
Introduction to the Cell Broadband Engine
H. Peter Hofstee
IBM Corporation

11501 Burnet Road
Austin, TX 78758

hofstee@us.ibm.com

Abstract

The Cell Broadband Engine Architecture and the first
implementation of this architecture, the Cell Broadband
Engine, appear to be a good fit for a variety of signal
processing applications. This paper presents an overview
of the architecture and the processor, and focuses on those
characteristics that benefit signal processing applications.
We discuss major application areas in which Cell has
already been shown to excel, and we explain the
fundamental attributes that deliver the performance
advantages of Cell.

Keywords

Cell Broadband Engine (CBE), Cell Broadband Engine
Architecture (CBEA), Power Architecture™ “Cell”,
Synergistic Processor Element (SPE), Single Instruction
Multiple Data (SIMD), Direct Memory Access (DMA).

Introduction

The Cell Broadband Engine Architecture (CBEA)
[CBEA05] defines an architecture well suited for a wide
variety of next-generation compute- and communication
intensive applications. The Cell Broadband Engine
processor (CBE or, informally “Cell”) achieves a
significant performance per Watt and performance per
chip area advantage over conventional high-performance
processors, and is significantly more flexible and
programmable than single-function and other optimized
processors such as graphics processors, or conventional
digital signal processors. While a conventional state of the
art microprocessor may deliver about 20+GFlops of
single-precision (32b) floating-point performance, Cell
delivers 200+ GFlops at comparable power. A state of the
art graphics processor may deliver nearly 2 Teraflops, but
on more generic applications only a small fraction of peak
performance is typically reached.

 An ever-increasing fraction of the workloads of a
PC processor is dominated by media-rich and generally
parallelizable applications that fit the multicore Cell
processor well. At the same time, many devices in the
home are becoming network connected. If a device no
longer operates in isolation, it has to become more
responsive to the various data formats the network
(internet) presents, and this favors the more flexible and
programmable solutions over the less programmable ones.
Network connectivity also places greater demands on

maintaining system integrity and on maintaining privacy
and security. The Cell processor has been designed to
provide a more sound foundation in hardware for these
functions [Shimizu05] than conventional security
mechanisms that depend on the integrity of the operating
system or hypervisor. While the impetus for Cell was the
need for a processor for SCEI’s next generation game
system, Cell has been designed to address a wide variety
of applications, many of which fit the characteristics of
applications usually performed by signal processors.

 The remainder of this paper is organized as
follows. We first provide an overview of the architecture
and the CBE processor and then discuss what makes the
CBE suitable as a signal processor. Then we briefly
discuss a number of programming models [Kahle05] that
seem appropriate for signal processing on Cell. We
discuss a number of applications on which Cell has
already demonstrated good performance, and end with a
short discussion of some applications for which Cell may
have potential.

The Cell Broadband Engine Architecture

Figure 1. Power Architecture™ as a basis for CBEA.

The 64-bit Power Architecture™ (Figure 1) provides the
foundation on which the Cell Broadband Engine
Architecture (CBEA) is built. CBEA compliant
processors support 32b and 64b Power and PowerPC
applications. Cell not only supports the Power
architecture ISA but inherits the memory translation,
protection and SMP coherence model of mainstream 64b
Power processors, as defined by the segment and page
tables. In addition, CBEA supports virtualization (logical
partitioning), large pages, and other recent innovations in

COHERENT BUS

Power

ISA

MMU/BIU

Power

ISA

MMU/BIU

…

IO

tran
sl.

Main

Memory

mailto:fossum@us.ibm.com

the Power architecture. It is therefore quite easy to port an
existing operating system such as Linux from Power to
Cell and leverage the Power processor core. Extensions of
the OS are required to leverage the SPEs.

 CBEA extends the Power Architecture in a
number of ways (see [CBEA05] for a full description).
Here we only summarize the most important extensions.

Figure 2. Memory Flow Control.

The first and most significant extension of the Power
architecture is “memory flow control” (Figure 2).
Memory flow control introduces “local storage” (or “local
store memory”) and (DMA) transactions to move data
between local storage and the system memory effective
address space as defined by the Power architecture. Each
local storage memory defines a separate address space,
implemented as fast, on-chip RAM in the Cell Broadband
Engine. In order to facilitate local store to local store
transfers, and to allow direct (albeit usually inefficient)
access by the Power cores in the system, local storage is
aliased as memory in the system memory map. DMA
transactions are coherent in the system, and behave much
like the load and store instructions in the Power
architecture. Thus, if a DMA transaction transfers data to
or from a local store and that data is cached is cached
elsewhere, the normal Power architecture coherence rules
apply. Also, CBEA defines DMA equivalents of the
“locking” loads and stores of the Power architecture that
allow DMA transactions to participate in locking
protocols. Thus Figure 2 describes a fully coherent
system.

 CBEA also introduces “Synergistic Processor
Elements” (SPEs) (Figure 3) [Flachs05]. Each Synergistic
Processor is an autonomous processor that stores its
program and data in its associated local storage memory.
The SPEs treat their associated local storage memory as
private memory. Thus, with respect to modifications by
the associated SPE only, local storage memory is not
coherent in the system. Because the local store is treated

as private, and because there is no translation or
protection on this memory with respect to access by the
associated SPE, it is a part of the SPE program state. The
most distinctive feature of the SPEs is, as mentioned, the
fact that the SPEs address local store for instructions and
data, and only access system memory through
asynchronous DMA operations. The rationale for this
additional level of software managed memory is the
phenomenon known as the “memory wall”. With
microprocessors having improved about three orders of
magnitude in frequency in the last 20 years, memory
latency has not decreased very much. As a result a miss in
the on-chip caches results in a delay of several hundred
instructions. Modern processors speculate deeply to get
more transactions in flight to cover this memory latency,
but speculation is quite expensive in both chip area and
power, and the depth of speculation that even the most
modern processors can support is increasingly insufficient
to cover the memory latencies. The CBEA schedules
transfers between main store (shared memory) and local
storage explicitly, and, because these transfers are
asynchronous, it is much easier for implementations to
allow many of these transfer commands to be issued and
processed in parallel. On applications that access memory
in a predictable manner, this allows Cell processors to
gain a significant performance advantage.

Figure 3. Synergistic Processors.

 DMA transactions can be issued in one of three
ways. First, the DMA command queues and mechanisms
can be accessed via memory mapped IO (MMIO),
enabling the Power processors, and SPEs not associated
with the target or source local store to issue DMA
commands to or from any local store in the system.
Second, commands can be issued by the SPE associated
with a particular local store and DMA unit by using a set
of “channel” commands. Channel commands are
essentially asynchronous special-purpose register read
and write operations, and come in blocking and non-
blocking flavors allowing, for example, an SPE program

COHERENT BUS (+RAG)

Power

ISA

+RMT

MMU

+RMT

Power

ISA

+RMT

MMU

+RMT

IO

tran
sl.

Mem.

MMU/DMA

+RMT

Local
Storage

Memory

MMU/DMA

+RMT

Local
Storage

Memory

LS Alias

LS Alias

…

…

…

COHERENT BUS (+RAG)

Power

ISA

+RMT

MMU

+RMT

Power

ISA

+RMT

MMU

+RMT

IO

tran
sl.

Mem.

MMU/DMA

+RMT

Local
Store

Memory

MMU/DMA

+RMT

Local
Store

Memory

LS Alias

LS Alias

…

…

…
Syn.

Proc.

ISA

Syn.

Proc.

ISA

to choose between waiting, polling or reacting in an
interrupt driven mode. A third mechanism is the “DMA-
list” command, where a list of DMA commands is stored
in the source or target local store, and only a single
command is issued to the associated DMA unit to go and
process that list. When the applications allow it, the use of
DMA-list commands tends to deliver the highest possible
system performance, because it leverages the capability of
the DMA units to act as independent data-moving
processors that fetch their instructions from local store.

The SPEs support a SIMD-RISC instruction set
Gschwind05]. While conventional RISC processors
support, for historical reasons, separate register files for
integer, floating-point, and SIMD data types, the SPEs
supports only a single 128-entry, 128-bit unified register
file to store all types of data. Conditions, counts and
branch link addresses are also stored in these registers.
This large register file is a distinct advantage on compute
intensive applications (anything with an inner loop that
can be unrolled and interleaved to hide instruction
latency) as enough named registers are available to the
compiler to accomplish this. Conventional processors
with fewer named registers have to resort to register
renaming in order to allow a large number of instructions
to be processed simultaneously, but this creates a
considerable hardware administration overhead, and, as
processors become increasingly power limited this is less
and less effective. As is the case in conventional
processors that have been extended with a SIMD media
unit, using the SIMD capability of the SPEs is optional;
features like the 128 registers and improved memory
management can provide significant performance
advantages to scalar codes also. To allow
implementations of the SPEs without large branch
prediction structures in hardware, the SPEs support a
“branch hint” instruction. This instruction specifies that
an instruction at address “A” is likely to be followed by
and instruction at address “B”, and can be used to
eliminate branch penalties in program loops and several
other situations.

Real-time Facilities in Cell

 CBEA defines other optional additions to the
64b Power architecture to enhance the real-time
characteristics. The extensions include “replacement
management tables (RMT)” for various caches in the
system allowing the user, compiler, or OS to control
cache management. Another extension is token
management. This controls the arbitration points in the
system to provide a guaranteed fraction of access
(memory or bus bandwidth) to a “resource allocation
group”. These facilities make it possible, for example, to
have a real-time, and a non-real-time OS partition to co-
exist at the same time on a single chip while still

providing real-time guarantees to the real-time partition.
With CBEA processors envisioned to perform real-time
tasks such as gaming or streaming in combination with
non real-time tasks such as web browsing, this was seen
as important functionality.

The Cell Broadband Engine

Figure 4. Cell Broadband Engine Processor.

The Cell Broadband Engine (CBE) (Figure 4) is the first
commercial implementation of the CBEA. The CBE
contains a dual-threaded Power Processor Element (PPE),
eight Synergistic Processor Elements (SPEs), an on-chip
Rambus XDR controller with support for two banks of
Rambus XDR memory and an aggregate memory
bandwidth of 25.6 GB/s as well as a configurable I/O
interface capable of (raw) bandwidth of up to 25+25GB/s
in symmetrical configurations. The I/O can be configured
as two logical interfaces, one of which can be coherent,
and bandwidth can be allocated to either of these
interfaces in increments of 5GB/s. The physical layer for
the I/O interfaces is Rambus FlexIO.

 An on-chip coherent fabric supports an aggregate
bandwidth of up to 96 bytes per (processor) cycle
[Clark05]. The coherent fabric is organized as four rings,
two of which run clockwise and two counterclockwise,
with a separate command fabric. This “Element
Interconnect Bus” is completely managed by hardware,
and programmers are generally not aware of it. The SPEs
can simultaneously source and sink 8 bytes per processor
cycle (25.6+25.6GB/s at 3.2GHz), and deliver 8 single
precision flops per cycle (25.6GFlops at 3.2GHz per SPE
and 200+ GFlops for CBE). The SPEs are dual-issue
processors, and can perform a load, store, shuffle, channel
or branch operation in parallel with a computation. With a
6 cycle load latency to the 256kB local store and software
controlled branch prediction, the SPE is highly effective
at computation (basically anything with a loop that can be

unrolled and interleaved), but not optimally efficient at
“gcc/TPCC” (load-compare-add- branch) type codes.
Still, with 8 processors on a single die, aggregate integer
performance is quite respectable even on “gcc” type code.
Also, while SPE virtualization is supported, the 256kB
local storage memory means that a full SPE context
switch is relatively expensive.

Cell Programming

The Cell processor supports a wide variety of
programming models. Here we summarize a few that are
most likely to be of benefit for signal processing
applications.

 In the device extension model, one or more SPEs
are providing a function through a device-like interface.
The application is not aware of the existence of the SPEs,
it just sees a set of capabilities that in other systems may
have been provided by graphics processors, physics
processors, image processors, audio processors, encoders,
decoders etc. etc. In this model SPEs are not directly
accessed by the applications.

 In a function offload model the SPEs are used to
accelerate compute-intensive functions. The functions are
invoked in an RPC-type manner by a thread running on
the Power processor. Because every SPE (thread) has an
associated Power thread, SPEs can in turn invoke
operating system functions that are then serviced by the
PPE thread. While this programming model provides
perhaps the most straightforward extension of multithread
SMP programming, it is relatively easy to overwhelm the

Power processor. The set of functions supported by one or
multiple SPEs can also be a third-party provided library.

 In a computational acceleration model the SPEs
act more autonomously. “SPE threads” are scheduled by
the operating system much like PPE threads, and SPEs
access memory, synchronize and communicate (all via
DMA) on their own. It this model the PPE runs the
operating system, and may provide administrative
functions, and is usually involved in error handling, but
applications run almost exclusively on the SPEs.

 Streaming programming models are also readily
supported on Cell. Since local storage is memory mapped,
external devices can, if given permission by the OS,
DMA directly to local storage. This mapping also allows
local storage to local storage DMA transfers without
having to go via main store, keeping the communication
entirely on chip (if the source and target local store are on
the same chip). Thus a computational pipeline with one
or more computational kernels per SPE is readily
supported. In general, workload balancing is a bit more
difficult in this model than in the computational
acceleration model, as the pace is set by the SPE in the
pipeline with the most work.

Cell Application Examples

A number of signal processing and media applications
have been implemented on Cell with excellent results.
Several of these are reported at this conference. A first
category of applications is advanced visualization such as
ray-casting [Minor05], ray-tracing, and volume rendering
[Sakamoto05]. These applications can benefit
significantly from the ability of the Cell processor to
support a large number of concurrent memory accesses.
When coded to leverage this capability Cell can
outperform conventional processors by significantly more
than an order of magnitude on these applications.
Streaming applications such as media encoders and
decoders [Sakai05], [Jagmohan05] and streaming
encryption and decryption standards [Shimizu 05] have
also been demonstrated to perform about an order of
magnitude better on Cell than on conventional PC
processors. The performance improvements for these
compute bound applications are readily understood from
the number of SPEs (8) and the CPI advantage the large
register file provides. Another class of applications that
cell performs well on are Fast Fourier Transforms (single
precision) [Chow05]. While FFTs can be written to be
less dependent on unstructured memory access than, say,
ray-casting or ray-tracing, FFTs do have an intrinsic
scatter-gather characteristic and the application is sped up
over conventional PC processors by more than an order of
magnitude.

Discussion

The Cell processor provides a highly programmable high-
performance platform for a great variety of signal
processing applications. The computational density of the
Cell synergistic processors, and their ability to support a
large number of concurrent memory access are
fundamental advantages for compute intensive
applications.

References

[CBEA05] Cell Broadband Engine Architecture,
www.ibm.com/developerworks/power/cell , Aug. 2005.

[Chow05] A. Chow, G. Fossum, D. Brokenshire, “A
Programming Example: Large FFT on the Cell
Broadband Engine”, GSPx 2005.

[Clark05] S. Clark, K. Haselhorst, K. Imming, J. Irish,
D. Krolak, T. Ozguner, “Cell Broadband Engine
Interconnect and Memory Interface, “ Hot Chips 17
Conferece Proceedings, Aug. 2005.

[Flachs 05] B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee. G.
Gervais, R. Kim, T. Le, P. Liu, J. Leenstra, J. Liberty, B.
Michael, H-J. Oh, S. M. Mueller, O. Takahashi, A. Hatakeyama,
Y. Watanabe, N. Yano. “The Microarchitecture of the Streaming

http://www.ibm.com/developerworks/power/cell

Processor for a CELL Processor,” IEEE International Solid-
State Circuits Symposium, Feb. 2005, pp. 184-185.

[Gschwind05] M. Gschwind, P. Hofstee, B. Flachs, M.
Hopkins, Y. Watanabe, T. Yamazaki, “A novel SIMD
architecture for the Cell heterogeneous chip multiprocessor,”
Hot Chips 17 Conference Proceedings, Aug, 2005.

[Jagmohan 05] A. Jagmohan, B. Paulovicks, V. Sheinin, H.
Yeo, “H.264 Video Encoding Algorithm on Cell Processor,”
GSPx 2005.

[Kahle05] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R.
Johns, T. R. Maeurer, and D. Shippy, “Introduction to the
Cell Multiprocessor.” IBM Journal of Research and
Development, Vol. 49, Number 4/5, 2005, pp. 589-603.

[Minor 05] B. Minor, G. Fossum, V. To, “Terrain
Rendering Engine (TRE): Cell Broadband Engine
Optimized Real-time Ray-caster ,” GSPx 2005.

[Pham 05] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P.
Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y.
Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M.
Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, K.
Yazawa, “The Design and Implementation of a First-Generation
CELL Processor,” Proceedings Custom Integrated Circuits
Symposium, Sep. 2005.

[Sakai 05] R. Sakai, S. Maeda, C. Crookes, M. Shimbayashi, K.
Yano, T. Nakatani, H. Yano, S. Asano, M. Kato, H. Nozue, T.
Kanai, T. Shimada, K. Awazu, “Programming and Performance
of the Cell Processor,” Hot Chips 17 Conference Proceedings,
Aug. 2005.

[Sakamoto 05] M. Sakamoto, H. Nishiyama, H. Satoh, S.

Shimizu, T. Sanuki, K. Kamijoh, A. Watanabe, A. Asahara, “An

Implementation of the Feldkamp Algorithm for Medical

Imaging on Cell”, GSPx 2005.
[Shimizu 05] K. Shimizu, D. Brokenshire, M. Peyravian, “Cell
Broadband Engine Support for Privacy, Security, and Digital
Rights Management Applications,” GSPx 2005.

Author

H. Peter Hofstee is a senior technical staff member in the
STI Design Center (Austin, Texas). He is the chief
scientist for Cell and the chief architect of the Cell
Synergistic Processor Element. Peter received his
"Doctorandus" degree in Theoretical Physics from
Groningen University in 1989, a PhD in computer science
from the California Institute of Technology (Caltech) in
1995, and joined the Caltech faculty in 1995 and 1996 to
teach computer science and VLSI. In 1996 he joined the
IBM Austin research laboratory where he helped to create
the first GHz CMOS processor. Between 1997 and 2000
he worked on a number of other high-frequency server
processor designs. In 2000 he helped create the concept
for Cell and became one of the founding members of the
STI (Sony -Toshiba -IBM) design center in the spring of
2001. His current interest focuses on application of the
Cell processor beyond the gaming space and on future
Cell processor designs.

© IBM Corporation 2005
IBM Corporation
Systems and Technology Group
Route 100
Somers, New York 10589

Produced in the United States of America
May 2005
All Rights Reserved

This document was developed for products and/or services offered in the
United States. IBM may not offer the products, features, or services
discussed in this document in other countries.

The information may be subject to change without notice. Consult your
local IBM business contact for information on the products, features and
services available in your area.

All statements regarding IBM future directions and intent are subject to
change or withdrawal without notice and represent goals and objectives
only.

IBM, the IBM logo, Power Architecture, are trademarks or registered
trademarks of International Business Machines Corporation in the
United States or other countries or both. A full list of U.S. trademarks
owned by IBM may be found at:

http://www.ibm.com/legal/copytrade.shtml.

IEEE and IEEE 802 are registered trademarks in the United States,
owned by the Institute of Electrical and Electronics Engineers. Other
company, product, and service names may be trademarks or service
marks of others.

Photographs show engineering and design models. Changes may be
incorporated in production models. Copying or downloading the images
contained in this document is expressly prohibited without the written
consent of IBM

All performance information was determined in a controlled
environment. Actual results may vary. Performance information is
provided “AS IS” and no warranties or guarantees are expressed or
implied by IBM

THE INFORMATION CONTAINED IN THIS DOCUMENT IS
PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for
damages arising directly or indirectly from any use of the information
contained in this document.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

