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Abstract

This thesis describes techniques for the design of parallel programs that solve well-structured

problems with inherent symmetry.

Part I demonstrates the reduction of such problems to generalized matrix multiplication

by a group-equivariant matrix. Fast techniques for this multiplication are described, in-

cluding factorization, orbit decomposition, and Fourier transforms over �nite groups. Our

algorithms entail interaction between two symmetry groups: one arising at the software

level from the problem's symmetry and the other arising at the hardware level from the

processors' communication network.

Part II illustrates the applicability of our symmetry-exploitation techniques by presenting

a series of case studies of the design and implementation of parallel programs.

First, a parallel program that solves chess endgames by factorization of an associated di-

hedral group-equivariant matrix is described. This code runs faster than previous serial

programs, and discovered a number of results.

Second, parallel algorithms for Fourier transforms for �nite groups are developed, and pre-

liminary parallel implementations for group transforms of dihedral and of symmetric groups

are described. Applications in learning, vision, pattern recognition, and statistics are pro-
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posed.

Third, parallel implementations solving several computational science problems are de-

scribed, including the direct n-body problem, convolutions arising from molecular biology,

and some communication primitives such as broadcast and reduce. Some of our imple-

mentations ran orders of magnitude faster than previous techniques, and were used in the

investigation of various physical phenomena.
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Foundations
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Chapter 1

Introduction

Parallel processing has had a major impact on the development of computer science. There

is an extensive literature on parallel architectures, parallel programming languages, and

parallel algorithms, which has achieved insight into the capabilities and limitations of par-

allel machines. However, the diversity and complexity of parallel architectures have created

a fundamental challenge for programmers, namely, the e�cient mapping of algorithms to

the parallel environment. Although e�cient practical algorithms for the solution of many

speci�c problems on particular parallel architectures are known, the development of a gen-

eral methodology for the design of parallel algorithms that are practical and e�cient on a

wide variety of architectures is an active area of research.

This thesis is a step in that direction. We propose a paradigm for structuring and designing

programs for parallel computers. Our paradigm is described informally and advocated by

means of a collection of case studies on massively parallel architectures.
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The intuitive motivation for our paradigm is that we are striving for a uniform method

of eliciting the underlying algebraic structure in the problems to be solved. The existence

of some algebraic structure is particularly important in the context of parallel comput-

ing, insofar as parallel computers typically perform more e�ciently on highly structured

computations than they do on unstructured computations.

Typically, the algebraic structure takes the form of a group of transformations that leave

invariant salient computational characteristics de�ning the problem. In addition to parallel

algorithms for exploiting this symmetry, a theme that permeates this thesis is the primacy

of symmetry considerations in a broad range of applications, including string matching,

particle simulation, and communication primitives.

Our method comprises the following two main steps:

First: The problem is translated into a generalized matrix multiplication problem; that is,

a matrix multiplication problem in which addition and multiplication are replaced by more

general operators. The formulation of a problem within the context of matrix multiplication

has several advantages. For example, highly optimized linear algebra libraries for parallel

machines can be used, and the considerable machinery of multilinear algebra techniques

can often be brought to bear upon the new formulation.

Second: Symmetry in the original problem will be captured by symmetry in the matrix

into which the problem has been translated; mathematically, the associated matrix will

commute with a group of permutation matrices.
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These invariant matrices admit several parallelizable techniques for their e�cient multipli-

cation.

The �rst technique is simply factorization; namely, we factor the matrix into simpler matri-

ces, for example, into matrices that represent primitive operations supported by the target

architecture. This technique emphasizes the use of the tensor product to extract paral-

lelism, and was strongly inuenced by the success of the tensor-product formulation of

parallel signal-processing algorithms.

The second technique for the manipulation of invariant matrices is called orbit decomposi-

tion. Orbit decomposition is a formalization of the familiar technique of caching computa-

tions in order to reuse the data later. Orbit decomposition can somtimes induce a particular

routing pattern in the parallel architecture: a Cayley graph. This Cayley graph is a graph-

ical representation of the symmetry inherent in the original problem. As it happens, the

network connecting the individual processors in a number of classes of parallel machines

is also, in many cases, a Cayley graph; our methodology thereby gives rise to an interac-

tion between a Cayley graph arising at the software level, from symmetry considerations,

and a Cayley graph arising at the hardware level, from the interconnection network of the

processors.

The third technique we use for manipulation of invariant matrices is group Fourier trans-

forms. These generalize the familiar discrete Fourier transformations, the Cooley-Tukey

implementation of which has been inuential in many areas of computer science. Group

Fourier transforms are based on techniques of group representation theory, which can be
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loosely viewed as the use of matrices to model symmetry, and have undergone energetic

development by a number of earlier researchers. This earlier work has demonstrated many

applications for general group Fourier transforms, in areas such as machine learning, VLSI

design, vision, random walks, and graph algorithms, and has provided fast algorithms for

many classes of �nite groups. Although some amount of mathematical machinery, primarily

basic representation theory, is necessary to understand these fast algorithms, we have tried

to carefully encapsulate areas of this thesis which require such knowledge. Their salient

feature for our purposes is that they allow fast parallel algorithms for multiplication by in-

variant matrices. Work-e�cient parallel group Fourier transform algorithms are introduced

in this thesis, improving on several suboptimal constructions in the literature.

These three techniques|factorization, orbit-decomposition, and group Fourier transforms|

are the tools we use to exploit symmetry.

Before continuing with the overview of the thesis, we emphasize two main points:

First, it should be clear that there are many classes of problems to which the paradigm

we propose does not readily apply. For example, problems with unstructured data-access

patterns, or data-access patterns that are not known at compile-time, would be a poor match

for this approach. Typical examples of such problems include open-ear decomposition in

graph problems, forward alpha-beta search with pruning heuristics, and several classes of

combinatorial optimization problems. Nevertheless, our paradigm can be used to solve

structured subproblems of an unstructured problem. For example, the adaptive multipole

method is a dynamic tree algorithm for particle simulation to which we cannot usefully
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apply our ideas, but even the adaptive multipole method must, at some point, call a direct

\brute-force" particle simulation routine at which point our ideas apply. Similarly, although

the parallelization of alpha-beta chess programs is beyond the scope of this work, the leaf-

evaluation subroutines of such programs typically rely on a specialized endgame module of

the type described in this thesis.

Second, we remark that the �eld of parallel processing is changing so fast, and with such a

complex interconnection between economic, technological, hardware, and software factors,

that we cannot claim that our paradigm is the last word on the topic. In Part II, therefore,

we will not focus solely on our parallelization techniques. Instead, we will also describe a

number of applications that, we hope, will be seen to have a beauty and interest independent

of the ultimate viability of our main program; these case studies will also be useful considered

only as examples of the successful design and implementation of parallel algorithms.

1.1 Overview of thesis

Part I presents the mathematical underpinnings of our work and gives some background on

parallel processing.

Chapter 2 provides a bird's-eye view of parallel processing. Section 2.1 describes a few

common hardware con�gurations and introduces some interconnection networks. Section

2.2 discusses the problems of programming parallel machines and describes several parallel

programming models.



17

Chapter 3 reviews basic group theory and examines the previous work on the relation-

ship between groups and parallel processing, particularly the work on the application of

Cayley graphs as the interconnection networks of a parallel machine. Some parallel group-

theoretical algorithms, such as �nding a composition series for a group, are also discussed.

This chapter also describes related work by Bright, Kasif, and Stiller in the area of exhaus-

tive search using group models, which resulted in the best known theoretical algorithm for

parallel knapsack.

Chapter 4 reviews some basic linear algebra and its interaction with parallel processing,

highlighting the role of the tensor product in expressing parallel and vector algorithms.

Chapter 5 concludes Part I. It describes the programming methodology whose application

will be illustrated in Part II of this thesis.

Part II surveys several applications of the framework described in Part I.

Chapter 6 illustrates the orbit decomposition, which is appropriate when both the operator

and the data are invariant. Both factorization and orbit-decomposition are used in a parallel

program that solves chess endgames. The algorithm entails routing along the Cayley graph

of the dihedral group of order 8, one of the smallest non-Abelian groups. Signi�cant speedup

over previous implementations on the small problems we studied was observed, but timing

comparison for the larger instances versus other techniques is not available, since these

problems are currently extremely time-consuming when solved using classical techniques.

This chapter also contains a survey of new results discovered by the program, and presents

historical information on the development of chess endgame analysis, some of which has
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been published here for the �rst time.

Chapter 7 introduces group Fourier transforms and describes several applications. The

group Fourier transform generalizes the classical Fourier transform to the case in which

the indexing is performed over an arbitrary �nite group. After recapitulating earlier work

in the area, an e�cient parallelization of group Fourier transform is presented, improving

on previous parallel group Fourier transform algorithms. Potential applications for parallel

algorithms in learning, VLSI design, pattern-matching, analysis of ranked data in statistics,

random walks on groups, and graph theory are briey presented. In order to illustrate a

typical application, the parallel group Fourier transform algorithms are applied to gener-

alized string matching problems, whose associated matrices have entries in a domain with

little algebraic structure, and to which, therefore, group representation techniques do not

directly apply. Preliminary massively parallel implementations of dihedral and symmetric

group Fourier transforms are described.

Chapter 8 illustrates factorization by case studies of several scienti�c-computing applica-

tions. The symmetry groups that are considered in this chapter are Abelian, as contrasted

with previous chapters, which consider non-Abelian symmetry groups. The speci�c imple-

mentations are:

1. The communication primitives from Fortran 90 are described within a multilinear-

algebraic formulation, and it is shown how this formulation led to simple techniques

for speeding them up in practice on several parallel architectures.



19

2. A parallel direct n-body solver, which uses special-purpose microcode and factoriza-

tion techniques for the modeling of ux vortices in superconductors, is described. Our

techniques resulted in speedup of approximately one order of magnitude compared to

the previous methods in use for solving this problem on the CM-200.

3. The parallel pre�x primitive, a common tool in parallel processing algorithms re-

search, is developed within our framework, and the standard logarithmic time algo-

rithm for parallel pre�x is rederived. This derivation is then used in the design of

an implementation for computing statistical properties of binary strings arising from

a computational biology application. Once again, signi�cant speedup was observed

compared to previous methods.

Finally, Chapter 9 presents conclusions and ideas for future work.
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Chapter 2

Parallel computing

2.1 Parallel computing: Hardware

Parallel computation refers to the utilization of multiple processors acting in concert to

solve a single problem. The earliest reference known to this problem arguably comes from

General L. F. Menabrea's 1842 commentary on the analytical engine, quoted in [374, p. 8]:

Likewise, when a long series of identical computations is to be performed,
such as those required for the formation of numerical tables, the machine can
be brought into play so as to give several results at the same time, which will
greatly abridge the whole amount of the processes.

It has been argued as well that the ENIAC, the �rst general-purpose electronic computer,

was highly parallel, insofar as it comprised a large number of independent functional units

[339,495].

In 1959, Holland proposed a collection of independently executing processors that fore-

shadowed many later developments [376]. The early RW-400 computer also used some
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parallelism, as the following quotation from Porter's 1960 Datamation article illustrates:

The RW-400 Data System is a new design concept. It was developed to
meet the increasing demand for information processing equipment with adapt-
ablility, real-time reliability and power to cope with continuously-changing in-
formation handling requirements. It is a polymorphic system including a va-
riety of functionally-independent modules. These are interconnectable through
a program-controlled electronic switching center. Many pairs of modules may
be independently connected, disconnected, and reconnected, in microseconds
if need be, to meet continuously-varying processing requirements. The system
can assume whatever con�guration is needed to handle problems of the mo-
ment. Hence it is best characterized by the term `polymorphic'|having many
shapes [606, pp.8{9].

The 1962 Conferences of the American Federation of Information Processing Societies con-

tained a number of parallel computer designs, including the D825, a coarse-grained machine

intended for use in military applications [52], and the highly inuential SOLOMON sys-

tem [697]. SOLOMON was intended primarily for use in military applications and utilized

an array-based design comprising 210 processors interconnected in a square grid. Its design

was extremely inuential on further SIMD architectures, such as the DAP and the ILIAC

IV [137].

The mid-eighties saw the introduction of the Connection Machine family of massively-

parallel architectures. The CM-1 and CM-2/200 each had up to 64K bit-serial processors,

and their introduction and support software had a substantial impact on the development

of the �eld. A number of other parallel processors have also been introduced, such as the

N-Cube and the Intel Paragon. Several inuential vendors have recently stopped producing

massively-parallel machines, however, raising questions about the viability of very-large-

scale parallel processing [438].
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There are several taxonomies by which parallel computers are classi�ed. Determinants

characterizing current parallel processors are: MIMD vs. SIMD;1 shared-memory vs. local-

memory; the type of interconnection network used; the number and type of the individual

processors.

There are also a large number of theoretical models which purport, to varying degrees, to

represent the real complexity of algorithm execution on parallel architectures. These range

from models in which communication overhead is entirely neglected, such as the CREW

PRAM [786], to models in which the interconnection network becomes paramount, such as

on arrays of automata [460]. Most of our results will be based on timing measurements

on actual machines, and we will try to avoid excessive formality in the description of a

theoretical model; although the algorithms we give are easily parallelizable on a PRAM,

they are parallelizable on a wide class of other models as well.

For speci�city, we briey describe the architecture on which many of the algorithms de-

scribed here were implemented: the CM-2/200 family. The CM-2 comprises 216 bit-serial

processors clocked at 7 MHz and driven from a front-end workstation. The CM-200 di�ers

mainly in being clocked at 10 MHz. It comprises 212 chips, interconnected in a 12-cube2

1 Processors such as the CM-200 are SIMD: each processor executes the same set of instruc-

tions (the taxonomic distinction SIMD/MIMD/SISD/MISD seems to be due to Flynn [298]). The

NCUBE, Intel Paragon, CM-5, and others are MIMD, in which each processor executes a di�erent

control thread; in many applications, however, these processors execute primarily in SIMD mode.

2 A k-cube can be thought of as the set of binary strings of length k, with a direct communication

link between any two nodes with unit Hamming distance. Alternatively, it is the vertices and edges
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Figure 2.1: Embedding of a one-dimensional torus (i.e., a circle) by Gray coding the coor-
dinates of each element of the grid. This �gure illustrates a 3-bit Gray code, which can be
thought of as an embedding of a cycle of length 8 into a 3-cube.

with 16 processors for chip. However, nearly all the system software supports the model of

there being 216 processors connected in a 16-cube, which is the model we shall assume for

the purposes of this thesis.3 Each processor is driven from a single pipelined instruction

stream, and contains up to 1 MBIT DRAM. The system-software supports virtual con�g-

uration of the processors in a k-dimensional torus using familiar techniques for embedding

grids in hypercubes (see Figure 2.1) [333,371].

The CM-2 can also be con�gured in slicewise mode, which permits more e�cient utilization

of the Weitek oating point units. In this mode, the bit-serial structure is ignored, and

the computer is envisioned as comprising 211 32-bit processors. This mode of operation

is particularly interesting because both vectorization and parallelization issues must be

of the unit cube in Euclidean k-space.

3 The on-chip location of the processors only makes a di�erence in certain fairly obscure details

of the chess endgame algorithm; this issue will be addressed in Chapter 6.
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addressed in order to attain high bandwidth. Our scienti�c applications utilized slicewise

mode, and our non-scienti�c applications used bit-serial mode.

The CM-2 is an extreme model of parallelism, insofar as it comprises large numbers of

weak, SIMD processors. Therefore, successful implementation of an algorithm on the CM-

2 tends to imply that the algorithm is parallelizable as well in stronger computational

models, assuming the bandwidth and size is comparable. For example, the CM-5 is a

MIMD architecture with a more powerful interconnection network and processors than

the CM-2, but our results to apply to this kind of architecture as well [502, 503, 745].

Representative CM-5 and Cray timings are presented in Chapter 8 and CM-5 group Fourier

implementations are described in Chapter 7.

2.2 Parallel computing: Software

As mentioned section 2.1, the ENIAC itself had a parallel design. It is interesting and

instructive that the ENIAC was soon recon�gured to operate in serial mode, primarily

because of the di�culty of its programming. In the words of Burks, one of the original

designers:

The ENIAC's parallelism was relatively short-lived. The machine was com-
pleted in 1946, at which time the �rst stored program computers were already
being designed. It was later realized that the ENIAC could be reorganized in
the centralized fashion of these new computers, and that when this was done it
would be much easier to put problems on the machine: : :Thus the �rst general-
purpose electronic computer, built with a parallel decentralized architecture,
operated for most of its life as a serial centralized computer [150] [374, p. 10].
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Software issues remain the primary obstacle to greater penetration of highly-parallel com-

puting. The plethora of variant high-performance architectures, combined with the rapidity

with which architectures and their operating-system interfaces changes, has only increased

the magnitude of the problem of attaining high-bandwidth on end-user applications: hence

the so-called \parallel software crisis." A number of tools and programming paradigms have

been proposed to alleviate the parallel software crisis.

The parallel programming paradigm most relevant to the methodology advocated in this

thesis is data-parallel programming. Data parallelism is a style of coding advocated partic-

ularly for SIMD massively parallel architecture; the term was coined in an inuential 1986

paper by Hillis and Steele [367], who gave data-parallel solutions for several classic prob-

lems such as computing the sum of an array of numbers, general parallel pre�x algorithms,

regular-language parsing, and several graph algorithms.

The data-parallel coding paradigm is intended to act on large amounts of data with com-

paratively few threads of control. Many SIMD languages directly support this paradigm,

such as CM-LISP [705], Paralation LISP [656], *LISP [743], C* [635], NESL [133], and

ILIAS [522], and it is implicitly supported by the array functions of Fortran 90 [658]. Gary

Sabot has discussed general methods for adding data-parallelism capabilities to an arbitrary

language using the paralation model [657].

The success of the data-parallel paradigm inspired both the implementation of computer

languages which directly supported it, and formal semantic treatment of data-parallel con-

structs.
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There have also been a number of formal approaches to data parallel coding, many of which

have been implicitly inspired by Backus' famous Turing award lecture, in which he advocated

using algebraic primitives to model the interaction of complex operators [77]. Many of the

attempts to formalize the data-parallel style have the avor of a formal version of APL,

which contained already most of the key data parallel programming constructs [395].

The Bird-Meertens theory of lists is one of the most well-known of these [127{130]. This

posits as its fundamental data-type the list, and gives primitives, such as atten, reduce,

concatenation, and so on to manipulate them. It is possible to derive an algebraic theory

of such operations of considerable expressiveness.

The Bird-Meertens theory of lists can be generalized to encompass the theory of categorical

data-types [88, 692, 693, 695]. In the theory of categorical data-types, data values are pre-

sumed to take their values from a particular category, which is usually presumed to have

some additional structure, such as being Cartesian closed. Many constructions in stan-

dard programming languages, such as ordered-pair and arrays of arbitrary data-type, can

then be expressed as operations on the underlying category. Since programming language

functions can be considered to be functors, algebraic tools can be utilized in deriving and

verifying programs. There have also been a number of attempts to build a general theory

of arrays [109,404,493,568,569], most of which are closely related to APL and to the Bird-

Meertens theory of lists. Although these methodologies are extremely general and powerful,

they tend to sacri�ce peak performance.
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Finally, it is worthwhile asking why the programmer should need to concerned at all with

the parallelization of the code. In fact, the most ambitious parallel programming paradigm

is to use parallelizing compilers, which, ideally, reschedule and distribute the computation

in such a way that the source code, which can be written as if for a sequential machine,

executes e�ciently on the target machine [806,829]. Parallelizing compilers include systems

such as Fortran D [370], SUPERB [827], and Vienna Fortran [176,828]. A survey, including

additional references, is in Amarasinghe et al. [25].

Current parallelizing compilers, however, are fairly limited in the kinds of code that they

can e�ciently parallelize [220, 622, 767,805]. Such compilers tend to perform better when

the parallel structure of the algorithm is transparent in the source program.

Because our paradigm requires explicit restructuring of the algorithm by the programmer,

it is much more limited in scope than a full parallelizing compiler would be. There are

several reasons why this smaller goal was pursued, rather than striving directly to build

a parallelizing compiler. First, many of the applications we considered were intended to

be solved by end-users, such as physicists or scientists, and it was necessary to use the

existing production languages, which require parallelization speci�ed by the programmer,

in order to solve their problems as rapidly as possible|for deriving fast programs on end-

user machines, hand-parallelization is more e�ective than current parallelizing compilers.

Second, parallelizing compilers produce much more e�cient code when the algorithm used

is as transparently parallel as possible, and this situation seems likely to continue in the

near future. Third, we think that many of our techniques readily lend themselves to auto-
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matic implementation, using group theoretical software such as GAP [669] and MAGMA,

and, thus, our restructuring algorithms could perhaps be implemented as part of the loop-

transformation phase of a parallelizing compiler [81,82].
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Chapter 3

Group theory and parallel

processing

Group theory provides a convenient and powerful language for the analysis of symmetry,

and it therefore is one of the fundamental tools of this thesis. This chapter provides basic

background material on group theory and also introduces the notion of a Cayley graph,

which is a graph associated in particular way with a group. Cayley graphs provide a

connection between group theory and graph theory, and have proven to be useful in the

analysis of the interconnection networks on parallel processors; in fact we will see that

many interconnection networks are Cayley graphs. The Cayley graphs that will arise in the

applications discussed in Part II of the thesis, by contrast, will arise at the software level;

the implementation of these algorithms on a parallel architecture therefore may entail an

embedding of a Cayley graph arising from problem symmetry into a Cayley graph arising

from the physical interconnection network of the parallel architecture.
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3.1 Basic de�nitions

The material in this subsection comprises some standard facts on �nite group theory, most

of which are contained in elementary texts on the subject.4

A group is a triple hG; e; �i where G is a set and � is a binary, associative and invertible

function �:G� G! G with left and right identity e 2 G:5

The history of the de�nition is long and fascinating. Some authors have claimed that

group-theoretical ideas are implicit in symmetrical designs found in geometrical ornaments

thousands of years ago. Manuel Moschopulos used permutation-like operations in his 14th-

century analysis of magic squares, and Levi ben Gershon, in \Practice of the Calculator,"

1321, computed the number of permutations of n elements. These early usages are so

remote from contemporary understanding, and were so isolated from the mainstream of

4 The text by Wielandt on permutation groups is considered a classic, and is relevant to our

work [802]. We found Rotman's monograph to be clear and useful [641]. For more advanced refer-

ences, particularly to applications of wreath products and multifarious applications to combinatorial

problems, we recommend Kerber's monograph [439]. Deep structural information is contained in

the reference [64]. We will only need basic results from the representation theory of �nite groups,

for which Serre [678] is a standard textbook, and Collins [197] provides a careful and leisurely intro-

duction. Fulton and Harris' monograph is a lucid and apposite introduction to the topic [310]; see

Coleman for a concrete descriptions of induced representations [195]. For a more abstract point of

view, the standard reference is Curtis and Reiner [214].

5 We usually just call the group itself G, since the identity and law of multiplication will normally

be clear from the context. Instead of writing �(g; h), for g; h 2 G, we write g � h, or even gh.
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development, however, that, in my opinion, they should not be considered to be relevant

examples or discoveries of groups; if there is a relation to the modern conception of groups,

it is an extremely tenuous one [809, pp.18{19]. The modern concept of an abstract group is

more properly considered to have arisen from the work of Galois on permutation groups of

roots of polynomials, as well as the work of Vandermonde, Lagrange, Ru�ni, Abel, Serret,

Jordan, Cayley, Klein, and others. For a complete discussion of the issues, the reader is

referred to the texts [172,792,809].

A group G acts on a �nite set X if to each g 2 G and x 2 X is associated a unique gx 2 X

such that ex = x and g(g0x) = (gg0)x.

If H � G and if H forms a group under the inherited multiplication in G then H is called

a subgroup of G. The group generated by a set of elements in G is the intersection of all

subgroups of G containing that set.

Because each g in a group acting on X induces a permutation of the elements of X , in this

case one can think of G as being a permutation group, that is, a group whose elements

are permutation and whose multiplication is composition. Although (in accordance with

modern conventions) we have de�ned the notion of action in terms of the abstract axioma-

tization of group, historically the notions of a permutation and transformation group long

preceded any explicit axiomatization [809, pp.230{251]. We will often elide the distinction

between the elements of a group and the transformations of X that they induce.

The notions of group and group action are closely associated with the concepts of symmetry

and of invariance. Informally, consider a property that may be possessed by the elements
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of a set X . Let S be a set of one-to-one transformations from the set to itself each member

of which sends any element in the set to another element that has the given property if

and only if the �rst element does. For example, suppose that X is the set of vertices of

the unit cube in Euclidean 3-space R3, thus X = f(i; j; k): i; j; k 2 f0; 1gg. Color the 4

bottom vertices, f(i; j; 0)g, red, and color the 4 top vertices blue. Let r be the operation of

rotating the cube counterclockwise 90� about its vertical axis (the line parallel to the z-axis

and passing through (12 ;
1
2 ; 0)), and let f be the operation of reecting the cube about the

plane parallel to the yz-axis and bisecting the cube (i.e., the plane normal to the x axis and

passing through the point (12 ;
1
2 ; 0)). Then it is easy to see that r and f induce one-to-one

mappings from X to itself, and that each sends a red vertex to another red vertex, and

a blue vertex to another blue vertex. Therefore, the property of vertex color is invariant

under f and r, so that it is invariant under the group generated by the fr; fg, which, by the

way, is a group of 8 elements called D4.

If x 2 X and G acts on X then Gx := fgx: g 2 Gg is called the orbit of x, and Gx :=

fg 2 G: gx = xg is called the stabilizer of x. Any two orbits are disjoint or identical, and

the number of elements (order) in Gx is the order of the group divided by the order of the

stabilizer of x. If Gx = G then x is called invariant or equivariant. The set of orbits is

called the orbit space X=G: The size of the orbit space might be much less than the size of

X , and, in the presence of symmetry, computations on the domain X can often be replaced

by equivalent computations on the domain X=G: This computational savings represents an

important motivation for considering symmetry.
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An action that has only one orbit is called transitive. In the example above, the D4 action

has two orbits, namely the set of red vertices and the set of blue vertices. The stabilizer

D4v of any vertex v contains 2 elements, the identity and a reection about some plane;

however, these stabilizers can be di�erent as v varies. For example, jD4j = 8, and, for any

vertex, jD4vj = 2; there are, thus, 8
2 = 4 elements in the orbit of v, which, of course, is

correct.

Any subgroup H � G acts on G by left multiplication. The orbit of a group element g 2 G is

Hg and is called a (right) coset of x and H; the number of these cosets is jGj
jHj . The conjugate of

g by h is h�1gh; a group acts on itself by conjugation, as well as on its set of subgroups. Any

subgroup �xed by the conjugation action is called normal . The cosets of a normal subgroup

H form the quotient group G=H under the natural multiplication of cosets gH � g0H = (gg0)H.

If G and G0 are two groups, then a homomorphism f :G ! G0 is a function from G to G0

that sends the identity of G to the identity of G0 and for which f(g � h) = f(g) � f(h).

If f is one-to-one and onto then it is called an isomorphism and G and G0 are said to be

isomorphic. Because an isomorphism of groups preserves group structure, it can be thought

of as a renaming of the group elements, and isomorphic groups, therefore, are not normally

considered to di�er in any essential way.

The direct product of groups G � G0 is the group of ordered pairs of elements from G and

G0, with multiplication de�ned component-wise:

(g; g0) � (h; h0) = �
g � g0; h � h0�
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The cyclic group Cn is any group isomorphic to the group of integers modulo n, Zn under

addition. The symmetric group Sn is the group of permutations of the integers f0; 1; : : : ; n�

1g with multiplication given by composition of permutations.

An Abelian group is a group whose multiplication operation is commutative: gg0 = g0g for

all g; g0 2 G. It can be shown that any �nite Abelian group is isomorphic to a direct product

of cyclic groups.

Now, suppose that G acts on two sets X and Y , and that there is a function f :X ! Y .

We say that f is equivariant (or invariant) if f(gx) = gf(x) for all x 2 X and g 2 G.

This condition can also be phrased by saying that f commutes with G. This de�nition

is important because it formalizes the notion that f \respects" any symmetry in X . If f

is equivariant then f induces a well-de�ned function f=G:X=G ! Y=G, and so f may be

replaced, in a way, with the function with a smaller domain.

It is worth remarking that the notion of an invariant f is a special case of the notion of an

invariant point of a group action; G acts on the set of functions Y X via conjugation, and f

is an invariant of that action.

3.2 Groups and matrices

Recall that a vector space V over the complex numbers C is an Abelian group on which

the additive and multiplicative groups of C each act and for which r(v � w) = rv � rw

and r0 = 0, where r 2 C and 0;v;w 2 V. We consider only �nite dimensional vector-
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spaces here, each of which has a basis of n elements whose linear combinations uniquely

generate the space. The linear transformations from a vector space Vn of dimension n

to a vector space Vm of dimension m is, given a basis for the spaces, uniquely associated

with a an invertible n �m complex matrix M: In the sequel, therefore, we will frequently

identify a matrix and its associated linear transformation, and we will frequently identify

n-dimensional spaces of C with complex n-tuples.

Let feni gn�1
i=0 and femi gm�1

i=0 be bases for Vn and Vm respectively. The direct sum Vn�Vm is

the n+m dimensional vector space of ordered pairs of elements from Vn and Vm. The tensor

product Vn 
Vm is the mn-dimensional space whose basis elements are feni 
 emj gn�1;m�1
i;j=0

[530, 531]. The tensor power
NjV is V 
 � � � 
 V, with j factors. The symmetric power

SymjV is the subspace of
NjVn whose basis is given by all elements of the form

n
eni1 
 � � � 
 enij : 0 � i1 � i2 � � � � � ij � n� 1

o
:

Let Mn
m be the set of m � n complex matrices, and let M 2 Mn

m be an m � n matrix,

M = (Mij)
m�1;n�1
i=0;j=0 . Let us write I for the index set 0; 1; : : : ; m� 1 of the rows of M, and J

for the index set 0; 1; : : : ; n� 1 of the columns. Now suppose that G acts on both I and J .

We say that M is G-equivariant if

(8i 2 I) (8j 2 J) (8g 2 G)Mij = Mgi;gj:

If I = J = G and G acts on itself by left multiplication, then a G-equivariant matrix is

called a G-circulant. A Cn-circulant is thus the usual circulant matrix|constant on the

diagonals with wraparound [223].
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In order to see the relationship between the de�nition of G-equivariant matrices and our

earlier de�nitions, we de�ne the concept of group representation.

Let V be a vector space over C of dimension n; V can be thought of as the space of n-tuples

of complex numbers. An invertible linear transformation from V onto itself corresponds

to a nonsingular matrix in a natural way, and the linear transformation and its associated

matrix will often be identi�ed in the sequel. The nonsingular n� n matrices form a group

GLn under matrix multiplication. A group homomorphism � from G to GLn is called a

representation of G of degree n. The matrix corresponding to the linear transformation

that permutes the basis elements has precisely one \1" in each row and column with its

other entries being 0; such a matrix is called a permutation matrix. A representation �

such that �(g) is always a permutation matrix is called a permutation representation. A

representation can also be thought of as an action by a group G on V in which the map

induced by each g 2 G is a linear transformation of V (or an n� n matrix).

Now given two permutation representations of G, � and �, of degrees n and m with asso-

ciated spaces V and W respectively, and given a linear map M:V ! W, the following are

equivalent:

� M is equivariant with respect to the G actions on V and W.

� M � �(g) = �(g) �M, for all g 2 G.

� M is G-equivariant.

.
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Representation theory will be discussed in more detail in Chapter 7, where it will be used

in the context of fast group Fourier transforms.

3.3 Cayley graphs and interconnection networks

Group theory has been used extensively in the design and modeling of interconnection

networks for parallel computers. These interconnection networks can connect processors to

memory modules or, in the cases we consider here, processors to one another.

An interconnection can be viewed graphically as follows: each processor, together with

its local memory, is represented as a vertex in the interconnection graph, and wires phys-

ically linking processors are represented as edges connecting the corresponding vertices.

More complicated models are also possible, in which some vertices represent, for example,

switches.

It is often of interest to know how di�cult it is to route a given permutation of the processors

given a speci�ed interconnection network. In a series of classic papers from the early 1960s,

Vaclav E. Bene�s, whose original motivation was the analysis of telephone switching networks,

showed that group theoretical concepts could be used to analyze the set of permutations

routed by a network [102{104].

The Cayley graph of a group G with respect to a subset S � G is a directed graph in which

each edge is colored from a set of jSj colors [800]. The vertices of the graph are the elements

of G, and there is an edge from vertex g to vertex g0 whenever there is some h 2 S such
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that hg = g0; in this situation, the edge between g and g0 is colored h. In practice the term

Cayley graph is normally reserved for the situation when S generates G, which is equivalent

to requiring that the Cayley graph be connected; this is reasonable, since a disconnected

interconnection network is rarely useful in a multiprocessing environment.

Beginning from at least the 1960s a number of interconnection networks were proposed and

implemented. These interconnection networks were designed to minimize cost and maximize

the number of permutations that could be routed within a �xed time. As early as 1984,

Carlsson, Sexton, Shensa, and Wright showed that Cayley graphs could be used to model

interconection networks [162]. Later, Carlsson, Cruthirds, Sexton, and Wright observed

that important classes of networks were Cayley graphs and thereby were able to simplify

analysis and modeling of networks [160,163].

Group theory was explicitly proposed as a foundation for the modeling and analysis of

interconnection networks in an unpublished manuscript of Carlsson, Fellows, Wright and

Sexton (1985) [161], where the utility of a group-theoretical approach to network design,

network description, network simulation, and scheduling was advocated. Fellows' 1985

dissertation discussed many of these matters in more detail, including analyses of families

of interconnection networks including hypercubes, tori, cube-connected cycles, buttery

networks [282].

Akers and Krishnamurthy (1984, 1987) [14,15] observed that group graphs had good fault-

tolerance capabilities.

We now consider several concrete examples of Cayley graphs.
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The hypercube was introduced in section 2.1. It is a popular interconnection network in

which processors are at the vertices of a unit cube in Rk: In fact, the hypercube of dimension

k is simply the Cayley graph for the cross product of k copies of the cyclic group C2 with

respect to the generating set f(1; 0; 0; : : : ; 0); (0; 1; 0; : : : ; 0); : : : ; (0; : : : ; 0; 1)g.

A Cayley graph of a non-commutative group is shown in, Figure 3.1, where the Cayley

graph for the order 8 dihedral group D4 (see section 3.1) with respect to the generators

fr; fg. The problem of embedding this D4 Cayley graph into a hypercube arises in Chapter

6; (compare �gure 6.4).

The cube-connected cycles, which were shown to be capable of a wide class of computa-

tions, particularly the so-called ASCEND-DESCEND algorithms (which include fast Fourier

transforms) in the early 1980s by Franco P. Preparata and Jean Vuillemin [610] in a famous

paper, are wreath products of cyclic groups.

Fred Annexstein, Marc Baumslag, and Arnold L. Rosenberg generalized the Cayley graph

construction to group action graphs. If G acts on X , and if S � G generates G, then group

action graph corresponding to G; S and X is the graph whose nodes are the elements X

and for which, for each x 2 X and g 2 S, there is an edge from x to gx: They studied many

embedding, routing, and simulation problems and presented formal methods for simulating

the certain kinds of group action graphs by others; they also studied the de Bruijn [609] and

shu�e-exchange networks [721], in addition to the networks described above [54{56,636].

Based on this early work, a wide class of Cayley graphs (and group action graphs) has been

proposed as possible interconnection networks. Richard N. Draper initiated the study of
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Figure 3.1: Cayley graph for D4. Solid lines correspond to rotation 90� and dotted lines
correspond to reection about the horizontal bisector. The generators are fr; fg with rela-
tions fr4 = e; f4 = e; rf = f3rg. Each node is labeled with a word whose product is the group
element at that node.
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supertoroidal networks, which are networks that are the Cayley graph of the semidirect

product of cyclic groups [248]. Routing algorithms and simulation algorithms were given;

the methods display an interesting mixture of group-theoretical, graph-theoretical, and

computational techniques [147,148,245,246]. The twisted hypercube network has also been

shown to be a group graph [261,267,826].

Cayley graphs have been particularly studied from the point of view of being classes of

graphs with small diameter, a common concern in interconnection network design [184,

250,274]. Lowell Campbell et al. have shown that even almost \randomly chosen" Cayley

graphs of non-Abelian linear groups (groups of matrices whose elements lie in a �nite �elds)

have surprisingly low diameter for their size [156].

Other applications of Cayley graphs, including some to game-playing, are described in

Cooperman, Finkelstein, and Sarawagi [202].

Our work di�ers from much of the work on interconnection networks insofar as we are

concerned primarily with Cayley graphs that arise at the software level. Our Cayley graphs

arise when the problem to be solved is phrased as a G-equivariant matrix M; it will be seen

to be necessary to embed this Cayley graph into the target architecture, which may have

an interconnection network that is also a Cayley graph, but normally of a group that has

no relation to the group of symmetries of the problem(see Chapters 6 and 7) [708]. The

embedding of Cayley graphs in Cayley graphs is a special case of the problem of �nding

Hamilton cycles in Cayley graphs [55], and is related to the class of problems analyzed by

Fellows in his dissertation [282].
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On the other hand, it is worth noting that there are many classes of architectures which

are not Cayley graphs or group action graphs. The most notorious of these is, perhaps, the

de�nitely unsymmetric Internet architecture. The fat-tree topology of the CM-5 is another

well-known example [502,503]. Many of the graphs considered in the theoretical community,

such as the immensely complex network of expanders used in the sorting algorithm of

Ajtai, Koml�os and Szemer�edi, are highly nonsymmetric as well. An analysis of relationships

between group theoretical techniques and expander graphs is contained in the survey article

by Bien (1989) [124].

3.4 Parallel group-theoretical algorithms

We now briey discuss the subject of parallelization of computations in �nite groups.

There is a considerable body of literature for sequential algorithms for computation in �-

nite (permutation) groups [152, 684], particularly permutation groups, which we can only

very briey touch upon here. The kinds of questions that have been addressed in the

sequential literature involve �nding structural aspects of a group (such as �nding a com-

position series, a Sylow subgroup, the centralizer, the commutator subgroup, and so on)

and solving word problems in the group, particularly testing the membership of a per-

mutation in a permutation group. These algorithms tend to rely on �nding a sequence

of generators of the group element for which any group element has a reasonably short

and e�ectively computable representation [251]. The notion of a strong generating set has

proven to be especially useful for such computations [144,203,405]. Group-theoretical algo-
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rithms have been especially important in two applications: polynomial-time testing of graph

isomorphism [70,317,523] and exploiting symmetry in backtrack searches of combinatorial

objects [143,153,266,479,483,508]. The proof of the nonexistence of a projective plane of or-

der 10 was one of the most dramatic illustrations of the utility of the \isomorph rejection"

method in backtrack search [451, 481, 482]. Many of these algorithms have been imple-

mented in the two premier contemporary group-computation systems: GAP and MAGMA

(MAGMA is the latest version of Cannon's famous CAYLEY program).

The �rst parallel algorithm for permutation group algorithms seems to be implicit in the

logspace solutions of certain word problems due to Lipton and Zlacstein in 1977 [515]; there

is a close connection between problems solvable in log space and parallelizable algorithms

in certain theoretical models of parallelization. In a classic and fairly deep paper by L�asl�o

Babai, Eugene M. Luks, and �Akos Seress, it was shown that a number of permutation group

algorithms were in NC, that is, they could be solved in polylogarithmic time on a polynomial

number of processors [71]. The algorithms include �nding the order of a permutation group,

�nding the center, and so on, and rely on the classi�cation theorem for �nite simple groups.

S. Waack has explored parallel complexity of classes of linear groups [791] and surveys other

results in [790], and Jin-Yi Cai has given e�cient algorithms for another class of groups [154].

However group-theoretical algorithms are notoriously di�cult to analyze because of their

sensitivity to choice of data representation and distribution; this matter is discussed in more

detail in Sims' monograph [685]. In the parallel case the situation is even trickier to analyze

because of the added complexity of accounting for di�erent architectures and data-layouts.
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In a more computational vein, we remark that even the backtrack searches by Clement

Lam et al. for projective planes of a given order were concerned with vectorization, and

many of their speedup techniques would apply in a parallel environment as well [482,741].

Group-theoretical algorithms were implemented on a Connection Machine by Bryant W.

York and Ottorino Ori (1993) and used to enumerate buckminster fullerenes [817]. York

et al. have exploited potential parallelism in group-theoretic computation, which, roughly

speaking, can come at a high level from parallelization of the main algorithm itself, or

at a low level from parallelizing the manipulations of individual large permutations, with

particular reference to the Connection Machine family [204,474,816].

Finally, in joint work with Jonathan Bright and Simon Kasif, the author has explored par-

allel algorithms for solving the shortest word problem in groups.6 [142] This problem is easy

to phrase. The input is a �nite set S of permutations from a permutation group G and an

additional permutation g. The output is the shortest expression of g as a composition of

permutations from S. For example, if S was the set of permutations corresponding to single

moves applied to a Rubik's cube, and g was the permutation corresponding to a particular

mixed-up state of the cube, then the algorithm would output, in theory, the shortest se-

quence of moves that would unmix the cube. The method used was a fairly straightforward

parallelization of the sequential algorithm Fiat, Shamir, Moses, and Shimshoni [289]. This

algorithm is, in turn, a generalization to non-Abelian groups of the well-known algorithm of

Schroeppel and Shamir for solving certain classes of NP-complete problems [671]. The idea

6 Of course this problem, in general, is recursively unsolvable.
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is fairly simple and can be, perhaps, most easily understood through an example. Suppose

we wish to �nd out if a particular state of Rubik's cube can be solved in 20 moves. We

generate all states that can be reached in 10 moves from the initial state, and all states

that can be reached in 10 moves from the target state, and see if they intersect; this is a

parallelization of bi-directional search [604]. Each of these two sets can be generated in

sorted order by computing the permutations corresponding to all states reachable within

5 moves, and composing them appropriately; a parallel algorithm only needs to be careful

about generating the sets in parallel. Surprisingly, this simple idea, when applied to the

case of an Abelian group, resulted in the fastest known parallel algorithm from a theoretical

point of view for the knapsack problem, into the parallelization of which considerable e�ort

had been directed [174,177,285{287,423,498,513].
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Chapter 4

Linear algebra and parallel

processing

In order to apply group-theoretical ideas in a uniform setting, the methodology advocated

in this thesis �rst attempts to convert the problem into a linear algebra setting, namely

to the multiplication by a matrix M over an appropriate domain. There are a number of

potential advantages and disadvantages inherent in this formulation. First, we consider

some potential disadvantages:

1. No such formulation may be possible. For example, the problem of playing full-chess

appears to be di�cult to formulate in this way.

2. The formulation might obfuscate the underlying computational structure of the prob-

lem. For example, in certain general unstructured graph problems, it is probably

considerably simpler to act directly on the graph, rather than on a sparse-matrix rep-

resentation of the adjacency matrix. Similarly, tree algorithms are usually much more
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easily understood in terms of trees directly than in terms of their adjacency matrices.

3. Additional mathematical machinery may be required, namely the tools of linear alge-

bra. This tends to be less of a problem for physical scientists, who are familiar with

the matrix algebra terminology, but could be a problem in other domains.

On the other hand, there are compensating advantages that in some cases make the formu-

lation useful:

1. Library implementations of linear algebra primitives tend to be highly tuned and very

e�cient in practice. Rapid execution of such primitives tends to be a motivating factor

in design tradeo�s in the architecture, so that the user can normally expect they will

execute at good bandwidth. We will demonstrate the utility of this observation when

we describe some almost paradoxical, but nonetheless quite fast, parallel programs for

the n-body problem (see Chapter 8).

2. A large repertoire of familiar and powerful mathematical techniques is available for the

manipulation of particular classes of matrices. These include numerous factorization

identities, group representation theory, and the huge body of work on matrix algebra;

much of this is probably more familiar to end users than, for example, more general

techniques from formal semantics.

3. Conversion to any one notation tends to elicit the common computational themes of

disparate applications.
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4. Code generation from a factorization of a matrix, as we shall see below, is straightfor-

ward, and parallel algorithms targeted to di�erent classes of machines can easily be

derived by changing the factorization.

The speci�c tradeo�s depend on the problem, although we strive, in our selection of case

studies, to emphasize that the approach, although not universal, is more general than it

might appear.

Section 4.1 briey reviews the development of linear algebra primitives on parallel machines.

Section 4.2 describes the generalization of linear-algebra ideas to semirings, and outlines

some brief examples from graph theory. Section 4.3 informally de�nes the matrix language

in which many of our algorithms will be expressed. The fundamental primitive for expressing

parallelism will be the tensor product 
.

4.1 Background

Linear algebra has long been recognized as one of the cornerstones of parallel processing,

as the following excerpt, taken from a 1962 article by Slotnick, Borck, and McReynolds,

describing the SOLOMON computer, exempli�es [697, p. 97]:

The SOLOMON (Simultaneous Operation Linked Ordinal MOdular Net-
work), a parallel network computer, is a new system involving the interconnec-
tions and programming, under the supervision of a central control unit, of many
identical processing elements (as few or as many as a given problem requires),
in an arrangement that can simulate directly the problem being solved.

The parallel network computer shows great promise in aiding progress in cer-
tain critically important areas limited by the capabilities of current computing
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systems. Many of these technical areas possess the common mathematical de-
nominator of involving calculations with a matrix or mesh of numerical values,
or more generally involving operations with sets of variable which permit simul-
taneous independent operation on each individual variable within the set. This
group is typi�ed by the solution of linear systems, the calculation of inverses
and eigenvalues of matrices, correlation and autocorrelation, and numerical so-
lution of systems of ordinary and partial di�erential equations. Such calculations
are encountered throughout the entire spectrum of problems in data reduction,
communication, character recognition, optimization, guidance and control, or-
bit calculations, hydrodynamics, heat ow, di�usion, radar data processing, and
numerical weather forecasting.

Since then, of course, a tremendous body of research has centered on the parallelization of

matrix primitives, and one of the earliest envisioned applications of APL was, in fact, the

modeling of microcode-level parallelization [394,396].

An important characteristic of modern linear-algebra manipulation is its reliance on a

standard library of subroutines, the so-called BLAS (Basic Linear Algebra Subprograms)

set [243,520], which has been extended to LINPACK and LAPACK [520,521].

Linear algebra primitives are particularly important for the e�ective programming of parallel

computers, both because they are the computational bottleneck for large classes of codes,

and because of the di�culty of programming in a lower-level. The LAPACK library has

been extended to ScaLAPACK, a scalable high-performance computing library intended to

provide explicit support for programmers who use matrix primitives in their code [181,244,

410].

Matrix multiplication is easily parallelizable in the PRAM model in logarithmic time

and with optimal work. Even subcubic algorithms of Strassen [725, 726] and Copper-
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smith and Winograd [205] may be e�ciently parallelized in this model [586, 588]. The

Coppersmith-Winograd O
�
n2:376

�
time algorithm is not practical for reasonable matrix

sizes, but Strassen's algorithm has been shown to result in real speedups on vector ma-

chines [78].

Much of our work depends on fast parallel algorithms and implementations for matrix

multiplication [789]. Most e�cient matrix multiplications algorithms have their basis in a

simple systolic algorithm given by Cannon [159]. Practical algorithms must contend with

issues of matrix layout [229,510], pipelining, and constant factors in the minimization of

communication overhead [115, 304, 324]. Implementations of hypercube algorithms on the

Connection Machine, on which we have relied, in large measure, for our speedups, must

take account of a number of complications, such as local vectorization, memory hierarchies,

and the simultaneous utilization of multiple interconnection wires from a processor [354,

372,372,412].

We also make use of BLAS functions such as outer-product routines, based on all-to-all

broadcast [146] and transpositions [263]. It is a point worth reemphasizing that even a

routine like all-to-all broadcast, which sends a copy of the data in each processor to all

the other processors and which is, theoretically speaking, quite trivial, is extremely di�cult

to implement at peak bandwidth on a parallel architecture, primarily because of constant-

factor pipelining and microcode-level-parallelism issues that are almost always elided in

theoretical models [414, 540]. Thus, in the factorization portion of our main program, we

typically factor down to one of the BLAS routines, but it would not be e�cient, from a
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software-engineering point of view, to recode fundamental BLAS operations at the end-user

level.

On the other hand, because the original motivation for BLAS was scienti�c computation,

BLAS routines are typically designed to operate over the �eld of complex numbers, whereas

many of our applications required this functionality over semirings. However, since most

of the BLAS complexity for the routines that we have discussed involve data-movement,

these are easy to modify for the case when the matrix entries are from a semiring, and this

observation, implemented in custom microcode, was part of the reason for the speed of our

N -body code (see Chapter 8); in other cases we implicitly embedded our semiring into C

and acted there. The next section discusses these matters in greater detail.

4.2 Graph problems and semirings

There are several methodologies for the study of graph problems which use linear-algebraic

concepts, and which demonstrate the utility of linear algebraic methods in unstructured

problems. We discuss here two of these: algebraic graph theory and path-algebra theory.

In algebraic graph theory, graph-theoretical questions are explored by analyzing the adja-

cency matrix of the graph as a complex matrix. For example, bounds on the eigenvalues

of the adjacency matrix for a graph can yield a bound on the graph's diameter [185], and

bounds on the eigenvalues of the Laplacian of a graph [145, pp.38{43], which is related to its

adjacency matrix, can be used in graph partitioning algorithms [352]. There are several ex-
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cellent surveys of the �eld, and the related area of algebraic combinatorics, by Biggs [125],

by Godsil [335], and by Brualdi and Ryser [145]. If the spaces V and W are considered

as vector spaces over C whose dimension is the number of vertices in the graph, then the

adjacency matrix M becomes a complex linear transformation, thereby reducing to the for-

mulation that we give. When the graph has some symmetry given by an automorphism

group G, then G will induce a symmetry of M. By applying group Fourier transformations

to M, information on graph-theoretical properties of certain graphs has been derived, using

serial algorithms [476].

Path-algebra theory, a form of semiring theory, like algebraic graph theory, analyzes graphs

via their adjacency matrices. However, whereas algebraic graph theory views the entries

in the adjacency matrix as lying in a �eld, such as C , in path-algebra theory the matrix

entries are considered to be elements of a weaker domain, such as a semiring.

Formally, a semiring is de�ned as an ordered triple (R;+; �) such that R is a set, (R;+) is a

commutative monoid, R; � is a monoid, and � distributes over +:7 The most commonly aris-

ing example of a semiring is a boolean algebra, although the semiring (R;min;+) frequently

arises in the context of optimization problems [504].

7 There are many slightly di�erent de�nitions of \semiring." The introduction to Golan's survey

contains a description of some of the variants. In particular, what we call \semiring" is called a

\quasiring" in the popular textbook by Cormen, Leiserson, and Rivest. On the other hand, some

authors use the term \quasiring" to mean something else entirely [288, 688] A path algebra is a

semiring with some additional in�nitary closure conditions, whose precise form will not concern us

here.
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Semirings, in various ways, have been proposed as a way to unify a number of path-�nding

algorithms [1, 499, 736,737, 814]. For example, consider the problem �nding the smallest-

weight path between two nodes in a weighted directed graph of n nodes. It is easy to

see that this is reducible to logn matrix multiplications in the semiring (R;min;+). Since

matrix-multiplication is inherently parallelizable, this algorithm is easier to parallelize, and

has fewer threads of control, than a parallelization of straightforward breadth-�rst search.

Our work in the applications of chess endgames and some of our work in string-matching

use matrices whose entries are in a semiring, and so path-algebra ideas are implicit here.

Semirings have been used in a number of parallel graph algorithms; see the surveys [541,

587,589,640]. The utility of the path algebra/semiring formulation in parallel algorithms is

a natural consequence of our formulation of the generalized operator M.

4.3 Tensors and programs

We have seen that BLAS routines provide e�cient execution of certain primitive matrix

operations, and that the algorithms can, by generalizing the domain in which the matrix

entries lie, encode wide classes of graph-theoretical algorithms. This section explores in

more detail the relationship between a matrix factorization, whether over a semiring or

over the complex numbers, and parallel processing. This material is taken directly from the

body of work in signal processing pertaining to the relationship between the tensor product

and parallelism, and identities useful in the derivation of factorization.
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The general theme is quite simple, namely, a factorization of our operator matrix M in

terms of primitive operators like 
;+, and �, is mapped to a code sequence suitable for

execution on a parallel architecture. By modifying the factorization, code suitable for

variant architectural parameters can be derived.

4.3.1 Tensor products: Introduction

Let Vn be the space of length n vectors with entries in a �eld F: We let feni gni=1 be the

\standard basis", that is, eni is the vector whose ith component is 1 and whose other

components are 0.

An element of Vn may be thought of as a length n array whose elements are in F, or as an

n� 1 matrix over F [530].

The mn basis elements of Vn 
 Vm, feni 
 emj gn�1;m�1
i=0;j=0 , are ordered by

eni 
 emj 7! emn
mi+j :

In this manner an element of Vn
Vm may be considered to be a vector of length mn with

elements drawn from F. Let Mn
m be the space of n�m matrices over F. In the following, a

linear transformation will be identi�ed with its matrix representation in the standard basis.

Let Mn = Mn
n. Let In be the n� n identity transformation of Vn:

Write diag(v0;v1; : : : ;vn�1) � diag(v) for the diagonal matrix in Mn whose diagonal ele-

ments are taken from the coordinates of v:
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If A 2Mn
m and B 2Mn0

m0 , the matrix of the tensor product A
 B 2Mnn0
mm0 is given by

A 
 B =

0BBBB@
A11B A12B � � � A1mB

A21B A22B � � � A2mB
...

... � � � ...
An1B An2B � � � AnmB

1CCCCA (4.1)

The importance of the tensor-product to our work in parallel processing inheres in the

following identity, for B 2Mm: [408]

(In 
 B)

0BBBB@
v0
v1
...

vnm�1

1CCCCA =

0BBBBBBBBBBBBBBBBBBBB@

B �
0B@ v0

...
vm�1

1CA
B �
0B@ vm

...
v2m�1

1CA
...

B �
0B@ v(n�1)m

...
vnm�1

1CA

1CCCCCCCCCCCCCCCCCCCCA

(4.2)

Suppose n = ml. The n-point stride l permutation matrix Pnl is the n � n matrix de�ned

by

Pnl (v 
w) = w
 v;

where v 2 Vm and w 2 Vl. The e�ect of Pnl on a vector is to stride through the vector,

taking m steps of size l. For example, taking m = 3; l = 2; and n = 6, we have:

P6
2

0BBBBBBB@

v0
v1
v2
v3
v4
v5

1CCCCCCCA
=

0BBBBBBB@

v0
v2
v4
v1
v3
v5

1CCCCCCCA
(4.3)

Stride permutations are important due to the following Commutation Theorem [758]:
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Theorem 1

Pnl (A
 B)Pnm = B 
 A

where A 2Mm; B 2Ml; and n = ml:

This theorem, which is easy to prove even when the entries are from a semiring, allows the

order of evaluation in a tensor product to be varied. We shall see in the next subsection that

some evaluation orders naturally correspond to vectorization, and some to parallelizations;

the Commutation Theorem will be the method by which one type of execution is traded o�

for another.

4.3.2 Code generation: Conversion from factorization to code

This subsection describes the relationship between the matrix representation of a formula

and the denoted machine code. Because many of the algorithms to be presented will be pre-

sented in the tensorial manner, with the code-generation phase only represented implicitly,

this subsection is fundamental to this dissertation.

The matrix notation we use is nothing more than an informal notation for describing algo-

rithms. It di�ers from standard notations primarily in its explicit denotation of data distri-

bution, communication, and operation scheduling. Whereas most high-level languages, and

even special-purpose parallel languages, leave the distribution of data over the processors

and the scheduling of operations within processors to the discretion of the compiler, the

notation we use, at least potentially, encodes all such scheduling. This has both advan-
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tages and disadvantages: although it gives the programmer a �ner level of control, which

can be important for time-critical applications, it requires some conscious decision-making

over data-distribution that is unnecessary in some other languages. On the other hand, the

functional nature of the notation does make it potentially amenable to compiler reordering.

The most serious disadvantage is its narrowness of application. Originally developed for

signal processing codes, this work demonstrates its wider application, but there are many

applications which would not easily fall under its rubric.

The target architecture of the language is a machine comprising m parallel processors, each

with shared memory. However, it is easy to see that the results go through also, with an

extra communication step or two, on local-memory machines. Each processor may also have

vector capabilities, so that computations within the processors should be vectorized. We

do not assume restrictions on the vector length capability of the processors.

User data is always stored conceptually in the form of a vector0BBBB@
v0
v1
...

vn�1

1CCCCA :

Assuming that m divides n, elements v0; : : : ;v n
m
�1 are stored in processor 0, elements

v n
m
; : : : ;v 2n

m
�1 are stored in processor 1, and so on. Matrices are stored in column-major

order. It is assumed that certain general classes of speci�c matrices are already implemented

on the architecture, in particular, the stride permutations and any speci�c permutations

corresponding to the interconnection network.

Let B 2 Ml and let code(B) be any sequence of machine instructions that computes the
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result of left-multiplication by B. That is, code(B) is a program that takes as input an

array v of l elements of F, and returns as output the array B � v of l elements of F, where

vectors are identi�ed with their coordinates in the standard basis.

Given code(B) and code(B0) for two matrices B and B0; it is easy to compute some

code(B+ B0). Simply let code(B+ B0) be the program that, given its input array v, �rst

runs as a subroutine code(B) on v (saving the result), then runs code(B0) on v, and then

returns the coordinate-wise sum of the arrays that are returned by these two subroutine

calls.

Similarly, given code(M) and code(M0); it is easy to �nd code(M �M0), assuming the

dimensions of M and M0 are compatible: run code(M) on the result of running code(M0)

on the argument v.

Of course, code(Il) is the code that returns its argument, an l-vector.

Consider a parallel processor with m processors, p1; : : : ; pm, each with some local memory.

We make the convention that a length ml array will be stored with its �rst l elements in

processor p1, its second l elements in processor p2, and so on.

Given this convention, one can interpret code(Im 
 B) as code that runs on thism-processor

architecture. To construct code(Im 
 B), load code(B) in each pi. When called on a length

ml array v, pi runs code(B) on the l elements of v that are stored in its local memory,

and outputs the result to its local memory. Equation 4.2 shows that this will compute the

tensor product. Similar rules can be derived when the number of processors is di�erent
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from m.

The code corresponding to A 
 Il, for A 2 Mm, is a bit more subtle. The interpretation

of code(A
 Il) is as the code corresponding to A; except that it operates on l-vectors

rather than on scalars. This code can be constructed (loosely speaking) from code(A) by

interpreting the length ml argument array v as being an element of the m-module over the

ring Fl. This corresponds closely to hardware primitives on certain vector architectures.

The relation

A
 B = (A 
 Il) (Im 
 B) (4.4)

can be used to compute general tensor products.

By combining a �xed set of transformations reecting the hardware primitives of the un-

derlying architecture with combining rules like +, � and 
, and some simple tensor product

identities, concise expressions that can be translated into e�cient code for certain classes

of functions can be de�ned [345].

4.3.3 Example: Matrix multiplication by a tensor product

In order to illustrate the process of translation from tensor-product formulas into code we

will describe a simple example taken from [345].

As above, let A 2 Mm and B 2 Ml. Let M = A 
 B 2 Mn, where n = ml. This subsection

describes the development of fast algorithms to compute w = Mv, where v;w 2 Vn, on

various architectures. Except for the fact that the entries in the matrices considered here
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lie in arbitrary semirings, the exposition in this section closely follows the signal-processing

paper of Granata, Conner, and Tolimieri [345, pp.44{47].

We consider several target architectures. For each target architecture, we give a factorization

and generated code.

The �rst target architecture to be considered is a serial machine. The associated factoriza-

tion is

M = A
 B (4.5)

= (AIm)
 (IlB) (4.6)

= (A 
 Il) (Im 
 B) (4.7)

= (Pnl (Im 
 A)Pnm) (Il 
 B) (4.8)

The term Im 
B, as explained earlier, represents a loop of the function B over l contiguous

length m segments of its length n argument.

The term

Pnl (Im 
 A)Pnm

represents a similar loop for A, except that the argument is reordered before being passed to

A. Of course, on a serial machine this reordering can always be folded into the computation

for A, but for clarity we write it out in the serial code for w = Mv, below:

for i = 0 to l � 1 /* For each segment* /

temp(im : im + l � 1) = B � v(im : im + l � 1) /* Call B on that segment */
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temp = P
n
m � temp /*Compute the stride permutation*/

for i = 0 to m� 1

w(il : il +m � 1) = A � temp(il : il +m � 1)

w = P
n
l �w

Note that this method requires time proportional tom2+l2, which is normally much smaller

than the n2 brute-force method; more to the point, the method uses existing, and possibly

highly optimized, software for A and for B in order to generate the code for M.

The next target architecture is a vector machine. The vector machine is presumed, as

primitives, to be able to perform arbitrary operations on vectors, and we presume a primitive

load-stride operation.

The expression B
 Il corresponds to the routine named by B performed on vectors of length

s instead of scalars, assuming that the code for computing B uses only linear operations,

namely multiplication by a constant and vector addition. Because the focus of this thesis

is on parallelism and not vectorization, we will skip the code for this section.

The third architecture that we consider is that of a 16-processor SIMD machine, and assume

that m = l = 64, so that M 2M4096.

The associated factorization is

M = P4096
64 (I64 
 A)P4096

64 (I50 
 B) (4.9)

=
�
P4096
64 (I16 
 I4 
 A)

� �
P4096
64 (I16 
 I4 
 B)

�
(4.10)
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The terms I4
A and I4
B correspond to looping calls that are executed within each of the

16 processors. The I16 terms indicate that the identical code is executed in each processor.

The stride terms can be implemented via a reindexing on a shared-memory machine, and

via permutation on a local memory machine. It is clear that when each processor is itself

a vector processor, then the I4 
 A term can be rewritten using the vectorization methods

described above.

Another simple class of examples is provided by classical fast Fourier transform algorithms,

which will be discussed in more detail in section 7.1.
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Chapter 5

Exploiting symmetry:

Mathematical framework

This chapter describes in more detail the programming methodology that will be adopted

in Part II of this thesis.

The problems we will solve will have the following two parts:

1. A function M:V! W. Here V and W are simply some domains of objects.

2. A group G acting on V and on W. V;W are spaces in which the data items lie.

The group will express the symmetry of M in the sense that we are guaranteed that,

8g 2 G, g �M = M � g.

The methodology used to solve a problem presented in this manner may be divided into

two main techniques:

First, we set up the problem in a generalized linear-algebraic formulation. We suppose that
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the data items in V are uniquely denoted by some set of n features, which take values in

some algebraic structure F. Similarly, we suppose that data items in W are denoted by m

distinct features taking values in F. The operator M is considered to be an m � n matrix

over some algebraic structure F. Of course, this formulation is often not possible, but it

may be possible for some portion of the computational problem to be solved. The matrix

M normally has a special structure that reects the structure of the problem.

Second we exploit the symmetry in M. Because M arose from a problem with a symmetry

expressed by a symmetry group G, if the G action is linear in F, then we get a representation

�V and �W of G on V and W. Then we have the formulas

(8g 2 G)�W (g) �M = M � �V (g)

We mainly consider the case where �V and �W are permutation representations; that is, they

only permute the features to be considered, and their matrices are permutations matrices.

We use three main tools to exploit the symmetry. Which of these tools to use, and in what

contexts, depends on details of the problem. These tools are:

Factorization The matrix M will be factored using the operators of matrix multiplica-

tion, direct sum, and Kronecker product. Each such factorization induces a parallel

algorithm on a particular architecture; by modifying the factorization, we can derive

algorithms for variant architectures.

Orbit decomposition By choosing only a single element from each orbit of the G action,

we can reduce the computational requirements of computing Mv for v 2 V. This
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decomposition induces a new operator, and in some cases induces a parallel algorithm

whose communication pattern is characterized by a Cayley graph of G.

Group Fourier transform For certain groups G a fast group Fourier transform exists.

This is a generalization of the ordinary discrete Fourier transform whose application

block-diagonalizes the operator M; by computing the G-Fourier transform of M and

the operand v, we will be able to compute the product Mv faster than we would

otherwise have been able to do.

Although our machinery and problem statement might seem overly limiting, we hope to

illustrate, by means of several case studies, that symmetry considerations are implicit in a

broad range of problems.

Briey, though, here is how the symmetry groups G arise, for various applications.

In the chess endgame code, the operator M acts on sets of chess positions. These sets

correspond to binary vectors in a natural way. Now, consider a chess position P having no

pawns. Suppose we list all the positions that White could move to from the position P , and

then we apply some symmetry transformation of the chessboard|rotation or reection|to

each of these positions, and call the resulting set S. Now, �rst apply the same transformation

to P , and then, �nd each position to which White could move, from the transformed P , and

call the resulting set S0. It is a consequence of the rules of chess that (ignoring castling)

when there are no pawns, S = S0. Thus, our resulting matrix M will commute with the

symmetry group of the square, and M is D4-invariant.
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In the case of n-body simulation, that is, the problem of simulating the motions of n-

particles moving through space, the symmetry group is G = Cn. It arises because if the

particles are cyclically shifted, then the forces on them are cyclically shifted as well. Thus,

the matrix representing the sum of forces on each particle is Cn invariant.

In the case of string-matching, the symmetry arises as follows. If the text is rotated, then

the sets of positions at which a given pattern string occurs in the text string will be rotated

in the same way, assuming we allow the pattern to wraparound appropriately. Thus, the

match matrix M in the case of classical string-matching will be Cn-invariant.

The next part will discuss these and other applications in greater detail, but it should be

clear that our formulation, although undoubtedly highly limited in scope, is not as limited

as it might appear at �rst.
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Part II

Applications



68

Chapter 6

Orbit decomposition and its

application to the analysis of chess

endgames

The simplest way to exploit the symmetry of a problem has probably been used, in one

sense, by almost every programmer, and consists simply in avoiding the recomputation of

expressions that have already been computed.

Speci�cally, we are given some set of data that is symmetric, and we wish to compute

some function of the data. If the function \respects" the symmetry of the data, informally

speaking, then we only need to store a part of the data, namely, one orbit-representative

from each orbit of the action of the symmetry group on the data. We call this \orbit

decomposition."

Unfortunately this symmetry-exploitation paradigm can result in less regular data-access

patterns compared to the algorithms that do not exploit symmetry. While this constitutes
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only a minor inconvenience on scalar machines, such irregularity can severely undermine

the performance of parallel or vector codes.

This chapter describes the methods for e�ciently implementing an orbit decomposition

problem on a parallel architecture. The domain of application comes from chess endgames|

the problem is to determine whether a particular chess endgame with a small number of

pieces can be won for White|and the salient symmetry characteristic was the invariance

under a non-commutative group. The resulting algorithm reduces to an embedding of the

Cayley graph for the symmetry group of the problem into the parallel architecture.

Section 6.1 provides an overview of some of the background and motivation for the prob-

lem. Although the analysis of chess endgames has a long history, much of the historical

information is unfamiliar to many people, and previous researchers had overlooked or un-

derestimated the signi�cance of the work of a number of key contributors to the early stages

of computer endgame analysis. Subsection 6.1.1 contrasts the chess endgame problem with

other classic search problems in arti�cial intelligence. Subsection 6.1.2 provides a brief

overview of some of the pre-computer work in these endgames. Subsection 6.1.3 focuses

particularly on two endgame analysts from the early 1900s whose work had been ignored or

underestimated by previous researchers: Friedrich Amelung and Theodor Molien. Amelung

was the �rst to carry out detailed investigations of one of the six-piece endgames we solved,

and Molien was the �rst to provide an (approximate) statistical characterization of a pawn-

less endgame. Interestingly, comparatively recent research by Hawkins and Kanunov has

shown that Molien was also extremely inuential in the development of group representa-
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tion theory. Subsection 6.1.4 surveys previous computer analysis of the type we perform.

Although most of this material was known, we feel that previous researchers in the area

may have given insu�cient credit to Richard Bellman, whose papers from as early as 1961

sketched a retrograde analysis algorithm and predicted its applicability to the complete

analysis of checkers.

Section 6.2 outlines the relationship between tensor products and chess endgames, and

introduces the basic notation. Section 6.3 describes the main endgame algorithm, and

subsection 6.3.2 speci�cally discusses symmetry exploitation.

Implementation issues are considered in section 6.4 and section 6.5 presents some of the

results that were discovered by the program.

Section 6.6 concludes with ideas for future work.

6.1 Motivation and background

6.1.1 Search

Search is one of the oldest and most fundamental problems in arti�cial intelligence. In

its most general form, we are given some object and a set of operations, each of which

changes the state of the object, and we want to �nd a sequence of operations to apply to

the object, satisfying certain criteria (such as having least cost) that takes the object into

some goal state. For example, an automated theorem prover might prove a theorem by
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continually deriving new results until the theorem itself is proven; an airline computer may

wish to plan its schedule of ights by continually adding new ights until some coverage

and cost requirements are met; a vision system might try a number of transformations of

some digital representation of an object until a match against a �xed template is attained;

a puzzle solver might try to �nd the shortest sequence of moves that solve a puzzle, such

as the 15-puzzle.

In their full generality, most of these problems that arise in arti�cial intelligence are NP-

hard and are, thus, unlikely to be solved exactly in sub-exponential time. In order to

make progress on these problems, arti�cial intelligence practitioners deploy an array of

simpli�cations and tricks.

One approach is approximation: look for suboptimal solutions, instead of trying to �nd the

best solution.

Another approach is to use heuristics|rules-of-thumb|to guide the search into promising

areas. The most popular such algorithm is A* and its variants [231, 457, 596]. There are

several parallelizations of A*-like algorithms [213,231,272]. This approach can work well if

good heuristics are available, but, of course, that is not always the case.

One might also try techniques such as simulated annealing, genetic hillclimbing, or neural-

networks to try and guide the search.

The full-chess problem is simply to program a computer to beat humans at chess. It

dates back at least to Babbage, as is discussed later, although modern approaches follow
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a combination of heuristics and alpha-beta pruning. The heuristics assign to each node

in the game-tree a value approximating its goodness. The alpha-beta pruning techniques

eliminate approximately a factor of square-root of the number of nodes in the tree by

improving on the brute-force minimax algorithm. Production chess programs deploy an

array of auxiliary sophisticated pruning techniques, such as singular extensions, null-move

cuto�s, killer-move, history, and many others [595, 596].8 Alpha-beta search is simply a

re�nement of the classic brute-force strategy of Shannon [679] which considers, from any

given position, each move; then each of the opponents replies; then each reply to each such

reply, and so on. The algorithm dynamically prunes nodes that can be proven not to a�ect

the value of the original position. Even though it is called \brute-force," the algorithm only

examines roughly the square-root of the number of all possibilities up to a certain depth.

The upshot of all this is that, given the root node, it can be complicated to determine which

nodes in the game tree need to be searched, and, therefore, it is di�cult to avoid searching

redundant nodes in a parallel program [80]. There are a number of theoretical models

of game-tree search in which speedup has been predicted to occur (e.g. [16, 23, 284, 292]),

but the many di�cult-to-model vagaries of the distribution of chess-tree node values and

their interaction with complex tree-pruning and move-evaluation heuristics have obviated

much of this work [158,533{535]. Nevertheless, there are successful coarse-grained parallel

chess-searchers, such as the ParaPhoenix work of Schae�er [663] and the Cray codes of

Hyatt et al. and of Warnock and Wendro� [382,388,389]. There are only a few massively

8 The origins of alpha-beta are somewhat controversial. The reader is referred to Knuth and

Moore's article (1975) for historical background [449].



73

parallel full-chess players. The �rst was the NCUBE WAYCOOL of Felten and Otto [283];

currently the CM-5 programs of Berliner, Leiserson, Kuszmaul, McConnell, Kaufmann et

al. [473] and the Transputer's Zugzwang of Feldmann, Monien, Mysliwietz, and Vornberger

are the strongest [277{281], although a custom VLSI massively parallel machine is under

development and is predicted to be very strong [380{382]. On the other hand, there is

considerable implicit parallelism in the VLSI architectures of Thompson and, on a di�erent

level, of Berliner and Ebeling [113,198,258].

Despite its super�cial similarity, the work reported here takes a sharply di�erent approach

to parallelism than do parallel tree searchers. First, we generate moves backward, starting

from the mating positions; second, we do not use heuristics; third, we do not use pruning.

Generating operators backwards has also been used in the context of symbolic protocol

evaluation [377], and is an important feature of bi-directional search [604].

Finally, we say a few words about the beautiful work on exploiting symmetry in forward-

search problems using techniques of isomorph-rejection [153]. This work uses backtracking

combined with symmetry considerations to avoid exploring a state that can be proven by

symmetry to have been already eliminated [479,482,483]. It achieved its most spectacular

success in Lam's proof of the nonexistence of a �nite projective plane of order 10 [481].

Some attention has been given as well to parallelization and vectorization of this style of

backtracking, which impinges upon computational group theory [741, 817]. Parallel algo-

rithms for bi-directional search problems in the presence of symmetry were discussed in

section 3.4 [142].
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It is noteworthy that many games, such as chess, checkers, Hex, and others, have been proven

to be PSPACE or even EXP-TIME complete [305, 619, 620,627, 724], using the machinery

of alternating Turing machines, a powerful game-like generalization of non-deterministic

Turing machines [173,720]. This suggests that an algorithm that scales to n � n boards

cannot improve substantially on the one we give of analyzing all nodes in the state-space

[763].

6.1.2 Human analysis

Endgame analysis appears to date from at least the 9th century, with al-`Adl��'s analysis

of positions from KRKN9 [6, plate 105] and KRNKR [6, plate 112]. However, the

rules were slightly di�erent in those days, as stalemate was not necessarily considered a

draw. The oldest extant collection of compositions, including endgames, is the Alfonso

manuscript, ca. 1250, which seems to indicate some interest during that time in endgame

study [600, pp.111{112].

Modern chess is generally considered to have begun roughly with the publication, probably

in 1497, of Luis Ramirez de Lucena's Repetici�on de amores y arte de ajedrez [226].10 Ruy

Lopez de Sigura's 1561 book briey discusses endgame theory, but its main impact on this

9 In listing the pieces of an endgame, the order will be White King, other White pieces, Black

King, other Black pieces. Thus, KRKN is the same as KRkn, and comprises the endgame of White

King and White Rook against Black King and Black Knight

10 Ironically, this work does not contain the famous \Lucena position" from KRPKR, which seems

to have been �rst published by Alessandro Salvio in 1634, who attributed it to Scipione Genovino.
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work would be the introduction of the controversial 50-move rule, under which a game that

contains 50 consecutive moves for each side without the move of a pawn or a capture could

be declared drawn [227, pp.55{56] [646].

Pietro Carrera's 1617 Il gioco de gli scacchi discussed a number of fundamental endgames

such as KQKBB, and certain 6-piece endgames such as KRRKRN and KRRKRB

[164, Book 3, p. 176{178]. A number of other authors of the time, such as Philip Stamma

(1737), Fran�cois-Andr�e D. Philidor (1749), and Gioacchino Greco (1624,) began developing

the modern theory of endgames [347, 602, 702]. Giovanni Lolli's monumental Osservazioni

teorico-pratiche sopra il giuoco degli scacchi (1763) would be one of the most signi�cant

advances in endgame theory for the next 90 years [518, 643]. Lolli analyzed the endgame

KQKBB, and he agreed with the earlier conclusion of Salvio (1634) that the endgame was

a general draw for White [660]. This assessment would stand substantially unchanged until

Kenneth Thompson's computer analysis demonstrated the surprising 71 move win [753].

Notwithstanding this error, Lolli did manage to discover the unique KQKBB position in

which White to play draws but Black to play loses [518, pp.431{432].

Bernhard Horwitz and Josef Kling's 1851 Chess Studies contained a number of inuential

endgame studies, although their analysis of KBBKN was questioned by A. John Roycroft

(1972) [445, pp.62{66] [643, p. 207]. The Horwitz and Kling assessment was de�nitively

shown to be incorrect by the independent 1983 computer analyses of Thompson and Ofer

Comay [645,751].

Alfred Crosskill (1864) [212] gave an analysis of KRBKR in which he claimed a win in
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more than 50 moves was required; this was con�rmed by computer analysis of Thompson.

The Crosskill analysis was the culmination of a tradition of analysis ofKRBKR beginning

at least from the time of Philidor [602, pp.165{169].

A generation later, Henri Rinck and Aleksei Troitzky were two of the most inuential

endgame composers of their time. Troitzky is well-known for his analysis of KNNKP|he

demonstrated that > 50 move wins were at times required [766]. Rinck was a specialist in

pawnless endgames, composing more than 500 such studies [625,626], including some with

6 pieces. Troitzky summarized previous work in the area of KNNKP, beginning with

a problem in KNKP from the 13th-century Latin manuscript Bonus Socius [228], and

reserved particular praise for the systematic analysis of this endgame in an 18th-century

manuscript by Chapais [175]. (An early version of the program reported in this chapter

resulted in the �rst published solution for the entire endgame [707].)

The 20th century saw the formal codi�cation of endgame theory by scholars such as Johann

Berger (1890) [106], Andr�e Ch�eron (1960) [178], Machgielis [Max] Euwe (1940) [269], Reuben

Fine (1941) [291], Yuri L. Averbakh (1982) [68], and many others. Some work focusing

particularly on pawnless 6-piece endings has also appeared, for example, [107,456,642].

Currently the Informator Encyclopedia of Chess Endings series [539], which now uses some

of Thompson's computer analysis, is a standard reference. John Nunn has written several

books based on that work [581,583].

Additional historical information can be found in the references [341,378,572,643].
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6.1.3 Friedrich Amelung and Theodor Molien: A historical note

This subsection discusses the work of Friedrich Amelung and Theodor Molien as it pertains

to pawnless chess endgame analysis.

Friedrich Ludwig Amelung (March 11, 1842{March 9, 1909) was a Latvian chess player

and author who edited the chess column of the Riga newspaper D�una-Zeitung. He studied

philosophy and chemistry at the University of Dorpat from 1862 to 1879, and later became a

private teacher and director of a mirror factory [507, p.11] [45,391]. He published a number

of endgame studies and analyses of endgames, and began a systematic study of pawnless

endgames. For example, he explored the endgame KQKRN in detail [36,37]; this endgame

was shown to have unexpected depth, requiring up to 46 moves to win, in later work by the

author [707]. He also published an article on KBNKN and KBBKN [28], which were

not exhaustively analyzed until the 1980s [707,753].

However, his main interest to our work actually inheres in two major projects: an analysis

of the 4-piece endgame KRKN, which appeared in 1900 [30{35], and his studies of certain

pawnless 6-piece endgames [38{44].

Amelung's 1900 analysis of KRKN was signi�cant because it contained the �rst histogram

known to the author of a pawnless endgame or, for that matter, of any endgame [34, pp.265{

266]. This table listed the approximate number of positions in KRKN from which White

could win and draw in 2{5 moves, 5{10 moves, 10{20 moves, and 20{30 moves. Such tables

have been a mainstay of computer-age endgame analysis, of course. The existence of this



78

early analysis does not appear to have been known to contemporary workers, although it

appeared in a widely read and inuential publication, Deutsche Schachzeitung.

Even more intriguing, however, is Amelung's comment that an even earlier, exact numerical

analysis, containing the number of win-in-k moves for each k of a four-piece chess endgame

was known, and was due to \Dr. Th. Mollien, der Mathematiker von Fach ist"; that is, to

the professor \Th. Mollien."

Theodor Molien(September 10, 1861{December 25, 1941)11 was born in Riga.12 His father,

Eduard, was a philologist and teacher, and Theodor eventually became uent in a num-

ber of languages, including Hebrew, Greek, Latin, French, Italian, Spanish, Portuguese,

English, Dutch, Swedish, and Norwiegian, as well as German and Russian, of course. \If

you read a hundred novels in a language," Molien liked to say, \you will know that lan-

guage. [422, p.9]"13 He studied celestial mechanics at Dorpat University (1880{1883) and

also took courses from Felix Klein in Leipzig (1883{1885). His doctoral dissertation, which

was published in Mathematische Annalen [556,557] proved a number of the fundamental

11 There are a number of variant English spellings of Molien's name: Molin [86], Mollin [35, p.5],

Mollien [34, p.265], and Molien [27, 29]. His biography gives his name as Fedor �duardoviq

Molin (Fedor Eduardovich Molin) [422]. We will refer to him as Theodor Molien in conformity

with his publications [556{559,562].

12 Molien's biographical information has been taken from Kanunov [422], which was translated for

this project by Boris Statnikov.

13 <Proqita$ite sto romanov na kakom-libo �zyke,|l�bil govorit~ on pozdnee,|i Vy

budete znat~ �tot �zyk.>
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structure theorems of group representation theory, including the decomposability of group

algebras into direct sums of matrix algebras, which is crucial to our own work in Chapter

7.

Molien's early papers on group representation theory [556{559,562], despite their impor-

tance, were obscure and di�cult to understand. Indeed, his papers anticipated Frobenius'

classic paper on the determinant of a group-circulant matrix [308], a fact which Frobe-

nius readily admitted [359], although he had tremendous di�culty understanding Molien's

work (letter to Alfred Knezer, May 6, 1898). In a letter to Dedekind, February 24, 1898,

Frobenius wrote:

You will have noticed that a young mathematician, Theodor Molien in Dor-
pat, has independently of me considered the group determinant. He has pub-
lished, in volume 41 of of the Mathematische Annalen a very beautiful but dif-
�cult to read work \On systems of higher complex numbers [557]," in which he
investigated non-commutative mulltiplication and obtained important general
results of which the properties of the group determinant are special cases.14

Despite these results, and despite Frobenius' support, Molien was rejected from a number

of Russian academic positions, partly because of the Czarist politics of the time (according

to Kanunov) and, at least in one case, because the committee considered his work too

theoretical and without practical applications [422, pp.35{36]. After studying medieval

14 \Sie werden bemerkt haben, da�sich ein jungerer Mathematiker Theodor Molien in Dorpat
unabh�angig von mir mit der Gruppendeterminante besch�aftigt hat. Er hat im 41. Bande der
Mathematischen Annalen eine sehr sch�one, aber schwer zu lesende Arbeit `Ueber Systeme h�oherer
complexer Zahlen' ver�o�entlicht, worin er die nicht commutative Multiplication untersucht hat und
wichtige allgemeine Resultate erhalten hat, von denen die Eigenschaften der Gruppendeterminant
specielle F�alle sind. [Excerpt from a transcription by Walter Kaufmann B�uhler of a letter from
Frobenius to Dedekind dated February 24, 1898. A copy of this transcription was kindly provided
by Thomas Hawkins, Department of Mathematics, Boston University, and is excerpted here with
the permission of Springer-Verlag.]"
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mathematical manuscripts at the Vatican Library in 1899 [422, p.35], he accepted a post at

the Tomsk Technological Institute in Siberia where he was cut o� from the mathematical

mainstream and became embroiled in obscure administrative struggles (he was, in fact,

briey �red). His remaining mathematical work had little inuence and he spent most of

his time teaching.

Thus, Molien's work was unknown or underestimated in the West for a long while, for

example, Wussing's classic 1969 text barely mentions him [809]. With the publication of

Thomas Hawkins series of articles on the history of group representation theory [357{359],

the signi�cance of Molien's contributions became better-known, and van der Waerden's

1985 history of algebra gives Molien due credit [792, pp.206{209,237{238].

Although it is not mentioned in Kanunov's biography, before Molien moved to Tomsk, he

was one of the strongest players in Dorpat and was particularly known for his blindfold play

(Ken Whyld, personal communication, 1995). He was president of the Dorpat chess club,

and several of his games were published in a Latvian chess journal, Baltische Schachbl�atter,

edited, for a time, by Amelung [27] [96, p.8]; one of his games (which he lost) won a \best-

game" prize in the main tournament of the Jurjewer chess club in 1894 [563].

Molien's numerical studies ofKRKB are alluded to several times in the chess journals of the

time (about 1900) [29,560] [35, p.5] [34, p.265]. In 1898 he published four chess studies [561]

based on his research into the endgame KRKB [35, p.5]. However, we have not been able

to locate a publication of his complete results, despite the historical signi�cance of such a

document.
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In any case, it seems to me to be an interesting coincidence that within a span of a few

years Molien performed groundbreaking work in two apparently unrelated areas: group

representation theory and quantitative chess endgame analysis, although his work in both

areas was mostly ignored for a long time. Furthermore, major parts of my thesis continue

along two paths �rst blazed by Molien: this chapter reports on work that continued Molien's

quantitative analysis of pawnless chess endgames; Chapter 7 continues Molien's work on

the decomposition of �nite group algebras.

We now continue with our discussion of chess endgame history proper, and in particular,

Amelung's work on pawnless endgames, of which his work on KRBKNN deserves special

mention. Partly in response to the �rst edition of Johann Berger's inuential 1890 man-

ual of endings [106, 167{169], in 1902 Amelung published a three-part series in Deutsche

Schachzeitung, perhaps the premier chess journal of its time, analyzing the endings of King,

Rook and minor piece (N or B) against King and two minor pieces [38{40], and repre-

sented a continuation of Amelung's earlier work with Molien on the endgame KRKN [34].

Amelung indicated that the endgame KRBKNN was particularly interesting, and in 1908

he published a short article on the topic in F�ur Haus und Familie, a biweekly supplement to

the Riga newspaper D�una-Zeitung, of which he was the chess editor [41]. Amelung's interest

in this endgame was so great that he held a contest in D�una-Zeitung for the best solution

to a particular example of this endgame [43]. A solution was published the next year [44],

but Amelung died that year and was unable to continue or popularize his research. Conse-

quently, succeeding commentators dismissed many of his more extreme claims, and his work
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seemed to pass into oblivion. It is discussed in the 1922 edition of Berger [107, p.223{233],

but Amelung's work was criticized by the mathematician and chess champion Machgielis

[Max] Euwe in his titanic 1940 study of pawnless endgames [270, pp.50{53].15

Indeed, D�una-Zeitung turned out to be an elusive newspaper; I was not able to locate any

references to it in domestic catalogues and indices; the only copy I was able to �nd was

archived at the National Library of Latvia. In addition to the remark about Molien, the

research reported here argues for a renewed appreciation of the accuracy and importance

of Amelung's work.

6.1.4 Computer endgame analysis

Although some have dated computer chess from Charles Babbage's brief discussion of au-

tomated game-playing in 1864, his conclusion suggests that he did not appreciate the com-

plexities involved:

In consequence of this the whole question of making an automaton play any
game depended upon the possibility of the machine being able to represent all
the myriads of combinations relating to it. Allowing one hundred moves on each
side for the longest game at chess, I found that the combinations involved in

15 Euwe wrote \Dit eindspel [KRBKNN] biedt de sterkste partij zeer goede winstkansen. F.

Amelung ging zelfs zoo ver, dat hij de verdediging als kansloos beschouwde, maar deze opvatting

schijnt ojuist te zijn [270, p.50]", i.e., \This endgame [KRBKNN] o�ers the stronger side excellent

winning chances. F. Amelung went so far as to say that the defense was hopeless, but this assessment

seems to be untrue." (Translation from the Dutch is by Peter Jansen; translation into German is

available in Euwe [271, Volume 5, Page 55].)
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the Analytical Engine enormously surpassed any required, even by the game of
chess. [74, p. 467]

Automated endgame play appears to date from the KRK construction of Leonardo Torres-

Quevedo. Although some sources give 1890 as the date in which the automaton was de-

signed, it was exhibited at about 1915 [97, 683].16 Quevedo's automaton, which, unlike

most later work, could move its own pieces, used a rule-based approach [731,761], like that

of Barbara J. Huberman's 1968 thesis [385]. By contrast, we are concerned with exhaustive

analysis of endgames, in which the value of each node of the state-space is computed by

backing up the game-theoretic values of the leaves.

The mathematical justi�cation for the retrograde analysis chess algorithm was already im-

plicit in the 1912 paper of Ernst Zermelo [819]. Additional theoretical work was done by

John von Neumann and Oskar Morgenstern (1944) [788, pp.124-125].

The contemporary dynamic programming methodology, which de�nes the �eld of retrograde

endgame analysis, was discovered by Richard Bellman in 1965 [101].17 Bellman's work was

the culmination of his work reported as early as 1961:

Checkers and Chess. Interesting examples of processes in which the set of all
possible states of the system is indescribably huge, but where the deviations are
reasonably small in number, are checkers and chess. In checkers, the number of
possible moves in any given situation is so small that we can con�dently expect a
complete digital computer solution to the problem of optimal play in this game.

16 \Torres believes that the limit has by no means been reached of what automatic machinery can

do, and in substantiation of his opinions presents his automatic chess-playing machine" [731, p. 298].

17 Bellman's article, strangely enough, is not generally known to the computer game community,

and it is not included in Herik's bibliography. [780]
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In chess, the general situation is still rather complex, but we can use the method
described above to analyze completely all pawn-king endings, and probably all
endings involving a minor piece and pawns. Whether or not this is desirable is
another matter [100, p.3].

Bellman had considered game theory from a classical perspective as well [98, 99], but his

work came to fruition in his 1965 paper [101], where he observed that the entire state-space

could be stored and that dynamic programming techniques could then be used to compute

whether either side could win any position. Bellman also sketched how a combination of

forward search, dynamic programming, and heuristic evaluation could be used to solve much

larger state spaces than could be tackled by either technique alone. Bellman predicted that

checkers could be solved by his techniques, and the utility of his algorithms for solving

very large state spaces has been validated by Jonathan Schae�er et al. in the domain of

checkers and Ralph Gasser in the domain of Nine Men's Morris [320,478,664]. On the other

hand, 4 � 4 � 4 tic-tac-toe has been solved by Patashnik (1980) using forward search and

a variant of isomorph-rejection based on the automorphism group computation of Silver

(1967) [591,681].

The �rst retrograde analysis implementation was due to Thomas Str�ohlein, whose important

1970 dissertation described the solution of several pawnless 4-piece endgames [667,727,728].

E. A. Komissarchik and A. L. Futer (1974) studied certain special cases of KQPKQ,

although they were not able to solve the general instance of such endgames [453]. J. Ross

Quinlan (1979) analyzed KRKN from the point of view of a machine learning testbed [611,

612]. Hans Berliner and Murray S. Campbell studied the Sz�en position of three connected
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passed pawns against three connected passed pawns by simplifying the promotion subgames

[112]. Campbell has begun to extend this idea to wider classes of endgames [157] . Peter J.

Jansen has studied endgame play when the opponent is presumed to be fallible [400{402]. H.

Jaap van den Herik et al. have produced a number of retrograde analysis studies of various

4-piece endgames, or of endgames with more than 4 pieces whose special structure allows the

state-space size to be reduced to about the size of the general 4-piece endgame [234,778,781].

Danny Kopec has written several papers in the area as well [454].

The �rst retrograde analysis of general 5-piece endgames with up to one pawn was due to

Thompson (1986) [753]. The signi�cance of this work was twofold. First, many more moves

were required to win certain endgames than had previously been thought. Second, the

Thompson work invalidated generally accepted theory concerning certain 5-piece endgames

by demonstrating that certain classes of positions that had been thought to be drawn

were, in fact, won. The winning procedure proved to be quite di�cult for humans to

understand [553]. The pawnless 5-piece work of Thompson was extended to all pawnless

5-piece endgames and many 5-piece endgames with one pawn by an early version of the

program discussed in this paper.

6.2 Tensor products and chess endgames

This section describes the chess endgame algorithm in a generalization of the tensor prod-

uct formalism described in Section 4.3. The parallel chess endgame algorithm should be

contrasted with the vast body of work on parallel forward search and in particular parallel
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alpha-beta chess searching (references). The problem considered is easier to parallelize than

forward search because of the absence of pruning. Some progress toward the problem of

using combined forward and backward search in parallel searching in the context of sym-

metry is reported in work by Jonathan Bright, Simon Kasif, and the author, where the

best-known bound on parallel knapsack algorithms is also improved [142].

Small chess endgames present a particularly interesting challenge to our multilinear-

algebraic parallel-program design methodology:

� The formalism for the existing multilinear algebra approach had been developed to

exploit parallelization of linear transformations over a module. This formalism needed

to be generalized so that it would work over Boolean algebras.

� The symmetry under a noncommutative crystallographic group had to be exploited

without sacri�cing parallelizability.

� The state-space size of 7:7 � 109 nodes was near the maximum that the target archi-

tecture could store in RAM.

The remainder of this chapter describes the resolution of these problems, and reports on

the following two main domain results:

1. Table 1 gives equations de�ning the dynamic programming solution to chess endgames.

Using the techniques described in this paper, the factorizations can be modi�ed to

produce e�cient code for most current parallel and vector architectures.
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2. Table 2 presents a statistical summary of the state space of several 6-piece chess

endgames. This table could not have been generated in a practicable amount of time

using previous techniques.

6.2.1 De�nitions

For the sake of simplicity of exposition, captures, pawns, stalemates, castling, and the

50-move rule will be disregarded unless otherwise stated.

Let S be an ordered set of k chess pieces. For example, if k = 6 then one could choose

S = hk;K;Q;R;q;ri:

An S-position is a chess position that contains exactly the k pieces in S. We write S =

hS1; S2; : : : ; Ski: An S-position can be viewed as an assignment of each piece Si 2 S to a

distinct square of the chessboard (note that captures are not allowed).

Vn is the space of length n Boolean vectors. The space of 8 � 8 Boolean matrices is thus

C � V8 
 V8. Let feig8i=1 be the standard basis for V8:

Let
NjV be the jth tensor power of V, i.e., V
 � � � 
V, with j factors.

Let B �NkC. B is called the hyperboard corresponding to S: It can be thought of as a cube

of side-length 8 in R2k: Each of the 64k basis elements corresponds to a point with integer

coordinates between 1 and 8.

Each basis element of C is of the form ei 
 ej for 1 � i; j � 8. Any such basis element,

therefore, denotes a unique square on the 8� 8 chessboard. Any element of C is a sum of
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distinct basis elements, and therefore corresponds to a set of squares [801].

Each basis element of B is of the form c1
c2
� � �
ck ; where each cs is some basis element

of C. Since each cs is a square on the chessboard, each basis element of B can be thought of

as a sequence of k squares of the chessboard. Each position that is formed from the pieces

of S is thereby associated with a unique basis element of B. Any set of positions, each of

which is formed from pieces of S, is associated with a unique element of B : the sum of the

basis elements corresponding to each of the positions from the set.

This correspondence between sets of chess positions and elements of B forms the link be-

tween the chess algorithms and the tensor product formulation. In the following, the dis-

tinction between sets of chess positions formed from the pieces in S and elements of the

hyperboard B will be omitted when the context makes the meaning clear.

If p 2 fK;Q;R;B;Ng is a piece, then the unmove operator Xp;s is the function that,

given an S-position P returns the set of S-positions that could be formed by unmoving Ss

in P as if Ss were a p.

Xp;s can be extended to a linear18 function from elements of B to itself, and thereby

becomes an element of M64k :

The core of the chess endgame algorithm is the e�cient computation of the Xp;s. The

following subsections describe a factorization of Xp;s in terms of primitive operators. The

18 Technically the unmove operators are only quasilinear, since the Boolean algebra is not a ring,

and thus B is not a module.
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ideas of subsection 4.3.2 may then be used to derive e�cient parallel code from this factor-

ization.

6.2.2 Group actions

This subsection introduces a few group actions [310]. We will use the group-theoretic

terminology both to give concise descriptions of certain move operators and to describe

the exploitation of symmetry. There is a close correspondence between multilinear algebra,

combinatorial enumeration, and group actions which motivates much of this section [547{

550].

The symmetric group on k elements Sk acts on B by permuting the order of the factors:

s

kO
s=1

cs =
kO

s=1

css;

for s 2 Sk and cs 2 C.

The dihedral group of order 8, D4, (see section 3.1) acts on C by

r(ei 
 ej) = e8�j+1 
 ei (6.1)

f(ei 
 ej) = ei 
 e8�j+1 (6.2)

Thus, r rotates the chessboard counterclockwise 90� and f ips the chessboard about the

horizontal bisector.

D4 acts diagonally on B :

d

kO
s=1

cs =
kO

s=1

dcs
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Let C4 be the cyclic group generated by r.

A group G acting on Vn and Vm acts on Mm
n by conjugation: (gM)v = g(Mg�1(v)). We

let Z
G

x =
X
g2G

gx:

The notation
R
G
x is intended to represent the group average of x with respect to G [310, p.

6]. It is a �xed point of the G action: g
R
G
x =

R
G
x for all g 2 G:

6.3 Endgame algorithm

This section presents the endgame algorithm using the notation developed in Section 6.2.

Subsection 6.3.1 gives the fundamental factorization. Subsection 6.3.2 describes the mod-

i�cation of the equations of Table 6.1 to exploit symmetry. Subsection 6.3.3 describes the

control structure of the algorithm.

6.3.1 Factorizing the unmove operator

We de�ne E8 to be the unit one-dimensional 8� 8 end-o� shift matrix. The unit multidi-

mensional shift along dimension s is de�ned by

Us 2M64k � I64s�1 
 (E8 
 I8)
 I64k�s:

Such multidimensional shifts are commonly used in scienti�c computation.
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XR;s =

Z
C4

LUs(I64k + LUs)
6 (6.4)

XN;s = L

Z
D4

Us � (r(U2
s)) (6.5)

XB;s =
Z
D4

LUs(I64k + LUsrUs)
6 (6.6)

XK;s = L

Z
C4

Us + UsrUs (6.7)

XQ;s = XR;s +XB;s (6.8)

(6.9)

Table 6.1: These equations de�ne the core of a portable endgame algorithm. By modi-
fying the factorizations, code suitable for execution on a wide range of high-performance
architectures can be derived.

Fix a basis fcig64i=1 of C, and de�ne

L 2M64k � diag

0@Z
Sk

X
i1<���<ik

ci1 
 � � � 
 cik

1A (6.3)

Certain basis elements of B do not correspond to legal S-positions. These \holes" are

elements of the form
Nk

s=1 cs such that there exist distinct s; s0 for which cs = cs0 : If v 2 B

then Lv is the projection of v onto the subspace of B generated by basis elements that are

not holes.

Table 6.1 de�nes the piece-unmove operators.

Figure 6.1 illustrates the computation of the integrand in the expression for XR;1 in Table

6.1. This corresponds to moving the R to the right. The average over C4 means that the R

must be moved in 4 directions. For example, conjugation by r of the operation of moving

the R right corresponds to moving the R up: if one rotates the chessboard clockwise 90�,

moves the R right, and then rotates the chessboard counterclockwise 90�, the result will be
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Figure 6.1: Unmoving the R to the right from the position at bottom results in the three
positions center. Here, S = hR;Ki: Each position corresponds to a point in the hyperboard,
top. The bottom position is e2 
 e3 
 e6 
 e3: The new positions are e3 
 e3 
 e6 
 e3;
e4 
 e3 
 e6 
 e3; and e5 
 e3 
 e6 
 e3: e6 
 e3 
 e6 
 e3 is illegal and is zeroed out by L:
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the same as if the R had been moved up to begin with.

As explained in section 4.3, by varying the factorization, code suitable for varying archi-

tectures can be derived. For example, if the interconnection architecture is a 2-dimensional

grid, then only Us for s = 1 can be directly computed. By using the relations Us = (1 s)U1

and Xp;s = (1 s)Xp;1; equations appropriate for a grid architecture can be derived. Here

(1 s) 2 Sk interchanges 1 and s.

These equations are vectorizable as well [698]. The vectorized implementation of Table 1

by Burton Wendro� et al. has supported this claim [799].

Other factorizations appropriate for combined vector and parallel architectures, such as a

parallel network of vector processors, can also be derived [434].

6.3.2 Exploiting symmetry

The game-theoretic value of a chess position without pawns is invariant under rotation and

reection of the chessboard. Therefore, the class of positions considered can be restricted

to those in which the k is in the lower left-hand octant, or fundamental region, of the

chessboard (Figure 6.2).

The chess positions with thek in its fundamental region correspond to points in a triangular

wedge in the hyperboard.

Algebraically, because each Xp;s is a �xed point of the D4 action, we need only consider
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Z Z Z Z
Z Z Z Z
Z Z Z Z

Z Z Z Z
Z j Z Z

Z jkZ Z
jkj Z Z

jkjkZ Z

Figure 6.2: The chessboard may be rotated 90� or reected about any of its bisectors
without altering the value of a position without pawn. Therefore, the location of the k
may be restricted to the 10 squares shown, called a fundamental region.

the 10 � 64k�1-space:

B0 � C=D4 

Ok�1

C

rather than the 64k-space B: We suppose that the �rst piece of S, the piece corresponding

to the �rst factor in the expression for B0, is the k.

When pieces other than the k are moved, the induced motion in the hyperboard remains

within the wedge. Thus, the induced functions X0
p;s:B

0 7! B0 have the same form as Table

6:1 when s � 1.

However, when the k is moved outside its fundamental region, the resulting position must

be transformed so that the k is in its fundamental region. This transformation of the

chessboard induces a transformation on the hyperboard (Figure 6.3).
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Z Z Z Z
Z Z Z Z
KZnm Z Z
Z Z Z Z
Z Z Z Z
ZBZkZ Z
S Z Z Z
Z Z Z Z

Z Z Z Z
Z Z Z Z
KZnm Z Z
Z Z Z Z
Z Z Z Z
ZBZ j Z
S Z Z Z
Z Z Z Z

ZZZZ
ZZZZ
KZnmZZ
ZZZZ
ZZZZ
ZBZjZ
SZZZ
ZZZZ

Figure 6.3: Only a wedge in the hyperboard is physically stored. To compute the e�ect
of moving the k outside the squares to which it is restricted, a communication pattern
is induced in the hyperboard. In this example, the k in the lower chessboard is moved,
reaching the position at the upper right. This position must be reected about the vertical
bisector, yielding the position at upper left. These three positions correspond to three points
in the hyperboard, only the �rst and third of which are physically stored. The Black-to-
move position at bottom requires 222 moves against best play for White to win (see Table
2).
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Algebraically,

X0
k;1

=
X
d2D4

X0
k;1d



Ok�1

d (6.10)

where X0
k;1d

2M10:

The sum over d 2 D4 corresponds to routing along the pattern of the Cayley graph of D4

(see Figure 6.4).

This is a graph whose elements are the 8 transformations in D4, and whose edges are labeled

by one of the generators r or f. An edge labeled h connects node g to node g0 if hg = g0.

The communication complexity of the routing can be reduced by exploiting the Cayley

graph structure [708]. The actual communication pattern used is that of a group action

graph, which looks like a number of disjoint copies of the Cayley graph, together with some

cycles [800].

The problem of parallel application of a structured matrix to a data set invariant under

a permutation group has been studied in the context of �nite-element methods by Danny

Hillis and Washington Taylor as well. Although their terminology is di�erent from our

terminology, their general ideas are similar [368]. The method we use turns out to be

similar to the orbital exchange method, which is used to compute the FFT of a data set

invariant under a crystallographic group [49,50,757].

It is interesting to note that exploiting symmetry under interchange of identical pieces can

be handled in this notation: j identical pieces correspond to a factor SymjC in the expression

for C; where Symj is the jth symmetric power of C: [310, pp.472{475]



97

Z s Z Z
Z Z Z Z
ZBZ j Z
Z Z Z Z
Z Z M J
Z ZNZ Z
Z Z Z Z
Z Z Z Z

Z

s

Z

Z

Z

Z

Z

Z

Z
B
Z

j

Z

Z

Z

Z

Z

Z

Z

M

J

Z

Z
N
Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

ZsZZ
ZZZZ

ZBZjZ
ZZZZ

ZZMJ
ZZNZZ

ZZZZ
ZZZZ

Z

s

Z

Z

Z

Z

Z

Z

Z
B
Z

j

Z

Z

Z

Z

Z

Z

Z

M

J

Z

Z
N
Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z s Z Z
Z Z Z Z
ZBZ j Z

Z Z Z Z
Z Z M J

Z ZNZ Z
Z Z Z Z
Z Z Z Z

Z
s
Z
Z

Z
Z
Z
Z

Z
B
Z
j
Z

Z
Z
Z
Z

Z
Z
M
J

Z
Z
N
Z
Z

Z
Z
Z
Z

Z
Z
Z
Z

ZsZZ
ZZZZ
ZBZjZ

ZZZZ
ZZMJ

ZZNZZ
ZZZZ

ZZZZ

Z
s
Z
Z

Z
Z
Z
Z

Z
B
Z
j
Z

Z
Z
Z
Z

Z
Z
M
J

Z
Z
N
Z
Z

Z
Z
Z
Z

Z
Z
Z
Z

Figure 6.4: The Cayley graph for D4. Each node is pictured by showing the e�ect of its
corresponding transformation on a position in KBNNKR; thus, the chess value of each of
these nodes is the same. Solid lines correspond to r, and rotate the board counterclockwise
90�. Dotted lines correspond to f, and ip the board horizontally. The position shown arose
during a game between Anatoly Karpov and Gary Kasparov in Tilburg, October 1991.
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There are e�cient algorithms, in general, for performing the purely algebraic operations

required, as well as languages, such as GAP, MAGMA, and AXIOM, that are suitable for

the denotation of the algebraic structures used [152, 684, 685]. The groups encountered

here are so small, however, that computer-assisted group-theoretic computation was not

required.

6.3.3 Control structure

For i � 1 we de�ne vi 2 B to be vector of positions from which White to move can

checkmate Black within i moves (i.e., i White moves and i Black moves). Thus, v1 is the

vector of positions from which White can checkmate Black on the next move. v2 is the set

of positions from which White can either checkmate Black in one move or can move to a

position from which any Black reply allows a mate-in-one, and so on.

The overall structure of the algorithm is to iteratively compute the sets v1;v2; ::: until some

i is reached for which vi = vi+1. Then v = vi is the set of positions from which White can

win, and i is the maximin value of the set S: the maximum, over all positions from which

White can win, of the number of moves required to win that position [727,753].

The method for computing vi from vi�1 is called the backup rule. Several backup rules

have been used in various domains [478, 664]. They are all characterized by the use of an

unmove generator to \unmove" pieces, or move them backward, possibly in conjunction
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with more traditional move generators. We let

XWhite �
X

fs:Ss is Whiteg

XSs;s (6.11)

XBlack �
X

fs:Ss is Blackg

XSs;s (6.12)

The backup rule used is:

vi+1 =XWhite(XBlack(vi)): (6.13)

Here, v denotes the complement of v.

6.4 Implementation notes

6.4.1 Captures and pawns

The algorithms developed so far must be modi�ed to account for captures and pawns.

Each subset of the original set of pieces S induces a subgame, and each subgame has its

own hyperboard [101]. Without captures, moving and unmoving are the same, but when

captures are considered they are slightly di�erent. The equations for Xp;s developed in

the preceding section refer to unmoving pieces, not to moving them [753]. Unmoving pieces

cannot capture, but they can uncapture, leaving a piece in their wake. This is simulated

via interhyperboard communication.

The uncapture operation can be computed by using tensor products, corresponding to the

parallel broadcast (see section 8.1). An uncapture is the product from left to right of an
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unmove operator in the parent game, a diagonal matrix, a sequence of stride matrices, and

a broadcast. The broadcast is a tensor product of copies of an identity matrix with the

1� 64 matrix of 1's.

Each pawn position induces a separate hyperboard. Pawn unpromotion induces communi-

cation between a quotient hyperboard and a full hyperboard, which is implemented again

by multiplication by D4.

6.4.2 Database

There are two values that can be associated with a position: distance-to-mate and distance-

to-win.

The distance-to-mate is the number of moves by White required for White to checkmate

Black, when White plays so as to checkmate Black as soon as possible, and Black tries to

avoid checkmate as long as possible [819]. Although the distance-to-mate might seem like

the natural metric to use, it can produce misleadingly high distance values because the

number of moves to mate in trivial subgames, like KRK, would be included in the count

of something like KRKN. In fact, in KRKN, it does not matter for most purposes how

many moves are required to win the subgame KRK, once White captures the N, as long

as the N is captured safely [616].

The more usual distance-to-win metric is simply the number of moves required by White to

force conversion into a winning subgame. In practice, this metric is more useful when the
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position has no pawns. It also is the metric of relevance to the 50-move rule. If a particular

position has a distance-to-win of m;, then against perfect play the win value would be

altered by an m0 move rule for m0 > m. Although our program has implemented distance-

to-mate metric for 5-piece endgames, the results presented here use the more conservative

distance-to-win metric.

The max-to-win for a set of pieces (i.e., an endgame) is the maximum, over all positions

using those pieces from which White can win, of the distance-to-win of that position.

The distance-to-win of each point in the hyperboard can be stored so that a 2-ply search

permits optimum play.

By Gray coding this distance, the increment of the value can be done by modifying only

one bit.

Curiously, the motif of embedding Cayley graphs into Cayley graphs arises several times in

this work. Gray codes, which can be viewed as embedding the Cayley graph for Z2n into

that of Zn2 , are used both for implementing U (and, therefore, Xp;s) and for maintaining

the database. Embedding the Cayley graph for D4 in that of Zn2 arises during unpromotion

and moving the K. Because many interconnection networks are Cayley graphs or group

action graphs [56,246,248,636], this motif will reappear on other implementations.
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6.5 Results

6.5.1 Chess results

The combinatorially possible pawnless 5-piece games and many 5-piece games with a single

pawn were solved using an early version of the current program. This work resulted in the

�rst publication of the 77-move KBNKN max-to-win, which at the time was the longest

known pawnless max-to-win [707]. Some endgames were solved under the distance-to-mate

metric as well. The distance-to-mate results were not particularly illuminating. The state

space size is approximately 121 � 106 nodes for a single pawnless 5-piece endgame under the

Thompson symmetries, in which one representative from the 462 orbits of the D4 action on

the nonadjacent positions of the two kings is stored.

Several pawnless 6-piece endgames were also solved. The state-space size per endgame was

6,185,385,360 nodes, although the size of each hyperboard is 462 � 644, or about 7:7 � 109:

Table 6.2 presents statistical information about some pawnless 6-piece endgames.

The percent-win can be misleading because of the advantage of the �rst move in a random

position|White can often capture a piece in one move|and because it includes positions

in which Black is in check.

The max-to-win values were signi�cantly higher than previously known endgames. No 5-

piece endgame had a max-to-win over 100, and most of the nontrivial ones had max-to-wins

of approximately 50. KRNKNN has the longest known max-to-win of 243, although it is
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Game W Wins %W Z Game W Wins %W Z

KRNknn 243 4821592102 78 18176 KQkbbn 63 5257968414 85 6670

KRBknn 223 5948237948 96 456 KRRkrb 54 4529409548 73 1030

KRNkbn 190 4433968114 72 8030 KRNkbb? 52 1015903231 65 256

KQNkrr 153 5338803302 86 1858 KQkbbb 51 5058432960 82 2820

KRNkbb 140 4734636964 77 1634 KBNNkr 49 3302327120 53 1270

KRRNkq 101 5843483696 94 1520 KQQkqr 48 5689213742 92 32

KRBNkq 99 4242312073 69 1010 KQBkqb 46 4079610404 66 22

KRBkbn 98 5359504406 87 1478 KQQkqq 44 5122186896 83 32

KNNNkb 92 5324294232 86 6300 KRBBkq? 44 1185941301 75 396

KQRkqr 92 5125056553 83 243 KBBknn? 38 981954704 63 1662

KNNNkn 86 5834381682 94 12918 KRRkbb? 37 1483910528 94 26

KQBkrr 85 5707052904 92 342 KQBkqn 36 4213729734 68 78

KRRBkq 82 5935067734 96 388 KQknnn 35 4626525594 75 17688

KRBkbb? 75 1123471668 72 95 KQBkqr 32 3825698576 62 6

KQRkqb 73 5365200098 87 1410 KQNkqb 32 3789897570 61 35

KRRkrn 73 5023789102 81 1410 KNBBkn 31 6130532196 99 58

KQNNkq 72 5808880660 94 2228 KQNkqn 29 3920922433 63 152

KQRkqn 71 5553239408 90 1780 KQNkqr 27 3533291870 57 3

KBBBkr 69 4944693522 80 48 KRRkrr 18 4136045492 67 16

KBBNkr? 68 1497242834 95 83 KBBNkq? 12 970557572 62 18

KRRRkq 65 6054654948 98 6

Table 6.2: Endgame description, maximin, number of wins, percent-win, and number of mu-
tual zugzwangs for certain 6-piece endgames. The symmetries considered are the Thompson
symmetries in which the one representative from each of the 462 orbits of the non-adjacent
king-positions is stored, except for endgames with a ?, which indicates that the two bishops
were constrained to lie on squares of opposite colors. A state-space size of 6,185,385,360 for
normal endgames and 1,570,867,920 for endgames with a ? was used. Thus, for example,
there is really only a single mutual zugzwang in KRRRkq, but it is counted 6 times.
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not a general win.

We remark that KRBKNN is a general win, with 223 moves required to win in the worst

case. KRBKNN was called \known to be a draw" by Roycroft, a leading endgame expert,

in 1972 (KBBKN, which was considered a draw by most players, was only \controversial

or unknown" according to the same source). Most of the standard works concurred with the

opinion thatKRBKNN was not a general win [270, pp.50{53], [178, p. 417], [106, pp.167{

169], [291, p. 521]. Ch�eron, however, seems to reserve judgment.

The 50-move rule would a�ect the value of each endgame listed with max-to-win of 50 or

more. The 92-move win in KQRKQR is somewhat surprising too.

A mutual zugzwang is closely related to a game whose Conway value is 0: it is a position in

which White to move can only draw, but Black to move loses. Such positions seem amusing

because, particularly when no pawns are involved, chess is a very \hot" game in the sense

of Winning Ways [110].

Unlike the \maximin" positions (see appendix) whose analysis is fairly impenetrable, the

mutual zugzwangs can sometimes be understood by humans.

An example may help clarify this concept. Figure 6.5 shows a mutual zugzwang discovered

by the program, in KBNNKR. The Black R is trapped on h8,19 since g8 is guarded by

the B on a2, and the N's guard each other. If the Black R were to capture a N, then

19 The columns of a chessboard are conventionally lettered from left to right with letters going

from a to h; the rows of the chessboard are numbered from 1 to 8 reading up the page. Thus, h8

is the square on the upper right corner of the board.
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Figure 6.5: Mutual zugzwang: White to play draws, but Black to play loses

it would in turn be captured, and the resulting subgame of KBNK would be winning for

White. The position seems to be a race between Kings to see who will reach the upper right

corner area �rst. If the Black K reaches g7 or e8 �rst, the Black R can sacri�ce itself for a

White N, and then the Black K captures the other White N, leaving the drawn endgame

KBK. On the other hand, if the White K reaches g7 �rst, it simply captures the Black

Rh8. Note also that neither N can move, as the R would immediately capture the other

N.

It is not di�cult to see that Black to play loses: White gets in �rst. For example, 1 : : :Kc3

2 Kb1 Kd4 3 Kc2 Kc5 (If 3: : :Ke5? 4 Ng6+ wins the R) 4 Kd3 Kd6 5 Ke4 Kc7 (If

Ke7? 6 Ng6+ wins) 6 Kf5 Kd8 7 Kg6 Ke8 8 Kg7 and White wins.

However, White to move from the position in Figure 6.5 must move the B. 1 Bb1+ Kc3

forces 2 Ba2 Kc2, since other moves by White on the second move allow the Rh8 to

escape via g7. Chess theory, con�rmed by the program, shows that this general position in
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Z Z Z Z
l Z Z Z
Z Z l Z

Z Z Z Z
Z Z Z Z

Z Z Z Z
Z Z ZQL

j Z Z ZK

Figure 6.6: Mutual Zugzwang. If Black moves the Qa7 then Qhg1 or Qa2 mates. If the

Qf6 moves then Qb2 or Qf1 will mate. If Kb1 then Qc2 mates. Thus, any Black move
loses. On the other hand, if White moves �rst then Black can force the draw.

KBNNKR is drawn. Any other move of the B on move 1 allows Black to win the race.

For example, 1 Bf7 Kc3 2 Kb1 Kd4 3 Kc2 Kc5 4 Kd3 Kd6 5 Ke4 Ke7! draws.

Figure 6.7 shows an endgame composed by Elkies based on the computer-discovered mutual

zugzwang of Figure 6.6 [264] [654, Number 546]. Although non-chessplayers may have

di�culty understanding the analysis of his position, it follows accepted aesthetic practice

in the art of endgame composition by avoiding the use of promoted pieces in the original

position and by striving for a natural appearance.

The program was used to analyze a game between Anatoly Karpov and Gary Kasparov that

occurred during an elite tournament in Tilburg. The players reached the position shown in

Figure 6.4. After playing on for 50 moves a draw was reached, but an exhaustive analysis

by the 6-piece program was necessary to prove that a win was not missed [709], since it
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Z Z L Z
Z Z ZPZb
Z Z Z Z

Z Z Z ZK
Z Z Z Z

ZqZ Z j
o Z ZBZ

Z Z Z Z

Figure 6.7: Elkies, American Chess Journal 1(2) 1994. White to play and win. \1 Qg7+
Not 1 Qd6+? Kxg2 2 f8/Q (interpolating further checks does not help) when 2: : :Qh3+
3 Kg5 Qe3+ forces either perpetual check or a queen trade, drawing. 1: : :Kh2 2 f8/Q.
If 2 Qe5+ Kxg2 3 f8/Q Qh3+ 4 Kg5 b1/Q with Kh1 and Be4 draws, but now 2: : :b1/Q
loses to 3 Qf4+Kg1 4Be4+ and mate. Thus, Black tries for perpetual check, and not with
2: : :Qd1+? 3 Bf3. 2: : :Qb5+ 3 Kh6 Qb6+ 4 Bc6! Not yet 4 Kxh7 b1/Q+ 5 Kh8

Qb8! drawing. Now Black must take the bishop because 4 : : :Qe3+ 5 Qg5Qxg5+ 6 Kxg5
b1/Q 7 Qf2+ mates. 4: : :Qxc6+ 5 Kxh7 b1/Q+. So Black does manage to give the
�rst check in the four-queen endgame, but he is still in mortal danger. 6Kh8 Kh1! Black
not only cannot continue checking, but must play this modest move to avoid being himself
checked to death! For instance, 6 : : :Qg2 7 Qc7+ Kg1 8 Qfc5+ Kh1 9Qh5+ and the
Black king soon perishes from exposure. But against the quiet 6: : :Kh1 White wins only
with 7 Qfg8!!, a second quiet move in this most tactical of endgames, bringing about" the
rotated version of the KQQKQQ mutual zugzwang. (Quotation from Elkies' analysis)
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was unclear whether a draw could have been obtained. In fact, however, pawnless 6-piece

endgames almost never arise in tournament play.

6.5.2 Timing

The implementation was on a 64K processor CM-2/200 with 8 GBytes RAM. The processors

were interconnected in a hypercube and clocked at 7MHz (10 MHz for the CM-200). The

CM-2 6-piece code required approximately 1200 seconds for initialization and between 111

and 172 seconds to compute Ki+1 from Ki. Exact timings depend on S (for instance, as is

clear from Table 1, XQ;s is slower than either XR;s or XB;s) as well as run-time settable

factorization choices and load on the front end.

Per-node time per endgame (time to solve the endgame divided by number of nodes in the

state-space) is faster by a factor of approximately 6 �103 than timings of di�erent endgames

reported using classical techniques [579,753,779,781] based on the 5-piece timings of the

code reported here.

In unpublished personal communication Thompson has indicated that the per-node time

of the fastest serial endgame code is currently only a factor of approximately 7 � 102 times

slower than that of the code reported in this paper (depending on the endgame) [754].

Unfortunately, direct comparison of 6-piece timing against other work is, of course, not

currently possible since 6-piece endgames could not have been solved in a practicable amount

of time using classical techniques on previous architectures. However, with larger and
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faster serial machines, and with enough spare cycles, 6-piece endgames are in fact coming

within reach of classical solution techniques. This would permit a more informative timing

comparison.

Thus, although per-node timing comparisons based on radically di�erently sized state-spaces

are not very meaningful, the large per-node timing di�erential of the current program

compared to classical programs does tend to support the hypothesis that the techniques

reported here lend themselves to e�cient parallel implementation.

The only program with per-node time of comparable speed to the author's CM-200 imple-

mentation is Burton Wendro�'s et al. vectorized implementation of Table 1 [799], although

this implementation currently solves only a single 4-piece endgame.

The CM-200 source code implementing Table 1 is currently available from

ftp.cs.jhu.edu:pub/stiller/snark.

6.6 Future work

The main historical open question is to �nd out what was Molien's exact contribution to

the history of numerical chess endgame analysis, and to locate and check his analysis of

KRKB. Kanunov [422, p.6] refers to private papers held by Molien's daughter; currently

we are trying to locate these papers in the hope that they might shed light on the questions

raised in subsection 6.1.3. Amelung himself is also a �gure about whom little is known, and

the remarks here would seem to suggest that a detailed reassessment of his contribution to
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the endgame study would be desirable.

The question of Molien and Amelung's contributions to quantitative endgame analysis is

part of the larger historical question of pre-digital precursors to computer chess algorithms.

In addition to the work of Babbage, Molien, Amelung, Zermelo, and Quevedo, we remark

that K. Schwarz, in a little-known 1925 article in Deutsche Schachzeitung, argued for a

postional evaluation function similar to the squares-attacked heuristic used in some full-

chess programs [673].

From a computational point of view, it might seem that the next logical step in the evolution

of the current program should be the exhaustive solution of pawnless 7-piece endgames. In

fact, in my opinion a more promising approach would be to follow up on the suggestions

�rst made by Bellman [100, 101, 112] and solve endgames with multiple pawns and minor

pieces. Such an approach would combine heuristic evaluation of node values corresponding

to promotions with the exhaustive search techniques described here. Although the use of

heuristics would introduce some errors, the results of such a search would, in my opinion,

have considerable impact on the evaluation of many endgames arising in practical play.

Even more speculatively, it is also possible to search for certain classes of endgames con-

sidered artistic by endgame composers; such endgames typically depend on a key mutual-

zugzwang or domination position some moves deep in the tree.
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6.7 A best play line

Distance-to-win (conversion) metric is used. Equioptimal moves are parenthesized. For

technical reasons the last move in the line is omitted.

Z Z ZNZ
Z Z ZKS
ZnZ Z Z

Z Z Z Z
Z Z Z Z

Z Z Z Z
ZnZ Z Z

ZkZ Z Z

1Kf7-e6 Nc6-b4 2Ke6-e5 Nb4-d3 3Ke5-e4 Nd3-f2 4Ke4-f3 Nf2-d3
5Kf3-e2 Nc2-b4 6Ke2-e3 Kb1-b2 7Ke3-d4 Nd3-f4 8Kd4-c4 Nb4-d5
9Rg7-h7 Nd5-e3 10Kc4-d4 Ne3-c2 11Kd4-e4 Nf4-e6 12Ke4-e5 Ne6-g5

13Rh7-h5 Nc2-e1 14Ke5-f5 Ng5-f3 15Kf5-e4 (Kf5-f4) Nf3-d2 16Ke4-e3

Nd2-b3 17Rh5-h1 Ne1-c2 18Ke3-d3 Nb3-c1 19Kd3-e4 Nc1-b3 20Rh1-

h3 Nb3-c5 21Ke4-e5 Nc2-e1 22Ng8-f6 Ne1-d3 23Ke5-d6 Nc5-b7
24Kd6-c7 Nb7-c5 25Kc7-c6 Kb2-c2 26Rh3-h2 Kc2-b3 (Kc2-c3) 27Kc6-d5

Kb3-b4 28Kd5-d4 (Rh2-h4) Nd3-f4 29Rh2-h4 Kb4-b5 30Nf6-e8 Nc5-
b3 31Kd4-e4 Nf4-g6 32Rh4-h7 Nb3-c5 33Ke4-d4 Ng6-f4 34Ne8-d6

Kb5-c6 35Rh7-h6 Nc5-b3 36Kd4-e4 Nf4-e6 37Ke4-e5 Ne6-d4 38Rh6-
h3 Nb3-c5 39Nd6-c8 Nd4-c2 40Rh3-c3 Nc2-b4 41Ke5-d4 Nb4-a6

42Rc3-c2 Kc6-d7 43Nc8-b6 Kd7-d6 44Nb6-c4 Kd6-c6 45Nc4-e3 Kc6-
d6 46Ne3-f5 Kd6-e6 47Nf5-g7 Ke6-f7 48Ng7-h5 Nc5-e6 49Kd4-e5

Na6-b4 50Rc2-e2 Nb4-d3 51Ke5-e4 Nd3-b4 52Re2-b2 Kf7-g6 53Nh5-

g3 Ne6-g5 54Ke4-d4 Ng5-e6 55Kd4-c4 Nb4-a6 56Rb2-f2 Ne6-g5
57Rf2-f1 Na6-c7 58Ng3-e2 Ng5-f7 59Ne2-f4 Kg6-g5 60Kc4-d4 Nc7-

b5 61Kd4-c5 Nb5-d6 62Nf4-e6 Kg5-g6 63Ne6-f8 Kg6-g5 64Kc5-d5

Nd6-f5 65Rf1-b1 (Rf1-a1) Nf5-g3 66Rb1-b7 Nf7-h6 67Rb7-g7 Kg5-f4

68Nf8-e6 Kf4-f3 69Rg7-b7 Ng3-h5 70Rb7-b4 Nh5-f6 71Kd5-d4 Nf6-
h5 72Kd4-d3 Nh6-g4 73Ne6-g5 Kf3-g3 74Ng5-e4 Kg3-h4 75Rb4-a4

Nh5-f4 76Kd3-d4 Nf4-e6 (Nf4-e2) 77Kd4-d5 Ne6-f4 78Kd5-d6 Nf4-h3
79Ra4-a8 Ng4-f2 80Ne4-c5 Kh4-g5 81Kd6-e5 Nf2-g4 82Ke5-d4 Nh3-f4

83Nc5-e4 Kg5-g6 84Ra8-a6 Kg6-f5 85Ra6-a5 Kf5-e6 86Ne4-c5 Ke6-e7
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87Ra5-a7 Ke7-f6 88Kd4-e4 Kf6-g5 89Ra7-a5 Nf4-h5 90Nc5-e6 Kg5-g6

91Ra5-b5 Kg6-f7 92Ne6-c5 Kf7-e7 93Rb5-b2 Ke7-d6 94Nc5-b7 Kd6-e7
95Rb2-a2 Nh5-g7 96Ra2-e2 Ke7-d7 97Re2-g2 Ng7-e8 98Ke4-f4 Ng4-f6

99Kf4-e5 Kd7-e7 100Rg2-e2 Ke7-d7 101Nb7-a5 Nf6-g4 102Ke5-f5 Ng4-
h6 103Kf5-g6 Nh6-g8 104Na5-c4 Ne8-c7 105Kg6-f7 Ng8-h6 106Kf7-f6

Nh6-g8 107Kf6-e5 Ng8-e7 108Re2-d2 Kd7-c6 109Rd2-c2 Nc7-a6 (Ne7-g6)
110Nc4-e3 Kc6-d7 111Rc2-d2 Kd7-c6 112Rd2-d6 Kc6-b5 113Rd6-h6

Ne7-c8 114Ke5-d4 (Rh6-h5) Na6-b4 115Rh6-h5 Kb5-c6 116Ne3-c4 Nc8-e7

117Rh5-h6 Kc6-c7 118Rh6-h7 Kc7-d7 119Kd4-e5 Nb4-d5 120Nc4-d6
(Nc4-d2) Kd7-c6 121Nd6-e4 Ne7-g6 122Ke5-f5 Ng6-f8 123Rh7-h6 Kc6-c7

124Rh6-h1 Nf8-d7 125Rh1-b1 Nd7-b8 126Kf5-e5 Nd5-e3 127Ke5-d4 Ne3-
f5 128Kd4-d5 Nf5-e3 129Kd5-c5 Nb8-d7 130Kc5-d4 Ne3-g4 131Rb1-c1

Kc7-d8 132Rc1-e1 Ng4-f6 133Ne4-g5 (Ne4-d6) Kd8-c7 134Ng5-f7 Nd7-f8
135Re1-f1 Nf6-g4 136Rf1-g1 Ng4-f6 137Rg1-e1 Kc7-d7 138Kd4-e5 Nf6-e8

139Nf7-h8 Kd7-e7 140Ke5-d5 Ke7-d7 141Re1-f1 Ne8-c7 142Kd5-e5 Nf8-
e6 143Nh8-g6 Ne6-c5 144Rf1-b1 Kd7-c6 145Ng6-e7 Kc6-d7 146Ne7-f5

Kd7-c6 147Nf5-d4 Kc6-d7 148Rb1-d1 Nc7-a6 149Nd4-f5 Kd7-c6 150Rd1-

h1 Na6-b4 151Rh1-h6 Kc6-d7 152Ke5-d4 Nc5-e6 153Kd4-c4 Nb4-a6
154Rh6-h7 Kd7-c6 155Rh7-h1 Na6-c7 156Rh1-d1 Nc7-e8 157Nf5-e7

Kc6-c7 158Kc4-d5 Ne6-f8 159Ne7-g8 Kc7-d7 160Kd5-c5 Kd7-e6 (Kd7-
c7) 161Rd1-e1 Ke6-d7 162Re1-e7 Kd7-d8 163Re7-a7 Nf8-d7 164Kc5-c6

Nd7-e5 165Kc6-d5 Ne5-g6 166Ra7-h7 Ne8-c7 167Kd5-c6 Ng6-e5 168Kc6-
d6 Ne5-c4 169Kd6-c5 Nc4-e5 170Rh7-h5 Ne5-f7 171Kc5-c6 Nc7-e6

172Rh5-a5 Kd8-e8 173Ng8-f6 Ke8-e7 174Nf6-d5 Ke7-f8 175Kc6-d7 Ne6-
d4 176Nd5-f4 Nf7-h6 177Ra5-d5 Nd4-f5 178Kd7-e6 Nf5-g7 179Ke6-f6

Nh6-g8 180Kf6-e5 Ng8-h6 181Rd5-a5 Nh6-g4 182Ke5-d4 (Ke5-d5) Kf8-
f7 183Ra5-a7 Kf7-f6 184Kd4-e4 Ng7-e8 185Ra7-a6 Kf6-g7 186Ra6-b6
(Nf4-g2) Ng4-f6 187Ke4-f5 Nf6-d7 188Nf4-e6 Kg7-f7 189Ne6-g5 Kf7-f8

190Rb6-a6 Ne8-g7 191Kf5-g6 Nd7-e5 192Kg6-h7 Ng7-e8 193Ra6-e6

Ne5-f7 194Ng5-f3 Nf7-d6 195Kh7-g6 Nd6-f5 (Nd6-c8) 196Re6-e1 Nf5-

e7 197Kg6-g5 Kf8-f7 198Nf3-e5 Kf7-g7 199Ne5-g4 Kg7-f8 200Ng4-h6

Ne7-d5 201Nh6-f5 Kf8-f7 202Re1-e2 (Re1-e4Re1-e5) Nd5-b6 203Re2-e7

Kf7-f8 204Re7-e1 Nb6-d5 205Re1-e5 Nd5-b6 (Ne8-c7) 206Kg5-g6 Ne8-
c7 207Nf5-d6 Nb6-d5 208Re5-e1 Nc7-e6 (Nd5-f4Nd5-e7Nd5-b4) 209Kg6-f5

Ne6-c7 210Kf5-e5 Nd5-b4 (Kf8-e7) 211Re1-f1 Kf8-e7 212Rf1-f7 Ke7-d8
213Nd6-b7 Kd8-c8 214Nb7-c5 Nc7-b5 215Rf7-g7 (Rf7-h7)Kc8-d8 216Rg7-

b7 Nb4-c6 217Ke5-e6 Kd8-c8 218Rb7-h7 Nc6-b4 219Nc5-a4 Nb4-a6
220Ke6-d5 Nb5-c7 221Kd5-d6 Nc7-e8 222Kd6-e7 Ne8-c7 223Rh7-h6

Na6-b8 224Na4-b6 Kc8-b7 225Nb6-c4 Nb8-c6 226Ke7-d6 (Ke7-d7)Nc6-b4
227Rh6-h8 Nb4-a6 228Rh8-h7 Kb7-c8 229Nc4-a5 Kc8-d8 230Na5-c6

Kd8-c8 231Nc6-e7 Kc8-d8 232Ne7-d5 Nc7-e8 233Kd6-c6 Na6-b8 234Kc6-

b5 Ne8-d6 235Kb5-c5 Nd6-c8 236Rh7-h8 Kd8-d7 237Nd5-f6 Kd7-c7
238Rh8-h7 Kc7-d8 239Rh7-b7 Nb8-a6 240Kc5-c6 Nc8-e7 241Kc6-b6
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Na6-b4 242Rb7-d7
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Chapter 7

Group fast Fourier transforms and

their parallelization

One of the most powerful and elegant tools for symmetry exploitation is the group Fourier

transform. This chapter describes new fast algorithms for parallel group Fourier transforms

and presents several new applications to string matching.

The group Fourier transform is a generalization of the classical Fourier transform to the case

in which the index set, instead of being Zm, is a general �nite group, G. This notion will

be explained in detail later in the chapter, but for now, let us try to understand, in general

terms, one kind of relationship between symmetry and the classical Fourier transform.

Suppose we want to compute some (linear) function M on a vector of points v. Assuming

thatM is an n�n matrix, then brute-force multiplication ofM by v will take n2 operations.

But if we have the following additional information on M then we can do better; suppose,

for instance, that if we cyclically shift v to the left, getting a new vector w, then Mw is the
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cyclic shift ofMv; these cyclic shifts, of course, form a cyclic group of order n. In that case,

we can compute Mv in O (n logn) time by operating in the frequency domain; that is, by

�rst Fourier transforming both v and the �rst column of M and then pointwise multiplying

the results. The classical Fourier transform can therefore be thought of as a transform that

elicits the underlying symmetry of the operator M when this symmetry is a cyclic group.

In general, however, one can imagine transformations on v far more general than cyclic

shifts. When the set of transformations form a group G commuting with M, then, once

again, it is more e�cient to operate in the spectral domain. We take the G-Fourier transform

of the �rst column of M and of v, and \pointwise" multiply these, although the points, in

this case, are in fact matrices. In this way, the G-Fourier transform can be thought of as the

function that exposes the underlying symmetry ofM. Just as the classical Fourier transform

is often used to model time-invariant properties of a signal, so the G-Fourier transform can

be used to model the G-invariant properties of an input.

The format of this chapter will be as follows.

Section 7.1 provides a brief overview of the fascinating history of the classical Fourier trans-

form, which is simply a group Fourier transform for Abelian groups. Then we will briey

present some of the classical fast Fourier transform (FFT) algorithms in the tensor product

notation developed in section 4.3.

Section 7.2 provides a brief review of group representation theory and the basics of group

Fourier transform theory. The concept of an irreducible group representation is introduced,

and the group Fourier transform is formally de�ned. Subsection 7.2.2 then rede�nes the
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group Fourier transform in an entirely equivalent way using the concepts of group algebras;

this formulation lets us more easily understand the matricial structure of group Fourier

transforms.

Section 7.3 describes the fast group Fourier transforms algorithms. Although these algo-

rithms are not as fast as classical FFT algorithms, they are still considerably faster than

the brute-force n2 algorithm for many classes of groups. In the case where the group G is

Abelian, we see that the new algorithms reduce to the Cooley-Tukey FFT algorithm.

Section 7.4 describes the parallelization of the group FFT algorithms. Subsection 7.4.1

reviews parallelization of classical FFT algorithms, and subsection 7.4.2 outlines previous

work on parallel group Fourier transforms for general �nite groups. Subsection 7.4.3 presents

a parallelization of the group fast Fourier transforms, and describes a preliminary parallel

Sn tranform. Subsection 7.4.4 discusses in more detail the application to group circulants.

The section concludes in subsection 7.4.5, where applications of group FFTs to learning,

random walks on groups, analysis of ranked data, and group �lters are presented.

Section 7.5 illustrates the ideas developed so far by describing the development of a simple

parallel dihedral group FFT implementation.

Section 7.6 describes a new class of applications for group FFT algorithms: generalized

string matching. Many earlier string-matching algorithms are brought under a single uni-

fying rubric of generalized matrix multiplication, and the symmetry of the original prob-

lem is modeled by the symmetry of the matrix. These generalized matrix multiplication

problems are particularly interesting because, despite their almost complete lack of alge-
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braic structure, the group FFT algorithms can still be used. Subsection 7.6.1 presents a

brief background of string-matching problems, subsection 7.6.2 describes the mathematical

underpinnings of our model for string matching, subsection 7.6.3 gives algorithms for per-

forming certain kinds of generalized matrix multiplication algorithms, and subsection 7.6.4

describes a class of new parallel string-matching algorithms.

Section 7.7 concludes with some open problems and suggestions for future work.

7.1 Classical Fourier transforms

The history of fast Fourier transforms is somewhat convoluted, so to speak, but nevertheless

worthy of remark. Three summaries of the history of varying focus are contained in the

references by Goldstine [340], by Cooley, Lewis, andWelch [199] and by Heidemann, Johnson

and Burrus [361].

Abelian fast Fourier transform theory has its roots in Carl Friedrich Gauss' 19th-century

posthumous paper [323]. Gauss considered the problem of interpolating a trigonometric

series as part of a general investigation of interpolation techniques. Unfortunately, due

to language, notational, and terminological di�culties, it is di�cult for the contemporary

reader to discern the modern FFT in Gauss' presentation, although it was pointed out by

Goldstine [340, p.247{258].

An O (n logn) FFT was rediscovered by Runge, in the early 1900s [652], and re�ned into a

usable algorithm by Danielson and Lanczos in a famous 1942 paper, which, however, had
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been forgotten [218,219]. Danielson and Lanczos were interested in X-ray analysis, and the

following excerpt from the introduction to their �rst paper [218, pp.365{366] gives a vivid

an entertaining picture of the computational conditions under which they labored.

One of the more recent applications of Fourier analysis occurs in the quan-
titative investigation of liquids by x-rays following the theory of Zernike and
Prins. Although the following method was developed for this application, it
is equally applicable to any problem requiring a Fourier analysis. If a modern
mechanical analyzer (e.g. Henrici [362] or Michelson [552]20) is available, the
evaluation of a Fourier integral presents no di�culty. It is our purpose to show
that, for occasional analysis at least, one need not depend upon such costly
instruments, even when the required number of coe�cients is very large. Like
all other arithmetical methods we make use of the symmetry of the trigono-
metric functions in the four quadrants of a circle. The great reduction in the
number of operations, which this allows, has been pointed out by Runge [652].
Since, however, the labor varies approximately as the square of the number of
ordinates, the available standard forms become impractical for a large number
of coe�cients. We shall show that, by a certain transformation process, it is
possible to double the number of ordinates with only slightly more than double
the labor.

In the technique of numerical analysis the following improvements suggested
by Lanczos were used: (1) a simple matrix scheme for any even number of
ordinates can be used in place of available standard forms; (2) a transposition
of odd ordinates into even ordinates reduces an analysis for 2n coe�cients to
two analyses for n coe�cients; (3) by using intermediate ordinates it is possible
to estimate, before calculating any coe�cients, the probable accuracy of the
analysis; (4) any intermediate value of the Fourier integral can be determined
from the calculated coe�cients by interpolation. The �rst two improvements
reduce the time spent in calculation and the probability of making errors, the
third tests the accuracy of the analysis, and the fourth improvement allows the
transform curve to be constructed with arbitrary exactness. Adopting these
improvements the approximate times for Fourier analyses are: 10 minutes for
8 coe�cients, 25 minutes for 16 coe�cients, 60 minutes for 32 coe�cients, and
140 minutes for 64 coe�cients: : :"

The algorithms of Gauss, Runge, and Danielson-Lanczos were fundamentally the famous

20 The devices of Henrici and Michelson-Stratton to which the authors allude were based on enor-
mous mechanical Fourier analyzer due to Kelvin dating from the 1800s [362].
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Cooley-Tukey algorithm, and should be distinguished from the 1958 prime-factor algorithm

of Good and the (independently) 1963 work of Thomas, which reduced the case where n

was a product of distinct primes to the FFTs of the prime factors of n [343,749].

In any case, the e�ect of the paper of Cooley-Tukey, backed up by their implementation,

was signi�cant. Until then most FFT implementations used quadratic algorithms, and

considerable CPU time was used computing FFT's. The discovery and simple exposition of

their O (n logn) algorithm had a considerable impact on the development of digital signal

processing and Fourier analysis techniques.

The modern formulation of the discrete Fourier transform (DFT) is given an input vector

of complex numbers (v0; : : : ;vn�1)
T, compute the product Fnv, where Fn is the n � n

DFT-matrix whose rsth component is !rs, where ! is a primitive nth root of unity (for

example, e2�i=n). Our presentation in the remainder of this section will closely follow the

exposition in [759, pp.16{20].

Let n = ml. The Singleton (1967) [689] mixed-radix version of the Cooley-Tukey (1965)

fast Fourier transform [200] can be expressed recursively,

Fn = (Fm 
 Il)Tl(Im 
 Fl)P
n
m: (7.1)

where Tl is a diagonal matrix encoding the twiddle factors:

Tl =
m�1M
j=0

�
diag

�
1; !; : : : ; !l�1

��j
:

This can be interpreted as a mixed parallel/vector algorithm (see section 4.3). Given an

input vector v, Pnmv forms a list of m segments, each of length l. The Im
Fl term performs
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m l-point FFTs in parallel on each segment. Tl just multiplies each element by a twiddle

factor. Finally, the Fm 
 Il term performs an m-point FFT on vectors of size l.

The commutation theorem can be used to derive a parallel form

Fn = Pnm (Il 
 Fm)P
n
l Tl (Im 
 Fl)P

n
m; (7.2)

and a vector form

Fn = (Fm 
 Il)TlP
n
m (Fl 
 Im) : (7.3)

In 1968, Marshall C. Pease developed an FFT that could be derived by unrolling the recur-

sion in Equation 7.2 [598].

The vectorized Korn-Lambiotte FFT (1979) can be derived by unrolling Equation 7.3 [459,

598].

By using the commutation theorem and varying the factorization, many di�erent FFT

algorithms have been derived, with di�erent tradeo�s between parallelization and vector-

ization [66,69,170,344,407].

The Fourier transform diagonalizes circulant matrices: given an n�n circulant matrix M it

can be shown that FnMF
�1
n is diagonal. Therefore, computation ofMv reduces to performing

a backward and forward Fourier transform; that is, Fourier transforms implement circular

convolution [719].
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7.2 Group Fourier transforms: Foundations

This section briey introduces some of the mathematical underpinnings of the group Fourier

transform theory. For a more leisurely introduction, we recommend the survey [189]. An

introduction from an engineering perspective is in [771]. Cli�ord theory and the theory

of induced representations is clearly introduced in [195]. The exposition here follows the

approach of [240].

7.2.1 Basic de�nitions

A representation of a �nite group G is a group-homomorphism � from G into the group

of invertible linear transformations of an n-dimensional complex vector-space Vn (also see

subsection 3.2). This latter group, GLn, may be identi�ed with the multiplicative group

of nonsingular n � n matrices over the complex numbers. If V has a subspace W such

that �(g)(W) = W for all group elements g, then W is said to be invariant under �. A

representation whose only invariant subspaces are V and 0 is said to be irreducible.

Suppose � and �0 are two representations of degrees n and n0 associated with vector-spaces

Vn and Vn0 : Then we say that � and �
0 are equivalent if there is an isomorphism f : Vn ! Vn0

such that f � �(g) = �0(g) � f for all g 2 G. The direct sum of � and �0 is the representation

of degree n + n0 with associated vector-space Vn � Vn0 such that (� � �0)(g)(v � v0) =

�(g)(v)� �0(g)(v0).

It is a fact that any representation � is equivalent to the direct sum of irreducible represen-
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tations. There are only a �nite number (up to isomorphism) of irreducible representations

of any �nite group G. We write d� for the degree of the representation �, and we let R be

a complete set of inequivalent irreducible representations over G. The following relation is

fundamental: X
�2R

d2� = jGj: (7.4)

Most representation-theoretic questions over �nite groups thereby reduce to the study of

irreducible representations.

Any representation of G is equivalent to a direct sum of irreducible representations of G; the

representation theory of �nite groups is thereby normally reduced to the study of irreducible

representations.

Let f be any function from G into C . Then the Fourier transform of f is the function f̂

that assigns to the degree d� representation � the d� � d� matrix:

f̂(�) =
X
g2G

f(g)�(g):

The G-Fourier transform problem is to compute f̂(�) for a complete set of irreducible

representations R:

Suppose that f and f 0 are two functions from G into C . Their G-convolution (or just

convolution), f ?G f
0, is the function from G into C de�ned by

f ?G f
0(g) =

X
hh0=g

f(h)f 0(h0):

Note that, when G is a cyclic group of order n, the group convolution reduces to the familiar
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circular convolution [11]

f ?Cn f
0(i) =

n�1X
j=0

f(j)f 0(i� j):

Recall that one of the fundamental properties of the classical Fourier transform is that it

turns convolution into a pointwise product. The G-Fourier representation has a similar

function, but applied to G-convolution.

There are two important properties of the G-Fourier transform.

First, the G-Fourier transform is invertible:

f (g) =
1

jGj
X
�2R

trace
�
f̂(�)�

�
g�1

��
:

Second, the G-Fourier transform turns convolution into element-wise product, where the

elements multiplied are d� � d� matrices. Thus, to compute f ?G f 0, we compute the G-

Fourier transforms f̂ ; f̂ 0, multiply corresponding pairs of matrices, and inverse G-Fourier

transform the result. Assuming that multiplication of a k � k matrix takes time O
�
k3
�
,

the total time for the convolution is therefore O
�P

�2R d3�

�
plus the time to compute two

G-FFTs and one inverse G-FFT. Note that the sum is bounded above by jGj32 , insofar as

the sum of the squares of the degrees of the irreducible representations is jGj.

7.2.2 An algebra viewpoint

This subsection presents the G-Fourier transform in an alternative but equivalent frame-

work.
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The space of functions fromG into C forms an algebra, C [G]; under element-wise addition and

convolution product. An algebra is a vector space A over C on which a binary, associative

multiplication with unit is de�ned that distributes over + and satis�es (�a)b = �(ab) for

� 2 C and a; b 2 A [253, p. 1]. For example, the set of d � d complex matrices forms a

matrix algebra in which the product is simply the usual matrix product. The dimension

of a matrix algebra is its dimension as a vector space over C , and is thus the square of the

number of rows or columns in its matrices.

The direct sum of two matrix algebras A and A0 is the algebra whose underlying vector

space is A�A0 and for which multiplication is de�ned component-wise. It is a fundamental

theorem of representation theory that the space of G-functions under convolution is algebra-

isomorphic to a direct sum of matrix algebras [166, 557, 558].21 The dimensions of the

components of the direct sum are fd2i gki=0, where di ranges over the degrees of the irreducible

representations of G and k is the number of distinct irreducible representations of G. The

G-Fourier transform can also be viewed as the matrix of the isomorphism between the two

vector spaces of dimension jGj: The complexity of computing the G-Fourier transform of a

function f 2 C [G] is called the complexity, TG, of G. We should be more careful de�ning the

model to which TG refers. The most common model used is the linear complexity, which is

the minimal time-complexity of any straight-line arithmetic program over C that computes

the Fourier transform, although sometimes we also bound the size of the numbers that can

be manipulated by the straight-line program. Since this is only an informal presentation,

21 One of the founders of the theory of algebras and representation theory was Theodor Molien,

whose contributions are discussed in subsection 6.1.3.
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we will be a bit careless, although we remark that obviously TG = O
�
jGj2

�
, insofar as this

is an upper bound on the complexity of multiplication by a jGj � jGj matrix.

A Fourier transform and its inverse together give an algorithm for computing group convo-

lution: given f; f 0, compute their group Fourier transform, getting two elements of the asso-

ciated jGj dimensional matrix algebra; then multiply these vectors component-wise (where

the components are block matrices of dimensions di�di), and then take the inverse Fourier

transform of the product. The complexity of the multiplication step is bounded above by

P
i d

3
i , where, as usual, the di range over the degrees of a complete set of irreducible rep-

resentations of G. It can be shown the complexity of the inverse Fourier transform is in

fact within a small constant factor of the complexity of the Fourier transform, so that fast

group Fourier transforms yield fast convolutions [189]. The exact time complexity of the

convolution depends on the degrees of the irreducible representations of the group, although

it is clearly bounded above by O
�
jGjpjGj� when G admits a fast Fourier transform, since

the sum of the squares of the di is jGj:

When G is cyclic, then the G-Fourier transform is simply the standard Fourier transform

matrix of order n. To see this, observe that a one-dimensional representation is obviously

irreducible, and therefore the representation that sends j 2 Zn to the 1 � 1 matrix (!kj)

is an irreducible one-dimensional representation of Zn for k = 0; : : : ; n � 1; these form a

complete set of one-dimensional representations.
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7.3 Fast group Fourier transform algorithms: Background

The �rst person to consider non-Abelian group Fourier transforms seems to have been

Karpovsky (1977) who considered the case of fast G-Fourier transforms when G was the

direct product of subgroups each of which had a fast FFT [428]. Similar results were

considered by Atkinson (1977) [65].

However, the �rst nontrivial G-Fourier transform algorithms are due to Beth, who gave

O
�
jGj3=2

�
time algorithms for the case when G is solvable [119, 120]. Beth also described

several potential applications of these techniques [118].

When G is \close" to being Abelian, then, not surprisingly, fast G-Fourier transforms also

exist. Clausen gave O (jGjpolylogjGj) time algorithms for the case when G is metabelian

(a metabelian group is one that has Abelian normal subgroup H � G such that G=H is

also Abelian; this class includes the group of symmetries of a k-gon, generalized quaternion

groups, and groups for which there is a prime p such that jGj is a power of p and smaller

than p6, as are groups whose order is a product of distinct primes) [186]. This work was

independently performed and also generalized by Rockmore [630], who showed that if H

were normal in G, and G=H was Abelian, then

TG = O

� jGj
jHj � TH + jGj log

� jGj
jHj
��

:

The most important speci�c class of G considered are the symmetric groups Sn. Fourier

transforms for Sn have been shown by Persi Diaconis to have signi�cance for the analysis of

ranked data [239] [238, pp.141{160]; Diaconis' work has been an important motivation for



127

the �eld, in fact. Any �nite group G is a subgroup of some Sn, and some important groups,

such as the alternating groups, are such big subgroups that a fast Sn-Fourier transform

automatically yields a fast group transform for that group. Rockmore seems to have been the

�rst to give a TSn = O (jSnj polylog jSnj) algorithm for the problem [628], and re�nements

continue to be discovered [187, 190, 631]. In practice, S10 transforms require about 20

minutes on a Sparc 1 [187].

When G is a wreath product by a symmetric group, e�cient transform algorithms have

been given by Rockmore [632]. Recently, Maslen and Rockmore have applied the concept

of adapted group diameter to the generation of e�cient group Fourier transforms for a wide

range of groups, including the groups above, in addition to general linear groups over a

�nite �eld [537].

Fast G-Fourier transform algorithms (G-FFTs) all use the same general structure. Suppose

we want to compute the G-FFT of a function f :G! C . First, a subgroup H � G is chosen.

Next, several jGj-FFTs of functions f1; : : : ; fk:H ! C are computed, possibly recursively,

for some functions f1; : : : ; fk. Finally, the G-FFT of f is computed from the H-FFTs.

Mathematically, suppose that H has index k in G, and let X be a set of coset representatives

for H in G. Let � # H denote the restriction of � to H; note that this is in turn a representation

for H. Let fg:H! C be de�ned by h 7! f(gh). We have:

f̂ (�) =
X
g2G

f(g)�(g) (7.5)

=
X
x2X

X
h2H

f(xh)�(xh) (7.6)
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=
X
x2X

�(x)
X
h2H

f(xh)�(h) (7.7)

=
X
x2X

�(x)
X
h2H

fx(h)�(h) (7.8)

=
X
x2X

�(x)f̂x (� # H) : (7.9)

It can be shown that the complete set of irreducible representations R of G can always

be chosen so that any representation � 2 R is equal to a direct sum of irreducible repre-

sentations of H, (not merely equivalent). Such a set of representations is called adapted to

H.

Assuming R is adapted, we have thereby reduced the computation of f̂(�) to the computa-

tion
n
f̂(�)

o
, for a complete set of irreducible representations of H. Of course, this process

can be iterated through a chain of subgroups.

Now, when G = C2k then choosing the natural length-k chain of subgroups recovers the

Cooley-Tukey FFT. If G is Abelian, then the G-Fourier transform can be computed from the

structure theorem for Abelian groups. It can be shown that the G1�G2-Fourier transform

is the tensor product of the Fourier transforms for G1 and G2. Since every Abelian group

is the direct product of cyclic groups, whose Fourier transforms were computed above, the

Fourier transform of an Abelian group is simply the tensor product of a number of copies

of ordinary classical Fourier transforms, possibly with some permutations of the data. It is

easy to see that the classical results now show that TG = O (jGj log jGj) for Abelian G.
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7.4 Parallel group Fourier transforms

7.4.1 Abelian case

The problem of parallelization of the classical Fourier transform (which is equivalent, we

have seen, to the problem of parallelizing the G-Fourier transform for Abelian G) has been

an active and important area of research since the seminal paper by Marshall Pease [598].

The Pease FFT might arguably be characterized as an early motivation for the construction

of high-speed parallel computers, as his 1968 paper on the topic argued for the feasibility

of highly-parallel FFT implementations, concluding \it would be possible to build a spe-

cial purpose parallel computer to calculate the Fourier transforms of large sets of data at

extremely high speed: : : [598]."

Unlike some classes of parallel algorithms, FFTs have been implemented on many physical

machines and have been shown to attain high bandwidth in practice, and they are used in

real applications. Indeed, the FFT is clearly parallelizable in a theoretical sense using O (n)

processors and O (logn) time, so most of the considerable body of literature on parallel FFT

concentrates on reducing the constant factors in implementations. An excellent case-study

of the CM-2 parallelization is by Johnsson, Krawitz, Frye, and Macdonald, who describe

some of the aggressive coding tricks and data-reorganization permitting high-bandwidth

FFT on the CM-2 [419]; see also [4, 421] for other CM-2 implementations. Swarztrauber

provides a summary of some algorithms, and Johnsson, Jacquemin, and Ho describe a

high-radix FFT [7, 417,733]. Scalability issues are discussed by Gupta and Kumar [353].
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Averbuch, Gabber, Gordissky, and Medan discuss the MIMD case, and Munthe-Kaas also

discusses the problem [69,570]. The vector case has been treated by, for example, Korn and

Lambiotte [459] and Schwarztrauber [732]. Mou and Wang (1993) provide a fairly recent

analysis from a communication-theoretic point of view [567].

7.4.2 General case: Background

Much less attention has been devoted to the problem of parallelizing G-Fourier transforms

for general �nite G.

In the most general formulation, one could imagine an algorithm that, given an arbitrary

�nite group G, presented in terms of a generating set, for example, computes the G-Fourier

transform matrix for G, as well as a fast algorithm for its application. This problem might

arise in a situation in which the symmetry of the problem is not known a priori, but must

be computed on-line. For most applications that have arisen to date, the structure of G is

known o�-line, and has not been considered even sequentially. In other cases, the irreducible

representations of G would need to be computed [71,73].

Instead, we consider the case where G is �xed and known ahead of time, and thus we do not

consider the time required to analyze the structure of G and to �gure out a good G-Fourier

transform. We know of only a few previous treatments of this problem.

Roziner, Karpovsky, and Trachtenberg considered the case in which Gwas the direct product



131

of subgroups [650]. This case is quite trivial, however, because, it is easy to see that

FG1�G2
= FG1


 FG2
; (7.10)

therefore, the tensor-product parallelization techniques of section 4.3 apply. Note that

equation 7.10, when iterated, recovers the fast algorithm for the Walsh transform, which

is FCk
2
. Roziner et al. give numerical examples when one of the factors is the quaternion

group, and con�rm that very fast execution is possible; faster, in fact, than for FFTs of

Abelian groups of the same size [650].

Clausen and Gollmann have considered the case of the VLSI implementations for the sym-

metric group, using ideas similar to the implementation we give below [191].

Diaconis and Rockmore sketch a parallel algorithm in a subsection of their paper [240,

pp.326{328]. However, their algorithm has quadratic worst-case work complexity.

7.4.3 A parallel algorithm for general groups

Our presentation will closely follow the sequential presentation of Maslen and Rockmore

(1995) [537].

Observe that multiplication by FG can be performed in logarithmic time using O
�
jGj2

�
processors, as it consists of multiplication of a jGj � jGj-matrix by a vector of length jGj.

In fact, however, all of the known fast Fourier transform algorithms are parallelizable using

standard techniques from parallel processing because they can be viewed as factorizations

of FG in terms of simple sparse matrices.
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In order to analyze parallelizability, we use the linear circuit model of computation. A

linear circuit is a weighted directed acylic graph with three types of nodes: input, output,

and interior. Each input node has in-degree 0, each output node has out-degree 0. Each

node v in a linear circuit is associated with a linear form L(v) in its inputs as follows. The

linear form associated to input node x is x. Let E be the set of edges, and w(e) 2 C be the

weight associated with edge e 2 E. The linear form associated to a node v is

X
fu:(u;v)2Eg

w(e)L(u):

Given a circuit G, its size jGj is number of edges in G, and its depth D (G) is the length

of the longest path in G. Clearly, given a circuit G of size s and depth d and given scalars

x1; : : : ; xn, the value of the linear form corresponding to each output node of the circuit can

be computed on a PRAM with s processors in time O (d log s):

Let H < G and let X be a set of coset representatives for H in G. We letMG (X) be a circuit

that computes
P

x2X �(x)Fx(�) for inputs being d� � d� matrices Fg(�) for each � 2 R and

x 2 X . Thus, this circuit has jGjjX j inputs and jGj outputs.

Theorem 2 Let H < G, let R be a complete set of irreducible representations for G, let

X be a set of coset representatives for H in G, and let CH compute FH for a complete set

of irreducible representations for H to which R is adapted. Then there is a circuit CG

computing FG that satis�es

jCGj � 2jGj+ jGj
jHj jCHj+ jMG (X)j; (7.11)
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and

D (CG) � 2 +D (CH) +D (MG (X)): (7.12)

Proof: This follows easily from equation 7.9.

Iterating this construct, we see that, (cf. [537, Theorem 2.2])

Theorem 3 Let G0 < G1 < � � � < Gk = G be a subgroup chain in G, and let Xi, i = 1; : : : ; k

be a set of coset representatives for Gi�1 in Gi. Then there is a circuit CG satisfying

jCGj � jGj
 
2k +

jCG0
j

jG0j +
kX
i=1

jMGi (Xi)j
jGij

!

and

D (CG) � 2k +

 
D (CG0

) +
kX
i=1

D (MGi (Xi))

!
:

Proof: Unroll the recursion in Theorem 2.

The method we have illustrated here for translating statements about the sequential time

complexity of G-FFTs into statements about their parallel complexity is easy to apply to

most of the sequential algorithms. This is because these algorithms rely on a chain of

subgroups, so that their depth of recursion is normally at most logarithmic.

We now outline the separation of variables technique [537] and show how it yields paral-

lelizable sub-quadratic algorithms for many classes of groups.

The key to further speedups in a G-FFT is to speed up the computationMGi (Xi), and this

depends upon the matrices f�(xi): xi 2 Xig having some special form. This special form is

given by the following generalization of Schur's Lemma.
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Theorem 4 Schur's Lemma: Let H < G and suppose that � is a representation for G such

that � # H is the direct sum

�1 � �1 � � � � � �r � � � � � �r;

where the multiplicity of �i is mi. Suppose that A is a d� � d� matrix commuting with the

matrices �(h), for each h 2 H. Then there are mi �mi matrices Bi such that

A =
rM

i=1

Bi 
 Id�i
:

Proof: This can be shown by modifying the usual proof of Schur's Lemma.

Schur's Lemma gives a parallel analogue of a result of Maslen and Rockmore [536, Corollary

4.4]:

Theorem 5 Let K � H be subgroups of G and let R be a complete set of irreducible rep-

resentations of G adapted to H and K. For each � 2 R let F (�) be a d� � d� matrix. Let

h 2 H commute with each element of K. Then the set

f� (h) � F (�) : � 2 Rg

can be computed by a linear circuit of size jGjM(H;K) and depth O (log jGj), where M(H;K)

is the maximum multiplicity of an irreducible representation of K in the restriction to K of

a representation in R.

Proof: Each row of �(h) contains at most M(H;K) nonzero entries by Schur's Lemma,

since �(h) commutes with each �(k), for k 2 K:
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Now it follows from equation 7.9 that if we assume the existence of a fast FFT for a sub-

group H of G then the main computational obstacle to a rapid evaluation of a G-FFT is

multiplication by the matrices �(x); as x ranges over a complete set of coset representa-

tives for H in G and � ranges over irreducible representations. The complexity of this key

subcomputation is expressed by MG (X).

The remainder of this section describes ways in which the complexity of this computation

may be bounded. It is certainly the case that if �(x) were of a particularly simple form|

for example, diagonal, block-diagonal, or sparse|then of course the complexity of matrix

multiplication by �(x) could be reduced from the brute-force. In general, however, the �(x)

are not \nice" in this sense.

Our strategy, therefore, is to express each �(x) as a product of \nice" matrices. The form

of each of these \nice" factors is given by Schur's Lemma: it is a direct sum of tensor

products. In other words, we have a collection of nice matrices (given by Schur's Lemma),

and we want to express our �(x) as products of these matrices. This problem is similar to

the problem in permutation group theory in which a given group element is to be expressed

as a product of generators, and indeed permutation group terminology will provide a useful

notation for our results (once again we are following the sequential development of Maslen

and Rockmore [537]).

A strong generating set with respect to a chain feg = G0 < � � � < Gn = G is a set S such

that S \ Gi generates Gi for all i [72, 684]. Our strategy will be to �nd a strong generating

set for G whose representations have a nice form, and then to express the �(x) as a product
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of these.

Let i be the minimum length such that the set of products of � i elements from S \ Gi

generates coset representatives for Gi�1 in Gi. The adapted diameter fS; fGigni=0g of the

chain fGig relative to the strong generating set S is
Pn

i=1 i: Let Gg be the largest subgroup

in the chain containing g, and G0
g be the largest subgroup in the chain that commutes with

g. Let

M(S) = max
n
M
�
Gg;G

0
g

�
: g 2 S

o
:

Intuitively, M(S) is a measure of the \badness" (from the point of view of Schur's Lemma)

of the representations of the generators in S, and fS; fGigni=0g is a measure of how many

times this \badness" occurs in the expression for an arbitrary element of G: In order to get

fast parallel G-FFTs, we will try to choose strong generating sets with \nice" generators for

such that elements of G can be expressed in a reasonably small number of such generators.

Formally, the following parallel version of a sequential result now follows [537, Corollary

3.3]:

Theorem 6 Let S be a strong generating set for G relative to the chain feg = G0 < � � � <

Gn = G: Then there is a circuit computing FG in size bounded above by

�jGj (S; fGigni=0)M(S)

and depth bounded above by

O( (S; fGigni=0) polylogjGj;
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where � is the maximum of the indices of Gi�1 in Gi.

Proof: This follows from Theorem 5, the de�nition of adapted diameter, and Schur's

Lemma.

We now describe strong generating sets for several classes of groups and obtain e�cient

parallel algorithms on application of Theorem 6 [537].

If G is Abelian, take S = G and �x any chain of subgroup feg = G0 < � � �< Gn = G. Then

 (S; fGigni=0)M(S) = n. Since n may be bounded by O (log jGj) Theorem 5 recovers the

parallelization of the Cooley-Tukey FFT.

When G = Sn, a symmetric group, then we can use the subgroup chain feg = S1 < S2 <

� � � < Sn, where Sk is identi�ed with the stabilizer of fk+1; : : : ; ng. By choosing the strong

generating set S to be the transpositions f(i i+ 1)g, and using Young's seminormal form

for the representations, it follows from the representation theory of the symmetric group

thatM(S) = 2 and the adapted diameter is polylogarithmic; the existence of an polylogjGj

time Sn-FFT algorithm using jGj processors for symmetric groups now follows [399,659].22

22 A very preliminary version of the forward Sn Fourier transform has been implemented in CM

Fortran on a CM-5. The Young seminormal forms are computed using the serial C code of Baum

and Clausen, which they graciously provided to the author [190]. Steven Skiena's Mathematica

package Combinatorica.m was also used in some of the Young tableaux computations [690, Chapter

2]. This preliminary version requires 86 seconds to compute an S11-FFT using a 512-node partition

of a CM-5. This timing is about 14 times faster than the previously reported serial time for an S10

FFT, which is 11 times smaller. Our S10 code, however, is only about 80 times faster than the serial
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When G is GLn(q), the group of nonsingular matrices over a �nite �eld of order q, then

it can be shown that there exists a strong generating set S with polylogarithmic adapted

diameter and M(S) = jGjO(1)=n [167,537].

This technique extends to parallelizing other published G-FFT algorithms, most of which

rely on applications of Cli�ord theory, which predicts the representations of G in terms of

the representations of a normal subgroup N. We briey consider the case of a solvable group

G, which is a group for which there is a chain feg = G0 < G1 < cdots < Gn = G where each

Gi is normal in Gi+1 and the factor groups Gi+1=Gi are cyclic of prime order. A factor group

Gi+1=Gi acts by conjugation on the representations of Gi and each orbit must have either a

single element or jGi+1=Gij elements. By Cli�ord theory, a Gi+1-irreducible representation

is either an extension of a Gi-irreducible representation or is itself the induction of jGi+1=Gij

distinct irreducible representations of Gi. In either case the corresponding MGi+1 (X) can

be computed in a circuit of size O
�
jGi+1j3=2

�
and depth polylogjGi+1j leading to a size

jGj3=2 and depth polylogjGj circuit.

Finally, in the case of monomial groups|groups with representations all of whose matrices

have only one nonzero entry in each row or column|a size O (jGjpolylogjGj) and depth

polylogjGj circuit exists. Because supersolvable groups (solvable groups whose Gi are normal

in G) and metabelian groups are monomial, they have e�cient parallel group FFTs.

Our discussion is summarized in the following theorem:

code. We expect the �nal version of our Sn-code to run much faster than the current version and

to solve S12-FFTs [746].
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Theorem 7 There exist circuits of size jGjpolylogjGj and depth polylogjGj for the following

classes of groups:

� Abelian groups

� Symmetric groups Sn [188,190,628].

� Metabelian groups [91,186,630].

� Supersolvable groups [189, pp.109{123].

Futhermore, there exist circuits of size jGj3=2 and depth polylogjGj for solvable G, and size

jGjjGjO(1)=n for general GLn(q).

7.4.4 Group circulants

The de�nitions of G-circulant matrix and of G-invariant matrix were contained in section

3.2, and arose also in the context of the chess move generator matrix. It is not di�cult to

see that multiplication by a G-invariant matrix is equivalent to G-convolution; this is the

connection between fast group Fourier transforms and the exploitation of symmetry.

Suppose that M = (Mgg0)g;g02G is an n� n matrix whose rows and columns are indexed by

the elements of an n-element group G, and that Mg;g0 = Mhg;hg0 for all g; g
0; h0 2 G.

Let v be any C -vector also indexed by the elements of G; thus, v can be thought of as an
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element of C [G]. The gth component of the product M � v is given by

(M � v)g =
X
h2G

Mg;hf(h) (7.13)

=
X
h2G

Mh�1g;ef (h) (7.14)

= (v ?G Me) (g); (7.15)

where Me is the eth column of M. Hence M � v = v ?Me. Note that the equivalence of

group-convolution and multiplication by a group circulant holds even when addition and

multiplication are replaced by arbitrary operators.

It is now not di�cult to see that the Fourier transform matrix block diagonalizes a G-

circulant, where the sizes of the blocks are di � di. This can be used to derive fast mul-

tiplication algorithms for G-circulant matrices when G admits a fast Fourier transform.

Indeed, given a G-circulant matrix M and a vector v, we compute the G-Fourier transform

v̂ of v, which is a map assigning to each irreducible representation � of G of degree d�

a d� � d� matrix, compute the G-Fourier transform M̂e; multiply corresponding matrices.

The inverse G-Fourier transform of the result will be the desired product. The inverse G-

Fourier transform is within a constant factor of the complexity of the G-Fourier transform,

so that the complexity of convolution, which would by jGj2 by brute force, becomes the

sum 3TG +
P

� d
3
�, where the sum is over all irreducible representations �. If we let d�G de-

note
P

�2R d�� , then group convolution requires time O
�
d3G + (TG)

�
assuming a cubic matrix

multiply. Since d3G � jGj3=2 this gives an jGj3=2 time complexity for group convolution for

the classes of groups considered so far; since matrix multiplication is parallelizable these
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can be computed in circuits of polylogarithmic depth.

This block-diagonalization property of G-Fourier transforms is the basis for a wide range of

applications, which are discussed in the next section.

7.4.5 Applications

Several years after the publication of famous 1965 Cooley-Tukey paper on the fast Fourier

transform [200] the IEEE Transactions on Audio and Electroacoustics published a \Spe-

cial issue on the fast Fourier transform and its application to digital �ltering and spectral

analysis," which contained the inuential survey [193], the historical summary [199], and a

number of other interesting articles, including a spectral analysis of the song of the killer

whale. A brief article by Emanuel Parzen, \Informal comments on the uses of power spec-

trum analysis," provided a clear motivation for applications of the classical fast Fourier

transform:

I would like to o�er a �nal idea that may be useful. People are very often
interested in classifying patterns or records (for example, cardiograms). That is,
one may want to decide whether a cardiogram is from a \good" patient. Various
techniques are being considered for examining the record and performing some
kind of analysis on it. It seems to me that one ought to consider taking a
Fourier transform of these records, and work with that in the same role. That
is, whenever someone thinks of a time domain approach to a problem, one
should consider taking the Fourier transform of the time record of that sample
and use that. Similarly, when one talks about pattern recognition in the plane,
people are interested in recognizeing the various letters of the alphabet. I have
always wondered why they do not take a two-dimensional Fourier transform
of the data; this might avoid some positioning problems. These are some of
the ideas that have come to mind as I listened to talks on pattern-recognition
problems. [590, p.76]
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One way to understand Parzen's suggestions is to realize that analysis of a time-dependent

function (time series) should be invariant to shifts in time; for instance, if analysis of a cer-

tain cardiogram suggests a prognosis, then the same prognosis is indicated if the cardiogram

were taken a few minutes earlier or later. The engineering notion of the \time-domain" is,

in our language, a particular instance of cyclic group invariance. Similarly, recognition of

a character in the plane should be invariant under two-dimensional shifts of the character,

hence Parzen's suggestion to take a two-dimensional Fourier transform of that data. The

Fourier transform has the operational e�ect of making computation of invariant functions

easier and of eliminating noise|irrelevant data|in the pattern.

This idea, of course, can be applied to more general groups using the machinery of group

Fourier transforms; we thus have implicit parallelizations of such applications. Given any

G-invariant function of data, if one �rst takes the G-Fourier transform of the data, then

the function will be easier to compute. In fact, it will often depend only on the largest few

Fourier coe�cients.

Diaconis has given several applications in probability and statistics of these ideas [238,239].

For example, he considers the analysis of an election in which each voter ranks all the

candidates in order [238, p. 142]. Any voter is essentially choosing a permutation in Sk,

where there are k candidates. By taking the Sk-Fourier transform of the voters' choices,

clusters of signi�cant data are easier to see. Another example comes from the analysis of

random walks on groups, as would arise, for example, in modeling the number of random

transpositions required to shu�e a deck of cards well; the matrix of transition probabilities
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is S52-circulant, and the Fourier transform of this matrix lets us, for example, �nd the

eigenvalues.

The notion that the G-Fourier transform selects key features is fundamentally the motivation

behind the work on group-�lters, which attempt to recover an input signal after it has been

distorted by noise. Karpovsky and Trachtenberg have applied G-Fourier transforms to

�ltering and error detection [429,430,437,762]. Lenz [505,506] and Eberly and Wenzel [259]

have used similar techniques, in the pattern-recognition in the plane, although Lenz' work

is oriented more toward the continuous case, particularly of rotation groups, which we do

not consider in this dissertation.

The theoretical motivation for some of the intuitive arguments we have presented may lie

in the area of learning theory. Linial, Mansour, and Nisan have demonstrated connections

between the learnability of a function and its Fourier coe�cients [514]. Fourier transforms

(still over Abelian groups, however) have been shown to be useful in a variety of learning

problems, such as learning decision trees [443,472]. As explained by Clausen and Baum [189,

Chapter 11], these ideas can be used as well when it is expected that the data would exhibit

some non-Abelian invariance.

Rockmore and La�erty have used fast Fourier transforms of linear groups over �nite �elds

to explore the eigenvalues of their Cayley graphs; this can give information about graph-

theoretical properties of these graphs, such as their diameter [185, 476]. In fact, the adja-

cency matrix of the Cayley graph of G with respect to a set of generators S is the G-Fourier

transform of the characteristic function of S at the regular representation for G.
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A problem similar to fast manipulation of G-circulant matrices is the fast manipulation

of G-equivariant matrices. Suppose that the rows and columns of an n � n matrix M are

indexed by an n-element set I on which G acts, and suppose that M is G-equivariant. The

block-diagonalization of M can easily be reduced to the case where M is G-circulant as

follows. First suppose that the G action is �xed-point free. Let O be a complete set of

orbit representatives for the G action on I . Now, when jOj = jI=Gj = 1, then the G action

is transitive and can be handled by previous techniques. When jOj > 1, the only di�culty

is notational. By reordering I , one decomposes M into jOj2 G-circulant blocks each of size

jGj � jGj.

This idea has been extended recently to the case of an action that is not �xed-point free

by Georg and Tausch [328]. G-Fourier transforms for G-equivariant matrices have been

used in exploiting symmetry in the numerical solution of partial di�erential equations via

�nite-element, �nite-di�erence, or boundary-element methods. These methods construct a

matrix M whose symmetry reects the underlying symmetry in the problem: M is normally

G-equivariant. Often a linear system of the form Mv = b must be solved, and M must

be eigensolved. Because an application of G-Fourier transform block-diagonalizes M, the

methods here will apply to this problem [19, 20, 22, 326{328, 738]. However, in most of

this work the symmetry groups G to be considered are fairly small, and fast G-Fourier

transform techniques are not necessary. The case of actions that may have �xed points has

been considered by Georg and Tausch [328]. Healey and Treacy have considered the problem

in the context of the mechanics of symmetrical structures [360]. An alternative approach,
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e r r2 r3 f fr fr2 fr3

W0 1 1 1 1 1 1 1 1

W1 1 1 1 1 �1 �1 �1 �1
W2 1 �1 1 �1 1 �1 1 �1
W3 1 �1 1 �1 �1 1 �1 1

T
1 0

0 1

! 0

0 !3

�1 0

0 �1

!3 0

0 !

0 1

1 0

0 !3

! 0

0 �1

�1 0

0 !

!3 0

Table 7.1: The values of a complete set of irreducible inequivalent complex representations
of D4 at each element of D4, where ! = e2�i=4 is a primitive 4th root of unity. Each entry
in this table is really a matrix: 1� 1 matrices for the Wi and 2� 2 matrices for T .

which is more like the orbit-decomposition algorithm of Chapter 6, was demonstrated in

the case of �nite-di�erence methods described by Hillis and Taylor [368].

7.5 Dihedral group transforms

We begin, by way of example, by considering D4, a group which was discussed in Section

3.1 and played a fundamental role in Chapter 6. It is generated by fr; fg where r4 = f2 = e

and rf = fr3: Fourier transforms for dihedral groups have been considered by Valenza [771],

although he does not describe a fast algorithm. Vision applications are described in [259].

There are exactly �ve irreducible representations of D4. Four of them, W0;W1;W2;W3; are

of degree 1, and one of them, T , is of degree 2. The values of the representations on each

element of D4 are shown in Table 7.1.

The inequivalence of each of the representations in the R = fW0;W1;W2;W3; Tg follows

from the fact that their characters are inequivalent. That R is a complete set of irreducible
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representations follows from the fact that the sum of the squares of their degrees, 12+12+

12 + 12 + 22 = 8 = jD4j:

Let f :D4 ! C be an element of the group algebra C [D4]; we will think of f as being an

element of C 8, that is, as a complex 8-vector under the ordering of D4 given by the top row

of Table 7.1.

The D4-Fourier transform bf of f is the function whose value at � is

bf(�) = X
g2D4

f(g)�(g):

The group D4 has a normal cyclic subgroup

N = fe; r; r2; r3g:

Since N is cyclic, its representations are all one-dimensional and are given by Table 7.5.

Note that the entries of Table 7.5 form the matrix representation of the classical length-4

discrete Fourier transform:

F4 =

0BBB@
1 1 1 1
1 ! �1 !3

1 �1 1 �1
1 !3 �1 !

1CCCA ;

where ! is a primitive 4th root of unity.

Let ff(d) = f(fd):

If h is any function (or representation) on D4, we write h # N for the restriction to N of h.

We can represent the D4-Fourier transform of f at � in terms of the N-Fourier transforms
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e r r2 r3

C0 1 1 1 1

C1 1 ! �1 !3

C2 1 �1 1 �1
C3 1 !3 �1 !

Table 7.2: The values of a complete set of irreducible inequivalent complex representations
of N at each element of N (! = e2�i=4 is a primitive 4th root of unity.)

of the f # N and ff # N as follows:

bf (�) =
X
d2D4

f(d)�(d) (7.16)

=
X
d2N

f(d) (� # N) (d) + �(f)
X
d2N

ff(d) (� # N) (d) (7.17)

= \f # N (� # N) + �(f)\f # N (� # N) : (7.18)

The restrictions are given by the following equations:

W0 # N = C0 (7.19)

W1 # N = C2 (7.20)

W2 # N = C0 (7.21)

W3 # N = C2 (7.22)

T # N = C1 � C3: (7.23)
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The matrix form of FD4
is given by

FD4
=

0BBBBBBBBBBBB@

1 1 1 1 1 1 1 1
1 1 1 1 �1 �1 �1 �1
1 �1 1 �1 1 �1 1 �1
1 �1 1 �1 �1 1 �1 1
1 ! �1 !3 0 0 0 0
0 0 0 0 1 !3 �1 !

0 0 0 0 1 ! �1 !3

1 !3 �1 ! 0 0 0 0

1CCCCCCCCCCCCA
:

Equations 7.16 and 7.19 yield a factorization

FD4
= ((I2 
 F2)� I4) � P � (I2 
 F4); (7.24)

where P is an 8� 8 permutation matrix. Explicitly,

P = (P4
2 �

0BBB@
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1CCCA) � P8
2:

In the language of section 4.3, equation 7.24 denotes the program that, given an input

vector of length 8, �rst performs two parallel FFTs of length 4, and then two parallel FFTs

of length 2; the permutations can be thought of as a readdressing.

A similar analysis shows that

FD2k
= ((I2 
 F2)� I4k�4) �Q � (I2 
 F2k); (7.25)

where Q is a permutation matrix and D2k is a dihedral group of order 4k. Indeed, D2k has

a normal cyclic subgroup of index 2, and it has 4 one-dimensional representations and k�1

2-dimensional representations with restriction properties similar to that for D4 [214, pp.333-

340].
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Equation 7.25 lends itself immediately to a parallel implementation using the techniques

of section 4.3. The implementation was coded by running two separate copies of the CM-

5 CM Fortran CMSSL FFT [409, 418] [748, Chapter 10].23 Since there is no canonical

order for the rows of the Dn-FFT, the permutation Q was chosen to be simply a tensor

product of I2 with a bit-reversal permutation, thereby allowing the library FFT to leave

its arguments in bit-reversed order. The program currently performs a D227-FFT over C in

about 2.9 seconds on a 512 node CM-5. Thus, the input and output vectors each comprises

228 complex numbers with 32-bit real and imaginary parts (i.e., the input vector is about

2� 109 bytes).

7.6 String matching

This section describes the application of G-Fourier transforms to generalized string match-

ing. Subsection 7.6.1 presents some background on the problem, and the next subsection

describes its formulation and solution in our model.

7.6.1 Background

This subsection briey describes a few aspects of the area of string matching; of course, an

enormous amount of work has been omitted from this description.

23 The author thanks Roger Frye for his advice on attaining peak performance from the library

FFT routines.
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The earliest systematic approaches to the problem of text searching seems to have been the

construction of concordances for Biblical texts, which date from the 13th century. Most

early computer applications were, of course, numerical in nature; but one of the �rst articles

on nonnumerical computing to appear in the Journal of the Association for Computing

Machinery also contained the earliest use known to the author of the word \string" to

mean a sequence of symbols manipulated by computer:

Areas are set aside for shuttling strings of control �elds back and forth until a
completely sorted sequence is obtained. Optimum results are realized (both with
respect to time and memory space) under two string merging since the extra
program steps required for greater than two string merging are more costly than
the savings in passes over the data. [307, p. 147]

The modern concept of \string matching," however, seems to date from about the mid-

1960s, when the function was used in text editors.

One of the earliest algorithms that did better than brute-force was due to Ken Thompson,

who gave an algorithm for matching regular expressions in 1968 [750]. Thompson's elegant

algorithm converted the pattern into an automaton, and thence into a sequence of instruc-

tions in IBM 7094 machine language that, together with run-time calls, searched for the

original pattern.24

A crucial breakthrough was provided by Peter Weiner's famous \Linear pattern matching

algorithm" [797]. Weiner gave a linear-time algorithm using \bi-trees," an early form of

24 \It is assumed that the reader is familiar with regular expressions [444] and the machine lan-

guage of the IBM 7094 computer [207]" wrote Thompson in the article, which appeared in the

Communications of the ACM [750].
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su�x trees, for the classical string-matching problem. Su�x trees were streamlined in work

by McCreight (1976) [542].

Knuth, Morris, and Pratt's famous paper [448] gave an automata-based linear pattern

matching algorithm, which, although it appeared in 1977, was based on much earlier work.

This paper not only laid the foundation for a wide class of automata-based algorithms,

but also contained some interesting historical information (pp.338{340). For example, they

describe the following amusing incident:

One of the authors (J. H. Morris) was implementing a text editor for the CDC
6400 computer during the summer of 1969, and since the necessary bu�ering
was rather complicated he sought a method that would avoid backing up the
text �le. Using concepts of �nite automata theory as a model, he devised an
algorithm equivalent to the method presented above [i.e., the KMP algorithm],
although his original form of presentation made it unclear that the running time
was O(m+ n). Indeed, it turned out that Morris' routine was too complicated
for other implementors of the system to understand, and he discovered several
months later that gratuitous \�xes" had turned his routine into a shambles. [448,
p.338]

Knuth, Morris, and Pratt trace the development of algorithms like theirs, which avoid

backing up after a mismatch, to work by E.N. Gilbert from 1960 on comma-free codes [334];

Gilbert had needed algorithms for quickly recognizing strings that signaled the beginning

of a block of codewords. They use a generalization of a lemma on periodicity properties of

strings which originally appeared in a 1962 article by Lyndon and Sch�utzenberg [527]; also

see [470].

These algorithms are fundamentally automata-based [209]. They have considerable exibil-

ity for solving a wide range of combinatorial questions about strings, for example, matching
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multiple patterns [9], repetition-detection [60,528], also see [10]. A detailed complexity anal-

ysis is contained in the pair of articles [315, 316]. By contrast, the algorithms we present

will be based on generalizations of convolution-based algorithms, such those of [2,295]. The

Aho-Corasick technique has been applied to array-matching, in which each column is though

of as a single character in a very large alphabet [46,47,79,126]. For multi-dimensional ap-

proximate algorithms see [48,462]. Parallelization is discussed in [59,484,785]. This is also

related to parallel language recognizers, see [460] for grid methods. Fast heuristic methods

are given in [139]; similar is [211]. For randomized algorithms see [425]; Harrison (1971)

did early work on hashing as well [356].

Intensive work continues in the areas of computing combinatorial properties of strings, mo-

tivated especially by genome applications; the Combinatorial Pattern Matching conference

proceedings contain additional references [57,58,210].

7.6.2 Mathematical formulation

In order to apply the group formulation it is necessary to formalize the notion of string

matching.

A string over a �nite alphabet � is a map s: f0; : : : ; m� 1g ! �. We call m the length of

the string and write si = s(i). We will always deal with two strings, p and t, the pattern

and the text, of lengths m and n respectively. These may be over di�erent alphabets, �P

and �T, respectively.
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The classical string-matching problem is to �nd all occurrences of �P in �T. This formu-

lation can be generalized in several ways:

1. The de�nition of a \match" between a pattern character and a text character can be

generalized to predicates other than simple equality.

2. The requirement that each character in the pattern match each character in the text

can be generalized to allow partial matches.

3. The allowable operations on the pattern to align it with the text can be modi�ed from

the default one of \rigid sliding."

These modi�cations are formalized as follows.

We are given two operators, a character comparison operator �: �P � �T ! R, and a

combining operator �:R � R ! R: We assume that � is associative, but no restrictions

are placed on the operator �. The character comparison operator formalizes generalized

comparisons between the pattern and the text, and the combining operator formalizes the

notion of allowing partial matches.

There are several ways to formalize the notion of generalized alignments. We make the

simplifying assumption that m = n, which can always be done by adding an identity for �

to R and padding the pattern with don't cares. Let X = f0; : : : ; n� 1g; thus, p; t:X ! �.

We call p and t strings on X . The support of a string on X is the set of elements in X

that are not don't cares. Now we de�ne an alignment set A to be a set of permutations

of X . Each alignment a 2 A, a:X ! X induces a mapping of the set of strings on X by
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(a(s))j = sa(j).

We de�ne the generalized product of two strings on X as follows:25

s�
�
s0 = �x2X

�
sx � s0x

�
:

The generalized string matching problem for alignment set A and comparison operation �
�

is to compute a(p)�
�
t for each a 2 A.

In the classical exact string-matching problem the character comparison operator is � �P�

�T ! f0; 1g, where �P = �T
Sf�g and � is a \don't care" character that matches any

element of �T. Thus (� � �0) = 1 i� � = � or � = �0. In this case, the combining operator

is simply boolean AND (^), X = Zn is a �nite cyclic group, A = Zn is identi�ed with the

set of translations of X (a(x) = x + a mod n), and the pattern is restricted to containing

no �s inside an interval of length m containing its support.

The formulation we gave is built upon the theoretical framework of Muthukrishnan, Palem

and Ramesh in the area of non-standard stringology [574, Chapter 3] [575,576], who consider

general classes of character comparison operations and combining functions. They consider

arbitrary match relations �. They thereby obtain a graph that they call the matching graph

of the problem. This is a bipartite graph whose nodes are the disjoint union of �P and

�T and for which there is an edge from pattern element x to text element y whenever x

matches y. They relate the complexity of the matching problem for a given match relation

to graph-theoretical properties of the match-graph. For example, they show that if the

25 This notation is taken from [295].
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matching-graph can be covered by k disjoint cliques, then a pattern of size m can be

matched against a text of size m using log(k) linear boolean convolutions of size n and m,

again using Fischer-Paterson techniques.

More general character comparison operations, combiners, and alignments have been con-

sidered by a number of authors. We review these generalizations now:

First: General character comparison operations were considered by Fischer and Paterson

in their seminal 1973 paper [295]. They consider string matching when �P contains a

special \don't care" character � that matches any character in the alphabet [295]. For

example, the pattern string ab�d would match the text strings abcd and abgd and so on.

Fischer and Paterson reduce the problem of string matching with don't cares to integer

multiplication. This gives an O (log (j�j)n logm log logm) bit-complexity algorithm. The

doubly-logarithmic factor arises because they are using the Sch�onhage-Strassen integer mul-

tiplication algorithm [670], which uses the FFT over a �nite ring and recursively uses FFT's

to perform the arithmetic required in the larger FFT's.

Abrahamson pursued the idea of generalized string matching further [2]. He considered the

case where a pattern character can denote subsets of elements from �T. For example, the

pattern element hajbjci matches a text character of either a, b, or c. The pattern string

dehajbjcif would match texts decf and deaf but not dedf. Abrahamson also permitted

complements of subsets of characters in �T in the pattern, using the notation [ajbjc] to

denote all the characters in � except for a, b, and c. Thus, the pattern element [] is

equivalent to Fischer-Paterson's don't care symbol.
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Abrahamson showed that such \generalized" patterns of size m could be matched against

a text of size n in time O (n
p
mpolylog(m)) time. His method was similar to Fischer-

Paterson's: he reduced the problem to O (
p
m) convolutions (as compared to the O (log(m))

reduction used by Fischer-Paterson). Perhaps the major di�culty in discussing string

matching with subsets is notational: there are several slightly di�erent metrics for the

\length" of the pattern that one can use. These are the total number of symbols (including

brackets), the length of a string against which it can be matched, and the number of actual

alphabet symbols. Like most other authors, in order to simplify the notation we will just

assume in the sequel that these measures are all linearly related; many of the results do go

through for other patterns though.

Second: General combining operations are typically used in forms of approximate match-

ing. Approximation algorithms, in which only a certain number of mismatches are allowed

between the pattern and the text, have been considered in [312,313,485]; an application to

nucleotide sequence matching is in [491]; see [662] for other applications in biology. How-

ever, our formulation does not encompass models in which characters in the pattern may

match 0 characters in the text, or in which characters may be inserted in the text. This

is the k-di�erences problem, and is often used in biological applications [488, 491, 662]. A

survey is in [314]; see [196,206,208] for parallelizations.

In counting matching the combining operator is replaced by addition, so that the goal is

to count the number of mismatches at each alignment; this problem was also considered

by Fischer and Paterson and others. In threshold matching, the combining operator is
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normally max or min, and the character comparison operator takes values in the positive

reals.

Third: The class of allowed alignments can be broadened. In classical string matching, the

pattern and the text are both linear strings. The pattern rigidly slides along the text until

a match is attained. Equivalently, one can view the text as being arranged in a circle, and

the pattern is slid along the circle, which as we have seen, is equivalent to group matching

over a cyclic group.

The case of string matching over an Abelian group is equivalent, by the structure theorem

on Abelian groups, to array matching, in which the pattern and the text are rank k arrays,

where the group is the direct product of k cyclic groups. Array matching algorithms were

initiated by Bird and Baker [79,126], who use automata techniques in the style of [9]; also

see [46,47,390,427]. Of course, the modi�cations can be combined; for example, for multi-

dimensional approximate algorithms see [48,462]; array matching is typically studied for its

application to image processing [490]; also see [735].

Some general classes of alignments do not form groups. The most important of these is tree-

matching [256,375,461], for which Kosaraju used a combination of convolution and su�x-

tree based techniques in the ordered labeled case [461]; the motivation for tree-matching

was originally from logic programming [375]. Other forms of tree matching are considered

in [18,424,529,783].

Very general group alignments have recently been considered in the context of the mapping

of molecular structures with speci�c 3-dimensional structures; this set forms a group, more
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precisely, the legal alignments of the molecules forms a group, but the group may not be

known a priori, so our techniques may not be applicable [294].

For additional references see [574] and the recent Conferences on Combinatorial Pattern

Matching.

An important case of the general alignment problem addressed in this section is the case

when the alignments form a permutation group, that is, there is a permutation group G

acting on f0; : : : ; n� 1g. For speci�city, suppose that initially the pattern p is aligned with

the text elements t0 : : : tm�1. Each group element g 2 G induces an alignment of the pattern

p in the text sending pi to pgi.

7.6.3 Reducing generalized matrix multiplication to matrix multiplica-

tion over C

In the previous subsection, we formulated the concept of a generalized string-matching

problem over an arbitrary alignment set. Such a problem has a natural expression as a

generalized matrix multiplication problem in which the symmetry in the associated matrix

reects the symmetry in the alignment set A. For example, if the set of alignments forms a

group G; then the matrixM will be G-invariant. We would like to use the G-FFT algorithms

of section 7.4. However, these algorithms only work when the matrix entries are from a

�eld, for example C .

Therefore, in order to apply the parallel group FFT algorithms to the problem of group



159

string matching, we �rst reduce the problem of generalized matrix multiplcation to matrix

multiplication over C .

We consider several types of generalized matrix multiplication problems arising from exact

matching with don't cares, counting matching with don't cares, exact matching with general

match relations, counting matching with general match relations, and Abrahamson-style-

matching.

We write the generalized matrix product to be computed as M�
�
v, which we sometimes

abbreviate to Mv, where M is an n � n matrix with entries in �P, v is an n-vector with

entries in �T, and + and � are replaced by � and � respectively:�
M�
�
v

�
i
= (Mi;0 � v0) � � � �� (Mi;n�1 � vn�1) :

As explained above, in exact-matching with don't cares, �P = �T
Sf�g, R=f0; 1g. For this

case, generalized matrix multiplication is no harder than complex matrix multiplication:

Theorem 8 The generalized matrix multiplication M�̂v can be performed in one complex

matrix multiplication.

Proof: Let ! be a primitive max(j�Tj; 3)th root of unity. Construct a complex matrix eM
by replacing every occurrence in M of the jth symbol in �T by !j , and every occurrence

of � by 0. Similarly, construct ev by replacing each occurrence of the jth symbol in �T by

!�j . Let ci be the number of �s in the ith row of M. The product of two roots of unity

equals 1 if and only if the roots are conjugate. Therefore, the ith component of the product

eMev equals n � ci if and only if the ith row of M matches v.
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Remark: Because we are performing exact complex arithmetic, as is standard in the analy-

sis of G-FFTs, it is natural to ask whether our algorithms in fact require too much precision

to be practical in a �xed-precision implementation (this point was raised by Kosaraju in per-

sonal communication). In the cyclic case, this question has been addressed by Knuth [447,

pp.290{295], and the underlying stability of the classical FFT algorithms should make pre-

cision requirements reasonable in �xed-point implementations. We have not studied the

precision issue in the case of general G-FFTs, although we doubt it would be a problem

(also see, e.g. [566,633,634]). If, in fact, precision were a problem than the matter would be

easily remedied by performing boolean G-convolution using G-FFTs over a suitable �nite

�eld F, as the group-algebra decomposition goes through for appropriate �nite �elds as well,

given some minor conditions on the �elds.

We now consider counting-matching, in which the number of mismatches must be computed.

In this problem, we use the same character comparison operator �, but we interpret the

domain R = N, the natural numbers. We let the combining function � be addition. We

now have:

Theorem 9 M+�v can be performed in j�Tj+ 1 complex matrix multiplications.

Proof: For each symbol � 2 �T, construct
gM� by replacing each occurrence of � in M by

a 1 and every other symbol by a 0; similarly for fv�. It is then easy to see that

�
M+�v

�
i
=

X
�2�T

�gM�fv��
i
+ ci;

where the ci are as in Theorem 8.
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Finally, we consider matching in the style of Abrahamson. In this problem, �P comprises

two disjoint copies, �P1
and �P2

of the set of subsets of �T. The character comparison

operator � is de�ned as follows. If p 2 �P1 then

p � � =

(
1 if � 2 p
0 otherwise.

Similarly, if p 2 �P2
then

p � � =

(
0 if � 2 p

1 otherwise.

Abrahamson-style matching is somewhat more complex than classical exact matching:

Theorem 10 Computation of M+�v requires n2=s matrix multiplications and additional

overhead of ns for positive integer s.

Proof: We follow the method of Abrahamson [2]. First, write M = M+ + M�, where M+

comprises only positive pattern elements and a 0 symbol matching no element of �T, and

M� comprises only negative pattern elements and 0's. Then Mv = M+v+M�v, so that it

su�ces to consider left multiplication by M+ and M� separately.

Let M+
�s be M

+ restricted to symbols that occur at most s times in M+ (for some arbitrary

integer s, to be speci�ed later) and let M+
>s be M

0 restricted to symbols that occur more

than s times in M+. That is, to construct M+
�s we delete from any pattern element each

symbol that occurs more than s times in M+, leaving 0's unaltered.

First we compute M+
�s
+�v. Each entry in v will point to a list of all the (at most s) symbols

that match it. There are thus at most ns match pairs between entries in M and entries in v,
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each of which is associated with at most one entry in the product Mv. Therefore, the total

time to compute M+
�sv is, up to possibly logarithmic factors, O (ns): We remark that if M

is G-circulant then this time is reduced by a factor of jGj, assuming that G-multiplication

and G-inversion is fast.

In order to compute M+
>s+�v, we observe that there are at most n2

s distinct symbols in M+
>s.

We can loop over these and thereby compute M+
>s+�v in n2

s matrix multiplications of n� n

complex matrices by complex n-vectors.

Putting these two parts together, we see that computation of M++�v can be done in O
�
n2

s

�
matrix multiplications and additional overhead of O (ns), where the overhead decreases

linearly with the size of the invariance group.

A similar method works for computing M�. This proves the theorem.

7.6.4 The application of group FFTs to parallel string matching

Theorems 8 and 10 have shown that when the set of alignments forms a group G, the related

matching problems can be reduced to a a generalized multiplication by a G-circulant matrix,

which then reduces to a series of multiplications by complex G-circulants. Informally, one

says that the reductions of Fischer-Paterson and Abrahamson preserve symmetry.

This now easily yields algorithms for string matching on groups, because multiplication by

the resulting G-circulants can be performed in via fast and parallelizable G-FFTs.

We let PG be the number of processors required to perform G-convolution in polylogarithmic
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time. We have seen that PG is of the order of d3(G) for symmetric, alternating, metabelian,

supersolvable, and monomial groups and that PG is of the order of max(jGj3=2; d3(G)) for

solvable groups, where, of course, we may replace d3(G) by d�(G), for � the exponent of

matrix multiplication, if we are willing to use the asympotically fast matrix multiplication

algorithms.

Theorem 11 Exact string matching with don't cares over a group G can be performed using

PG processors in polylogarithmic time. Abrahamson-style string matching can be performed

using max(PG; jGj3=2) processors in polylogarithmic time.

Proof: Choose s = n3=2 in Theorem 10.

The Abrahamson and Fischer-Paterson reductions respect tensor products; when Ik 


M is de�ned in the obvious manner, then the reductions given by the theorems re-

duce (Ik 
M) �
�
v to a generalized multiplication of complex matrices of the form�

Ik 
 eM�w. This latter product can be performed via fast matrix-multiplication, such

as by Coppersmith-Winograd. For example, n length n patterns can be matched against n

length n strings, even in the presence of don't cares, in sub-cubic time; this idea is similar to

Valiant's well-known reduction of context-free language recognition to a very general form

of matrix multiplication [772].
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7.7 Future work

The preliminary Sn-FFT implementation needs to be polished. We expect to improve our

preliminary timings by a factor of at least three, and to compute S12-FFTs.

The exact complexity of group Fourier transforms for arbitrary �nite groups continues to

be open. A promising line of attack along these lines might be to use the Classi�cation

theorem for �nite simple groups. Good algorithms for many of the in�nite classes of �nite

groups are known [537], and, from a complexity-theoretic point of view, the complexity of

FFTs for the sporadic simple groups can be folded into the constant factor. Given a group

G and a maximal normal subgroup H, then the quotient G=H must be simple. It is tempting

to apply Cli�ord theory to try to derive good G-FFTs from the inductively good FFTs of

the factors G=H and H. (In fact, it is an easy consequence of the classi�cation theorem

that G has a subgroup of size at least
pjGj [293]. This result combines with the usual

arguments from Frobenius reciprocity [189], to give an O (G)1:75, even without using fast

matrix-multiplication algorithms.)26

In string matching, the main area for further research would be to apply convolution tech-

niques to more general classes of pattern-matching problems. It would also be of interest to

describe a uni�ed mathematical theory that specializes to su�x-trees, in some sense. We

have seen that multiplication by a group-equivariant matrix can be peformed by transform-

26 Michael Clausen, in recent personal communication with the author, has announced that the

large subgroups predicted by the Classi�cation Theorem do in fact yield an O
�
jGj

1:44
�
time algo-

rithm for general G-FFTs when Coppersmith-Winograd matrix multiplication bounds are used.
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ing the operands into spectral space and performing a pointwise product there. Similarly,

a su�x-tree based approach �rst transforms the text into a su�x tree, and applies a very

simple matching algorithm on the su�x tree.

Finally, it would be interesting to obtain empirical results on the e�cacy of group Fourier-

transform based learning algorithms.
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Chapter 8

Equivariant factorization of

Abelian groups

Each of the problems considered in this chapter will be phrased as an appropriate G-

invariant mapping over spaces V and W where G is Abelian. The associated matrix M will

be factored into primitives that correspond to the basic computational primitives supported

by the machine.

The applications we consider here are:

1. Describing Fortran 90 communication intrinsics. There are two parts to this appli-

cation: �rst, we write down explicit matrix representations of common Fortran 90

intrinsics and observe that they correspond to G-equivariant matrices for appropriate

G. The goal of this formulation is simply to try to elucidate the fundamental primi-

tives in Fortran 90. Second, we make the simple observation that, on some compilers,

it can be faster to use external linear algebra routines than to use the Fortran 90
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reduction and broadcast operator. Despite its triviality this amounts to a technique

for speeding up reduction and broadcast on various architectures. Some timings for

Cray, CM-5 and CM-200 will be given to support this.

2. The next implementation is of n-body simulation. A direct method is used, as, even in

the context of multipole or other tree methods, direct solvers are useful at the leaves.

By applying the new Fortran 90 communication intrinsics, we implemented and sped

up an direct n-body solver for the analysis of ux dynamics in superconducting thin-

�lms. This implementation used a semiring version of a tuned tensor-product routine.

3. Finally, we describe parallelization of a convolution arising in the analysis of protein

simulation in water. This involved an interesting application of nested scans, for which

we provide a G-invariant matrix formulation. The speci�c convolution we solved was

counting the number of contiguous subsequences of length k, k = 1; : : : ; n in a binary

string of length n.

Although these applications are fairly straightforward, the symmetry is not immediately

apparent, and the speedup that was obtained was comparatively high.

8.1 Fortran 90

Fortran has undergone signi�cant changes since its introduction but remains the most widely

used and important language for the design of high-performance scienti�c computing ap-

plications. There are a number of proposed extensions to the hoary Fortran 77 standard,
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including High-performance Fortran, Fortran D, Fortran 90 and many vendors' proprietary

extensions to Fortran, such as Cray Fortran and CM-Fortran. By the same token, the

e�ciency of many standard scienti�c programs are tied to their e�ciency as Fortran code.

This section analyzes several representative Fortran 90 communication intrinsics. They will

be presented as matrices and factored.

The Fortran 90 de�nition of CSHIFT is as follows. Given a (Fortran) rank k array A, a

positive integer D, and a distance to shift S, CSHIFT(A; DIM = d; SHIFT = s) is the rank k

array obtained by circularly shifting the kth dimension of A to the right a distance s.

For example, when v is a 1-dimensional array, which is to say, a vector, then we can write

A =

0BBBB@
v0
v1
...

vn�1

1CCCCA

CSHIFT(v; DIM = 1; SHIFT = 1) =

0BBBBBB@
v1
v2
...

vn�1

v0

1CCCCCCA (8.1)

Let us write CSHIFT(v) or just Cv for CSHIFT(v; DIM= 1; SHIFT = 1).

Then C may be written as a matrix:

C =

0BBBB@
0 1 0 0 � � � 0
0 0 1 0 � � � 0
...

...
...

...
. . .

...
1 0 0 0 � � � 0

1CCCCA (8.2)

Note that C is invariant under the cyclic group Cn.



169

Now, let A be a rank k vector with dimensions (d1; :::; dk). Then the corresponding matrix

to compute the generalized CSHIFT(A,i,s) is simply

i�1O
j=1

Idj 
 Cdi 

kO

j=i+1

Idj

.

Implementation of CSHIFT on a hypercube is equivalent to embedding a grid in a hypercube,

a problem which, in its simplest form, can be easily solved by Gray coding the coordinates,

as observed by Gilbert in 1958 [333], also see section 2.1. When the grid size is not a

power of two and the dilation needs to be minimized then good embeddings are still known

[171, 371]. Therefore, any matrix that can be factored in terms of CSHIFTs is a priori

e�ciently computable.

Collecting terms in the tensor product, we get the matrix of

IQ
j<i

dj

 Cdi 
 IQ

j>i
dj

It is possible to use this factorization to derive parallel algorithms for implementing CSHIFT

on a hypercube and other networks, by factoring the permutation matrices implemented by

the hypercube, for example, as has been explicitly carried out by Kaushik, et al. [434,435].

Similar equations obtain for EOSHIFT, which is de�ned just like CSHIFT except that there is

no wraparound, instead, 0s are �lled in.

Given a rank k array A, SUM(A; dim = r) is the rank k � 1 array formed by summing along

the rth dimension of A.
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Let Kn be a column vector of 1s of length n. When A is a rank 1 array, then SUM(A; DIM =

1) = KT �A.

Suppose A is an n�m matrix. Then by our convention above, A is stored as an nm vector.

SUM(A; DIM = 1) is the m-vector that is the sum of the rows of A, and therefore can be

computed by taking the sum of each column independently. Therefore, SUM(A; DIM = 1) =

Im 
 Kn
T �A.

This is also KT � A, where A is considered as a matrix; similarly SUM(A; DIM = 2) can be

written as A �K in matrix form. This formulation has the additional advantage that it seems

more canonical than the somewhat esoteric syntax of the Fortran 90 SUM.

The PROD intrinsic behaves just like SUM, but taking products rather than sums. This can be

handled easily in our framework, using an appropriate semiring, for example, (R;max;�).

The SUM and PROD intrinsics are instances of the reduction primitive used in data-parallel

programming, and our formulation thus applies to general reductions as well.

We next consider the FORTRAN 90 version of the broadcast primitive, the SPREAD. Given

a 1-dimensional array A of length n,

SPREAD(A; DIM = 1; NCOPIES= m)

is the n�m matrix formed from the copies of A. It can be seen to equal the tensor product

K
 A. Similarly, SPREAD(A; DIM = 2; NCOPIES = m) is the tensor product A
 K.

Interestingly, these formulations also result in faster running times for SUM and SPREAD on 3

classes of machines that we tried. These were a massively-parallel hypercube, the CM-200,
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n 1024 2048 4096 8192

SUM 19.8 70.9 275 |
MATMUL 4.21 7.39 11.6 28.4

SPREAD 13.1 43.7 159 622

 5.59 11.0 28.7 100.0

Table 8.1: Timings in milliseconds for certain FORTRAN 90 intrinsics versus equivalent
algebraic formulation for varying n. Timings were obtained on one sequencer (512 nodes)
of a CM-200 running slicewise CM FORTRAN 1.1. SUM failed due to insu�cient memory
on the n = 8K problem.

n 128 256 512 1024

SUM 0.892 3.012 11.844 44.096

MATMUL 0.216 0.840 3.396 13.148

Table 8.2: Timings in milliseconds for SUM vs. matrix vector multiplication. Timings were
performed on a Cray X-MP/24 by L. L. Daemen of Los Alamos National Laboratory. The
CALMATH (Cray Assembly Language Mathematical Library) was used.

a message-passing fat-tree, the CM-5, and a vector machine, the Cray Y-MP. These results

are summarized in the accompanying tables

One interpretation of this curious set of timings is that the fundamental operations of inner-

product and outer-product were optimized more carefully than reduction and broadcast.

n 256 512 1024 2048

SUM 15.1 72.1 348 1392

MATMUL 4.1 69.6 21.7 78.8

Table 8.3: Timings in milliseconds for SUM and MATMUL for varying n. Timings were obtained
on a 32 node partition of a 1K node CM-5, OS version 7.1.5, CMF version CM5 SPARC 1.2.
Timings were provided by Thinking Machines Corporation engineer W. Weseloh. (Much
faster hardware units should soon be available for the CM-5.)
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8.2 n-body simulation

(Note: Some of the material in this section originally appeared in a joint paper with L.

Daemen and J. Gubernatis which appeared in Journal of Computational Physics, 115(2)

December, 1994 [717].)

Simulating the properties of n particles, mutually interacting through a pairwise force, is one

of the oldest problems in computational physics, and have been implemented on electronic

computers since 1957, when the UNIVAC simulated 32 particles at 300 interactions per

hour.

These simulations can yield information inaccessible by other means and lead to insight and

predictive behavior for a wide range of problems and properties. This section reports on

several simple procedures that reduced by an order of magnitude the computation time of

the implementation of such a simulation on the massively parallel CM-200. The design of

these procedures illustrates the theory outlined in previous sections, and no use of symmetry

characteristics is needed.

In n-body simulations, the positions of the particles Xi are evolved in time by numerically

integrating the equations of motion. The problem typically reduces to solving a system of

�rst-order di�erential equations of the form:

dPi
dt

= Gi +Hi
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where Gi is the net force on particle i due to its interaction with all other particles and

Pi is the momentum of particle i. This force is de�ned by Gi =
P

j 6=i Fij with Fij being

the pairwise force between particles i and j and Hi being the net force on particle i due

to all other interactions. Often, Fij depends only on the distance between the particles,

i.e., Fij = F (jXi �Xj j). This force might be, for example, Coulomb's law or the Lennard-

Jones interaction. The Hi may be, for example, external �elds or random forces simulating

contact with a heat bath. The equations of motion can be integrated by a variety of means;

the computation bottleneck, however, is the computation of the Gi.

Two frequently used classes of techniques for computing Gi are tree methods and direct

methods. The tree methods recursively decompose the system of particles into subsystems

and express the interaction between the subsystems by a multipole expansion [348, 350].

These methods are particularly suitable for large systems because their asymptotic com-

plexity is proportional to O (nlogn) for adaptive methods or proportional to O (n) for non-

adaptive methods. The direct method, on the other hand, simply sums the forces between

all paris of particles so its complexity is proportional to O
�
n2
�
. However, the proportion-

ality constant for the direct method is smaller than that for the multipole methods.

One of the �rst parallel n-body codes was described in an intriguing 1985 paper by Ap-

plegate, Douglas, G�ursel, Hunter, Seitz and Sussman where they describe the construction

of a \digital orrery." The digital orrery comprised n = 10 \planet" computers, each of

which stored the force on a single planet. They were interconnected in a ring, which was

circulated to compute the all-pairs interaction. The intended domain of study of the digital
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orrery was the study of certain open problems in orbital mechanics [338,577,803,804]. Each

planet computer was housed on its own board, and the ten boards were stored in a box of

a cubic foot, drawing 150 watts of power. The attained rate of speed was was comparable

to high-performance parallel computers of the time, such as that of the ILIAC IV, on this

problem: 10 MFlops [137].

Since that time, of course, parallel n-body simulation has become an active and important

area of research. Much of it has focused on the harder problem of simulating tree codes.

The seminal paper on Connection Machine simulations is Hillis and Barnes (1987) [366].

They give three algorithms: a massively parallel variant of the digital orrery, computing all

the forces using O
�
n2
�
processors, and a hierarchical algorithm based on a tree embedding

of the tree used in the Barnes-Hut tree algorithm [84], although an implementation is only

sketched. Zhao and Johnsson have implemented the parallel multipole method [349,823] on

the CM-2, using some aggressive coding tricks [824]. Sometimes the structure of the problem

permits long-range forces to be ignored or otherwise simpli�ed, and this can permit e�cient

implementation [95,519], also see [94,795].

The direct method is often used instead of the asymptotically more e�cient multipole

method because

1. The multipole expansion may be unknown.

2. The system is su�ciently small that the direct method is faster than the multipole

method.
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Other methods use domain-decomposition approaches and Monte-Carlo approaches, which

are outside the scope of this section. However, note that some of the domain-decomposition

methods neglect the higher-order force in the Lennard-Jones interaction, which is not pos-

sible for general forces.

In addition, at some su�ciently �ne granularity in the decomposition in the multipole

method, the direct method becomes faster because of the lower proportionality factor and,

thus, becomes preferred. This crossover generally is true at the leaves in a multipole meth-

ods. Thus e�cient implementation of the direct method is an essential aspect of any direct

net force computation.

The parallel calculation of the net force has a computation part and a communication part.

The computation part is mainly concerned with the calculation of Fij . Its optimization,

which normally involves the computation of some function of the distance between Xi

and Xj is essentially architecture independent. On a parallel machine, once the distance

between the particles is known, this force can often be computed with no inter-processor

communication.

The optimization of the communication part of the direct solver is the main result of this

section. It depends on the the structure of the direct solver. Two common methods are

used: one is the \all-to-all broadcast method";the other is what we will call the \Fortran

90" method.

The all-to-all broadcast method presumes that the locations X of the particles are dis-

tributed throughout the nodes of the architecture. A local copy Y of X is made; then for
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each Yi a Hamiltonian path through the processor network is computed. The location of

each particle is then successively routed along its path which ensures that each particle

location will eventually be transmitted through each processor. The force on a particle

is computed simply by summing the pairwise interactions of all the particles that pass

through the processor in which it is stored. For systems with a small number of particles,

this method performs poorly on the CM-200 because of processor under-utilization.

The Fortran 90 method involves the use of standard Fortran 90 intrinsics, such as SUM and

SPREAD. If A is a matrix, then SUM(A; DIM = 2) is the vector whose ith element is the sum of

the ith row of A. If X is an n-dimensional vector, then SPREAD(X; DIM = 2; NCOPIES= n) is

the n� n matrix A whose ijth element is Xi. Similarly, SPREAD(X; DIM = 1; NCOPIES = n)

is the matrix whose ijth component is Xj . The Fortran 90 method for computing the net

force on each particle in a one-dimensional system is shown in the following pseudo-code:

S1=SPREAD(X,DIM=1,NCOPIES=n)
S2=SPREAD(X,DIM=2,NCOPIES=n)
R=ABS(S2-S1)
F=FUNC(R)
G=SUM(F,DIM=2)

The ijth element of the matrix R is the distance between particles at positions Xi and

Xj . This matrix is then used to obtain the forces Fij from the user-de�ned function FUNC.

Finally, SUM is used to sum the forces.

Although the Fortran 90 method has the advantage of portability to any platform, the

communication functions SUM and SPREAD are fairly slow. Furthermore, the SPREAD and

SUM syntax seems to lack a certain naturalness. The �rst optimization trick that we treid
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was to replace the communication operations of the Fortran 90 method with inner and outer

products. Since these products are basic vector (matrix) computational tools, we thought

it was reasonable to assume that they would be well optimized on the CM-200.

The FORTRAN 90 formulation of the previous code is then:

K=1
S1=OPROD(K,X)
S2=OPROD(X,K)
R=ABS(S2-S1)
F=FUNC(R)
G=MATMUL(F,K)

The �nal optimization involved special purpose microcode but is based on the simple ob-

servation that the displacement Xi � Xj between two particles can be interpreted as the

outer sum of the vectors X and �X , which could be computed by trivially replacing the

multiplication call in the outer-product routine with an addition call. Using this routine,

we can replace the two outer-product calls in the code by a single outer-sum call, and our

pseudo-code becomes

K=1
D=OSUM(X,-X)
R=ABS(D)
F=FUNC(R)
G=MATMUL(F,K)

Compared to the original pseudo-code, which was essentially the original Fortran 90 coding,

the new code reduced the computation time by a factor of 10.

In conclusion, the direct net force computation in the n-body problem was formulated in
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terms of fast primitives that are well-suited to the target architecture. The communica-

tion overhead of the direct n-body solver was reduced by one order of magnitude. The

method consisted in replacing Fortran 90 intrinsics by inner- and outer-product functions.

In one case, a routine which was a small modi�cation to the library outer-product rou-

tine was made to convert it to an outer-sum routine. The technique was implemented and

tested on a molecular dynamics problem geared toward the study of ux line dynamics in

superconducting thin �lms.

8.3 Parallel pre�x and an application from computational

biology

This section discusses the parallelization of an application that arose from computational

biology. After some preprocessing, it is possible to see that the problem is equivalent

to computing a certain statistic on strings, namely, �nding the number of substrings of

contiguous 1s of length l, for l = 1; : : : ; n. The associated matrix has the symmetry of a

cyclic group, and can be factored into the product of two parallel pre�x matrices.

The dynamics of water molecules around biomolecules have been studied a number of

authors.27

Techniques such as high resolution neutron di�raction, X-ray crystallography, and multidi-

27 A more detailed presentation, particularly of the physical motivation, is contained in the joint

work with Angel Garc��a [319,718]; also compare [318,739].
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mensional NMR techniques have been used to study the characteristics of water-molecules

around a protein [319].

Insight into the structures that are formed is often obtained by studying the amount of

time an individual water molecule is near a particular protein site, or within the \hydration

shell" of the protein site (atom). The hydration shell is simply a sphere of some �xed radius

r.

The time-dependent behavior of water molecules is studied by means of the following func-

tion of time [675,676]. We let P�;j(t) = 1 if the jth water molecule is within the hydration

shell of the protein site � at time t. We let P 0
�;j(t; t

0) = 1 if the jth water molecule was

never outside the hydration shell of the protein site at �:

In the molecular dynamics simulation, the time variable is discretized and the positions of

the water molecules are computed at times t1; t2; t3; : : : ; tn, where n is the number of states

in the simulation. The function P�;j is thereby discretized into a binary sequence of length

n.

It is necessary to compute for each i the number of binary subsequences of length i in the

resulting sequence.

This is performed as follows. First, the vector v of all elements of the sequence of length

precisely i are computed, that is, that are not a member of any subsequence.

The parallel pre�x, or SCAN, of a vector v is de�ned to be the sequence of partial sums of

v [475]:
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(Tv)0 � v0 + v1 + � � �+ vn�2 + vn�1

(Tv)1 � v1 + � � �+ vn�2 + vn�1

(Tv)i � vi + vi+1 + vi+2 + � � �+ vn�1; (0 � i � n � 1) :

However,

(Tv)i = (E0v)i + (E1v)i + � � �+ (En�iv)i

=
��
E0 + E1 + � � �+ En�i

�
v
�
i

=

0@n�1X
j=0

Ejv

1A
i

:

Hence,

T =
n�1X
j=0

Ej :

Scans are often de�ned over general associative operators, and have been proposed as a

fundamental primitive for parallel architectures [131, 132, 464]. Their matrix expression is

implicit in [450] but this work is the �rst known to the author to make the matrix form

explicit; parallel recurrence solvers were also considered in=citemeyer:parallel.

Note that although the scan matrix is not quite circulant, it can be padded by a factor of two

to make it C2n-circulant. This padding, which essentially is a way of introducing periodic

boundary conditions, is similar to the trick used to make the string matrix circulant.

In order to derive an e�cient algorithm for multiplication by T it is necessary to factor T,

which is equivalent to factoring its above polynomial representation. Since En = 0 we are
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factoring in the ring Z[x]
xn [492]. Assume n = 2k.

1 + E = 1+ E

(1 + E)(1 + E2) = 1 + E+ E2 + E3

(1 + E)(1 + E2)(1 + E4) = 1 + E+ � � �+ E6 + E7

k�1Y
j=0

�
1 + E2

j
�

=
2k�1X
j=0

Ej :

Therefore,

log2 n�1Y
j=0

�
In + E2

j
�

=
n�1X
j=0

Ej

= T:

On an n-node hypercube, left multiplication of a vector by E2
j
is constant time, as is left

multiplication by In + E2
j
[333, 371]. Each term in the product is thus constant time, and

there is logarithmic number of terms, so parallel pre�x is logarithmic time. Of course, an

O (n logn) algorithm is easy to derive directly [475] or by using, for instance, Cn-fast Fourier

transforms [758].

The advantage of the factorization approach is that it applies in the case when scans are

implemented as a primitive operation on the machine [131,365,742], as exempli�ed below.

By using certain simple parallel pre�x operations the problem can be reduced to the fol-

lowing: given a vector v, compute the vector Mv, where Mv is de�ned so that

(Mv)i = vi + 2vi+1 + 3vi+2 + � � �+ (n� i+ 1)vn; 1 � i � n

.
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Let E and T be the previously de�ned shift and parallel pre�x operators. Then M is a linear

transformation which satis�es

M = E0 + 2E1 + 3E2 + � � �+ (n� 2)En�1:

This polynomial can be factored:0@ nX
j=0

Ej

1A2

=

0@n�1X
j=0

(j + 1)Ej

1A +
X
k=n

akE
k

The right hand term vanishes because En=0. Therefore,

M =
n�1X
j=0

(j + 1)Ej

=

0@n�1X
j=0

Ej

1A2

= T2:

Hence, M = T2 and can be computed by two iterated applications of parallel pre�x.

By using the methodology of this paper, we were able to parallelize the application and

perform in approximately 6 hours an analysis computation that would have taken approx-

imately 800 hours of time on a vector minisupercomputer using the previous techniques.

This allowed analyses to be performed on many more protein sites than had been possible.

Detailed results are included in [718].
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Chapter 9

Conclusion and future work

This thesis described techniques for the design of parallel programs that solve well-

structured problems with inherent symmetry.

Part I demonstrated the reduction of such problems to generalized matrix multiplication

by a group-equivariant matrix. Fast techniques for this multiplication were described, in-

cluding factorization, orbit decomposition, and Fourier transforms over �nite groups. Our

algorithms entailed interaction between two symmetry groups: one arising at the software

level from the problem's symmetry and the other arising at the hardware level from the

processors' communication network.

Part II illustrated the applicability of our symmetry-exploitation techniques by presenting

a series of case studies of the design and implementation of parallel programs.

First, a parallel program that solved chess endgames by factorization of an associated di-

hedral group-equivariant matrix was described. This code ran faster than previous serial
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programs and discovered a number of results in its domain.

Second, parallel algorithms for Fourier transforms for �nite groups were developed and

preliminary parallel implementations for group transforms of dihedral and of symmetric

groups were described. Applications in learning, vision, pattern recognition and statistics

were proposed.

Third, parallel implementations solving several computational science problems were de-

scribed, including the direct N-body problem, convolutions arising from molecular biology,

and some communication primitives such as broadcast and reduce. Some of our imple-

mentations ran orders of magnitude faster than previous techniques, and were used in the

investigation of various physical phenomena.

The next logical stage in the development of our paradigm is the implementation of software

tools to support its application.

One way to approach an implementation of the ideas in this paper is by analogy with the

work of Soicher on GRAPE [700]. GRAPE is a graph-manipulation package, in which each

graph is associated with a subgroup of its automorphism group. We propose to extend this

idea to general arrays; we propose to build a general BLAS-like package for the manipulation

of arrays in which each array also comes with an associated group of invariances.

A complementary approach would be the implementation of our algorithms as part of the

loop transformation phase of an optimizing parallelizing compiler [81,82,511]. Once a com-

piler detects a group invariance, it could call, for example, a group convolution algorithm.
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Automatic implementation of group FFTs would present little di�culty, but �nding good

heuristics to factorize the matrices would probably not be feasible, so that user compiler-

directives would be required.

It would also be interesting to explore generalizations of the tensor-product formulation

to nonlinear operators. Suppose that A and B are arbitrary maps from m-tuples to m-

tuples. It is natural to de�ne Il
A to be the map from ml-tuples to ml-tuples obtained by

running A simultaneously on l contiguous length m segments. We can de�ne A 
 Il by the

Commutation Theorem to be

A
 Il � Pnm(Il 
 A)Pnl :

We can then de�ne the tensor product of arbitrary operators on tuples by analogy with

equation 4.4:

A
 B � (A 
 Il) (Im 
 B) :

Of course, it is unclear whether anything is gained by the added generality.

Finally, and more speculatively, the ubiquity and centrality of symmetry considerations

in a number of disparate applications might argue for the utility of a symmetry-theoretic

classi�cation of computational problems. This line of speculation would soon lead into

category-theoretic considerations, insofar as one views a functor as a kind of generalization

of a group action (since a group action is simply a functor from a one-object category in

which each morphism is invertible).
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Appendix A

List of symbols

General

Rk k-dimensional Euclidean space
C The complex numbers
A;B;M Matrices
Fn Discrete Fourier transform of degree n
In n� n identity matrix
Pmn Stride permutation
Kk Vector of k ones
G;H Finite groups
e Identity element of a group
H < G H is a subgroup of G
jGj Number of elements in G

X; Y Sets

;Nk Tensor product, kth tensor power
� Direct sum of vector spaces or matrices
AT Transpose of A
diag(v) Diagonal matrix with v's elements on diagonal
Symj Symmetric power
D4 The dihedral group of order 8
r 90� rotation element of D4

f Flipping operation, element of D4

Cn The cyclic group of order n
Sk The symmetric group of order k
GF2 The �nite �eld of order 2
X=G Orbit space for G-action on X
Vn;Wm Vector space of dimensions n,m
F A �eld
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Zk The integers modulo k
Mn

m The set of m� n matrices
Xp;i Unmove operator for ith piece according to the rules of p
i; j; k;m;n; l Positive integers.
g; h Group elements
v;w Vectors
f = O (polylog(g)) f is at most polylogarithmic in g

Chapter 6

XWhite;XBlack Unmove predecessor functions
p Generic chess piece type
Xp;s Unmove operator of p on the sth coordinate
C V8 
 V8

B
NkCR

G
x

P
g2G gx

s Element of Sk

Chapter 7

FG Fourier matrix of G
�; � Group representations of degrees d�; d�
� # H Restriction of � to H
 Adapted diameter of a group
S Strong generating set
G An acyclic arithmetic circuit
D (G) Depth of G
jGj Size of G
M(G;H) Maximum multiplicity of irreducible rep. of H in restriction of one in G

R Complete set of adapted irreducible representations of G
p Pattern string
t Text string
� Finite alphabet
�T;�P Text and pattern alphabets
� Character
s String
� Don't care character
� Exact-match (with don't cares)
� Subset matching (Abrahamson)
� Generalized combining operator
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� Generalized character-comparison

�

�
Matrix multiplication with generalized +;�

Chapter 8

EOSHIFT End-o� shift function (E)
CSHIFT Circular shift function
SUM +-reduction function
OSUM Outer sum function
SPREAD Broadcast function
SCAN Parallel pre�x function (T)
MATMUL Matrix multiplication function
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