel algorithms for the knapsack problem. In Michel
Cosnard, Michael H. Barton, and Marco Vanneschi, editors, Parallel Processing, pages 169{
180. North Holland, Pisa, Italy, April 1988.

[286] Afonso G. Ferreira. The knapsack problem on parallel architectures. In Michel Cosnard
et al, editor, Proceedings of the International Workshop on Parallel and Distributed Algorithms
1988, Chateau de Bonas, Gers, Fr, oct 3{4 1989. North Holland.

[287] Afonso G. Ferreira. A parallel time/hardware tradeo� T �H = O(2n=2) for the knapsack
problem. IEEE Transactions on Computers, 40(2):221{225, February 1991.

[288] C. Cotti Ferrero and Giovanni Ferrero. On certain extensions of quasirings. Rivista
di Matematica della Universita di Parma Serie 5, 1:57{63, 1993.

[289] Amos Fiat, Shahar Moses, Adi Shamir, Ilan Shimshoni, and Gabor Tardos. Plan-
ning and learning in permutation groups. In Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, pages 274{279, Research Triangle Park, NC, 30 October{1
November 1989. IEEE Computer Society Press, Los Alamitos, CA, 1989.

[290] Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Pro-
ceedings of the American Mathematical Society, 16:109{114, 1965.

[291] Reuben Fine. Basic Chess Endings. David McKay Company, New York, 1941.

[292] Raphael Ari Finkel and John Philip Fishburn. Parallelism in alpha-beta search. Ar-
ti�cial Intelligence, 19(1):89{106, September 1982.

[293] Larry Finkelstein, Daniel Kleitman, and Frank Thomson Leighton. Applying the
Classi�cation Theorem for �nite simple groups to minimize pin count in uniform permutation
architectures. In John H. Reif, editor, VLSI Algorithms and Achitectures: 3rd Aegean Work-
shop on Computing: Proceedings, volume 319, pages 247{256, Corfu, Greece, 28 June{1 July
1988. Springer-Verlag, Berlin, 1988.

209

[294] Daniel Fischer, Racquel Norel, Ruth Nussinov, and Haim J. Wolfson. 3-D docking
of protein molecules. In Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber,
editors, Combinatorial Pattern Matching: 4th Annual Symposium. Proceedings, volume 684
of Lecture Notes in Computer Science, pages 20{34, Padova, Italy, 2{4 June 1993. Springer-
Verlag, Berlin, 1993.

[295] Michael John Fischer and Michael Stewart Paterson. String-matching and other
products. In Richard Manning Karp, editor, Complexity of Computation: Proceedings of a
Symposium in Applied Mathematics of the American Mathematical Society and the Society
for Industrial and Applied Mathematics, volume 7 of SIAM-AMS Proceedings, pages 113{125,
New York, NY, 18{19 April 1973. American Mathematical Society, Providence, RI, 1974.

[296] Daniel S. Fisher. Flux-lattice melting in thin-�lm superconductors. Physical Review B,
22(3):1190{1199, August 1980.

[297] Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345,
June 1962.

[298] Michael John Flynn. Very high-speed computing systems. Proceedings of the IEEE,
54(12):1901{1909, December 1966.

[299] David Forthoffer, Lars Rasmussen, and Sito Dekker. A correction to some KRKB-
database results. International Computer Chess Association Journal, 12(1):25{27, March
1989.

[300] High Performance Fortran Forum. High performance fortran language speci�cation
version 1.0, May 1993.

[301] Geoffrey C. Fox, Seema Hiranandani, Ken Kennedy, Charles H. Koelbel, Ulrich
Kremer, Chau-Wen Tseng, and M. Wu. Fortran D language speci�cation. Technical
Report TR90-141, Department of Computer Science, Rice University, Houston, TX, December
1990.

[302] Geoffrey C. Fox, Seema Hiranandani, Kenneth Kennedy, Charles Koelbel,
U. Kremer, Chau-Wen Tseng, and M. Wu. Fortran D language speci�cation. Tech-
nical Report TR90-141, Department of Computer Science, Rice University, December 1990.

[303] Geoffrey C. Fox, Mark A. Johnsson, Gregory A. Lyzenga, Steve William Otto,
John K. Salmon, and Wojtek Furmanski. Solving Problems on Concurrent Processors.
Printice-Hall, 1988.

[304] Geoffrey C. Fox, Steve William Otto, and A.J.G. Hey. Matrix algorithms on a
hypercube. I. matrix multiplication. Parallel Computing, 4(1):17{31, February 1987.

[305] Aviezri S. Fraenkel and David Isaac Joseph Lichtenstein. Computing a perfect
strategy for n � n chess requires time exponential in n. Journal of Combinatorial Theory,
Series A, 31(2):199{214, September 1981.

[306] Peter Frankl. Cops and robbers in graphs with large girth and Cayley graphs. Discrete
Applied Mathematics, 17:301{305, 1987.

[307] Edward Harry Friend. Sorting on electronic computer systems. Journal of the Association
for Computing Machinery, 3(3):134{168, 1956.

[308] Ferdinand Georg Frobenius. �Uber die Primfactoren der Gruppendeterminante [On prime
factors of group determinants]. Sitzungsberichte der K�oniglich Preu�ischen Akademie der
Wissenschaften zu Berlin, pages 1343{1382, 1896.

210

[309] Roger Frye and Jacek Myczkowski. Exhaustive search of unstructured trees on the
connection machine, October 1990.

[310] William Fulton and Joe Harris. Representation Theory: A First Course, volume 129 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 1991.

[311] Joaquim Gabarro. The design of a parallel algorithm to solve the word problem for free
partially commutative groups. In Luc Bouge, Michel Cosnard, Yves Robert, and Denis Trys-
tram, editors, Parallel Processing: CONPAR 92: Second Joint International Conference on
Vector and Parallel Processing, volume 634, pages 805{806, Lyon, France, 1{4 September 1992.
Springer-Verlag, Berlin, 1992.

[312] Zvi Galil and Raffaele Giancarlo. Improved string matching with k mismatches.
SIGACT News, 17(4):52{54, Spring 1986.

[313] Zvi Galil and Raffaele Giancarlo. Parallel string matching with k mismatches. Theo-
retical Computer Science, 51:341{348, 1987.

[314] Zvi Galil and Raffaele Giancarlo. Data structures and algorithms for approximate
string matching. Journal of Complexity, 4(1):33{72, 1988.

[315] Zvi Galil and Raffaele Giancarlo. On the exact complexity of string matching: lower
bounds. SIAM Journal on Computing, 20(6):1008{1020, December 1991.

[316] Zvi Galil and Raffaele Giancarlo. On the exact complexity of string matching: upper
bounds. SIAM Journal on Computing, 21(3):407{437, June 1992.

[317] Zvi Galil, Christoph Martin Hoffmann, Eugene M. Luks, Claus P. Schnorr, and
Andreas Weber. An O(n3 logn) deterministic and O(n3) probabilistic isomorphism test for
trivalent graphs. In Proceedings 23d IEEE Symposium on Foundations of Computer Science,
pages 118{125, Chicago, IL, 3{5 November 1982. IEEE Computer Society Press, Los Alamitos,
CA, 1982.

[318] Angel E. Garc��a. Large-amplitude nonlinear motions in proteins. Physical Review Letters,
68(17):2696{2699, 27 April 1992.

[319] Angel E. Garc��a and Lewis Benjamin Stiller. Computation of the mean residence
time of water in the hydration shells of biomolecules. Journal of Computational Chemistry,
14(11):1396{1406, November 1993.

[320] Ralph Gasser. Applying retrograde analysis to Nine Men's Morris. In David N. L. Levy
and Don F. Beal, editors, Heuristic Programming in Arti�cial Intelligence: the Second Com-
puter Olympiad, Ellis Horwood Series in Arti�cial Intelligence, pages 161{173. Ellis Horwood
Limited, Chichester, England, 1991.

[321] Ralph Gasser. Solving Nine Men's Morris. Manuscript, 1994.

[322] Carl Friedrich Gauss. Disquisitiones Arithmeticae. Leipzig, 1801.

[323] Carl Friedrich Gauss. Nachlass: Theoria interpolationis methodo nova tractata [Theory
of interpolation, new methods (posthumous)]. In E. Schering, F. Klein, M. Brendel, and
L. Schlesinger, editors, Carl Friedrich Gauss Werke, Band 3, pages 265{327. K�oniglichen
Gesellschaft der Wissenschaften, G�ottingen, 1866.

[324] William Morven Gentleman. Some complexity results for matrix computations on parallel
processors. Journal of the Association for Computing Machinery, 25(1):112{115, 1978.

211

[325] William Morven Gentleman and G. Sande. Fast Fourier transforms for fun and pro�t.
In Fall Joint Computer Conference, volume 29 of AFIPS Conference Proceedings, pages 563{
578, San Francisco, CA, 7{10 November 1966. Spartan Books, Washington, 1966.

[326] Kurt Georg and Rick Miranda. Exploiting symmetry in solving linear equations. In
Eugene Leo Allgower, Klaus B�ohmer, and Martin Golubitsky, editors, Bifurcation and Sym-
metry: Cross In
uence Between Mathematics and Applications, volume 104 of International
Series of Numerical Mathematics, pages 157{168. Birkh�auser Verlag, Basel, Germany, 1992.

[327] Kurt Georg and Rick Miranda. Exploiting symmetry in solving linear equations. In
Eugene Leo Allgower, Klaus B�ohmer, and Martin Golubitsky, editors, Bifurcation and Sym-
metry: Cross In
uence Between Mathematics and Applications, volume 104 of International
Series of Numerical Mathematics, pages 157{168. Birkh�auser Verlag, Basel, Germany, 1992.

[328] Kurt Georg and Johannes Tausch. A generalized Fourier transform for boundary element
methods with symmetries. Manuscript, 1994.

[329] Apostolos Gerasoulis. A fast algorithm for the multiplication of generalized Hilbert ma-
trices with vectors. Mathematics of Computation, 70(181):179{188, January 1988.

[330] Apostolos Gerasoulis, Michael D. Grigoriadis, and Sun Liping. A fast algorithm
for Trummer's problem. SIAM Journal on Scienti�c and Statistical Computing, 8(1):135{138,
January 1987.

[331] I. Gertner and Richard Tolimieri. The group theoretic approach to image represen-
tation. Journal of Visual Communication and Image Representation, 1(1):67{82, September
1990.

[332] Evgeni Jakovlevi�c Gik. Schach und Mathematik [Chess and mathematics]. MIR Moskau
and Urania-Verlag, Leipzig, Jena, Berlin, 1986. Translated from the Russian by Wolfgang
Hintze.

[333] E.N. Gilbert. Gray codes and paths on the n-cube. Bell Systems Technical Journal, 37:815{
826, May 1958.

[334] E.N. Gilbert. Synchronization of binary messages. IRE Transactions on Information The-
ory, IT-6:470{477, September 1960.

[335] Christopher David Godsil. Algebraic Combinatorics. Chapman and Hall Mathematics.
Chapman and Hall, New York, 1993.

[336] Maya Gokhale, William Holmes, Andrew Kopser, Sara Lucas, Ronald Min-
nich, Douglas Sweely, and Daniel Lopresti. Building and usinga highly parallel pro-
grammable logic array. Computer, 24(1):81{89, 1991.

[337] Jonathan S. Golan. The Theory of Semirings with Applications in Mathematics and Theo-
retical Computer Science, volume 54 of Pitman Monographs and Surveys in Pure and Applied
Mathematics. Longman Scienti�c, Essex, England, 1992.

[338] Peter Goldreich and Scott Tremaine. The dynamics of planetary rings. Annual Review
of Astronomy and Astrophysics, 20:249{283, 1982.

[339] Herman Heine Goldstine. The Computer: From Pascal to von Neumann. Princeton
University Press, Princeton, NJ, 1972.

212

[340] Herman Heine Goldstine. A History of Numerical Analysis From the 16th Through the
19th Century, volume 2 of Studies in the History of Mathematics and Physical Sciences.
Springer-Verlag, New York, 1977.

[341] Harry Golombek. Chess: A History. G. P. Putnam's Sons, New York, 1976.

[342] Gene Howard Golub and Charles Francis van Loan. Matrix Computations, volume 3
of Johns Hopkins Series in the Mathematical Sciences. The Johns Hopkins Univerity Press,
Baltimore, MD, 1983.

[343] Irving John Good. The interaction algorithm and practical fourier analysis. Journal of the
Royal Statistical Society Series B, 20:361{372, 1958.

[344] John A. Granata, Michael Conner, and Richard Tolimieri. A tensor product fac-
torization of the linear convolution matrix. IEEE Transactions on Circuits and Systems,
38(11):1364{1366, November 1991.

[345] John A. Granata, Michael Conner, and Richard Tolimieri. The tensor product: a
mathematical programming language for FFTs and other fast DSP operations. IEEE Signal
Processing Magazine, 9(1):40{48, January 1992.

[346] John A. Granata and Richard Tolimieri. Matrix representations of the multidimen-
sional overlap and add technique. IEEE Transactions on Circuits and Systems for Video
Technology, 1(3):289{90, September 1991.

[347] Gioachino Greco. Trattato del Nobilissimo et Militare Essercitio de Scacchi nel Qvale si
Contengono Molti Bellissimi Tratti et la Vera Scienza di Esso Gioco [treatise on the very noble
and military exercise of chess: the science of that game], 1624.

[348] Leslie Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. ACM
distinguished dissertations. MIT Press, Cambridge, MA, 1988.

[349] Leslie Greengard and William D. Gropp. A parallel version of the fast multipole
method. In Garry Rodrigue, editor, Parallel Processing for Scienti�c Computing: Proceedings
of the Third SIAM Conference on Parallel Processing for Scienti�c Computing, pages 213{
222, Los Angeles CA, 1{4 December 1987. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1989.

[350] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations.
Journal of Computational Physics, 73(2):325{348, December 1987.

[351] Ray Greenlaw and Larry Snyder. Achieving speedups for APL on an SIMD parallel
computer. APL Quote Quad, 18(4):3{8, June 1988.

[352] Stephen Guattery and Gary L. Miller. On the performance of spectral graph par-
titioning methods. In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 233{242, San Francisco, CA, 22{24 January 1995. Association for Com-
puting Machinery/Society for Industrial and Applied Mathematics, New York/Philadelphia,
1995.

[353] Anshul Gupta and Vipin Kumar. The scalability of FFT on parallel computers. IEEE
Transactions on Parallel and Distributed Systems, 4(8):922{932, August 1993.

[354] Himanshu Gupta and P. Sadayappan. Communication e�cient matrix multiplication
on hypercubes. In 6th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 320{329, Cape May, New Jersey, 27{29 June 1994. ACM Press, New York,
1994.

213

[355] Richard J. Hanson, Frederick Thomas Krogh, and Charles Lawrence Lawson.
Improving the e�ciency of portable software for linear algebra. SIGNUM Newsletter, 8(4):16,
1973.

[356] Malcolm C. Harrison. Implementation of the substring test by hashing. Communications
of the ACM, 14(12):777{779, December 1971.

[357] Thomas William Hawkins. The origins of the theory of group characters. Archive for
History of Exact Sciences, 7(2):142{170, 3 March 1971.

[358] Thomas William Hawkins. Hypercomplex numbers, Lie groups, and the creation of group
representation theory. Archive for History of Exact Sciences, 8(4):243{287, 25 April 1972.

[359] Thomas William Hawkins. New light on Frobenius' creation of the theory of group char-
acters. Archive for History of Exact Sciences, 12(3):217{143, 14 August 1974.

[360] Timothy James Healey and J. A. Treacy. Exact block diagonalization of large eigen-
value problems for structures with symmetry. International Journal for Numerical Methods
in Engineering, 31(2):265{285, February 1991.

[361] Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus. Gauss and the
history of the fast Fourier transform. Archive for History of Exact Sciences, 34(3):265{277,
31 October 1985.

[362] Olaus Magnus Friedrich Erdman Henrici. On a new harmonic analzer. London, Edin-
burgh and Dublin Philosophical Magazine, Series 5, 38(230):110{121, July 1894.

[363] I. S. Herschberg and H. Jaap van den Herik. Thompson's new data-base results.
International Computer Chess Association Journal, 9(1):45{49, March 1986.

[364] I.S. Herschberg and H. Jaap van den Herik. A gauge of endgames. International
Computer Chess Association Journal, 8(4):225{229, December 1985.

[365] William Daniel Hillis. The Connection Machine. ACM Distinguished Dissertations. MIT
Press, Cambridge, MA, 1985.

[366] William Daniel Hillis and Joshua Edward Barnes. Programming a highly parallel
computer. Nature, 326(6108):27{30, March 1987.

[367] William Daniel Hillis and Guy Lewis Steele, Jr. Data parallel algorithms. Commu-
nications of the ACM, 29(12):1170{1183, December 1986.

[368] William Daniel Hillis and Washington Taylor IV. Exploiting symmetry in high-
dimensional �nite-di�erence calculations. Journal of Parallel and Distributed Computing,
8(1):77{79, January 1990.

[369] Susan Hinrichs, Corey Kosak, David R. O'Hallaron, Thomas M. Stricker, and
Riichiro Take. An architecture for optimal all-to-all personalized communication. In 6th
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 310{319,
Cape May, New Jersey, June 27{29 1994. ACM Press, New York, 1994.

[370] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for
MIMD distributed-memory architectures. Communications of the ACM, 35(8):66{80, August
1992.

[371] Ching-Tien Ho and S. Lennart Johnsson. Embedding meshes in Boolean cubes by graph
decomposition. Journal of Parallel and Distributed Computing, 8(4):325{339, April 1990.

214

[372] Ching-Tien Ho, S. Lennart Johnsson, and Alan Edelman. Matrix multiplication on
hypercubes using full bandwidth and constant storage. In Proceedings of the Sixth Distributed
Memory Computing Conference, pages 447{451, Portland, OR, 28 April{1 May 1991. IEEE
Computer Society Press, Los Alamitos, CA 1991.

[373] Roger Willis Hockney and James W. Eastwood. Computer Simulation Using Parti-
cles. McGraw Hill, New York, 1981.

[374] Roger Willis Hockney and Chris R. Jesshope. Parallel Computers 2: Architecture,
Programming and Algorithms. Adam Hilger, Bristol/Philadelphia, 1988.

[375] Christoph Martin Hoffmann and Michael J. O'Donnell. Pattern matching in trees.
Journal of the Association for Computing Machinery, 29(1):68{95, January 1982.

[376] John Henry Holland. A universal computer capable of executing an arbitrary number of
subprograms simultaneously. In Proceedings of the 16th Eastern Joint Computer Conference,
pages 108{113, Boston, MA, 1{3 December 1959. Eastern Joint Computer Conference, New
York, 1959.

[377] Gerard J. Holzmann. Backward symbolic execution of protocols. In Yechiam Yemini,
Robert Strom, and Shaula Yemini, editors, Protocol Speci�cation, Testing and Veri�cation
IV: Proceedings of the IFIP WG 6.1 International Workshop, pages 19{30, Skytop Lodge, PA,
1985. North Holland, Amsterdam, 1985.

[378] David Hooper and Kenneth Whyld. The Oxford Companion to Chess. Oxford University
Press, Oxford, 2nd edition, 1992.

[379] R. Michael Hord. Parallel Supercomputing in MIMD architectures. CRC Press, Boca
Raton, FL, 1993.

[380] Feng-hsiung Hsu. A two-million moves/s CMOS single-chip chess move generator. IEEE
Journal of Solid-State Circuits, 22(5):841{846, October 1987.

[381] Feng-hsiung Hsu. Large scale parallelization of alpha-beta search: an algorithmic and ar-
chitectural study with computer chess. PhD thesis, Carnegie-Mellon University, Pittsburgh,
February 1990. Also published as CMU Technical Report number CMU-CS-90-108.

[382] Feng-hsiung Hsu, Thomas Anantharaman, Murray S. Campbell, and Andreas
Nowatzyk. A grandmaster chess machine. Scienti�c American, 263(4):18{24, October 1990.

[383] Chua-Huang Huang, Jeremy R. Johnson, and Robert W. Johnson. A tensor prod-
uct formulation of Strassen's matrix multiplication algorithm. Applied Mathematics Letters,
3(3):67{71, 1990.

[384] Chua-Huang Huang, Jeremy R. Johnson, and Robert W. Johnson. A report on
the performance of an implementation of Strassen's algorithm. Applied Mathematics Letters,
4(1):99{102, 1991.

[385] Barbara Jane Huberman. A program to play chess end games. Technical Report CS
106, Stanford Arti�cial Intelligence Project Memo AI-65, Stanford University Department of
Computer Science, 1968.

[386] Stanley Leonard Hurst, D.M. Miller, and Jon C. Muzio. Spectral Techniques in
Digital Logic. Academic Press, London and Orlando, 1985.

215

[387] Kai Hwang and Faye Alaye Briggs. Computer Architecture and Parallel Processing.
McGraw-Hill Series in Computer Organization and Architecture. McGraw-Hill, New York,
1985.

[388] Robert Morgan Hyatt. Parallel chess on the Cray X-MP/48. International Computer
Chess Association Journal, 8(2):90{99, June 1985.

[389] Robert Morgan Hyatt, B.W. Suter, and Harry L. Nelson. A parallel alpha/beta
tree searching algorithm. Parallel Computing, 10(3):299{308, May 1989.

[390] Ramana M. Idury and Alejandro A. Sch�affer. Multiple matching of rectangular pat-
terns (extended abstract). In Proceedings of the 25th Annual ACM Symposium on the Theory
of Computing, pages 81{89, San Diego, CA, 16{18 May 1993. ACM Press, New York, 1993.

[391] [Amelung family]. [announcement]. D�una-Zeitung, page 52, 10{23 March 1909.

[392] John Isbell. Sequencing certain dihedral groups. Discrete Mathematics, 85:323{328, 1990.

[393] John Isbell. The Gordon game of a �nite group. American Mathematical Monthly,
99(6):567{599, June{July 1992.

[394] Kenneth Eugene Iverson. A common language for hardware, software, and applications.
In Proceedings of the AFIPS Fall Joint Computer Conference, pages 121{129. American Fed-
eration of Information Processing Societies/National Press, Palo Alto, CA, 1962, 1962.

[395] Kenneth Eugene Iverson. A Programming Language. Wiley, New York, 1962.

[396] Kenneth Eugene Iverson. A programming language. In Proceedings of the AFIPS Spring
Joint Computer Conference, volume 21, pages 345{351, San Francisco, CA, 1{3 May 1962.
American Federation of Information Processing Societies/National Press, Palo Alto, CA.

[397] Jeffrey Alan Jackson. Economics of automatic generation of rules from examples in a
chess end-game. Master's thesis, University of Illinois at Urbana-Champaign, 1984.

[398] Michel Jacquemin and J. Allan Yang. Crystal reference manual: Version 3.0. Technical
Report TR-840, Yale University Department of Computer Science, October 1991.

[399] Gordon Douglas James and Adalbert Kerber. The Representation Theory of the
Symmetric Group, volume 16 of Encyclopedia of Mathematics and it Applications, Section,
Algebra. Addison-Wesley, Reading, MA, 1981.

[400] Peter Jozef Jansen. KQKR: Assessing the utility of heuristics. International Computer
Chess Association Journal, 15(4):179{191, December 1992.

[401] Peter Jozef Jansen. KQKR: Awareness of a fallible opponent. International Computer
Chess Association Journal, 15(3):111{131, September 1992.

[402] Peter Jozef Jansen. Using Knowledge about the Opponent in Game-Tree Search. PhD the-
sis, Carnegie Mellon University Department of Computer Science, Pittsburgh, PA, September
1992. Also published as Tech. Report CMU-CS-92-192.

[403] B.J. Jechev. Full recursive form of the algorithms for fast generalized Fourier transforms.
In CONPAR 86: Conference on Algorithms and Hardware for Parallel Processing, volume 237
of Lecture Notes in Computer Science, pages 112{119, Aachen, Germany, 17{19 September
1986. Springer-Verlag, Berlin/New York, 1986.

216

[404] Michael Alexander George Jenkins. A comparison of array theory and a mathematics
of arrays. In Lenore M. Restifo Mullin et. al., editor, Arrays, functional languages and parallel
systems, pages 237{267. Kluwer Academic Publishers, Boston, MA, 1991.

[405] Mark Jerrum. A compact representation for permutation groups. Journal of Algorithms,
7(1):60{78, March 1986.

[406] Jeremy R. Johnson, Robert W. Johnson, Domingo Rodriguez, and Richard
Tolimieri. A methodology for designing, modifying and implementing Fourier transform
algorithms on various architectures. Circuits, Systems, and Signal Processing, 9(4):449{500,
1990.

[407] Robert W. Johnson. Automatic implementation of tensor products. Manuscript, 24 April
1989.

[408] Robert W. Johnson, Chua-Huang Huang, and Jeremey R. Johnson. Multilinear
algebra and parallel programming. Journal of Supercomputing, 5(2{3):189{217, October 1991.

[409] S. Lennart Johnson, Michel Jacquemin, and Robert L. Krawitz. Communication
e�cient multi-processor FFT. Journal of Computational Physics, 102(2):381{387, October
1992.

[410] S. Lennart Johnsson. Communication e�cient basic linear algebra computations on hy-
percube architectures. Journal of Parallel and Distributed Computing, 4(2):133{172, April
1987.

[411] S. Lennart Johnsson. Solving tridiagonal systems on ensemble architectures. SIAM Jour-
nal on Scienti�c and Statistical Computing, 8(3):354{329, May 1987.

[412] S. Lennart Johnsson, Tim Harris, and Kapil K. Mathur. Matrix multiplication on the
Connection Machine. Technical Report NA89-3, Thinking Machines Corporation, Cambridge,
MA, 1989.

[413] S. Lennart Johnsson and Ching-Tien Ho. Matrix multiplication on Boolean cubes using
generic communication primitives. In Arthur Wouk, editor, Parallel Processing and Medium-
Scale Multiprocessors: Workshop Proceedings, pages 108{156, Stanford, CA, January 1986.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1989.

[414] S. Lennart Johnsson and Ching-Tien Ho. Matrix transposition on Boolean n-cube
con�gured ensemble architectures. SIAM J. Matrix Anal. Appl., 9(3):419{454, July 1988.

[415] S. Lennart Johnsson and Ching-Tien Ho. Optimum broadcasting and personalized com-
munication in hypercubes. IEEE Transactions on Computers, 38(9):1249{1268, September
1989.

[416] S. Lennart Johnsson and Ching-Tien Ho. Spanning graphs for optimum broadcast-
ing and personalized communication in hypercubes. IEEE Transactions on Computers,
38(9):1249{1268, September 1989.

[417] S. Lennart Johnsson, Michel Jacquemin, and Ching-Tien Ho. High radix FFT on
Boolean cube networks. Technical Report NA89-7, Thinking Machines Corporation, Cam-
bridge, MA, 1989.

[418] S. Lennart Johnsson and Robert L. Krawitz. Cooley-Tukey FFT on the Connection
Machine. Parallel Computing, 18(11):1201{1221, November 1992.

217

[419] S. Lennart Johnsson, Robert L. Krawitz, Roger Frye, and D. MacDonald. A
radix-2 FFT on the Connection Machine. In Proceedings of Supercomputing '89, pages 809{
819, Reno, NV, 13{17 November 1989. ACM, New York, 1989.

[420] S. Lennart Johnsson and Kapil K. Mathur. Data structures and algorithms for the
�nite element method on a data parallel supercomputer. International Journal of Numerical
Methods in Engineering, 29(4):881{908, 1990.

[421] Ray A. Kamin and George Bunch Adams III. Fast Fourier transform algorithm design
and tradeo� on the CM-2. International Journal of High Speed Computing, 1(2):207{231,
June 1989.

[422] Nikola$iFedoroviq Kanunov [Nikolai Fedorovich Kanunov]. Fedor �duardoviq
Molin 1861{1941 [Fedor Eduardovich Molin 1861{1941]. Izdatel~stvo <Nauka>,
Moskva, 1983.

[423] Ehud Dov Karnin. A parallel algorithm for the knapsack problem. IEEE Trans. Comput.,
C-33:404{408, May 1984.

[424] Richard Manning Karp, Raymond Edward Miller, and Arnold Leonard Rosen-
berg. Rapid identi�cation of repeated patterns in strings, trees and arrays. In Conference
Record: Fourth Symposium on Theory of Computing, pages 125{136, Denver, CO, 1{3 May
1972. ACM Order Department, New York, 1972.

[425] Richard Manning Karp and Michael O. Rabin. E�cient randomized pattern-matching
algorithms. IBM Journal of Research and Development, 31(2):249{260, March 1987.

[426] Richard Manning Karp and Yanjun Zhang. On parallel evaluation of game trees. In
Proceedings of the 1989 ACM Symposium on Parallel Algorithms and Architectures, pages
409{420, Santa Fe, NM, 19{21 June 1989. ACM Press, New York, 1989.

[427] Marek Karpinski and Wojciech Rytter. An alphabet-independent optimal parallel
search for three dimensional pattern. In Maxime Crochemore and Dan Gus�eld, editors,
Combinatorial Pattern Matching: 5th Annual Symposium. Proceedings, volume 807 of Lecture
Notes in Computer Science, pages 125{135, Asilomar, CA, 5{8 June 1994. Springer-Verlag,
Berlin, 1994.

[428] Mark Girshevich Karpovsky. Fast Fourier transforms on �nite non-Abelian groups. IEEE
Transactions on Computers, C-26(10):1028{1030, October 1977.

[429] Mark Girshevich Karpovsky and E.A. Trachtenberg. Some optimization problems
for convolution systems over �nite groups. Information and Control, 34(3):227{247, July 1977.

[430] Mark Girshevich Karpovsky and E.A. Trachtenberg. Fourier transform over �nite
groups for error detection and error correction in computation channels. Information and
Control, 40(3):335{358, March 1979.

[431] Mark Girshevich Karpovsky, E.A. Trachtenberg, and Tatyana D. Roziner. Com-
putation of discrete Fourier transforms over �nite Abelian groups using pipelined and systolic
array architectures, volume 3, pages 181{188. Birkh�auser, Boston, 1990.

[432] Jacob Katzenelson. Computational structure of the N-body problem. SIAM Journal on
Scienti�c and Statistical Computing, 10(4):787{815, July 1989.

218

[433] Shivnandan D. Kaushik, Chua-Huang Huang, Robert W. Johnson, and P. Sa-
dayappan. A methodology for generating e�cient disk-based algorithms from tensor product
formulas. In Utpal Banerjee, David Gelernter, Alexandru Nicolau, and David A. Padua, ed-
itors, Languages and Compilers for Parallel Computing: Sixth International Workshop: Pro-
ceedings, volume 768 of Lecture Notes in Computer Science, pages 358{373, Portland, OR,
12{14 August 1993. Springer-Verlag, Berlin/Heidelberg, 1994.

[434] Shivnandan D. Kaushik, Sanjay Sharma, and Chua-Huang Huang. An algebraic
theory for modeling multistage interconnection networks. Journal of Information Science and
Engineering, 9(1):1{26, March 1993.

[435] Shivnandan D. Kaushik, Sanjay Sharma, Chua-Huang Huang, Jeremy R. John-
son, Robert W. Johnson, and P. Sadayappan. An algebraic theory for modeling direct
interconnection networks. In Proceedings of Supercomputing '92, pages 488{497, Minneapolis,
MN, 16{20 November 1992. IEEE, ACM, IEEE Computer Society Press, Los Alamitos, CA
1992.

[436] William Brunner Kehl. Automatic data processing for the legal profession. In Walter F.
Freiberger and WilliamPrager, editors, Applications of Digital Computers, pages 42{57. Ginn
and Company, Boston, 1963.

[437] Hemachandra B. Kekre, Meghanad D. Wagh, and Sharad V. Kanetkar. On group
theoretic transforms and the automorphism groups. Information and Control, 41(2):147{155,
May 1979.

[438] Ken Kennedy. Is parallel computing dead? Parallel Computing Research, 2(4):2{, October
1994.

[439] Adalbert Kerber. Algebraic Combinatorics Via Finite Group Actions. Bibliographisches
Institut & F.A. Brockhaus AG, Mannheim, 1991.

[440] Leslie Robert Kerr. The E�ect of Algebraic Structure on the Computational Complexity
of Matrix Multiplication. PhD thesis, Cornell University, Department of Computer Science,
Ithaca, NY, June 1970.

[441] Peter Bernard Kessler. Discovering machine-speci�c code improvements. In Proceedings
of the SIGPLAN '84 Symposium on Compiler Construction, pages 249{254,Montr�eal, Canada,
17{22 June 1984. Association for Computing Machinery, New York, 1984.

[442] Wafaa Khalil and Robert F.C. Walters. An imperative language based on distributive
categories. II. Informatique Theorique et Applications, 27(6):503{522, 1993.

[443] Roni Khardon. On using the Fourier transform to learn Disjoint DNF. Information Pro-
cessing Letters, 49(5):219{222, 11 March 1994.

[444] Stephen Cole Kleene. Representation of events in nerve nets and �nite automata, vol-
ume 34 of Ann. Math. Stud., pages 3{41. Princeton University Press, Princeton, NJ, 1956.

[445] Josef Kling and Bernhard Horwitz. Chess Studies, or Endings of Games. - Containing
Upwards of Two Hundred Scienti�c Examples of Chess Strategy. C. J. Skeet, Charing Cross,
England, 1851.

[446] Oliver Knill and Roman E. M�ader. The rotation group of Rubik's cube. SIGSAM
Bulletin, 21(3):33{43, 1987.

219

[447] Donald Ervin Knuth. The Art of Computer Programming: Volume 2: Semi-numerical
Algorithms. Addison-Wesley Series in Computer Science and InformationProcessing. Addison-
Wesley, Reading, MA, 2nd edition, 1981.

[448] Donald Ervin Knuth, Jr. James H. Morris, and Vaughan R. Pratt. Fast pattern
matching in strings. SIAM Journal on Computing, 6(2):323{350, June 1977.

[449] Donald Ervin Knuth and Ronald W. Moore. An analysis of alpha-beta pruning. Ar-
ti�cial Intelligence, 6(4):293{326, Winter 1975.

[450] Peter Michael Kogge and Harold Stuart Stone. A parallel algorithm for the e�cient
solution of a general class of recurrence equations. IEEE Transactions on Computers, C-
22(8):786{792, August 1973.

[451] Galina I. Kolesova, Clement Wing Hong Lam, and Larry Thiel. On the number of
8*8 Latin squares. Journal of Combinatorial Theory, Series A, 54(1):143{148, May 1990.

[452] E.A. Komissarchik and Aaron L. Futer. Computer analysis of a queen endgame. Inter-
national Computer Chess Association Journal, 9(4):189{198, December 1986.

[453] �. A. Komissarqik, Aron L. Futer [E. A. Komissarchik, and Aaron L. Futer].
Ob analize ferzevogo �ndxpila pri pomowi �VM [Analysis of a queen endgame on an
IBM computer]. Problemy Kibernetiki [Problemy Kibernetiki], 29:211{220, 1974.

[454] Danny Kopec, Brent Libby, and Chris Cook. The endgame king, rook and bishop
vs. king and rook (KRBKR). In Proceedings: 1988 Spring Symposium Series: Computer
Game Playing, pages 60{61, Stanford University, Stanford, CA, 22{24 March 1988. American
Association for Arti�cial Intelligence.

[455] Aleksey Grigoryevich Kopnin. The exploitation of special positional features in endings
with the material: Rook and knight against bishop and knight gbr class 0134. EG, 5(74):221{?,
1983.

[456] Aleksey Grigoryevich Kopnin. Some special features of the endgame struggle Rook and
Knight against 2 Knights (GBR class 0107). EG, 5(70):89{92, January 1983.

[457] Richard Earl Korf. Iterative-deepening-A*: an optimal admissible tree search. In Proceed-
ings of the Ninth International Joint Conference on Arti�cial Intelligence, pages 1034{1036,
Los Angeles, CA, 18{23 August 1985. Morgan Kaufmann, Los Altos, 1985.

[458] Richard Earl Korf. Planning as search: a quantitative approach. Arti�cial Intelligence,
33(1):65{88, September 1987.

[459] David G. Korn and Jules J. Lambiotte, Jr. Computing the fast Fourier transform on
a vector computer. Mathematics of Computation, 33(147):977{992, July 1979.

[460] Sambasiva Rao Kosaraju. Computations on Iterative Automata. PhD thesis, University
of Pennsylvania, Department of Electrical Engineering, August 1969.

[461] Sambasiva Rao Kosaraju. E�cient tree pattern matching. In 30th Annual Symposium on
Foundations of Computer Science, pages 178{183, Research Triangle Park, NC, 30 October{1
November 1989. IEEE Computer Society Press, Los Alamitos, CA, 1989.

[462] Kamala Krithivasan and R. Sitalakshmi. E�cient two-dimensional pattern matching
in the presence of errors. Information Sciences, 43:169{184, 1987.

220

[463] David William Krumme and David H. Ackley. A practical method for code generation
based on exhaustive search. In Proceedings of the SIGPLAN '82 Symposium on Compiler
Construction, pages 185{196, Boston, MA, 23{25 June 1982. Association for Computing Ma-
chinery, New York, 1982.

[464] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. The power of parallel pre�x. In
Douglas Degroot, editor, Proceedings of the Fourteenth International Conference on Parallel
Processing, pages 180{185, Pennsylvania State University, 20{23 August 1985. IEEE Computer
Society Press, Washington, DC, 1985.

[465] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. A complexity theory of e�cient
parallel algorithms. Theoretical Computer Science, 71(1):95{132, 13 March 1990.

[466] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. E�cient parallel algorithms for
graph problems. Algorithmica, 5(1):43{64, 1990.

[467] Priyalai Kulasinghe and Said Bettayeb. On the multiply-twisted hypercube. In Michel
Cosnard, Afonso Ferreira, and Joseph Peters, editors, Proceedings of the First Canada-France
Conference on Parallel and Distributed Computing: Theory and Practice, volume 805 of Lec-
ture Notes in Computer Science, Montr�eal, Canada, 19{21 May 1994. Springer-Verlag, Berlin,
1994.

[468] Vipin Kumar and Anshul Gupta. Analyzing scalability of parallel algorithms and archi-
tectures. Technical Report Preprint 92-020, Army High Performance Computing Research
Center, University of Minnesota, 1100 Washington Avenue South, Minneapolis, MN 55415,
January 1992.

[469] Hsing-Tsung Kung and Jaspal Subhlok. A new approach for automatic parallelization
of block linear algebra computation. In Proceedings of Supercomputing '91, Albuquerque, NM,
18{22 November 1991. IEEE Computer Society Press, Los Alamitos, CA 1991.

[470] Susumu Kuno and Anthony G. Oettinger. Multiple-path syntactic analyzer. In Infor-
mation Processing: Proceedings of the IFIP Congress, Munich, 1962. North-Holland, Amster-
dam.

[471] [Carl Kupffer]. Erinnerungen an Friedrich Amelung [Memories of Friedrich Amelung].
D�una-Zeitung (Feuilleton-Beilage: F�ur Haus und Familie), 93:100{101, 25 April{8 May 1909.

[472] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier spec-
trum. SIAM Journal on Computing, 22(6):1331{1348, December 1993.

[473] Bradley C. Kuszmaul. Synchronized MIMD Computing. PhD thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, 1994.

[474] Kim Kvech and Bryant Whittier York. Permutation group computations on the Con-
nection Machine CM-5. Technical Report NU-CCS-92-7, Northeastern University, Boston,
MA, 1992.

[475] Richard Emil Ladner and Michael John Fischer. Parallel pre�x computation. Journal
of the Association for Computing Machinery, 27(4):831{838, October 1980.

[476] John D. Lafferty and Daniel Nahum Rockmore. Fast Fourier analysis for SL2 over a
�nite �eld and related numerical experiments. Experimental Mathematics, 1(2):115{139, 1992.

[477] Robert Lake, Paul Lu, and Jonathan Schaeffer. Using retrograde analysis to solve
combinatorial search spaces. In E. D. Brooks and K. H. Warren, editors, The 1992 MPCI
Yearly Report. Lawrence Livermore National Laboratory, 1992.

221

[478] Robert Lake, Jonathan Schaeffer, and Paul Lu. Solving large retrograde-analysis
problems using a network of workstations. In H. Jaap van den Herik, I.S. Herschberg, and
Jos W.H.M. Uiterwijk, editors, Advances in Computer Chess 7, pages 135{162. University of
Limburg, Maastricht, Netherlands, 1994.

[479] Clement Wing Hong Lam. Computational combinatorics|a maturing experimental ap-
proach. Course notes, December 1990.

[480] Clement Wing Hong Lam. Application of group theory to combinatorial searches. In Larry
Finkelstein and William Kantor, editors, Groups and Computation: Workshop on Groups
and Computation, volume 11 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 133{138, Rutgers, NJ, 7{10 October 1991. American Mathematical
Society, Providence, RI, 1993.

[481] Clement Wing Hong Lam. The search for a �nite projective plane of order 10. American
Mathematical Monthly, 98(4):305{318, April 1991.

[482] Clement Wing Hong Lam, Galina I. Kolesova, and Larry Thiel. A computer search
for �nite projective planes of order 9. Discrete Mathematics, 92(1-3):187{195, 17 Nov 1991.

[483] Clement Wing Hong Lam and Larry Thiel. Backtrack search with isomorph rejection
and consistency check. Journal of Symbolic Computation, 7(5):473{485, May 1989.

[484] Gad M. Landau, Baruch Schieber, and Uzi Vishkin. Parallel construction of a su�x
tree. In Automata, Languages, and Programming: 14th International Colloquium, volume 267
of Lecture Notes in Computer Science, pages 314{325, Karlsruhe, Germany, 13{17 July 1987.
Springer-Verlag, Berlin, 1987.

[485] Gad M. Landau and Uzi Vishkin. E�cient string matching in the presence of errors. In
Proceedings of the 26th Annual Symposium on Foundations of Computer Science, pages 125{
136, Portland, OR, 21{23 October 1985. IEEE Computer Society Press,Washington, DC./Los
Angeles, CA, 1985.

[486] Gad M. Landau and Uzi Vishkin. E�cient string matching with kmismatches. Theoretical
Computer Science, 43:239{249, 1986.

[487] Gad M. Landau and Uzi Vishkin. Introducing e�cient parallelism into approximate string
matching and a new serial algorithm. In Proceedings of the Eighteenth Annual ACM Sympo-
sium on Theory of Computing, pages 220{230, Berkeley,CA, 28{30 May 1986. ACM Press,
New York, 1986.

[488] Gad M. Landau and Uzi Vishkin. Fast string matching with k di�erences. Journal of
Computer and System Sciences, 37(1):63{78, August 1988.

[489] Gad M. Landau and Uzi Vishkin. Fast parallel and serial approximate string matching.
Journal of Algorithms, 10(2):157{169, June 1989.

[490] Gad M. Landau and Uzi Vishkin. Two dimensional pattern matching in a digitized image.
In Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Combinato-
rial Pattern Matching: 4th Annual Symposium. Proceedings, volume 684 of Lecture Notes in
Computer Science, Padova, Italy, 2{4 June 1993. Springer-Verlag, Berlin, 1993.

[491] Gad M. Landau, Uzi Vishkin, and Ruth Nussinov. An e�cient string matching algo-
rithm with k di�erences for nucleotide and amino acid sequences. Nucleic Acids Research,
14(1):31{46, 10 January 1986.

222

[492] Serge Lang. Algebra. World Student Series. Addison-Wesley, Reading, MA, 1965.

[493] Guy Lapalme. Arrays in Haskell. In Lenore M. Restifo Mullin et. al., editor, Arrays,
functional languages and parallel systems. Kluwer Academic Publishers, Boston, MA, 1991.

[494] Loren C. Larson. A bibliography on the mathematical aspects of chess, 1974.

[495] Simon Hugh Lavington. Early British Computers: The Story of Vintage Computers and
the People Who Built Them. Digital Press, Bedford, MA, 1980.

[496] Charles Lawrence Lawson, Richard J. Hanson, David Ronald Kincaid, and Fred-
erick Thomas Krogh. Basic linear algebra subprograms for Fortran usage. ACM Transac-
tions on Mathematical Software, 5(3):308{323, September 1979.

[497] R.Y. Lechner. Harmonic analysis of switching functions. In Amar Mahkopadhyay, editor,
Recent Developments in Switching Theory, Electrical Science. Academic Press, New York,
1971.

[498] Jong Lee, Eugene Shragowitz, and Sartaj Kumar Sahni. A hypercube algorithm for
the 0/1 knapsack problem. Journal of Parallel and Distributed Computing, 5(4), August 1988.

[499] Daniel J. Lehmann. Algebraic structures for transitive closure. Theoretical Computer Sci-
ence, 4(1):59{76, February 1977.

[500] Frank Thomson Leighton. Complexity issues in VLSI: optimal layouts for the shu�e-
exchange graph and other networks. Foundations of Computing. MIT Press, Cambrige, MA,
1983.

[501] Frank Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. M. Kaufmann Publishers, San Mateo, CA, 1992.

[502] Charles Eric Leiserson. Fat-trees: universal networks for hardware-e�cient supercom-
puting. IEEE Transactions on Computers, C-34(10):892{901, October 1985.

[503] Charles Eric Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feyn-
man, Mahesh N. Ganmukhi, Jeffrey V. Hill, William Daniel Hillis, Bradley C.
Kuszmaul, Margaret A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen
Yang, and Robert Zak. The network architecture of the CM-5. In Proceedings of the 4th
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 272{285, San Diego,
CA, 29 June{1 July 1992. ACM, EATCS, ACM Press, New York, 1992.

[504] Thomas Lengauer and D. Theune. Unstructured path problems and the making of semir-
ings. In Frank Dehne, J�org-R�udiger Sack, and Nicola Santoro, editors, Algorithms and Data
Structures: 2nd Workshop, WADS '91, volume 519 of Lecture Notes in Computer Science,
pages 189{200, Ottawa, Canada, 14{16 August 1991. Berlin, Springer Verlag, 1991.

[505] Reiner Lenz. Group invariant pattern recognition. Pattern Recognition, 23(1{2):199{217,
1990.

[506] Reiner Lenz. Group Theoretical Methods in Image Processing, volume 413 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin/Heidelberg, 1990.

[507] Wilhem Lenz, editor. Deutschbaltisches biographisches Lexikon 1710{1960 [German-Baltic
biographical dictionary 1710{1960]. B�ohlau Verlag, K�oln, 1970.

[508] J. Leon. Computing automorphism groups of combinatorial objects. In Michael D. Atkinson,
editor, Computational Group Theory, pages 321{337. Academic Press, London, England, 1984.

223

[509] Gil Lerman and Larry Rudolph. Parallel Evolution of Parallel Processors. Frontiers of
Computer Science: Surveys in Computer Science. Plenum Press, New York, 1993.

[510] Woody Lichtenstein and S. Lennart Johnsson. Block-cyclic dense linear algebra.
SIAM Journal on Scienti�c Computing, 14(6):1259{1288, November 1993.

[511] David John Lilja. Exploiting parallelism available in loops. Computer, 27(2):13{26, Febru-
ary 1994.

[512] Calvin Lin and Lawrence Snyder. ZPL: An array sublanguage. In Utpal Banerjee,
David Gelernter, Alexandru Nicolau, and David A. Padua, editors, Languages and Compilers
for Parallel Computing: Sixth International Workshop: Proceedings, volume 768 of Lecture
Notes in Computer Science, pages 96{114, Portland, OR, 12{14 August 1993. Springer-Verlag,
Berlin/Heidelberg, 1994.

[513] J. Lin and James Andrew Storer. Processor-e�cient hypercube algorithms for the knap-
sack problem. Journal of Parallel and Distributed Computing, 13(3):332{337, November 1991.

[514] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier
transform, and learnability. In 30th Annual Symposium on Foundations of Computer Science,
pages 574{580, Research Triangle Park, NC, 30 October{1 November 1989. IEEE Computer
Society Press, Los Alamitos, CA, 1989.

[515] Richard J. Lipton and Yechezkel Zlacstein. Word problems solvable in logspace.
Journal of the Association for Computing Machinery, 24(3):522{526, July 1977.

[516] Pangfeng Liu and Sandeep Nautam Bhatt. Experiences with parallel N-body simula-
tion. In 6th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages
122{131, Cape May, New Jersey, June 27{29 1994. ACM Press, New York, 1994.

[517] B.F. Logan and L.A. Shepp. A variational problem for Young tableaux. Advances in
Mathematics, 26(2):206{222, November 1977.

[518] Giovanni Battista Lolli. Osservazione teorico-pratiche sopra il giuoco degli scacchi
[theoretical-practical observations on the game of chess]. Bologna, 1763.

[519] Peter S. Lomdahl and David M. Beazley. State-of-the-art parallel computing: molecular
dynamics on the Connection Machine. Los Alamos Science, 22:44{57, 1994.

[520] Margreet Louter-Nool. Basic linear algebra subprograms (BLAS) on the CDC CYBER
205. Parallel Computing, 4(2):143{166, April 1987.

[521] Margreet Louter-Nool. LINPACK routines based on level 2 BLAS. Journal of Super-
computing, 3(4):331{349, December 1989.

[522] L.D.J.C. Loyens and J.R. Moonen. ILIAS, a sequential language for parallel matrix
computations. In Costas Halatsis, editor, PARLE '94: Parallel Architectures and Languages
Europe: 6th International PARLE Conference: Proceedings, volume 817 of Lecture Notes in
Computer Science, Athens, Greece, 4{8 July 1994. Springer-Verlag, Berlin/New York, 1994.

[523] Eugene Michael Luks. Isomorphism of graphs of bounded valence can be tested in poly-
nomial time. Journal of Computer and System Sciences, 25(1):42{65, August 1982.

[524] Eugene Michael Luks. Parallel algorithms for permutation groups and graph isomorphism.
In Proceedings of the 27th Annual Symposium on Foundations of Computer Science, pages
292{302, Toronto, Ontario, 27{29 October 1986. IEEE Computer Society Press, Washington,
DC./Los Angeles, CA, 1986.

224

[525] Eugene Michael Luks. Parallel algorithms for permutation groups and graph isomorphism.
In Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science,
pages 292{302, Toronto, Ontario, 27{29 October 1986. IEEE Computer Society Press, Wash-
ington, DC / Los Angeles, CA, 1986.

[526] Eugene Michael Luks and Pierre McKenzie. Parallel algorithms for solvable permuta-
tion groups. Journal of Computer and System Sciences, 37(1):39{62, August 1988.

[527] Roger C. Lyndon and M.P. Sch�utzenberger. The equation aM = bN cP in a free group.
Michigan Math. Journal, 9:289{298, 1962.

[528] Michael G. Main and Richard Joseph Lorentz. An O(n logn) algorithm for �nding all
repetitions in a string. Journal of Algorithms, 5(3):422{432, September 1984.

[529] Erkki M�akinen. On the subtree isomorphism problem for ordered trees. Information Pro-
cessing Letters, 32(5):271{273, 22 September 1989.

[530] Marvin Marcus. Finite Dimensional Multilinear Algebra: Part 1. Marcel Dekker, Inc., New
York, 1973.

[531] Marvin Marcus. Finite Dimensional Multilinear Algebra: Part 2. Marcel Dekker, Inc., New
York, 1973.

[532] Peter D. Mark. Parallel computation of Sylow subgroups in solvable groups. In Larry
Finkelstein and William Kantor, editors, Groups and Computation: Workshop on Groups
and Computation, volume 11 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 177{187, Rutgers, NJ, 7{10 October 1991. American Mathematical
Society, Providence, RI, 1993.

[533] Thomas Anthony Marsland. Workshop report: Theory and practice in computer chess.
International Computer Chess Association Journal, 10(4), December 1987.

[534] Thomas Anthony Marsland and Murray S. Campbell. Parallel search of strongly
ordered game trees. Computing Surveys, 14(4):533{551, December 1982.

[535] Thomas Anthony Marsland and Fred Popowich. Parallel game tree search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 7(4):442{452, July 1985.

[536] David Keith Maslen and Daniel Nahum Rockmore. Separation of variables and the
computation of Fourier transforms on �nite groups, I. Manuscript, 15 November 1994.

[537] David Keith Maslen and Daniel Nahum Rockmore. Adapted diameters and the e�-
cient computation of Fourier transforms on �nite groups. In Proceedings of the Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 253{262, San Francisco, CA, 22{24
January 1995. Association for ComputingMachinery/Society for Industrial and Applied Math-
ematics, New York/Philadelphia, 1995.

[538] Henry Massalin. Superoptimizer|a look at the smallest program. In Proceedings of the
Second International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 122{126, Palo Alto, CA, 1987.

[539] Aleksandar Matanovi�c. Enciklopedija �Sahovskih Zavr�snica [Encyclopedia of Chess End-
ings]. �Sahovski informator, Beograd, 1985.

[540] Kapil K. Mathur and S. Lennart Johnsson. All-to-all communication on the Connec-
tion Machine CM{200. Technical Report TMC{TR{243, Thinking Machines Corporation,
Cambridge, MA, 1992.

225

[541] Ernst W. Mayr. Basic parallel algorithms in graph theory. In Gottfried Tinhofer, Ernst W.
Mayr, Hartmut Noltemeier, Maciej M. Syslo, and Rudolf Albrecht, editors, Computational
Graph Theory, volume 7 of Computing Supplementum, pages 67{90. Springer-Verlag, Vienna,
1990.

[542] Edward M. McCreight. A space-economical su�x tree construction algorithm. Journal of
the Association for Computing Machinery, 23(2):262{272, April 1976.

[543] Pierre McKenzie and Stephen Arthur Cook. The parallel complexity of the Abelian
permutation group membership problem. In 24th Annual Symposium on Foundations of Com-
puter Science, pages 1{10, Tucson, AZ, 7{9 November 1983. IEEE Computer Society Press,
Silver Spring, MD, 1983.

[544] Edmar Mednis. Endgames with minor pieces. New In Chess, 1987/88:86{97, 1987.

[545] Edmar Mednis. Endgames with minor pieces, part 2. New in Chess, pages 56{59, 1988.

[546] Russell Merris. Manifestations of P�olya's counting theorem. Linear Algebra and Applica-
tions, 32:209{234, August 1980.

[547] Russell Merris. Pattern inventories associated with symmetry classes of tensors. Linear
Algebra and Applications, 29:225{230, February 1980.

[548] Russell Merris. P�olya's counting theorem via tensors. American Mathematical Monthly,
88(3):179{185, March 1981.

[549] Russell Merris. Applications of multilinear algebra. Linear and Multilinear Algebra, 32(3{
4):211{224, 1992.

[550] Russell Merris and William Watkins. Tensors and graphs. SIAM Journal on Algebraic
and Discrete Methods, 4(4):534{547, December 1983.

[551] Gerard Gilbert Louis Meyer and Louis J. Podrazik. A parallel �rst-order linear
recurrence solver. Technical Report JHU/EECS-86/07, Electrical Engineering and Computer
Science Department, The Johns Hopkins University, Baltimore, MD 21218, 1986.

[552] Albert Abraham Michelson and Samuel Wesley Stratton. On a new harmonic
analyzer. London, Edinburgh and Dublin Philosophical Magazine, Series 5, 45(272):85{91,
January 1898.

[553] Donald Michie and Ivan Bratko. Ideas on knowledge synthesis stemming from the KB-
BKN endgame. International Computer Chess Association Journal, 10(1):3{10, March 1987.

[554] Gerhard O. Michler. Representations of groups over �nite �elds. In Rainer Jan�en,
editor, Trends in Computer Algebra: International Symposium Bad Neuenahr, May 19{21,
1987: Proceedings, volume 296 of Lecture Notes in Computer Science, pages 119{133. Springer-
Verlag, Berlin, 1988.

[555] Torsten Minkwitz. Algorithmensynthese f�ur lineare Systeme mit Symmetrie [Synthesizing
algorithms for linear systems]. PhD thesis, Fakult�at f�ur Informatik der Universit�at Karlsruhe
(Technische Hochschule), 9 June 1993.

[556] Fedor �duardoviq Molin [Theodor Molien]. Berichtigung zu dem Aufsatze `Ueber
Systeme h�oherer complexer Zahlen' [Correction to the article `on systems of higher complex
numbers']. Mathematische Annalen, 42:308{312, 1893.

226

[557] Fedor �duardoviq Molin [Theodor Molien]. Ueber Systeme h�oherer complexer Zahlen
[On systems of higher complex numbers]. Mathematisch Annalen, 41:83{156, 1893.

[558] Fedor �duardoviq Molin [Theodor Molien]. Eine Bemerkung zur Theorie der homo-
genen Substitutionsgruppen [A remark on the theory of homogeneous substitution groups].
Sitzungberichte Naturforscher-Gesellschaft Dorpat (Yurev in Estonia), 11:259{274, 24 April
1897.

[559] Fedor �duardoviq Molin [Theodor Molien]. Ueber di Anzahl der Variabeln einer
irreductibelen Substitutionsgruppen [On the number of variables of irreducible substitution
groups]. Sitzungsberichte der ber Naturforscher-Gesellschaft Dorpat, 11:277{288, 1897.

[560] Fedor �duardoviq Molin [Theodor Molien]. Zi�erm�assig genaue Ausrechnung aller
12 millionen Gewinne und Remisen im Endspiel ,,Thurm gegen L�aufer" [Numerical exact
computation of all 12 million wins and draws in the endgame \rook against bishop"], April
1897. Cited in the index of Baltische Schacbl�atter 8, 1901, page 72.

[561] Fedor �duardoviq Molin [Theodor Molien]. [four endgame studies]. Baltische
Schachbl�atter, 6:208{209, 1898.

[562] Fedor �duardoviq Molin [Theodor Molien]. Ueber die Invarianten der linearen Sub-
stitutionsgruppen [On the invariants of linear substitution groups]. Sitzungsberichte Akademie
der Wissenschaft. Berlin, pages 1152{1156, 1898.

[563] [Fedor �duardoviq Molin [Theodor Molien]]. [partie 73]. Baltische Schachbl�atter,
7:346, 1900. Score of game against W. Sohn.

[564] Bernhard M�oller, Helmut A. Partsch, and Stephen A. Schuman, editors. Formal Program
Development: IFIP TC2/WG 2.1 State-of-the-Art Report, volume 755 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1993.

[565] Eduardo Morales. Learning chess patterns. In Stephen Muggleton, editor, Proceedings of
International Workshop on Inductive Logic Programming, pages 291{307, March 2{4 1991.

[566] Shlomo Moran. A note on `Is shortest path problem not harder than matrixmultiplication?'.
Information Processing Letters, 13(2):85{86, 13 November 1981.

[567] Z. George Mou and Xiaojing Wang. Optimal mappings of m dimensional FFT com-
munication to k dimensional mesh for arbitrary m and k. In Arndt Bode, Mike Reeve, and
Gottfried Wolf, editors, PARLE '93: Parallel Architectures and Languages Europe: 5th In-
ternational PARLE Conference, volume 694 of Lecture Notes in Computer Science, pages
104{119, Munich, Germany, 14{17 June 1993. Springer-Verlag, Berlin, 1993.

[568] Lenore M. Restifo Mullin. A mathematics of arrays. Technical Report 8814, CASE
Center, Syracuse University, Syracuse, NY 13244, December 1988.

[569] Lenore M. Restifo Mullin. Psi, the indexing function: a basis for FFP with arrays. In
Lenore M. Restifo Mullin et. al., editor, Arrays, functional languages and parallel systems,
pages 185{200. Kluwer Academic Publishers, Boston, MA, 1991.

[570] Hans Munthe-Kaas. Superparallel FFTs. SIAM Journal on Scienti�c and Statistical Com-
puting, 14(2):349{367, March 1993.

[571] Bernie G.J.P.T. Murray, Paul Anthony Bash, and Martin Karplus. Molecular
dynamics on the Connection Machine system. Technical Report CB88, Thinking Machines
Corporation, Cambridge, MA, May 1988.

227

[572] Harold James Ruthven Murray. A History of Chess. Oxford University Press, London,
1913.

[573] Harold James Ruthven Murray. A History of Board-Games Other Than Chess. Hacker
Art Books, New York, 1978. First published 1952 by Oxford University at the Clarendon
Press.

[574] S. Muthukrishnan. Searching For Strings and Searching in Presence of Errors. PhD thesis,
Department of Computer Science, New York University, July 1994.

[575] S. Muthukrishnan and Ramesh Hariharan. String matching under a general match
relation. In Rudrapatna Shyamasundar, editor, Foundations of Software Technology and The-
oretical Computer Science: 12th Conference: Proceedings, volume 652 of Lecture Notes in
Computer Science, pages 356{367, New Delhi, India, 18{20 December 1992. Springer-Verlag,
Berlin, 1992.

[576] S. Muthukrishnan and Krishna Palem. Non-standard stringology: algorithms and com-
plexity. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pages
770{779, Montr�eal, Qu�ebec, Canada, 23{25 May 1994. ACM Press, New York, 1994.

[577] Paul Edward Nacozy and Roger Earl Diehl. A semianalytical theory for the long-term
motion of Pluto. Astronomical Journal, 83(5):522{530,, May 1978.

[578] David Nassimi and Sartaj Kumar Sahni. Parallel permutation and sorting algorithms and
a new generalized connection network. Journal of the Association for Computing Machinery,
29(3):642{667, July 1982.

[579] Harry J. Nefkens. Constructing data bases to �t a microcomputer. International Computer
Chess Association Journal, 8(4):217{224, December 1985.

[580] Douglas Geoffrey Northcott. Multilinear algebra. Cambridge University Press, New
York, 1984.

[581] John Nunn. Secrets of Rook Endings. Batsford Chess Library. H. Holt, New York, 1992.

[582] John Nunn. Extracting information from endgame databases. International Computer Chess
Association Journal, 16(4):191{200, December 1993.

[583] John Nunn. Secrets of Pawnless Endings. Batsford Chess Library. H. Holt, New York, 1994.

[584] R. Ohbuchi. Overview of parallel processing in Japan. Parallel Computing, 2:219{228, 1985.

[585] Victor Pan. How To Multiply Matrices Faster, volume 179 of Lecture notes in Computer
Science. Springer-Verlag, Berlin/New York, 1984.

[586] Victor Pan. Complexity of parallel matrix computations. Theoretical Computer Science,
54(1):65{85, September 1987.

[587] Victor Pan. Parallel solution of sparse linear and path systems. In John H. Reif, editor,
Synthesis of Parallel Algorithms, pages 621{678. Morgan Kaufmann Publishers, San Mateo,
CA, 1993.

[588] Victor Pan and John H. Reif. E�cient parallel solution of linear systems. In Proceedings
of the 17th Annual ACM Symposium on Theory of Computing, pages 143{152, Providence,
R.I., 6{8 May 1985. Association for Computing Machinery, New York/Baltimore, 1985.

[589] Victor Pan and John H. Reif. Parallel nested dissection for path algebra computations.
Operations Research Letters, 5(4):177{184, 1986.

228

[590] Emanuel Parzen. Informal comments on the uses of power spectrum analysis. IEEE Trans-
actions on Audio and Electroacoustics, AU-15(2):75{76, June 1967.

[591] Oren Patashnik. Qubic: 4 � 4 � �4 tic-tac-toe. Mathematics Magzine, 53(4):203{216,
September 1980.

[592] David Andrew Patterson and David Roger Ditzel. The case for the reduced instruc-
tion set computer. Computer Architecture News, 8(6):25{33, October 1980.

[593] David Andrew Patterson, Garth Gibson, and Randy H. Katz. A case for redundant
arrays of inexpensive disks (RAID). In Proceedings of the SIGMOD International Conference
on Management of Data, pages 109{116, Chicago, IL, 1{3 June 1988.

[594] Judea Pearl. Optimal dyadic models of time-invariant systems. IEEE Transactions on
Computers, C-24(6):598{603, June 1975.

[595] Judea Pearl. Asymptotic properties of minimax trees and game-searching procedures. Ar-
ti�cial Intelligence, 14(2):113{138, September 1980.

[596] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, 1984.

[597] Barak A. Pearlmutter. Fast exact multiplication by the Hessian (of a neural net). Neural
Computation, 6(1):147{160, January 1994.

[598] Marshall Carleton Pease. An adaptation of the fast Fourier transform for parallel pro-
cessing. Journal of the Association for Computing Machinery, 15(2):252{264, April 1968.

[599] Crispin Perdue and Hans Jack Berliner. EG|a case study in problem solving with
King and Pawn endings. In Proceedings of the 5th International Joint Conference on Arti-
�cial Intelligence (IJCAI-77), pages 421{427, volume 1, Pittsburgh, PA, 1977. Department
of Computer Science, Carnegie-Mellon University. August 22{25, 1977 at the Massachussetts
Institute of Technology, Cambridge, MA.

[600] Juan Bautista Sanchez Perez. El Ajedrez de D. Alfonso el Sabio [The chess of D. Alfonso
the Wise]. Tip. La Franco Espa~nola, Madrid, 1929.

[601] Ivars Peterson. Computing a chess game's end. Science News, 140(22), 30 November 1991.

[602] Franc�ois-Andr�e Danican Philidor. L'analyze des �echecs: contenant une nouvelle meth-
ode pour apprendre en peu temps �a se perfectionner dans ce noble jeu [the analysis of chess:
containing a new method for learning in a short time and towards perfection in the noble
game]. London, [1749?].

[603] F. Pichler. On state space description of linear dyadic invariant systems. In R.W. Zeek and
A.E. Showalter, editors, Proceedings of the 2nd Symposium on the Applications of Walsh Func-
tions, Washington, DC., 13{15 April 1971. National Technical Information Service, Operations
Division, Spring�eld, VA 1971.

[604] Ira Pohl. Bi-directional search. In Bernard Meltzer and Donald Michie, editors, Machine
Intelligence, pages 127{140. Edinburgh University Press, Edinburgh, Scotland, 1971.

[605] Constantine Demetrios Polychronopoulos and David J. Kuck. Guided self-
scheduling: A practical scheduling scheme for parallel supercomputers. IEEE Transactions on
Computers, 36(12):1425{1439, December 1987.

229

[606] Randall E. Porter. The RW-400|a new polymorphic data system. Datamation, 6:8{14,
January{February 1960.

[607] Curt Powley, Chris Ferguson, and Richard Earl Korf. Parallel tree search on a
SIMD machine. In Proceedings of the Third IEEE Symposium on Parallel and Distributed
Processing, pages 249{256, Dallas, Texas, 2{5 December 1991. IEEE Computer Society Press,
Los Alamitos, CA, 1991.

[608] Curt Powley and Richard Earl Korf. Single-agent parallel window search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(5):466{477, May 1991.

[609] Dhiraj K. Pradhan and Maheswara R. Samatham. The de Bruijn multiprocessor net-
work: a versatile parallel processing and sorting network for VLSI. IEEE Transactions on
Computers, 38(4):567{581, April 1989.

[610] Franco P. Preparata and Jean Vuillemin. The cube-connected cycles: a versatile
network for parallel computation. Communications of the ACM, 24(5):300{309, May 1981.

[611] John Ross Quinlan. Discovering rules by induction from large collections of examples. In
Donald Michie, editor, Expert systems in the micro-electronic ages, pages 168{201. Edinburgh
University Press, 1979.

[612] John Ross Quinlan. Learning e�cient classi�cation procedures and their application
to chess end games. In Ryszard Stanislaw Michalski, Jaime Guillermo Carbonell, and
Tom Michael Mitchell, editors, Machine Learning: An Arti�cial Intelligence Approach, pages
463{482. Tioga Publishing Company, Palo Alto, CA, 1983.

[613] John Ross Quinlan. Induction of decision trees. Machine Learning, 1:81{106, 1986.

[614] Charles M. Rader. Discrete Fourier transforms when the number of data samples is prime.
Proceedings of the IEEE, 56(6):1107{1108, June 1968.

[615] V. Nageshwara Rao and Vipin Kumar. Parallel depth-�rst search, part i. Implementa-
tion. International Journal of Parallel Programming, 16(6):479{499, December 1987.

[616] Lars Rasmussen. Ultimates in KQKR and KQKN. International Computer Chess Associa-
tion Journal, 11(1):21{25, March 1988.

[617] L. Reichel. A matrix problem with application to rapid solution of integral equations. SIAM
Journal on Scienti�c and Statistical Computing, 11(2):263{280, March 1990.

[618] Margaret Reid-Miller and Guy E. Blelloch. List ranking and list scan on the CRAY
C-90. Technical Report CMU-CS-94-101, Carnegie Mellon University School of Computer
Science, 5000 Forbes Avenue, Pittsburgh, PA 15213{3891, 15 March 1994.

[619] Stefan Reisch. Gobang ist PSPACE-vollst�andig [Gobang is PSPACE-complete]. Acta In-
formatica, 13(1):59{66, January 1980.

[620] Stefan Reisch. Hex ist PSPACE-vollst�andig [Hex is PSPACE-complete]. Acta Informatica,
15(2):167{191, December II [1980] 1981.

[621] Kendall Square Research. KSR1 principles of operation. Waltham, MA, 1991.

[622] Hudson B. Ribas. Automatic generation of systolic programs from nested loops. PhD thesis,
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
PA, June 1990.

230

[623] John L. Richardson. Block LU decomposition on the Connection Machine system. Tech-
nical Report NA89-5, Thinking Machines Corporation, Cambridge, MA, October 1989.

[624] Henri Rinck. Las sorpresas de la teoria / Les surprises de la theorie [Surprises of the theory].
Dossat, Madrid, 1947. Text in Spanish and French.

[625] Henri Rinck. 1414 Fins de partie [1414 endgames]. Tipogra�a la Academica, Barcelona,
1950. 5'th edition of 150 Fins de Partie, 1909.

[626] Henri Rinck and Louis Malpas. Dame contre tour et cavalier [Queen against rook and
knight]. L'Echiquier, Bruxelles, 1947.

[627] J. M. Robson. N by N checkers is exptime complete. SIAM Journal on Computing,
13(2):252{267, May 1984.

[628] Daniel Nahum Rockmore. E�cient computation of Fourier transforms on the symmetric
group. In Erich Kaltofen and Stephen M. Watt, editors, Computers and Mathematics: Pro-
ceedings of Computers and Mathematics '89, pages 156{165. Springer-Verlag, New York, 1989,
Massachusetts Institute of Technology, 13{17 June 1989.

[629] Daniel Nahum Rockmore. Fast Fourier Analysis for Finite Groups. PhD thesis, Harvard
University, Department of Mathematics, Cambridge, MA, May 1989.

[630] Daniel Nahum Rockmore. Fast Fourier analysis for abelian group extensions. Advances in
Applied Mathematics, 11:164{204, 1990.

[631] Daniel Nahum Rockmore. E�cient computation of Fourier inversion for �nite groups.
Journal of the Association for Computing Machinery, 41(1):31{66, January 1994.

[632] Daniel Nahum Rockmore. Fast Fourier transforms for wreath products. Technical Report
PMA-TR94-176, Dartmouth College Department of Mathematics, Hanover, NH 03755-3551,
July 1994.

[633] Francesco Romani. Shortest-path problem is not harder than matrix multiplication. In-
formation Processing Letters, 11(3):134{136, 18 November 1980.

[634] Francesco Romani. Author's reply to S. Moran's Note on the shortest path problem.
Information Processing Letters, 13(2):87, 13 November 1981.

[635] John R. Rose and Guy Lewis Steele, Jr. C*: an extended C language for data parallel
programming. In Second International Conference on Supercomputing: Proceedings, volume 2,
pages 2{16, San Francisco, CA, 4{7 May 1987. International Supercomputing Institute, St.
Petersburg, FL, 1987.

[636] Arnold Leonard Rosenberg. Shu�e-oriented interconnection networks. Technical Report
COINS 88-84, University of Massachusetts at Amherst Computer and Information Science, 11
October 1988.

[637] Arnold Leonard Rosenberg. Cayley graphs and direct-product graphs. In Larry Finkel-
stein and WilliamKantor, editors, Groups and Computation: Workshop on Groups and Com-
putation, volume 11 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 245{251, Rutgers, NJ, 7{10 October 1991. American Mathematical Society,
Providence, RI, 1993.

[638] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386{408, November 1958.

231

[639] Phillip E. Ross. Endless endgame? Scienti�c American, 265(5), November 1991.

[640] G�unter Rote. Path problems in graphs. In Gottfried Tinhofer, Ernst W. Mayr, Hartmut
Noltemeier, Maciej M. Syslo, and Rudolf Albrecht, editors, Computational Graph Theory,
volume 7 of Computing Supplementum, pages 155{190. Springer-Verlag, Vienna, 1990.

[641] Joseph J. Rotman. An Introduction to the Theory of Groups, volume 148. Springer-Verlag,
New York, 4th edition, 1995.

[642] Arthur John Roycroft. A note on 2S's v R + B. EG, 1:197{198, April 1967.

[643] Arthur John Roycroft. Test Tube Chess: A Comprehensive Introduction to the Chess
Endgame Study. Faber and Faber Ltd., London, England, 1972.

[644] Arthur John Roycroft. A computer program for the ending wP v bB (4 men on the
board). EG, 3(40):202{203, May 1975.

[645] Arthur John Roycroft. Two bishops against knight. EG, 5(75), April 1983.

[646] Arthur John Roycroft. A proposed revision of the `50-move rule': Article 12.4 of the
Laws of Chess. International Computer Chess Association Journal, 7(3):164{170, September
1984.

[647] Arthur John Roycroft. *C*. EG, 6(98):641{645, October 1989.

[648] Arthur John Roycroft. Recent otb experience with GBR class 0312. EG, 6(102 part
2):948{950, May 1992.

[649] Arthur John Roycroft. The 6-man pawnless endgame rook and bishop against two knights
with the 223-move win. EG, 7(114):496{512, December 1994.

[650] Tatyana D. Roziner, Mark Girshevich Karpovsky, and Lazar A. Trachtenberg.
Fast Fourier transforms over �nite groups by multiprocessor systems. IEEE Transactions on
Acoustics, Speech and Signal Processing, 38(2):226{240, February 1990.

[651] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533{536, 9 October 1986.

[652] Carl David Tolm�e Runge. �Uber die Zerlegung empirisch gegebener periodischer Funktio-
nen in Sinuswellen [On the decomposition of empirically given periodic functions in sine waves].
Zeitschrift f�ur Mathematik und Physik: Organ f�ur Angewandte Mathematik, 48:443{456, 1903.

[653] Carl David Tolm�e Runge. �Uber die Zerlegung einer empirischen Funktion in Sinuswellen
[On the decomposition of empirically given periodic functions in sine waves]. Zeitschrift f�ur
Mathematik und Physik: Organ f�ur Angewandte Mathematik, 52:117{123, 1905.

[654] Jan Rusinek. Almost Miniatures: 555 Studies With Eight Chessmen, volume 3 of Selected
Endgame Studies. University of Limburg, 1994.

[655] Michel Jacquemin S. Lennart Johnsson, Ching-Tien Ho and Alan Ruttenberg.
Computing fast Fourier Transforms on Boolean cubes and related networks, volume 826, pages
223{231. Society of Photo-Optical Instrumentation Engineers, 1987.

[656] Gary W. Sabot. Paralation LISP reference manual. Technical Report TMC-145, Thinking
Machines Corporation, Cambridge, MA, 5 May 1985.

[657] Gary W. Sabot. The Paralation Model: Architecture-Independent Parallel Programming.
The MIT Press Series in Arti�cial Intelligence. MIT Press, Cambridge, MA, 1988.

232

[658] Gary W. Sabot. Optimizing CM Fortran compiler for Connection Machine computers.
Journal of Parallel and Distributed Computing, 23(2):224{338, November 1994.

[659] Bruce Eli Sagan. The Symmetric Group: Representations, Combinatorial Algorithms
and Symmetric functions. Wadsworth & Brooks/Cole Mathematics Series. Wadsworth &
Brooks/Cole Advanced Books and software, Paci�c Grove, CA, 1991.

[660] Alessandro Salvio. Trattato dell'inventione et art liberale del gioco di scacchi [treatise of
the invention and liberal art of the game of chess]. Napoli, 1634.

[661] Arthur L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of research and development, 2(3):211{229, July 1959.

[662] David Sanko� and Joseph B. Kruskal, editors. Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, MA,
1983.

[663] Jonathan Schaeffer. Distributed game-tree searching. Journal of Parallel and Distributed
Computing, 6(1):90{114, February 1989.

[664] Jonathan Schaeffer, Joseph Culberson, Norman Treloar, Brent Knight, Paul
Lu, and Duane Szafron. A world championship caliber checkers program. Arti�cial Intel-
ligence, 53(2{3):273{289, February 1992.

[665] Jonathan Schaeffer, Joseph Culberson, Norman Treloar, Brent Knight, Paul
Lu, and Duane Szafron. Reviving the game of checkers. Technical Report TR 90{31,
University of Alberta, September 1990.

[666] Stephen T. Schibell and Richard M. Stafford. Processor interconnection networks
from Cayley graphs. Discrete Applied Mathematics, 40(3):333{357, 14 December 1992.

[667] Gunther Schmidt and Thomas Str�ohlein. Relationen und Graphen [Relations and
graphs]. Mathematik f�ur Ingenieure. Springer-Verlag, Berlin, 1989.

[668] K. E. Schmidt and M. A. Lee. Implementing the fast multipole multipole method in three
dimensions. Journal of Stat. Physics, 63(5{6):1223{35, June 1991.

[669] Martin Sch�onert et al. GAP: Groups, algorithms and programming, November 1993.
Computer software.

[670] Arnold Sch�onhage and Volker Strassen. Schnelle Multiplikation gro�er Zahlen [Fast
multiplication of large numbers]. Computing: Archiv f�ur Elektronisches Rechnen, 7(3{4):281{
292, 1971.

[671] Richard Schroeppel and Adi Shamir. A T = O(2n=2), S = O(2n=4) algorithm for certain
NP-complete problems. SIAM Journal on Computing, 10(3):456{464, August 1981.

[672] Jacob T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and
Systems, 2(4):484{521, October 1980.

[673] K. H. Schwarz. Versuch eines mathematischen Schachprinzips [Essay on mathematical chess
principles]. Deutsche Schachzeitung, 53(11):321{324, November 1925.

[674] Walter Schwarz. Acorn Run-Time system for the CM-2. In Lenore M. Restifo Mullin et.
al., editor, Arrays, functional languages and parallel systems, pages 35{57. Kluwer Academic
Publishers, Boston, MA, 1991.

233

[675] Francesco Sciortino and S.L. Fornili. Hydrogen bond cooperativity in simulated water:
time dependence analysis of pair interactions. Journal Chemical Physics, 90(5):2786{2792, 1
March 1989.

[676] Francesco Sciortino, Peter H. Poole, H. Eugene Stanley, and Shlomo Havlin.
Lifetime of the bond network and gel-like anomalies in supercooled water. Physical Review
Letters, 64(14):1686{1691, 2 April 1990.

[677] R. Seidel. What constitutes optimal play? International Computer Chess Association
Journal, 9(1):37{43, March 1986.

[678] Jean Pierre Serre. Linear Representations of Finite Groups, volume 42 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1977.

[679] Claude Elwood Shannon. Programming a digital computer for playing chess. Philosophical
Magazine, Seventh Series, 41(314):256{275, March 1950.

[680] Sebastian Shaumyan. Genotype|a pure functional array language. In Lenore M. Res-
tifo Mullin et. al., editor, Arrays, functional languages and parallel systems, pages 201{236.
Kluwer Academic Publishers, Boston, MA, 1991.

[681] Roland Silver. The group of automorphisms of the game of 3-dimensional Ticktacktoe.
American Mathematical Monthly, 74(3):247{254, March 1967.

[682] B.D. Silverman and R. Linsker. A measure of DNA periodicity. Journal of Theoretical
Biology, 118(3):295{300, 7 February 1986.

[683] Geoff Leslie Simons. Is Man a Robot? John Wiley & Sons, Chichester, England, 1986.

[684] Charles Coffin Sims. Computations with permutation groups. In Stanley Roy Petrick,
editor, Proceedings of the Second Symposium on Symbolic and Algebraic Manipulation, pages
23{28, Los Angeles, 23{25 March 1971. ACM Press, New York 1971.

[685] Charles Coffin Sims. Computation With Finitely Presented Groups, volume 48 of Encyclo-
pedia of Mathematics and its Applications. Cambridge University Press, Cambridge, England,
1994.

[686] Alexander Singer. Implementations of arti�cial neural networks on the connection ma-
chine. Parallel Computing, 14(3):305{315, August 1990.

[687] Jaswinder Pal Singh, Chris Holt, Takashi Totsuka, Anoop Gupta, and John L.
Hennessy. Load balancing and data locality in hierarchical N-body methods. Technical
Report CSL-TR-92-505, Stanford University, Stanford, CA, 1992.

[688] P. Singh and Gurprit Kaur. On quasi-rings. Bulletin of the Calcutta Mathematical
Society, 76(6):325{336, 1984.

[689] Richard C. Singleton. On computing the fast Fourier transform. Communications of the
ACM, 10(10):647{654, October 1967.

[690] Steven Sol Skiena. Implementing Discrete Mathematics: Combinatorics and Graph Theory
with Mathematica. The Advanced Book Program. Addison-Wesley, Redwood City, CA, 1990.
Contains programs by Steven Skiena and Anil Bhansali.

[691] David Benson Skillicorn. Architecture-independent parallel computation. Computer,
23(12):38{50, December 1990.

234

[692] David Benson Skillicorn. Models for practical parallel computation. International Journal
of Parallel Programming, 20(2):133{158, April 1991.

[693] David Benson Skillicorn. Deriving parallel programs from speci�cations using cost infor-
mation. Science of Computer Programming, 20(3):205{221, June 1993.

[694] David Benson Skillicorn. Structuring data parallelism using categorical data types. In
Proceedings of the 1993 Workshop on Programming Models for Massively Parallel Computers,
pages 110{115, Berlin, Germany, 20{23 September 1993. IEEE Computer Society Press, Los
Alamitos, CA, 1993.

[695] David Benson Skillicorn. The categorical data type approach to general-purpose parallel
computation. In Bjorn Perhson and Imre Simon, editors, Proceedings of the IFIP 13th World
Computer Congress, volume A-51 of IFIP Transactions: Computer Science and Technology,
pages 565{570, Hamburg, Germany, 28 August{2 September 1994. North-Holland, Amster-
dam/London, 1994.

[696] David Benson Skillicorn and Wentong Cai. A cost calculus for parallel and functional
programming. Technical Report ISSN-0836-0227-92-329, Department of Computing and In-
formation Science, Queen's Univerity, Kinston, Ontario, K7L 3N6, May 1992.

[697] Daniel L. Slotnick, W. Carl Borck, and Robert C. McReynolds. The SOLOMON
computer. In Proceedings of the AFIPS Spring Joint Computer Conference, volume 21, pages
97{107, San Francisco, CA, 1{3 May 1962. American Federation of Information Processing
Societies/National Press, Palo Alto, CA.

[698] David Smitley and Kent Iobst. Bit-serial SIMD on the CM-2 and the Cray-2. Journal of
Parallel and Distributed Computing, 11(2):135{145, February 1991.

[699] A. J. Sobey. Pawnlessness. EG, 1?(12):335{341, March 1968.

[700] Leonard H. Soicher. GRAPE: A system for computing with graphs and groups. In Larry
Finkelstein and William Kantor, editors, Groups and Computation: Workshop on Groups
and Computation, volume 11 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 287{292, Rutgers, NJ, 7{10 October 1991. American Mathematical
Society, Providence, RI, 1993.

[701] Edwin Henry Spanier. Algebraic Topology. Springer-Verlag, New York, 1966.

[702] Philip Stamma. Essai sur le jeu des �echecs [essay on the game of chess]. Paris, 1737.

[703] Craig Stanfill. Communications architecture in the Connection Machine system. Technical
Report HA87-3, Thinking Machines Corporation, Cambridge, MA, 1987.

[704] Willi-Hans Steeb. Kronecker Product of Matrices and Applications. Bibliographisches
Institut, Mannheim/Vienna, 1991.

[705] Guy Lewis Steele, Jr. and William Daniel Hillis. Connection Machine Lisp: �ne-
grained parallel symbolic processing. Technical Report TMC-150, Thinking Machines Corpo-
ration, Cambridge, MA, 1986.

[706] Igor Steinberg and Marvin Solomon. Searching game trees in parallel. In Pen-Chung
Yew, editor, Proceedings of the 1990 International Conference on Parallel Processing, volume 3,
pages 9{17, Pennsylvania State University, 13{17 August 1990. Pennsylvania State University
Press, University Park, PA, 1990.

235

[707] Lewis Benjamin Stiller. Parallel analysis of certain endgames. International Computer
Chess Association Journal, 12(2):55{64, June 1989.

[708] Lewis Benjamin Stiller. Group graphs and computational symmetry on massively parallel
architecture. Journal of Supercomputing, 5(2/3):99{117, November 1991.

[709] Lewis Benjamin Stiller. Karpov and Kasparov: the end is perfection. International
Computer Chess Association Journal, 14(4):198{201, December 1991.

[710] Lewis Benjamin Stiller. Some results from a massively parallel retrograde analysis. In-
ternational Computer Chess Association Journal, 14(3):129{134, September 1991.

[711] Lewis Benjamin Stiller. An algebraic foundation for Fortran 90 communication intrinsics.
Technical Report LA-UR-92-5211, Los Alamos National Laboratory, Los Alamos, NM 87545,
August 1992.

[712] Lewis Benjamin Stiller. An algebraic paradigm for the design of e�cient parallel programs.
Technical Report JHU-92/26, Deparment of Computer Science, The Johns Hopkins University,
Baltimore, MD 21218, November 1992.

[713] Lewis Benjamin Stiller. Endgame source code goes public. International Computer Chess
Association Journal, 15(2):107, June 1992.

[714] Lewis Benjamin Stiller. How to write fast and clear parallel programs using algebra.
Technical Report LA-UR-92-2924, Los Alamos National Laboraties, Los Alamos, NM, 1992.

[715] Lewis Benjamin Stiller. White to play and win in 223 moves: a massively parallel exhaus-
tive state space search. Journal of the Advanced Computing Laboratory, 1(4):1, 14{19, July
1992.

[716] Lewis Benjamin Stiller. Multilinear algebra and chess endgames. In Richard Nowakowski,
editor, Proceedings of the 1994 Workshop on Combinatorial Games, Berkeley, CA, 11{22 July
1994. To appear.

[717] Lewis Benjamin Stiller, Luke L. Daemen, and James E. Gubernatis. n-body simula-
tions on massively parallel architectures. Journal of Computational Physics, 115(2):550{552,
December 1994.

[718] Lewis Benjamin Stiller and Angel E. Garc��a. Parallelization of a convolution arising
in the computation of the residence time of water in the hydration shells of biomolecules.
Technical Report LA-UR-29-3717, Los Alamos National Laboratory, Los Alamos, NM 87545,
September 1992.

[719] Thomas Greenway Stockham, Jr. High-speed convolution and correlation. In Proceedings
of the AFIPS Spring Joint Computer Conference, volume 28. Spartan Books, Washington,
D.C., 1966, 1966.

[720] Larry Joseph Stockmeyer and Ashok Kumar Chandra. Provably di�cult combina-
torial games. SIAM Journal on Computing, 8(2):151{174, May 1979.

[721] Harold Stuart Stone. Parallel processing with the perfect shu�e. IEEE Transactions on
Computers, C-20:153{161, 1971.

[722] Harold Stuart Stone. High-Performance Computer Architecture. Addison-Wesley, Read-
ing, MA, 1993.

236

[723] Harold Stuart Stone and Janice M. Stone. E�cient search techniques|an empirical
study of the n-queens problem. IBM Journal of Research and Development, 31(4):464{474,
July 1987.

[724] James Andrew Storer. A note on the complexity of chess. In Proceedings of the 1979 Con-
ference on Information Sciences and Systems, pages 160{166, Baltimore, MD, 28{30 March
1979. Deparment of Electrical Engineering, Johns Hopkins University, 1979.

[725] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354{356, 14 August 1969.

[726] Volker Strassen. The asymptotic spectrum of tensors and the exponent of matrix multi-
plication. In Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer
Science, pages 49{54, Toronto, Ontario, 27{29 October 1986. IEEE Computer Society Press,
Washington, DC / Los Angeles, CA, 1986.

[727] Thomas Str�ohlein. Untersuchungen �uber Kombinatorische Spiele [Investigations of com-
binatorial games]. PhD thesis, Fakult�at f�ur Allgemeine Wissenschaften der Technischen
Hochshule M�unchen, February 1970.

[728] Thomas Str�ohlein and L. Zagler. Analyzing games by boolean matrix iteration. Discrete
Mathematics, 19(2):183{193, August 1977.

[729] P. Struik. A systematic design of a parallel program for Dirichlet convolution. Science of
Computer Programming, 15(2{3):185{200, December 1990.

[730] Dan Suciu and Val Tannen. E�cient compilation of high-level data-parallel algorithms.
In Proceedings of the 6th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 57{66, Cape May, New Jersey, June 27{29 1994. ACM Press, New York, 1994.

[731] [Scientific American Supplement]. Torres and his remarkable automatic devices. Scien-
ti�c American Supplement, 53(2079):296{298, November 1915.

[732] Paul N. Swarztrauber. FFT algorithms for vector computers. Parallel Computing, 1:45{
63, 1984.

[733] Paul N. Swarztrauber. Multiprocessor FFTs. Parallel Computing, 5(1{2):197{210, July
1987.

[734] Boleslaw K. Szymanski, James Hicks, R. Jagannathan, Vivek Sarkar, David Ben-
son Skillicorn, and Robert K. Yates. Is there a future for functional languages in parallel
programming? In Proceedings of the 1994 International Conference on Computer Languages,
pages 299{304, Toulouse, France, 16{19 May 1994. IEEE Computer Society Press, Los Alami-
tos, CA, 1994.

[735] Shouwen Tang, Kaizhong Zhang, and Xiaolin Wu. Matching with matrix norm mini-
mization. In Maxime Crochemore and Dan Gus�eld, editors, Combinatorial Pattern Matching:
5th Annual Symposium. Proceedings, volume 807 of Lecture Notes in Computer Science, pages
250{258, Asilomar, CA, 5{8 June 1994. Springer-Verlag, Berlin, 1994.

[736] Robert Endre Tarjan. Fast algorithms for solving path problems. Journal of the Associ-
ation for Computing Machinery, 28(3):594{614, July 1981.

[737] Robert Endre Tarjan. A uni�ed approach to path problems. Journal of the Association
for Computing Machinery, 28(3):577{593, July 1981.

237

[738] Johannes Tausch. A generalization of the discrete Fourier transformation. In Eugene Leo
Allgower, Klaus B�ohmer, and Martin Golubitsky, editors, Bifurcation and Symmetry: Cross
In
uence Between Mathematics and Applications, volume 104 of International Series of Nu-
merical Mathematics, pages 405{412. Birkh�auser Verlag, Basel, Germany, 1992.

[739] Willie Taylor. New paths from dead ends. Nature, 356(6369):478{479, 9 April 1992.

[740] Gerald Tesauro and Terrence Joseph Sejnowski. A parallel network that learns to
play backgammon: recent results. In Proceedings: 1988 Spring Symposium Series: Computer
Game Playing, pages 41{45, Stanford University, Stanford, CA, 22{24 March 1988. American
Association for Arti�cial Intelligence.

[741] Larry H. Thiel, Clement Wing Hong Lam, and S. Swiercz. Using a CRAY-1 to per-
form backtrack search. In Proceedings of the Second International Conference on Supercomput-
ing, Supercomputing '87, volume 3, pages 92{99, San Francisco, CA, May 1987. International
Supercomputing Institute, St. Petersburg, FL, 1987.

[742] ThinkingMachines Corporation, Cambridge,MA. Connection Machine Model CM-2 Technical
Summary, November 1990.

[743] Thinking Machines Corporation, Cambridge, MA. *Lisp Dictionary, version 5.2 edition,
February 1990.

[744] Thinking Machines Corporation, Cambridge, MA. Connection Machine CM-200 Series Tech-
nical Summary, June 1991.

[745] Thinking Machines Corporation, Cambridge, MA. Connection Machine CM-5 Technical Sum-
mary, January 1992.

[746] Thinking Machines Corporation, Cambridge, MA. CM-5 CM Fortran Performance Guide,
version 2.2 edition, October 1994.

[747] Thinking Machines Corporation, Cambridge, MA. CM Fortran Language Reference Manual,
version 2.2 edition, October 1994.

[748] Thinking Machines Corporation, Cambridge, MA. CMSSL for CM Fortran, version 3.2 edi-
tion, April 1994.

[749] L.H. Thomas. Using computers to solve problems in physics. In Walter F. Freiberger and
William Prager, editors, Applications of Digital Computers, pages 42{57. Ginn and Company,
Boston, 1963.

[750] Kenneth Lane Thompson. Regular expression search algorithm. Communications of the
ACM, 11(6):419{422, June 1968.

[751] [Kenneth Lane Thompson]. Chess games. EG, 5(74), November 1983.

[752] Kenneth Lane Thompson. *C* the programs that generate endgame data bases. EG,
6(83):2, May 1986. Apparently a letter.

[753] Kenneth Lane Thompson. Retrograde analysis of certain endgames. International Com-
puter Chess Association Journal, 9(3):131{139, September 1986.

[754] Kenneth Lane Thompson. personal communication, April 1990.

[755] Tommaso Toffoli. Cellular automata mechanics. Technical Report 208, Department of
Computer and Communication Sciences, University of Michigan, Ann Arbor, MI, 1977.

238

[756] Richard Tolimieri. Multiplicative characters and the discrete Fourier transform. Advances
in Applied Mathematics, 7(3):344{380, 1986.

[757] Richard Tolimieri and Myoung An. Computations in X-ray crystallography, volume 315
ofNATO ASI Series C: Mathematical and Physical Sciences, pages 237{250. Kluwer Academic
Publishers, Dordrecth/Boston, 1990.

[758] Richard Tolimieri, Myoung An, and Chao Lu. Algorithms for Discrete Fourier Trans-
form and Convolution. Springer-Verlag, New York, 1989.

[759] Richard Tolimieri, Myoung An, and Chao Lu. Mathematics of Multidimensional
Fourier Transform Algorithms. Springer-Verlag, New York, 1993.

[760] Charles Tong and Paul N. Swarztrauber. Ordered fast Fourier transforms on a mas-
sively parallel computer. Journal of Parallel and Distributed Computing, 12(1):50{59, May
1991.

[761] Gonzalo Torres-Quevedo. Pr�esentation des appareils de Leonardo Torres-Quevedo [Pre-
sentation of the apparatus of Leonardo Torres-Quevedo]. In Les machines �a calculer et la
pens�ee humaine, volume 37 of Colloques internationaux du Centre National de la Recherche
Scienti�que, pages 383{406. Service des Publications du Centre National de la Recherche Sci-
enti�que, Paris, 1953, 9{13 January 1951.

[762] E.A. Trachtenberg and Mark Girshevich Karpovsky. Filtering in a communication
by Fourier transforms over �nite groups. In Mark Girshevich Karpovsky, editor, Spectral
Techniques and Fault Detection, volume 11 of Notes and Reports in Computer Science and
Applied Mathematics, pages 179{216. Academic Press, Orlando, FL, 1985.

[763] Boris Avraamovich Trakhtenbrot. A survey of Russian approaches to perebor (brute-
force search) algorithms. Annals of the History of Computing, 6(4):384{399, October 1984.

[764] Alekse$i Alekseeviq Troicki$i [Alekseii Alekseevich Troitzky]. K�onig und zwei
Springer gegen K�onig und Bauer [King and two knights against king and pawn]. Deutsche
Schachzeitung, 61(5):129{131, May 1906. Part 1. Other parts: 61(6) 161{166, June 1906;
61(7) 193{197, July 1906; 61(9) 257{260, September, 1906; 62(1) 1{5, January, 1907; 62(4)
97{100, February, 1907; 62(6) 161{164, June, 1907; 62(8) 225{228, August, 1907; 63(1) 1{
6, January, 1908; 63(4) 101{104, April, 1908; 63(7) 197{200, July, 1908; 63(10) 293{294,
October, 1908; 64(2) 33{36, February, 1909; 64(4) 97{99 April, 1909; 64(6) 161-163 June,
1909; 64(8) 225{227 Auguest, 1909; 64(11) 321{323 November, 1909; 65(3) 65{67, March,
1910; 65(5) 129-133, May, 1910.

[765] Alekse$i Alekseeviq Troicki$i [Alekseii Alekseevich Troitzky]. 500 Endspielstudien
[500 endgame studies]. Kagan, Berlin, 1924. Alternative spelling as Troitskii.

[766] Alekse$i Alekseeviq Troicki$i [Alekseii Alekseevich Troitzky]. Dva kon� pro-
tiv pexek (teoretiqeski$i oqerk). In Sbornik Xahmatnyh �t�dov, s Prilo�eniem
Kratko$i Teorii �ndxpil�: Dva Kon� Protiv Pexek [Collection of chess studies, with
a theoretical supplement on the the endgame of two knights against pawn], pages 248{288.
OGIZ, Fizkul~tura i turizm, Moskva, 1934.

[767] Pingh-Sheng Tseng. A parallelizing compiler for distributed memory parallel computers.
PhD thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA, May 1989.

239

[768] John Turek, Joel L. Wolf, and Philip S. Yu. Approximate algorithms for scheduling
parallelizable tasks. In 4th Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 323{332, San Diego, CA, 29 June{1 July 1992. ACM Press, New York, 1992.

[769] Edward C. Turner and Karen F. Gold. Rubik's groups. American Mathematical
Monthly, 92(9):617{629, November 1985.

[770] Jeffrey David Ullman. Computational Aspects of VLSI. Principles of Computer Science
Series. Computer Science Press, 1984.

[771] Robert Joseph Valenza. A representation-theoretic approach to the DFT with noncom-
mutative generalizations. IEEE Transactions on Signal Processing, 40(4):814{822, April 1992.

[772] Leslie G. Valiant. General context-free recognition in less than cubic time. Journal of
Computer and System Sciences, 10(2):308{315, April 1975.

[773] Leslie G. Valiant. Optimally universal parallel computers. Philosophical Transactions of
the Royal Society of London Series A, 326:373{376, 1988.

[774] Leslie G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103{111, August 1990.

[775] Leslie G. Valiant. General purpose parallel architectures. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science: Algorithms and Complexity, volumeA, chapter 18,
pages 945{971. Elsevier Science Publishers, Amsterdam, 1990.

[776] Eric F. van de Velde. Concurrent Scienti�c Computing, volume 16 of Texts in Applied
Mathematics. Springer-Verlag, New York, 1994.

[777] H. Jaap van den Herik, I. S. Herscberg, and Najib Nakad. A six-men-
endgame database: KRP(a2)KbBP(a3). International Computer Chess Association Journal,
10(4):163{180, December 1987.

[778] H. Jaap van den Herik and I. S. Herschberg. The construction of an omniscient
endgame database. International Computer Chess Association Journal, 8(2):66{87, June 1985.

[779] H. Jaap van den Herik and I. S. Herschberg. Elementary theory improved, a conjecture
refuted. International Computer Chess Association Journal, 8(3):141{149, September 1985.

[780] H. Jaap van den Herik and I.S. Herschberg. A data base on data bases. International
Computer Chess Association Journal, 9(1):29{34, March 1986.

[781] H. Jaap van den Herik, I.S. Herschberg, T.R. Hendriks, and J.P. Wit. Computer
checks on human analyses of the KRKB endgame. International Computer Chess Association
Journal, 11(1):26{31, March 1988.

[782] Denis F. Verhoef and Jacco H. Wesselius. Two-ply KRKN: Safely overtaking Quinlan.
International Computer Chess Association Journal, 10(4):181{190, December 1987.

[783] Rakesh Mohan Verma. Strings, trees, and patterns. Information Processing Letters,
41(3):157{161, 6 March 1992.

[784] Henri Vigneron. Les automates [The automatons]. La Nature, pages 56{61, 1914.

[785] Uzi Vishkin. Optimal parallel pattern matching in strings. Information and Control, 67(1{
3):91{113, October{December 1985.

240

[786] Uzi Vishkin. A case for the PRAM as a standard programmer's model. In Friedhelm Meyer
auf der Heide, Burkhard Monien, and Arnold Leonard Rosenberg, editors, Parallel Archi-
tectures and Their E�cient Use: First Heinz Nixdorf Symposium Proceedings, volume 678 of
Lecture Notes in Computer Science, pages 11{19, Paderborn, Germany, 11{13 November 1992.
Springer-Verlag, Berlin, 1993.

[787] John von Neumann. First draft of a report on the EDVAC, 1945. Report prepared for
U.S. Army Ordinance Department under Contract W-670-ORD-4926. Reprinted in Papers of
John von Neumann on Computers and Computer Theory. WilliamAspray and Arthur Walter
Burks, (Editors), Volume 12 of The Charles Babbage Institute Reprint Series for the History
of Computing, The MIT Press, Cambridge, MA, 1987, pp. 17{82.

[788] John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behav-
ior. Princeton University Press, Princeton, NJ, 1944.

[789] Joachim von zur Gathen. Parallel linear algebra. In John H. Reif, editor, Synthesis of
Parallel Algorithms, pages 573{618. Morgan Kaufmann Publishers, San Mateo, CA, 1993.

[790] Stephan Waack. The parallel complexity of some constructions in combinatorial group
theory. In Mathematical Foundations of Computer Science, pages 492{498, Banska Bystrica,
Czechoslovakia, 27{31 August 1990. Springer-Verlag, Berlin, 1990.

[791] Stephan Waack. On the parallel complexity of linear groups. Informatiqe th�eorique et
Applications, 25(4):323{354, 1991.

[792] Bartel Leendert Waerden. A History of Algebra: From Al-Khw�arizm�� to Emmy Noether.
Springer-Verlag, Berlin/New York, 1985.

[793] David Leigh Waltz. Massively parallel AI. International Journal of High Speed Computing,
5(3):491{501, September 1993.

[794] Michael S. Warren and John K. Salmon. Astrophysical N -body simulations using hier-
archical tree data structures. In Proceedings. Supercomputing '92, pages 570{576, Minneapolis,
MN, 16{20 November 1992. IEEE Computer Society Press, Los Alamitos, CA, 1992.

[795] Michael S. Warren and John K. Salmon. A fast tree code for many-body problems.
Los Alamos Science, 22:88{97, 1994.

[796] Wolfgang Wechler. Universal Algebra for Computer Scientists, volume 25 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Berlin/New York, 1992.

[797] Peter Weiner. Linear pattern matching algorithm. In Proceedings of the 14th IEEE Sym-
posium on Switching and Automata Theory, pages 1{11, University of Iowa, 15{17 October
1973. IEEE Computer Society, Publications O�ce. Northridge, California.

[798] J�urgen Weiss. An n3=2 lower bound on the monotone network complexity of the Boolean
convolution. Information and Control, 59(1{3):184{188, October{December 1983.

[799] Burton Wendroff, Tony Warnock, Lewis Benjamin Stiller, Dean Mayer, and
Ralph Brickner. Bits and pieces: constructing chess endgame databases on parallel and
vector architectures. Applied Numerical Mathematics, 12(1{3):285{95, May 1993.

[800] Arthur Thomas White. Graphs, Groups, and Surfaces. North-Holland/Elsevier, New
York, 1984.

[801] Dennis Edward White. Multilinear enumerative techniques. Linear and Multilinear Alge-
bra, 2:341{352, 1975.

241

[802] Helmut Wielandt. Finite Permutation Groups. Academic Press, New York, 1964.

[803] Jack Wisdom. The origin of the Kirkwood gaps: A mapping for asteroidal motion near the
3=1 commensurability. Astronomical Journal, 87(3):577, March 1982.

[804] Jack Wisdom. Chaotic behavior and the origin of 3/1 Kirkwood gap. Icarus, 56(1):51{74,
October 1983.

[805] Michael E. Wolf and Monica S. Lam. An algorithmic approach to compound loop
transformations. In Alexandru Nicolau, David Gelernter, Thomas Gross, and David Padua,
editors, Advances in Languages and Compilers for Parallel Processing, Research Monographs
in Parallel and Distributed Computing, pages 243{259. Pitman, London, 1991.

[806] Michael Joseph Wolfe. Optimizing Supercompilers for Supercomputers. Research Mono-
graphs in Parallel and Distributed Computing. MIT Press; Pitman, Cambridge, MA/London,
England, 1989.

[807] Ahnont Wongseelashote. Semirings and path spaces. Discrete Mathematics, 26:55{78,
1979.

[808] I-Chen Wu and Hsing-Tsung Kung. Communication complexity for parallel divide-and-
conquer. In Proceedings: 32nd Annual Symposium on Foundations of Computer Science,
pages 151{162, San Juan, Puerto Rico, 1{4 October 1991. IEEE Computer Society Press, Los
Alamitos, CA, 1991.

[809] Hans Wussing. The Genesis of the Abstract Group Concept: A Contribution to the History of
the Origin of Abstract Group Theory. The MIT Press, Cambridge, MA, 1984. Translation by
Abe Shenitzer of Hans Wussing's Die Genesis des abstrakten Gruppenbegri�es: ein Beitrag zur
Entstehungsgeschichte der abstrakten Gruppentheorie, Deutscher Verlag der Wissenschaften,
Berlin, 1969.

[810] J. Allan Yang and Young il Choo. Formal derivation of an e�cient parallel Gauss-Seidel
method on a mesh of processors. Technical Report TR-870, Yale University Department of
Computer Science, October 1991.

[811] J. Allan Yang and Young il Choo. Formal derivation of an e�cient parallel Gauss-Seidel
method on a mesh of processors. Technical Report TR-870, Yale University Department of
Computer Science, October 1991.

[812] J. Allan Yang and Young il Choo. Formal derivation of an e�cient parallel 2-D Gauss-
Seidel method. In Proceedings of the 6th International Parallel Processing Symposium, pages
204{207, Beverly Hills, CA, 23{26 March 1992. IEEE Computer Society Press, Los Alamitos,
CA, 1992.

[813] J. Allan Yang and Young il Choo. Metalinguistic features for formal parallel-program
transformation. In 4th IEEE International Conference on Computer Languages, pages 65{75,
San Francisco, 20{23 April 1992. IEEE Computer Society Press, Los Alamitos, 1992.

[814] Michael Yoeli. A note on a generalization of boolean matrix theory. American Mathemat-
ical Monthly, 68:552{557, 1961.

[815] Michael Yoeli. Binary ring sequences. American Mathematical Monthly, 69:852{855, 1962.

242

[816] Bryant Whittier York. Implications of parallel architectures for permutation group com-
putation. In Larry Finkelstein and WilliamKantor, editors, Groups and Computation: Work-
shop on Groups and Computation, volume 11 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 293{313, Rutgers, NJ, 7{10 October 1991. American
Mathematical Society, Providence, RI, 1993.

[817] Bryant Whittier York and Ottorino Ori. A fast parallel method for exhaustive C60

enumeration. In Richard Sincovec, editor, Proceedings of the 6th SIAM Conference on Parallel
Processing for Scienti�c Computing, volume 1, pages 282{285, Norfolk, VA, March 22-24 1993.

[818] G. Yuval. An algorithm for �nding all shortest paths using N2:81 in�nite-precision multipli-
cations. Information Processing Letters, 4(6):155{156, March 1976.

[819] Ernst Zermelo. �Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels
[On an application of set theory to the theory of playing chess]. In Ernest William Hobson
and Augustus Edward Hough Love, editors, Proceedings of the Fifth International Congress of
Mathematicians, pages 501{504, Vol. 2, Cambridge, England, 22{28 August 1912. Cambridge
University Press, Cambridge, England, 1913.

[820] Ernst Zermelo. An application of set-theory to the theory of chess-playing. FIRBUSH
News, 6:37{42, 1976. Translated from the German by M.D. Grant.

[821] Xiru Zhang, Michael McKenna, Jill P. Mesirov, and David Leigh Waltz. The
back-propagation algorithm on grid and hypercube architectures. Parallel Computing,
14(3):317{327, August 1990.

[822] Xiru Zhang, Michael McKenna, Jill P. Mesirov, and David Leigh Waltz. An
e�cient implementation of the back-propagation algorithm on the Connection Machine CM-2.
In David S. Touretzky, editor, Advances in Neural Information Processing Systems 2, pages
801{809. Morgan Kaufmann, San Mateo, CA, 1990.

[823] Feng Zhao. AnO(N) algorithm for three-dimensionalN -body simulations. Technical Report
AI-995, MIT Arti�cial Intelligence Laboratory, Cambridge, MA, October 1987.

[824] Feng Zhao and S. Lennart Johnsson. The parallel multipole method on the Connection
Machine. SIAM Journal on Scienti�c and Statistical Computing, 12(6):1420{1437, November
1991.

[825] O. A. Zharov and L. S. Kazarin. Towards a theory of group convolution. Problems of
Information Transmission, 29(3):292{294, July{September 1993.

[826] Si-Qing Zheng. SIMD data communication algorithms for multiply twisted hypercube. In
V.K. Prasanna Kumar, editor, Proceedings: the Fifth International Parallel Processing Sym-
posium, pages 120{125, Anaheim, CA, 30 April{2 May 1991. IEEE Computer Society Press,
Los Alamitos, CA, 1991.

[827] Hans P. Zima, H.-J. Bast, and Hans Michael Gerndt. SUPERB: a tool for semi-
automatic MIMD/SIMD parallelization. Parallel Computing, 6(1):1{18, January 1988.

[828] Hans P. Zima, Peter Brezany, Barbara Chapman, Piyush Mehrotra, and An-
dreas Schwald. Vienna Fortran|A language speci�cation version 1.1. Technical Report
ACPC/TR 92-4, Austrian Center for Parallel Computation, [Vienna, Austria], March 1992.

[829] Hans P. Zima and Barbara Chapman. Supercompilers for Parallel and Vector Com-
puters. ACM Press Frontier Series. ACM Press; Addison-Wesley, New York/Wokingham,
England/Reading, MA, 1990.

