Q function and error function

We first note that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \quad ; \quad \int_{-\infty}^{\infty} e^{-\frac{a x^{2}}{2}} d x=\sqrt{\frac{2 \pi}{a}}
$$

For our needs in Digital Communication course, we define:

$$
Q(\alpha) \triangleq \frac{1}{\sqrt{2 \pi}} \int_{\alpha}^{\infty} e^{-\frac{x^{2}}{2}} d x
$$

The $Q(\cdot)$ function is monotonically decreasing. Some features:

$$
Q(-\infty)=1 \quad ; \quad Q(0)=\frac{1}{2} \quad ; \quad Q(\infty)=0 \quad ; \quad Q(-x)=1-Q(x)
$$

Known bounds (valid for $x>0$):

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi} x}\left(1-\frac{1}{x^{2}}\right) e^{-x^{2} / 2}<Q(x) & <\frac{1}{\sqrt{2 \pi} x} e^{-x^{2} / 2} \\
Q(x) & \leq \frac{1}{2} e^{-x^{2} / 2}
\end{aligned}
$$

Matlab does not have a build-in function for $Q(\cdot)$. Instead, we use its erf function:

$$
\operatorname{erf}(\alpha) \triangleq \frac{2}{\sqrt{\pi}} \int_{0}^{\alpha} e^{-x^{2}} d x
$$

Note that erf function is defined over $[0, \infty)$ only, and

$$
\operatorname{erf}(0)=0 \quad ; \quad \operatorname{erf}(\infty)=1
$$

The relations between the two functions are

$$
Q(\alpha)=\frac{1}{2}-\frac{1}{2} \operatorname{erf}\left(\frac{\alpha}{\sqrt{2}}\right) \quad ; \quad \operatorname{erf}(\alpha)=1-2 Q(\sqrt{2} \alpha)
$$

If we have a normal variable $X \sim N\left(\mu, \sigma^{2}\right)$, the probability that $X>x$ is

$$
\operatorname{Pr}\{X>x\}=Q\left(\frac{x-\mu}{\sigma}\right)
$$

Now, if we want to know the probability of X to be away from its expectation μ by at least a (either to the left or to the right) we have:

$$
\operatorname{Pr}\{X>\mu+a\}=\operatorname{Pr}\{X<\mu-a\}=Q\left(\frac{a}{\sigma}\right)
$$

The probability to be away from the center where we don't matter in which direction is $2 \cdot Q\left(\frac{a}{\sigma}\right)$.

