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The  Evolution of the MVS Operating  System 

The mechanization of computer  operations and the  extension of hardware functions are seen  as  the  basic  purposes of an 
operating system. An operating system  must fu@U those  purposes while providing  stability  and  continuity to  its users. 
Starting with  the  data  processing  environment of twenty-$ve years  ago, this paper  describes  the forces that led to  the 
development of the OS/360 system  design and then  traces  the evolution  which led to  today's MVS system. 

Introduction 
Computer  operating systems first began to  appear twen- 
ty-five years ago. Since  then, an operating system disci- 
pline, complete with new terminology, new employment 
categories, large expenditures  for  research and  develop- 
ment,  and  formal  academic  training, has  evolved. 

In this paper we review the evolution of operating 
systems in IBM,  drawing  primarily on  our  experience 
with the Multiple Virtual Storage (MVS) operating sys- 
tem [l]  and  its  progenitors OS/360 and OS/370 [2]. [An- 
other  paper in this  issue  reviews the development of the 
Virtual Machine Facility/370 (VM/370 operating system) 
[3].] In the next  section of this paper we recall the 
environment that prevailed  throughout the  past  quarter 
century, showing some of the major changes in technolo- 
gy and applications. Then  the major areas of operating 
system  function are discussed in terms of the significant 
technological advances made in them.  Finally, we consid- 
er  current  trends and likely future  directions. 

The fundamental purpose of operating systems is to 
facilitate the  use of computer  systems.  Functions provid- 
ed can be grouped into two  categories: (1) automation of 
computer operations; and (2) extensions of hardware 
function. 

The  earliest systems  automated  operations by mecha- 
nizing inter-job transitions [4]. Jobs were executed  se- 
quentially,  one at a time. In contemporary  systems, 
separate  jobs often exist simultaneously as interactive 

applications, with the  attendant complexity of allocating 
resources.  Modern systems provide automatic  resource 
allocation and  tuning to aid computer  administrators in 
the  scheduling of work and  the balancing of resources  for 
multiple applications. 

The extension of hardware functions  probably started 
with the  symbolic  assembler [5]. Other  examples include 
higher level languages, such  as FORTRAN,  COBOL,  BA- 
SIC, etc., and  assembler macros  to perform higher level 
arithmetic  functions and  input/output  operations.  Over 
the  years, significant amounts of software  have  been 
produced to raise the level of the interface to  hardware so 
that  application  programmers would not have  to deal with 
such details as timing, hardware  geometry, and error 
recovery,  and  could  deal  instead with macro- rather than 
micro-level operations.  One  aspect of this trend has  been 
to mask the  application  programmer from  the details of 
I/O devices  and other  hardware  elements, so that  hard- 
ware  conversion could be done without  requiring changes 
in application  programs. 

Another major source of function has been the move- 
ment of facilities common to many applications into  the 
operating system.  The earliest  examples of this  were the 
large card  tubs of subroutines ( e . g . ,  square root) that 
appeared in many  machine rooms in the 1950s. These 
functions are first seen in new applications. Later,  as they 
become  more  generalized and more popular, they find 
their way into  the operating system. For instance,  the 
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Figure 1 The evolution of OS/360, where PCP = primary 
control  program,  MFT = multiprogramming  with  a fixed number 
of tasks, MVT = multiprogramming with a variable  number of 
tasks, TSO = time sharing option, SVS = single virtual storage, 
MVS = multiple  virtual storage, DOS = disk operating system, 
and  VM = virtual machine facility. 

hierarchical data organization supported by IBM’s IMS- 
DLlI program product  was invented initially to  support 
bill-of-materials processing in a  manufacturing  applica- 
tion of the  late 1960s. As  this support was generalized, it 
became  clear that  its usefulness  ranged far beyond the 
manufacturing industry,  and  today  DL/I is one of the 
most widely used methods  for organizing data  bases. 

The  environment:  1956-1  981 
To convey the  environment in  which designers of operat- 
ing systems function,  we first look at computing as it was 
done twenty-five years  ago,  contrasting it to  that of 
today. In 1957 the  total  computer processing power 
installed in the U.S. was  about  ten million instructions 
per  second.  Today’s  installed  capacity  in the U.S. is three 
to four orders of magnitude greater. This tremendous 
growth of computing power led  directly to  the need for 
and definition of operating systems. 

Another way to view the progress made  since 1956 is  to 
look at  the size of a software  system  and how it  has 
changed over  the period. For  instance,  the FORTRAN 
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Monitor System (FMS)  and its programming  libraries, 
widely used on  the  IBM 704/7090,  fit on  as little as  one 
reel of tape. During application  program execution,  FMS 
required only the low 100 memory  locations to contain 
the programming for job-to-job  transition. The size of 
FMS itself was  about 10 OOO binary cards of program- 
ming, approximately one million bytes. This contrasts 
with today’s  MVS system, which arrives  stored  on 17 
tapes that  are  the equivalent of 13 million cards, approxi- 
mately 520 million bytes. 

Over the last  twenty-five years, IBM  designers  and 
programmers have  created  over  twenty major, separate 
families of general purpose operating systems.  The  sys- 
tems culminating in MVS are  shown in Fig. 1 and  their 
capabilities in Table 1. Generally these  have been moti- 
vated by unique hardware,  but in recent times IBM has 
developed different operating systems  for  the  same hard- 
ware systems.  For  instance,  on  the  latest IBM System/ 
370 computers,  there  are eight IBM operating systems in 
use. These  are: Disk Operating  System/Virtual Storage 
Extended (DOSNSE), Operating SystedVirtual Storage 1 
(OS/VSl), OS/VS2 (now called Multiple  Virtual  Storage 
or MVS), VM/370, Airlines Control Program  (ACP), and 
Time Sharing System/370 (TSS/370), with  continued  sub- 
stantial use of the System/360  Operating Systems, OS/360 
and DOS [61. 

Even within an operating system, diversity pervades. 
At least six different telecommunication access packages 
have  been offered for OS/360: BTAM, QTAM,  TCAM, 
RTAM,  XTAM, VTAM [7]. In  addition,  several  users 
have developed their  own. 

While we have  created a  large number of programming 
products over  the  last twenty-five years, only  a  relatively 
small number have  faded  from  existence. An extreme 
example of the longevity of these  products is that  pro- 
gramming and  hardware shipped as recently as 1980 still 
provides the capability to  execute programs originally 
written to run on the IBM 650 and 1401 computers, first 
shipped in 1954 and 1960, respectively. A  more  meaning- 
ful example is that  today’s MVS systems must  be capable 
of executing many of the programs that were  written to 
run on the 1966 OS/360, Release 1. One of the most 
challenging aspects of providing software  for IBM users 
is the huge investment in application  programs for IBM 
computers, and one of the primary requirements placed 
on any  operating system is to  continue  to provide the 
capability to successfully  use these programs. Thus, 
designers of IBM  operating systems  have been faced with 
the  need to provide for  extensions of function while at  the 
same  time  preserving the ability of existing interfaces to 
operate  the  same way  they had in the  past. 
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Table 1 Capabilities of MVS  and  its  predecessors. 

Generation Operations 

Pre-operating  system  (early 
1950s) with, e.g. ,  the 701 

First  generation  (late 1950s 
and  early 1960s) with, e . g . ,  
FMS, IBSYS on the IBM 704, 
709, and 7094 

Second  generation  (late 1960s) 
with, e.g. ,  OS/360 on System/ 
360 

Manual (e .g . ,  each  job  step 
required  manual intervention) 

No multiple-application 
environment  support 

Automatic  job batching 

Manual device allocation, 
setup, work load scheduling 

No multiple-application 
environment  support 

Off-line peripheral operations 

Multiprogramming 

Primitive work load 
management 

Primitive  tuning (device,  core 
allocation) 

Spooling, remote  job  entry 

Operator begins to be driven 
by the  system 

Primitive  application 
protection 

Initial  multiprocessing  (loosely 
and tightly coupled) 

Third  generation  with, e.g. ,  Integrated  multiprocessing 
MVS OS/VS on System/370 (loosely and tightly coupled) 

Work load  management 
extensions 

More self-tuning,  integrated 
measurement facilities 

Less  operator decision 
making, fewer manual 
operations 

Full interapplication 
protection,  data  and program 
authorization 

Primitive storage hierarchies 
for  data 

Hardware  functions 

Symbolic assembler 

Linking  loader 

Extensions of function 
- 

- 

- 

Higher level languages- 
FORTRAN,  COBOL 

Primitive data  access  services 
with error  recovery 

More higher level languages- 
PLII,  ALGOL,  APL, BASIC 

Device  independence in data 
access 

First random access  data 
organizations 

Primitive  software error 
recovery, full hardware  ERP's 

Array of hardware function 
extensions 

Supervisor call  routines 

Virtual storage 

Device independence 
extended 

Hardware  error  recovery 
extended  to  CPU,  channels 

Operating system  functions 
begin to migrate to  hardware 

Application  functions 
-~ ___- 
Subroutine libraries in card 
tubs, manual retrieval 

"" __.-___ 

Subroutine libraries on  tape, 
automatic retrieval 

Primitive  program  overlay 
support 

_.___-_____- 

DASD  subroutine libraries 

Full facilities for programmed 
overlays 

Interactive program 
development  support 

Primitive automatic debugging 
aids 

First application subsystems 

Checkpoint/restart 

Growing  libraries 

Overlay techniques obsoleted 
by virtual storage 

Symbolic debugging aids 

Primitive data  independence 

Integration of application 
subsystems 

Software  error  recovery  for 
system  and applications 

However,  there  are  exceptions.  For  instance, in DPPX 
[8], one of the operating systems  for  the IBM 8100 
Distributed  Processing System, compatibility  require- 
ments could be  relaxed because DPPX  was  aimed at new 
application environments. In spite of this,  DPPX pays 
homage to  the  past in that it has COBOL and FORTRAN 
and  must  be able  to interchange  programs and  data with 
other  systems. 

In addition to the need to  provide continuity  with the 
past, the  other major constraints dictating design trade- 
offs in operating systems are the capacities and  speeds of 
the  hardware  for which the  software  is being  designed. 
These two  factors, compatibility  with the  past and  hard- 
ware parameters,  constitute  the major reasons  for main- 
taining separate operating system designs  in  contempo- 
rary  systems. The occasional  unique  function in a particu- 
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Table 2 Numbers and varieties of devices  that  can be included 
in an MVS system. 

Disk  magnetic  storage  units 10 types 
Drum  magnetic  storage units 1 ” 

Mass  storage  system 1 ” 

Diskette 1 ” 

Magnetic  tape 8 ” 

Card readerdpunches 5 ” 

Paper  tape  reader  punch 1 ” 

Printers 10 ” 

Optical character  recognition  unit 5 ” 

Magnetic  ink character  recognition  unit 1 ” 

Operator’s  console 7 ” 

Telecommunications control  units 6 ” 

Display  terminals 7 ” 

Keyboardprinter  terminals 4 ” 

Remote  high-speed  terminals 6 ” 

Other  terminals 30 ” 

(including other  processors) 

This table does not depict a l l  actual different model numbers; rather, it gives the 
number of different devices of each type. 

~~~~ 

lar  system (e .g . ,  the virtual  machine facility in VM/370) 
generally exists  because of the relative  cost of providing it 
in other  systems  compared  to its  benefits, rather than 
technical feasibility. 

Generally,  software has  adapted  to  the rapidly  chang- 
ing circumstances of the  data processing industry. This 
includes new application types, new hardware  variations, 
and new styles of usage. On  the  other  hand,  change  has 
been heavily dependent  on  the  past  because of the large 
investment all of us  have in maintaining the ability to run 
existing programs. Over  the  years what has happened can 
be viewed as a process of natural selection, similar to 
other evolutionary processes. 

Another  dimension of the problem of designing operat- 
ing systems is the diversity of hardware configurations 
that  must  be supported by a single operating  system. 
MVS, for  example,  runs  on  eleven different processing 
units, some of which allow symmetric  and some  asym- 
metric two-way multiprocessing. The performance  range 
supported is well over  an  order of magnitude. The mini- 
mum MVS production system  has  two megabytes of main 
storage and as few as  four disk drives.  Conversely,  one 
large MVS configuration in the United States  has  seven 
interconnected  processing  units  in a single room.  This 
configuration has more than 450 direct  access  devices  and 
services  approximately 15 000 terminals  in more  than 50 
locations. The  total  instruction  execution  capacity is over 
40 million instructions  per  second. 

The largest processor  currently  supported by MVS has 
a real main storage capacity of 32 megabytes and a 
maximum of 1023 devices connected  to  its I/O channels. 

474 Anywhere  from two  to 16 I/O channels  are  supported. 

Table 2 shows the  numbers of devices of various types 
that can be selected  for inclusion  in an MVS system. 
Providing for  this  large  number of combinations influ- 
ences  the way operating systems  are designed. The 110 
configuration can  change dramatically  from  installation to 
installation and, in fact, from  month to month. Of course, 
it would be impractical to include all of the programming 
necessary to run all of these  devices in every  system. 
Moreover, as desirable as  device interchangeability 
would seem to be, it ought to be  possible to exploit new 
technology and new hardware capabilities. For  these 
reasons, operating systems like MVS are designed to be 
modular, with support  for particular  device types select- 
able for a particular  installation. 

A final problem for IBM operating systems designers is 
the number of installations using each  system. Changes 
and  extensions made  to  our  systems  are,  soon  after 
release,  experiencing extremes in  work loads  and vari- 
eties of applications. A change  that is incorrect in the 
most obscure special case will soon  generate a problem 
report or “APAR.” A modification to an  undocumented 
and unguaranteed  internal characteristic of an interface is 
often exposed by applications  which  work  only because 
of that characteristic. This necessarily contributes  to a 
design approach  that  is  conservative  and evolutionary 
and that groups modifications so that  extensive  tests  can 
be  performed on modified systems before their  shipment. 
Yet greater stability is  one of the most asked  for  features 
by customers of our  products. 

In summary,  our  experience of developing  operating 
systems is that of responding to requirements in the  basic 
functional areas  under  the  constraints of a wide  range of 
hardware  configurations,  large numbers of installations, 
and compatibility. The following sections  explore  the 
approaches we have taken in response  to  these motivat- 
ing requirements. 

Operations 
The  earliest  use of computers  was  characterized by 
totally manual operations;  that  is,  the  sequence of pro- 
grams to  be run was controlled  manually,  media  contain- 
ing needed data  were mounted and dismounted by  the 
operator, usually following written instructions. A typical 
compile-load-go sequence in the 1950s was accomplished 
by the  operator placing the binary card deck for  the 
compiler in a card  reader, with a program to be  compiled 
behind it,  and pressing the  Load  Cards  button  on  the 
console. The compiler  assumed that  certain  “scratch” 
tapes  were  available and  used  these during the compila- 
tion. At  the end of the compilation, output  was  printed, 
and cards representing the  object program were  punched. 
This 110 activity was  not overlapped with any  other 
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activity. The  operator would then pull the  object  deck  out 
of the  card  punch, walk over  to  the  card  tub,  and  select 
the required subroutines  and  an eight-card linking loader 
that was placed at  the  front of the resulting deck.  These 
cards were  then  placed in the  system  card  reader,  and  the 
operator  once again pressed the  Load  Cards  button. If 
any data were  required  by the program, the  appropriate 
media would be prepared by the  operator. 

Generally, if operations  were  any more  complex than 
described,  written instructions  were provided for  the 
operator,  or more likely the programmer would be per- 
sonally present.  “Programmer present”  runs  were so 
common that a space  on  the  job  card  was provided to 
indicate that  type of run.  In  these  cases,  the  operator 
would telephone the programmer  when his run  was about 
to be made. 

Accounting was  done  on a total  system  basis, often 
using a  time  clock to log a user  on  and off of the  system. 
Users and  operators took great  pride in the  speed with 
which they could mount tapes  and  operate  the  hardware 
to minimize the idle time between  jobs. 

By the  late 1950s, this  type of operation had  been semi- 
automated, with the  card  tub of library subroutines 
placed on tape and  the linking loader having the capability 
of searching  this  library tape  for unresolved external 
references. Moreover,  the ability to change  from  the 
compilation to the execution phase of the  job without 
manual intervention had been  provided.  Still,  communi- 
cation with the  operator  was  done  for  each program in 
pretty much an ad  hoc way. The 704 had a series of lights 
on the console called Sense  Lights,  and often instructions 
to the  operator had statements like “if Sense Light  4 
lights, turn on Sense Switch 3.” 

Through the  early 1960s, systems  were  characterized 
by manual device  allocation, setup,  and work  load  sched- 
uling. Multiprogramming was not provided, and only  a 
single applicatian would run at a time. It  had been 
recognized very early  that  the printing of output  and  the 
reading and punching of cards were operations  that could 
not be performed efficiently on a high-speed central 
system. Thus,  tape input and  output  operations were 
substituted, and  the  card-to-tape,  tape-to-printer,  and 
tape-to-card operations were done off line. At first this 
was  accomplished  with  special purpose  equipment de- 
signed specifically for  these functions. Then  these off-line 
operations  were done with  small computers,  such  as  the 
IBM 1401. Later  the IBM 7040 was linked  via a high 
speed  connection to  the larger IBM 7094 to  do  these 
operations and related job scheduling  functions. This 
“Direct  Coupled System”  is  one of the earliest  examples 

of automated job scheduling and  setup.  It significantly 
improved the utilization of the controlled systems by 
overlapping setup  and peripheral  input and  output with 
system operations.  This  approach survived into  the  Sys- 
tend360 era  as  the  Attached  Support  Processor (ASP) 
package and  is now embodied in the JES3 subsystem of 
MVS . 

It was  not until the multiprogramming support provided 
in the mid-1960s that  job scheduling and peripheral opera- 
tions  were done simultaneously with other work on  the 
same  processor [9]. It  was at this time that  the  operator, 
rather than having control of the  system, began to  be 
provided with instructions by the  system. Comprehensive 
job control  languages  were  introduced to allow the appli- 
cation  programmer to completely  specify sequences of 
job  steps,  as well as device and  data  requirements  for 
each, so that  the  system could  allocate and  sequence  the 
appropriate  programs and  resources.  The OS/360 Job 
Control  Language (JCL) was widely regarded as complex 
and difficult to use. Yet  its contribution was  to  separate 
application  programs from  such  operational consider- 
ations as device types,  addresses,  sequences, conditions, 
and timing of execution. Thus, it was possible to  create 
new applications  by writing JCL programs to apply  exist- 
ing processing and utility programs in new ways. 

Today,  the  most significant operational challenges re- 
maining are  the mechanization of the remaining manual 
functions  and the  improvement of existing  algorithms for 
work load management so as  to  react effectively to 
changing work loads  and  to  the  lack of availability of 
particular  pieces of hardware  or  other  resources  due to 
errors, failures, or  contention. In the  future  these deci- 
sions will be  increasingly  pre-programmed into  the  sys- 
tem, and more of the manual  media operations will be 
eliminated through the  use of storage hierarchies and 
automated media handling  techniques. 

Muintenance and  service 
Large  numbers  and sizes of programs are typically  in- 
volved in the modern data processing  installation.  More- 
over,  the problems of fixing errors, installing  new  ver- 
sions of software packages, updating  critical data,  etc., 
must all be done in the  face of the need to operate more 
continuously. In  the  early 1960s, it  became  apparent  that 
ad hoc techniques would no longer suffice. By the 1970s 
several data  base  oriented  systems had  been created in 
IBM to  keep  track of modifications, error fixes, and 
versions of programs. Because  code modifications made 
to fix errors sometimes themselves contain errors,  such a 
system  must allow swift recovery if such  errors  occur. 
Thus, if a modification contains  an  error, it must be 
possible to restore  the  system to its original state very 475 

M. A. AUSLANDER ET AL. IBM J. RES. DEVELOP. 0 VOL. 25 0 NO. 5 0 SEPTEMBER 1981 



rapidly. With the large  installations of today,  and  espe- 
cially with the distributed systems  that  are beginning to 
appear, it is essential to provide  the ability to manage the 
servicing of large numbers of systems with a single 
centralized  package. Thus,  record keeping and distribu- 
tion facilities must  be expanded  to allow for tracking up  to 
hundreds of systems. 

Since the time to diagnose problems is important,  and 
since often  problems encountered in  a system  at  one 
installation have  been  found  and fixed earlier at others,  it 
is useful for an installation to  have  access  to a central  data 
base of problem symptoms and fixes. During the 1960s 
this was accomplished by distributing  this  information on 
listings. Recently,  remote  interactive  access  has been 
provided to this data,  and, in the  future, symptom de- 
scriptions to be  used to  search  these  data  bases will be 
generated  automatically. 

Resource  allocation 
OS1360 was the first general purpose IBM  operating 
system to  provide for complete sharing of hardware 
resources. The major resources considered for  shared 
usage in the original design were  the  processor, its 
memory, direct-access  storage devices  (disks,  drums), 
I/O devices (tapes,  card  equipment,  printers,  etc.),  and 
the space on individual  disks  and drums. 

OS/360 provided for  processor sharing by introducing 
the notion of a “task” [9].  An OS1360 task is an imple- 
mentation of what computer  scientists eventually came  to 
call a process. An additional characteristic of a task in 
OS/360 is that  resources, including other  tasks,  are allo- 
cated to a task.  Further,  tasks  are designed to allow full 
multiprogramming of their  execution.  The OS/360 design- 
ers recognized that operating system  functions should 
usually contend  for  resources by  being themselves  treat- 
ed  as  tasks. 

The task structure  was originally intended to  support 
not only long running batch  jobs but also  the  short 
running, response-oriented  processing associated with 
transaction and telecommunications environments [9]. 
Unfortunately, the generality of the task concept was too 
great to allow for efficiency. The  fact  that  the  task is 
interruptable by other higher  priority tasks  and  is  the 
anchor for resource accounting,  allocation, and  recovery 
required significant processing just  to  create a task.  Thus, 
the  overhead was impractical for very  short-lived  pieces 
of work.  A widely used technique  to  overcome this 
problem was  to  have a task waiting for a signal to  restart, 
rather  than  creating a new one  each time. This technique 
created long queues of mostly dormant  tasks  that had to 
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because the task did not fully support all of its  character- 
istics in its first implementations, early application  sub- 
systems like QTAM, CICS, and IMS [lo] provided their 
own substitutes  for  the  task.  In MVS, a new construct 
called the  System  Request Block (SRB) was  created  to  be 
purely a  unit of work for  the  processor.  Interruption 
ability was not provided, and no  other  resources were 
anchored to  the SRB. Thus,  an  SRB in MVS can be 
created  and given control of the  processor using a  trivial 
number of instructions,  compared  to the thousands re- 
quired to  create a task. 

The original intent  in the OS/360 design was  to allocate 
memory to each  task on demand [9, 1 1 1 .  Memory would 
then be held by the task until it was  either explicitly 
released by the  task or the task terminated.  The  existence 
of this  interface, and  the crucial and new  requirement that 
programs  ask the operating system  for memory space  and 
accept that  space  at  whatever location it was provided, 
made for some early difficulties. However, this interface 
once  and for all solved the problem of how  the  operating 
system  and the application  program  can share  the  proces- 
sor memory,  even  though they  are independently  de- 
signed. For this reason  alone, similar  storage  allocation 
mechanisms persist in all operating systems  today. 

From  the beginning, the  designers of  OS1360 were 
concerned with the possibility of a resource allocation 
deadlock [12]. They  chose  the philosophy of complete 
deadlock  prevention  by  predetermining the  order of allo- 
cation: I10 devices,  data  sets,  memory, then the proces- 
sor. It was  not recognized until late in the design that  the 
earlier  assumption of complete  dynamic allocation of 
main memory from a common  space would lead to 
deadlocks. To  overcome this problem,  the application 
programmer  had to specify the aggregate  storage  require- 
ment of his job in advance. This  “region”  could  then be 
allocated,  and the possibility of a deadlock  during execu- 
tion was avoided. 

By the late 1960s, OS1360 was being severely strained 
by two emerging requirements. The under-utilization of 
memory caused by region allocation  was becoming ever 
more troublesome. At the  same time, it was recognized 
that application development could be  eased if programs 
did not have  to be fitted into  the smallest  possible address 
space.  Dynamic address translation hardware and de- 
mand paging techniques were  applied to  these  problems 
throughout the 1960s in such  IBM  systems  as  the 7044 
and System/360 models 40 and 67 [3, 111.  In 1970, de- 
mand paging was added  to OS1360. In MVS,  a  large 
number of regions  can  be created, with the size of each 
region the same and usually not a factor  to be considered 
by the programmer. The  technique of demand paging is 

ISM I. RES. DEVELOP. 0 VOL. 25 0 NO. 5 SEPTEMBER 1981 



I 

I 
used to  share real memory  among the existing  regions. 
Because  demand paging allows dynamic reallocation of 
memory,  deadlocks cannot  arise. 

The second emerging requirement was  for time  sharing 
[13]. This  technique can improve the capabilities of 
program developers  and  problem  solvers by allowing 
continuous  communication  with the  computer. Time 
sharing was first provided  by a number of special purpose 
systems in the early 1960s. By 1967 there  were  over 30 
different special purpose time  sharing  packages  running 

Option (TSO) was intended to integrate  time  sharing 
functions into  the OS/360 base.  However,  the  batch 
allocation of devices and  data  space  present in the  base 
were inappropriate. In  practice, time  sharing is workable 
when the storage  devices in use are permanently  mounted 
and when space on them is dynamically  allocated. To 
accomplish time  sharing  in OS/370, dynamic disk space 
management interfaces  were added to the existing  batch 
mechanisms. It  is noteworthy that  TSO  uses essentially 
the  same interfaces and mechanisms of  OW360 for pur- 
poses for which they were not initially intended. 

i 
l or planned for System/360 hardware.  The Time  Sharing 
I 

I 

i 

Time sharing was implemented  in TSO without address 
translation hardware. Instead it used a memory  swapping 
technique pioneered at  MIT  on  the  IBM 7094  [14] in the 
early 1960s. The fundamental resource management 
problems of time  sharing, for which these special systems 
had previously been developed,  can be  dealt with by the 
multiprogramming and paging mechanisms of MVS. In 
creating MVS from the OS/360 and  TSO  componentry, 
many of MVS’s major structures  came  out of generaliza- 
tions of techniques  introduced in TSO. 

Today,  three  resource allocation issues  concern  operat- 
ing system developers.  The first is the impact of multiple 
processors.  It might seem  that a multiprogramming oper- 
ating system could be converted  to multiprocessing with 
minimum difficulty. In  practice,  however,  an operating 
system  contains many internal  information resources 
which are frequently  locked and unlocked. As the number 
of processors  increases, so does  the contention for  these 
internal resources with the  attendant loss of performance 
when conflicts arise.  To control such conflicts, MVS uses 
carefully designed lock structures  to minimize the  cost of 
locking an available resource  and  the probability of 
needing an unavailable resource.  The MVS approach is 
based  upon the  experience gained during the 1960s with 
the OS/360 and TSS  support  for multiprocessing. The OS/ 
360 structure had  a single lock  and  produced serious 
degradation in many important  environments.  The  TSS 
approach  used myriad locks  but in an uncontrolled  se- 
quence  that created deadlock and recovery difficulties. 

The  other  two  resource allocation  problems  deal  with 
resources that were  not shared when OW360 was first 
designed: communication  facilities and  data  stored  at  the 
logical record  level [15]. The  former is the subject of the 
Systems  Network  Architecture (SNA) [16] and  has  re- 
quired substantial  innovation. The second is primarily a 
problem of data  base  subsystems [17]. 

e Security and integrity 
Over  the years, operating systems  have played an in- 
creasingly important role in providing tools  to allow an 
installation to  protect itself against  unauthorized access 
to  data or other  computer facilities [18]. In the earliest 
systems, little or  no provision  was  made to  protect 
against such  use.  In  the early 1950s, before the  advent of 
multiprogramming, such protection was generally  not 
needed,  since a job’s  data were  loaded onto  the  system 
with the job  and  taken  down  at  its completion.  When jobs 
were first batched on an  input  tape,  there was the  ever- 
present danger of one  job  forward or back  spacing the 
input tape, causing other  jobs  to be skipped or repeated. 
At some  universities,  this was  an  annual  occurrence  as 
new programming students  “tested  the  system.” It was 
not until late in the 1950s that IBM computers began to 
provide protection.  There  was a multiprogramming spe- 
cial feature  for  the 7090 that provided for privileged 
instructions-only programs  in certain  states could exe- 
cute  instructions that performed I/O operations and other 
management tasks. 

In the System/360, the separation of privileged instruc- 
tions from those intended for  use by application  programs 
was made quite clear;  it  was theoretically  possible for 
software io prevent unauthorized use of any  function. 
The original direction taken in OS/360, however,  was  that 
deliberate  penetration attempts would not be  prevented; 
that is,  the  system was  designed  only to  prevent casual or 
accidental  penetration or unauthorized  use. It was not 
until the late 1960s that it became apparent  that this 
philosophy was  inadequate. Operating systems had to 
prevent a program from gaining access  to  data,  services, 
or  other facilities that  it was not  authorized  to  use. MVS 
was the first IBM system  for which  a systematic  attempt 
had been made to eliminate all exposures  to unauthorized 
use  and for which  a  commitment  had  been  made to 
correct any  such  exposures  found. MVS  had  a  number of 
authorization schemes by  which  particular users  or pro- 
grams could be allowed or denied the  use of certain data 
and functions. 

Since the introduction of MVS in 1974, additional 
loopholes  have  been identified and  closed. Also, more 
elaborate  authorization  capabilities  have  been  provided, 
as well as detection  capabilities, to facilitate  the identifi- 
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cation of a perpetrator,  and  hardware  assistance,  such  as 
encryption  devices [ 191. 

Extensions  of  hardware function 
The following subsections  deal with extensions to hard- 
ware  function to enable  application programmers  to more 
easily exploit computer  systems.  The first subsection 
deals with extensions  that  raise  the level of function of the 
processor’s  instruction set. The  second  deals with similar 
extensions in the I10 subsystem  area.  The final two 
subsections deal with error  recovery, which  could be 
viewed as  the  creation of ideal computer  elements  that 
apparently never fail. 

High  level  languages 
Early  operating systems,  such as the FORTRAN Monitor 
System,  were based  on  an intimate connection  between 
their language processors  and  the  system which  managed 
compilation,  loading, and  execution of programs written 
in those  languages. An important  advance of OS1360 was 
to  separate  the compiler from  the  operating  system. A 
compiler is, from the operating system  view,  just  another 
user program which takes  input  and  produces  output. 
Whether or not the  user  then  decides  to  have  the program 
loader load and execute  that  output is unimportant. The 
only tie  between the compiler and  the  system  is  the 
conventions for  representing machine  language  programs 
as operating  system files. 

This  separation has a  number of advantages. Compilers 
can be offered and  maintained  independently of the 
operating  system. New languages or new compilers can 
be  developed  easily.  Various  organizations  inside and 
outside IBM can offer languages and compilers  which do 
not depend,  for  their  success,  on  operating  system modi- 
fications. This has led to a  healthy  growth in both 
languages and  compilers.  Finally,  this  decoupling encour- 
ages general purpose operating system  interfaces. How- 
ever,  the danger is that significant functions may not  be 
available to higher level  language programmers. 

Another aspect of the interaction between high level 
languages and  operating systems is the implementation 
language of the  system. Until the  late 1960s, IBM soft- 
ware  was  written in macro  assembly language. It  was 
believed that compilers  could  not produce  code efficient 
enough for operating systems. While this assertion  was 
true in 1970, the reduction in programming errors and the 
increase in program  extensibility  resulting from  the  use of 
high level languages offset the  space  and  execution time 
penalties. By 1980, most  programmers  could  not  have 
consistently exceeded  the efficiency of compiler  opti- 
mized code. Now  essentially all new  operating system 
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Access  methods 
As operating systems evolved in IBM,  they  were driven 
by a  number of forces  towards  the development of 
generalizations of their  hardware inputloutput  devices. 
The primary forces operating were: 

Ease of programming Programs  must  often deal with 
the mechanical complexities of the  device, variations in 
the  storage  medium,  complicated procedures,  and  error 
detection  and recovery strategies. These often change 
with each new hardware innovation. 

Device  independence For  purposes of data  storage,  the 
important  distinctions  from the point of view of the 
application programmer are  record size,  retrieval order, 
selection techniques,  etc.,  rather than  media dependence. 
A  program  written to  process a  sequential stream of 80- 
character  records should  be the  same  no  matter  where the 
data  are  stored. 

Data  integrity The  shared use of direct  access storage 
device (DASD) space and the  shared (often  read-only) 
use of data require  some trusted program between  the 
application and actual manipulation of the media. 

Concurrent operation The involvement of the operating 
system in every  input/output  operation makes  possible 
the incorporation in its implementation of strategies for 
overlapping computation  and  inputloutput  activity with- 
out requiring that individual  programs  include  complex 
code (such as double buffering) to  produce local concur- 
rency. The  concurrency  arises  rather  because  one  job is 
computing while another is doing  inputloutput opera- 
tions. 

Early  operating systems often  dealt with the simpler 
aspects of some of these needs. Beyond  that,  the libraries 
for some high level  languages  contained  inputloutput 
routines which eased  the programming burden  for  users 
of that language. With the introduction of OS1360, the 
notions of an  access method and of a data  set organization 
were  introduced  in a uniform way [7]. 

Data set organizations are  abstractions  that  expose  to 
the application  program those distinctions which it must 
deal  with  and shield it from  other device  distinctions. The 
original data  set organizations of OS1360 were  sequential, 
partitioned,  indexed sequential,  and  direct  access. 

Access methods  are collections of operations  that can 
be applied to read  and  write  data in these organizations. 
The original access methods  were Basic  Sequential 
(BSAM), Queued  Sequential  (QSAM),  Basic  Partitioned 
(BPAM), Indexed  Sequential  (ISAM), and Basic  Direct 
(BDAM). The distinction between  basic  and  queued had 
to  do with whether  or  not  the  access method supported 
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implicit blocking and  deblocking  internally, as well as 
whether or not the  access method was  capable of a read- 
ahead  inputloutput strategy. In hindsight, one could  argue 
that this distinction was  short sighted. However, in 1963, 
it was difficult to decide to isolate the programmer from 
the  device at all, let alone  to impose  a  blocked, buffered 
interface as  the only one available.  Real concerns with 
performance  and  a  confusion of the technique of buffering 
with the  function of sequential access  both  contributed  to 
this viewpoint. 

i 

These small sets of organizations and  access  methods 
served for  access  to all devices  and data during the early 
history of OS/360 and OS/370. Changes in this area  have 
been  remarkably rare, considering that  these interfaces 
were simply invented and implemented all at  once by the 
system  architects. The major changes  to  occur in the 
intervening years reflect a new requirement  and the 
recognition of a new technology. 

The new requirement is the  desire  to  attain uniformity 
and device independence  for terminals.  BTAM, TCAM, 
and VTAM represent  three  attempts  at communications 
access  methods.  A  number of reasons exist for this 
relative lack of success in standardizing  communications 
access  methods. 

First,  the communication  devices did not become im- 
portant until after  the introduction of OS/360. Without  a 
body of experience,  and with dramatic and  fundamental 
changes in hardware capability (from teletypewriters to 
CRT display terminals and beyond), it was difficult to 
foresee all future  needs in designing an interface.  Beyond 
that, more  than in any  other  input/output  area,  the 
application program  must  deal  with the details of the 
display device. Adding more bytes  to a  disk track  can 
easily be hidden from  the application  program using that 
disk to  store information, but adding  more rows  or 
columns to a  display  necessarily  affects the application 
design decisions  relating to  the human  interface that  the 
display represents. Providing for terminal device inde- 
pendence in applications is one of the remaining chal- 
lenges that will get much future  attention. 

The  other important  change  was a response  to a new 
technology. The indexed  sequential access method was 
designed to support data organizations in which contents 
retrieval (keyed records) was  used to maintain the  ap- 
pearance of a  sorted file while allowing efficient random 
update  and  retrieval.  When it was  designed, it was 
commonly believed that  the best way to  do  such retrieval 
was to exploit the key search capability of the DASD 
hardware.  After the introduction of OS/360, the use of 
tree structured, balanced indexes (B-trees) as a  technique 
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for managing content’addressing was developed, and it 
became  clear that this  organization  was superior  to  the 
ISAM approach. To offer this new technology,  IBM 
introduced  VSAM, an  access method  which in some 
sense  provides all the organization  and  retrieval  functions 
of the  other  access  methods. Again,  history and  the need 
for continuity  tie us to using and  supporting the new and 
the  old. While the  use of ISAM is waning, the use of the 
sequential,  partitioned,  and direct  access  methods contin- 
ues and will continue  for  the  forseeable  future. 

The OS/360 access  methods went a long way towards 
achieving ease of programming,  device independence, 
data integrity, and  concurrent  operation. As much as any 
other  feature of OS/360, they  have made it possible for 
programs written fifteen years ago to  continue  to  operate 
on  today’s totally new and often quite different hardware 
and operating systems. 

In OS/360, and  subsequently in MVS,  the  format of 
recorded data  and  the available operations differ by 
access method and organization. Thus, device  depen- 
dence was,  to  some  extent, replaced by data  set organiza- 
tion dependence. For  example, sequentially  organized 
data cannot be accessed by record  number without a 
format conversion. It is possible,  as is demonstrated by 
the DPPX operating system  and by CMS,  to achieve 
uniformity and provide  better usability as a  result. 

Hardware error recovery 
IBM’s first computers  were shipped  with little more 
programming than that used for  hardware  error diagnosis. 
Typically,  engineers develop  such programs for the  early 
models of a system. As computer programs  became  more 
sophisticated, these diagnostics  became less effective. By 
the  end of the 1950s, it was commonplace for a  nontran- 
sient error  to be undetected by the manufacturer-supplied 
diagnostics but to  show  up readily  when  trying to  execute 
application software. It  was during  this  period that  the 
gathering of hardware  error  status and statistics was first 
introduced  into  IBM  software. During the  early 1960s, the 
software  was  designed to stop upon the  detection of any 
hardware error,  under  the assumption that  to  continue 
would produce  unpredictable results.  This philosophy 
was reinforced by the  fact  that  the  hardware often sig- 
naled a status  that  was undefined. Nevertheless, elabo- 
rate algorithms were created  to  re-try  operations if errors 
might be transient or, in the  case of input/output  func- 
tions, to  attempt  alternate  paths  to devices. For  instance, 
if a  control unit for disks had paths  to  two I/O channels, 
one of the  strategies to  recover  from a  channel  failure 
would be to  attempt  access through the  second  channel. 

It  was not until the early  multiprocessing systems  that 
serious attempts  to  recover from central  processor  errors 479 
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were  made. The IBM 9020 System [20], created  to  assist 
in air traffic control,  was a fully redundant multiprocess- 
ing system that could continue  despite  the failure of any 
single element.  Much of the effectiveness of the software 
in accomplishing this goal was  due  to  the  nature of the 
application. Since the major  function of the  system  was  to 
process incoming radar  data, little stored  data had  a 
useful life of more than a  few seconds.  Thus,  it  was 
possible to  reconstruct  the  state of the application a 
relatively short time after a failure. 

was deemed  acceptable to lose resources for the duration 
of the program or job  that  was running or until the next 
time the system was initialized. For instance, if an  error 
destroyed the  records of free storage and if those  records 
had to be reconstructed  but  some  were  lost, then perhaps 
several thousand  bytes of storage might be  unavailable 
for a period as a consequence of the  recovery  action. This 
is preferable to losing the  entire  system  and having to 
reinitialize it. 

The general purpose  systems did not fare  quite  as well. 
It  was  not  uncommon  when a single element  failed, even 
though spare  hardware  was available, for  the software to 
be unable to untangle itself well enough to  continue. By 
the  late 1960s it was  apparent  that a  major  undertaking 
was required to  address  the effectiveness of software in 
recovering from  hardware  errors  and,  indeed,  hardware 
failures. If this  were successful, a two-processor  system 
could reliably continue with one  processor remaining. 
One aspect of this  work  involved  a joint effort by hard- 
ware architects  and  software designers to  ensure  that 
adequate status information  was presented so the soft- 
ware could continue from  a  known state.  In  MVS, this 
type of recovery  was  implemented on a  large  scale within 
the operating system.  Thus, in the  event of failure of a 
single processor in a two-processor  system,  the software 
can move the  work being done  on  the failed processor 
over  to  the remaining one  and simulate two  processors 
until a pre-defined state  has been reached.  Subsequently, 
the system  can operate  as if it were  a  normal single- 
processor system. 

Software error recovery 
One of the lessons learned  during the original implemen- 
tation of MVS was  that  software  errors manifested them- 
selves in more  complex and unpredictable  ways than 
hardware errors.  Because  the relative frequencies of 
hardware  and  software errors  were  comparable, it was 
decided to  attempt  to handle them both with a single set 
of facilities that would signal the program  in control at the 
time of the  error.  The signal took the  form of an  interrupt 
to a pre-specified exit program. If no  such exit  program 
had been specified, then  control would be  given to  an  exit 
specified by the next  higher level program (i .e. ,  the 
program that called the program in control).  Since  the 
operating system itself is the ultimate  caller of every 
program,  ultimately a recovery exit would be  reached. 

The general  ground  rule in the design of MVS was  that 
every  part of the  operating  system should  be  designed to 
include such  recovery  facilities. The  job of each  recovery 
exit was to  assess  any damage and  either repair it or 

480 remove ongoing work  from the  system.  In some cases it 

The MVS programs associated with error  exits  are 
called functional recovery  routines (FRRs). As would be 
expected,  these  were more  effective in dealing with 
hardware errors  than software errors.  Because they  were 
executed only when an  error  was  detected,  their effec- 
tiveness could really be  assessed only over time  and 
usage in real  situations. Over  the  years this experience 
has  led to increasing the effectiveness of these  routines, 
and MVS is a  more robust  system  as a consequence of 
having them. A remaining  challenge is to substantially 
improve the effectiveness of detecting software errors. 

The difficulties in creating an effective recovery pro- 
gram increase  with the generality of the program for 
which recovery is being attempted. For example, if a 
failure occurs during  a  basic supervisor  service,  such  as 
establishing a connection  to a file (e .g . ,  OPEN), and if in 
fact  that  data  set  cannot be  made  available to  the applica- 
tion program, the specific actions  to be  then taken  are 
really best left to  the discretion of the application  pro- 
gram. Depending on which file cannot  be  accessed  and  its 
importance to  the application, the program may or may 
not be  able to  continue.  Thus,  the burden could be shifted 
entirely to  the application  programmer. 

In  the  interests of application  programmer  productivi- 
ty, a  great  deal of effort has gone into  the  error  recovery 
facilities of the  data  base and data communications  sub- 
systems of operating  systems. For instance,  the designers 
of the IMS  system [lo, 151 have gone to  extraordinary 
lengths to  protect  the integrity of data  under  its  control 
from errors introduced  by both  hardware and  software 
failures. The  concept of a transaction  has been  incorpo- 
rated  into IMS, and  the  system is designed so that  the 
data base reflects changes  made only  by  successfully 
completed transactions.  Thus, if a  program  performing 
the work of a transaction fails, no  updates  to  the  data  base 
are  ever actually  reflected. To implement  this concept, 
IMS maintains journals of changes and undoes any 
changes made by a failing transaction program. In addi- 
tion, IMS can maintain journals of data  base  changes so 
that if a  disk file is lost  due  to  an  error, recovery  can be 
accomplished by  loading a check-pointed  version of the 
data onto  the disk and by processing the  journal of 
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changes against it, bringing it up  to  date.  Transaction- 
oriented  recovery has been  implemented on a  variety of 
systems to some degree, including CICS and DPPX/ 
DTMS. Over the  past  ten  years,  the  concept of transac- 
tion-oriented data  base  recovery  has been  generalized 
and extended.  It  is now accepted  as a standard way to 
deal with this type of data processing and  error  recovery. 

A future trend in this area will certainly  be the combin- 
ing of all the techniques so as  to  provide more effective 
and rapid recovery in the  event of a hardware  or software 
failure. As systems  get larger, restart times are  increased, 
making faster  recovery more  critical. Also, the signifi- 
cance of failures is aggravated because  systems  are being 
directly used  more by human  beings. Thus,  the effective 
use of standby  equipment, allowing switch-over in sec- 
onds, will become  more important. 

Application  subsystems 
The earliest  application subsystems were  implemented to 
provide batch remote  job  entry (RJE), improve batch  job 
scheduling, and provide  interactive facilities for time 
sharing and other problem  solving  applications. These 
were implemented on  the earliest  versions of OS/360 in 
the middle 1960s. HASP and ASP are  two  examples of the 
RJE and  batch job scheduling subsystems. APL [21] on 
OS/360 is an example of the  latter  type. As the techniques 
pioneered in these application subsystems became better 
understood, they were integrated into  the operating sys- 
tems,  and use of the  separate  subsystems gradually faded. 

The  early 1970s also saw the popularity of the  data 
base/data  communications (DB/DC) systems.  These sys- 
tems  used different forms of resource allocation to 
achieve goals similar to  those of the time  sharing systems. 
The chief difference between  the DB/DC systems and the 
time sharing systems  was  that  the  former generally did 
not need to maintain program context between  input 
messages. That is, an incoming message  could  be  pro- 
cessed and  the  data  bases  updated without the need to 
maintain program  variables until the arrival of the next 
input. On the  other  hand,  interactions with users in a  time 
sharing environment were more conversational, and sys- 
tems generally had to provide the ability to  relate succes- 
sive inputs  and  programs  needed to maintain continuity 
from one input to  the  next.  This difference led to a 
number of DB/DC resource allocation  strategies which 
provided for higher efficiency than was available in time 
sharing systems. This  improved efficiency was significant 
enough to warrant  special purpose implementations. 
Here again, usage during the 1970s gravitated toward  two 
or three  packages for  the System/360,  and in the late 
1970s the movement of functions  from  the  subsystems 
into the operating system  base had begun to  occur. 

The overall trend in this area is that, when  operating 
systems do not schedule  resources or provide similar 
functions in a  way  which is  adequate  for new functions, 
these new functions are provided in application  subsys- 
tems. As these functions are identified it is  expected  that 
they will be  integrated into  subsystems  and  then  the 
subsystems themselves  into operating systems.  Thus, a 
natural  selection process identifies the  soundest  tech- 
niques and the most  generally acceptable solutions. 

Conclusions 
The most  unusual aspect of the IBM programming envi- 
ronment is undoubtedly the combination of forces 
brought to  bear by the large  number of installations  and 
their  diversity of applications. This, coupled  with the  on- 
going stream of new hardware  devices,  has  created a 
situation in which small changes  are amplified substan- 
tially. In other  words,  the law of large numbers is 
operative,  and it is easy  to  see  the  results of any change, 
both positive and negative. The  rate of change has been 
immense and progress has been  made in virtually every 
dimension of the  computer programming craft. 

Over  the years,  there  has been  substantial  movement of 
function out of the manual realm,  as well as  the realm of 
the  applications programmer,  into  the operating system 
itself. The operating system  has  taken  over  functions 
relating to increasing the usability of the  hardware,  to 
protecting  application  programs  from changes in hard- 
ware, and to saving  them  from the need for  conversion in 
the event of such shifts.  Operational considerations  have 
changed from the  stand-alone single batch  systems of the 
1950s and early 1960s to  the multi-system, geographically 
dispersed, but centrally managed, complexes of today, 
with the  attendant  operational and control  requirements 
of such systems being placed in the  various  operating 
systems. The evolution of increasingly  complex  and 
capable data organizations, including the relational facili- 
ties that  are now being used,  represents  another  thrust of 
increasing  function. Other  trends include  more  facilities 
to ensure automatic  error  recovery  and  data integrity in 
the  event of failures. 

In all cases  the effect has been to  reduce  the need for 
application programs to provide  various functions.  The 
net effect is that,  compared  to twenty-five years  ago,  the 
average  application  program as written by the program- 
mer represents a much smaller  fraction of the cycles 
executed  by the  hardware itself. In 1956, it was indeed 
rare that IBM  written software  took more than a  few 
cycles of the  system.  Today it is not at all uncommon for 
IBM provided software to  use 90 percent  or more of the 
capacity of the  system, with the  user written  application 
programs using the remainder. 48 1 
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Other strides during the  period include  decreasing 
dramatically the  rate  at which errors  are introduced into 
programming. In  the  last  ten  years  there  is evidence to 
suggest an order of magnitude improvement in the num- 
ber of errors  per line of code  introduced  in  IBM operating 
systems. Moreover, major  efforts have been made  to 
reduce the impact of errors by  providing various  recovery 
strategies in the  software itself. Also, provisions are being 
made to allow for  continuous  operation,  whereby  changes 
and  updates can be made  to a system without  stopping  it. 
Finally, ease of use  from  the installation of the  system to 
its  actual use  has lately  received significant attention. 

The overall increases in the capability of the operating 
system are really the  result of what  is  perhaps  the major 
economic trend of the  last twenty-five years in the  data 
processing industry-the steady  decrease in the cost of 
data processing hardware in the  face of steady  increases 
in the  cost of human labor.  Thus,  every  year it becomes 
easier to justify  automating  manual functions through the 
use of computers  and of augmenting those  functions 
already  automated to make them  more efficient in their 
use of human time. We  have lately seen  the  second  and 
third implementations of applications that  were originally 
created  in the 1950s as batch programs. For  instance, in 
1956 many computer  users  were beginning to  automate 
inventory control  through  the  use of transactions  written 
on sheets of paper,  transcribed  to  punch  cards,  sorted, 
and  processed in a batch mode  against a master inventory 
file. Today such applications are implemented as interac- 
tive DB/DC programs that  update  inventory  records  on a 
real-time basis.  Obviously, there  is  an incremental  value 
to this type of operation,  since  inventories are maintained 
on an up-to-the-minute basis,  and  other  aspects of opera- 
tions can also  be automated. 

At the moment there  seems to be no end in  sight for  this 
trend. It is anticipated that more and  more  emphasis will 
be placed on  the traditional operating  system  areas of 
further expediting operations, extending hardware  func- 
tions,  and  providing common application functions as 
part of operating systems. As was  the  case twenty-five 
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years  ago, it is apparent  that  the  requirements of the  next 
twenty-five years  are not all known today,  and  the ability 
of our programs to be adaptable  to  unforeseen require- 
ments will remain a very  important  characteristic. Imple- Received 6~ 1981; revised 277 1981 
menting functions in a generalized  way is  the  best  prepa- 
ration for unforeseen requirements. 
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