
Securing Data at Rest:
Developing a Database Encryption Strategy
A White Paper for Developers, e-Business Managers and IT

Most security initiatives are defensive strategies — aimed at protecting

the perimeter of the network. But these efforts may ignore a crucial

vulnerability — sensitive data stored on networked servers are at risk

from attackers who only need to find one way inside the network to

access this confidential information. Additionally, perimeter defenses

like firewalls cannot protect stored sensitive data from the internal

threat — employees with the means to access and exploit this data.

Encryption can provide strong security for data at rest, but developing a

database encryption strategy must take many factors into consideration.

Where should the encryption be performed, for example — in the

database, or in the application where the data originates? Who should

have access to the encryption keys? How much data must be encrypted

to provide security? What’s an acceptable trade-off between data

security and application performance?

This paper examines the issues of implementing database encryption

and makes recommendations that will help your company develop a

strategy that will meet your individual needs.

Developing a Database Encryption Strategy

RSA Security Inc.

I. Introduction 1

Hackers Are Not the Only Threat 1
— or Even the Most Dangerous

Legal Liability for Disclosure Is Increasing 1

Protecting Data with Encryption 2

More than Encryption 2

II. Planning a Database 2
Encryption Strategy

III. Implementing a Database 5
Encryption Strategy

Solution One: Implementing 5
encryption inside the DBMS

Solution Two: Applying encryption 8
outside the database

IV. RSA Security Solutions 10

V. Conclusion 11

Appendix A: Encryption Technology 12

Appendix B: Types of Authentication 13

I. Introduction

The networked database is the heart of the enterprise. It is
where your most valuable assets reside — the information
that is the foundation of your business, transaction records,
financial data, customer information. Protecting this data is
increasingly important — and increasingly difficult.

This data’s critical business value makes it an obvious target
for attackers. Successful attacks can wreak massive damage
to company finances and corporate image. The media
spotlight falls most often on high-profile cases involving
consumer transactions and credit card numbers. Public
concerns, fueled by adverse news coverage, are giving rise to
new regulations and legislation on data management and
privacy.

But public-relations problems are not the only risk.
Revelations of data gathered from Web-based transactions
can damage a company’s credibility and customer
relationships. Database attacks can have direct — and severe
— economic consequences. Database attacks are rising and
they can result in the loss or compromise of information
critical to running your business day-to-day, from inventory
and billing data to Customer Relationship Management
(CRM) applications and human-resources information.
Consequently, databases are also likely to be holding
increasing amounts of sensitive information on behalf of
your customers — financial records, healthcare histories,
order histories, credit card and Social Security numbers. Such
a loss could be an operational and customer relationship
disaster as well as a financial one — last year one company
reported a $50 million dollar loss when its databases were
exploited (CSI/FBI 2001 Computer Crime Survey).

To protect your company’s database assets, there are security
measures you should take today. These include encrypting
data as it moves across your enterprise networks and as it sits
at rest, in storage on database systems. Extra steps and
precautions should be taken to carefully control access this
data. This paper will focus on how to protect data at rest.

Hackers Are Not the Only Threat

— or Even the Most Dangerous

Threats to your databases can come from hackers, attackers
external to your network, working outside of the enterprise
firewall. While firewalls are indispensable protection for the
network at keeping people out, today’s focus on e-business
applications is more about letting the right people inside
your network. Consequently, as databases become
networked in more complex three tier e-business
applications, their vulnerability to external attack grows.
Evans Data estimates that one out of ten networked
databases were attacked in 2001 (Developer Database Survey
2002, Volume 1). Without extra precautions taken to secure
the confidential data in databases, your company’s privacy is
at risk. Here, taking the right security approach enables your
e-business but protects your critical data infrastructure.

But hackers are not the only threat to enterprise databases.
Attacks by employees who have access to sensitive
information are often even more devastating — and cannot
be prevented by perimeter defenses like firewalls. “While
viruses, Web defacements and stolen credit card databases
are the stuff of news headlines, less publicized incidents such
as data theft or destruction by disgruntled former employees
can result in far more actual damage,” noted Information
Security magazine in its October 2001 industry survey. “In a
layoff economy you are tempting fate with poor security,”
the article quoted one survey respondent.

Do you know how many employees have access to your
databases? If you are using passwords for administrators,
how are passwords being stored? Do you have security
policies in place that include auditing your database security
and monitoring for suspicious activity? What is your security
plan if your database security is breached? While preventive
security mechanisms like encryption, access control and
strong user identification technologies are readily available
to protect databases from both types of attack they are
often not implemented to secure confidential information in
databases from threats.

Legal Liability for Disclosure Is Increasing

Two recent federal laws have set new standards for the
protection of customer information. Regulations required by
the Health Insurance Portability and Accountability Act
(HIPAA) set standards for the security of medical records and
other individually identifiable health information. The
Gramm-Leach-Bliley Act (GLBA, Public Law 106-102) sets new
requirements on financial institutions regarding the privacy
and security of customers’ personal financial information.

Congress’s interest in privacy and security isn’t surprising. In a
recent poll by the Information Technology Association of
America, 75 percent of the Americans surveyed feared having
their personal information misused. The problem is very real:
over 700,000 cases of identity theft were reported last year
according to government and privacy advocacy groups.
Worse, in 2001 credit card fraud cost the credit industry
billions of dollars.

Congress clearly intends to make business liable for the
security of customer data and HIPAA and GBLA are just the
beginning. HIPAA regulations provide civil and criminal
penalties for non-compliance due to willful neglect — fines
of up to $50,000 and one year in prison per violation.
Congress is also considering the Financial Institution Privacy
Protection Act, which would stiffen the Gramm-Leach-Bliley
Act to make company officers and directors liable for up to
$10,000 for each privacy violation.

Developing a Database Encryption Strategy

RSA Security Inc. 1

Protecting Data with Encryption

While laws and regulations interpret “protecting privacy” in
a number of ways, any enterprise solution for protecting
data — especially data at rest — must involve two things:
secure encryption technology to protect confidential data
and careful management of access to the cryptography keys
that unlock the encrypted data. Only then has your company
done due diligence to protect the privacy of its customers.

There are implementation decisions to be made as well.
Where will you perform the data encryption — inside or
outside of the database? Your answer can affect the data’s
security. How do you create a system that minimizes the
number of people who have access to the keys? Storing the
encryption keys separately from the data they encrypt
renders information useless if an attacker found a way into
the database through a backdoor in an application. In
addition, separating the ability of administers to access or
manage encryption keys builds higher layers of trust and
control over your confidential information infrastructure.
There should be limited access to the means to decrypt
sensitive information – and this access should be locked
down and monitored with suspicious activity logged.

More than Encryption

Encrypting the sensitive data is only the first step. Without
strong authentication technologies applied at the application
level, it is easy for imposters to get access to the keys that
decrypt sensitive information. Often too many employees —
from database administrators to application developers —
are well aware of how to gain access to this information.
Disgruntled employees therefore have it easy to find a way
in — from social engineering, to stealing mismanaged
passwords. Many employees who have compromised their
company’s database have leaked sensitive information like
co-workers salary, social security numbers, and CEOs’ private

phone numbers to the press or co-workers. Worse, these
employees will cover their tracks and make it look like the
innocent co-worker with access to the database made off
with the crown jewels. Protecting your database not only
secures sensitive data, but it protects your employees from
this type of exploitation.

Many forward thinking organizations are beginning to
develop security strategies aimed at the protection of
sensitive stored data — strategies that include encryption,
access management, security auditing and event logging. By
using these strategies you can reap the benefits of an
industry best practice — encryption technology — to provide
the maximum protection for your company’s greatest asset,
confidential databases and maintain higher levels of trust
from employees and customers.

II. Planning a Database
Encryption Strategy

Before you can begin to design a database encryption
strategy that is secure, you need to understand three things:
how encryption works, how data flows in your application,
and how database protection fits into your company’s overall
security policy.

Once you’ve assessed the security and encryption needs of
the sensitive data being gathered in your application, you
will need to pick a course of action to ensure it is protected
once it reaches the database. There are two strategies you
can use — using encryption features of your Database
Management Strategy (DBMS), or performing encryption and
decryption outside the database. Each of these approaches
has its advantages and disadvantages. In this section we will
outline the two different strategies for encrypting stored
data so you can make the decision that is best for your
environment.

Developing a Database Encryption Strategy

RSA Security Inc. 2

������������	
����

�����������������
���������������

���������
������������	
����

����� !�"#� $�%

��������&��'()&���*���������&��+�� ,

,

F I G U R E 1 : H O W E N C R Y P T I O N W O R K S

Encryption Basics: What You Need to Know

To give sensitive data the highest level of security, it should
be stored in encrypted form. The goal of encryption is to
make data unintelligible to unauthorized readers and
extremely difficult to decipher when attacked. Encryption
operations are performed by using random encryption keys
(see Figure 1). The randomness of keys make encrypted data
harder to attack. Keys are used to encrypt data, but they also
perform decryption. Keys are often stored to allow encrypted
data to be decrypted at a later date.

All encryption isn’t alike. The security of encrypted data
depends on several factors like what algorithm is used, what
is the key size and how was the algorithm implemented in
the product. For instance, many databases use DES
encryption to protect sensitive fields, but DES has long been
considered insecure for protecting data for any significant
length of time. Additionally, different algorithms perform
differently, so while DES is insecure it is faster than 3DES —
another popular algorithm used in database products. In
fact, 3DES is the slowest block cipher RSA Security supports in
its cryptography products. And finally, you should consider
using encryption that is industry supported and supplied by a
reputable cryptography provider who has a stake in
providing the highest quality cryptography solutions.

Besides the quality of the encryption technology, any
database protection effort is only as secure as the key
management strategy that supports it. There is an inevitable
tension between access and security. On the one hand,
anyone or any system that decrypts information must be able
to access the stored encryption key so keys must be
accessible. Yet on the other hand, anyone or any system that
accesses keys can decrypt encrypted information.

A database encryption strategy that provides too little key
security is like locking your car but leaving your key in the car
door. But a strategy that makes key access too difficult may
impact system performance and maintainability — and
ultimately lead to lowered security as administrators and
developers are forced to circumvent security measures in
order to get their work done. These issues will be dealt with
in more detail throughout this paper.

How does encrypted data impact database applications?

While encryption provides great security and is accepted as
an industry best practice to keep data private, encryption can
affect your data and your database. In particular, the impacts
of encryption can increase data size and decrease
performance. But, there are educated trade-offs in
application planning and design that can be made if you
anticipate the affect. Knowing exactly what data needs to be
protected will give you more flexibility to make better
performance and data size trade-offs later. For instance, in
the case of a credit card, does a company policy or regulation
require the entire credit card number to be encrypted or only
the last four numbers? Often the decision on how much of
the data must be encrypted is the first step in determining
the overall architecture of your solution.

Encryption affects data size. Often the ciphers used to
encrypt blocks of text in a database produce output in fixed
block sizes and require the input data to match this output
size or it will be padded. Encryption operations, especially on
smaller data items, may increase the size of the stored data
in your database table and cause you to resize database
columns.

Also, because encryption transforms character data into
meaningless binary data, it can impact size if encrypted data
must be translated into character-type data. Using something
called Base64 encoding, encrypted data can be transformed
from binary into characters but increases the data size by
approximately one third.

Finally, carefully plan before encrypting information in
indexed fields. Look-ups and searches in large databases may
be seriously degraded by the computational overhead of
decrypting the field contents each time searches are
conducted. This can prove frustrating at first because most
often administrators index the fields that must be encrypted
– social security numbers or credit card numbers. New
planning considerations will need to be made when
determining what fields to index.

For more information on specific industry supported
cryptographic ciphers and how encryption works, see
Appendix A.

Understand How Data Flows in the Application

A good starting point for developing a data protection
strategy is to consider how data flows through the
application and what system components process that data.
You can then determine where the data may be at risk.

Developing a Database Encryption Strategy

RSA Security Inc. 3

Figure 1 shows a typical three tier application architecture.
The data may be at risk of exposure in any of the three tiers,
or as it travels between components. Encryption performed
by the DBMS can protect data at rest, but you must decide if
you also require protection for data while it’s moving
between the applications and the database. How about
while being processed in the application itself, particularly if
the application may cache the data for some period? Sending
sensitive information over the Internet or within your
corporate network clear text, defeats the point of encrypting
the text in the database to provide data privacy. Good
security practice is to protect sensitive data in both cases – as
it is transferred over the network (including internal
networks) and at rest.

Understand How to Manage Keys

Because cryptography is based on keys that encrypt and
decrypt data, your database protection solution is only as
good as the protection of your keys. Security depends on two
factors: where the keys are stored and who has access to
them. Secure key management is too often overlooked in
database security strategies.

Some important questions to address in planning include:

• How many encryption keys will you need?

• How will you manage keys?

• Where will the keys be stored?

• How will you protect access to the encryption keys?

• How often should keys change?

How many keys do you need and
how will you manage the keys?

Encryption key management is often a difficult problem to
solve. Using a single key for all your cryptography
applications makes implementation simpler, but it also means
all your sensitive data is vulnerable if the key is stolen.
Scenarios become more complicated as the number of
applications and users requiring access to keys to decrypt
data grows. Because encrypted data can only be decrypted
with its corresponding key, any system or application will
need to know how to find that key. The more systems that
know the encryption key, the higher the risk that the key will
be exposed unless a strong access management system is
applied.

A good rule of thumb is the fewer keys you use to encrypt
information, the easier the solution is to manage, but the
more critical key security becomes.

Where to store keys?

Part of managing keys is deciding where to store them. One
easy solution is to store the keys in a restricted database
table or file. But, all administrators with privileged access
could also access these keys, decrypt any data within your
system and then cover their tracks. Your database security in
such a situation is based not on industry best practice, but
based on an honor code with your employees. If your human
resources department locks employee records in file cabinets
where one person is ultimately responsible for the keys,
shouldn’t similar precautions be taken to protect this same
information in its electronic format?

A recommendation is to consider separating the keys from
the database where the encrypted data resides by storing
keys in hardware. For example, the keys can be stored in
access-restricted files, or for the strongest protection, in
hardware storage modules. An ancillary benefit of hardware
storage is since the keys need never leave the hardware
device, access can be controlled so neither administrators nor
intruders can penetrate the machine and steal them.

Developing a Database Encryption Strategy

RSA Security Inc. 4

Application
Server

Business Logic
Server

Client Data Repository

F I G U R E 2 : T Y P I C A L T H R E E - T I E R A P P L I C A T I O N A R C H I T E C T U R E

Developing a Database Encryption Strategy

RSA Security Inc. 5

Protecting access

Secure key storage depends on how well you manage access
to the secure key store. Many enterprises have learned the
hard way. A recent study by @stake research found one third
of their customers stored confidential data and encryption
keys insecurely (see the report “The Security of Applications:
Not All Are Created Equal”, February 2002, at
http://www.atstake.com).

Without a strategy to separate keys and store them securely
with some type of access control, too many people will be
able to access the keys — from developers who write the
applications that call the database, to the administrators that
manage the database — which discounts any effective
accountability. Fortunately, popular authentication methods
may be used to authorize who may decrypt information.
Some of the more popular authentication methods are
outlined in Appendix B.

III. Implementing a Database
Encryption Strategy

To effectively secure your databases using encryption, three
issues are of primary importance: where to perform the
encryption, where to store encryption keys and who has
access to encryption keys. The process of encryption can be
performed either 1) within the database, if your DBMS
supports the encryption features you need, or 2) outside the
DBMS, where encryption processing and key storage is off-
loaded to centralized Encryption Servers. These two
strategies will be covered in more detail below, but first
some general comments:

DBMS Features and Limitations

While encrypting inside the database may be beneficial
because it has the least impact on your application
environment, there are performance trade-offs and security
implications to consider. Depending on the algorithms used
and their implementation, some encryption can degrade
DBMS performance. If your DBMS includes encryption, it is
important to understand what algorithms it uses, the
performance and strength of those algorithms, and how
much flexibility you have in selecting what data you encrypt.
Some general guidelines are DES is insecure, 3DES is slow and
any symmetric ciphers should use 128-bit keys at a minimum
(See Appendix A for more information on encryption).

An inherent vulnerability of DBMS-based encryption is the
encryption key used to encrypt data likely will be stored in a
database table inside the database, protected by native
DBMS access controls. Frequently, the users who can have
access rights to the encrypted data also have access rights to
the encryption key. This can create a security vulnerability
because the encrypted text is not separated from the means
to decrypt it. Nor does this solution provide adequate
tracking or monitoring of suspicious activities.

Many enterprise IT managers have found the out-of-the-box
encryption features offered by their DBMSs have weaknesses
of performance and key management sufficiently severe that
they decide not to use them.

Off-loading Encryption Outside of the Database

RSA Security recommends that companies, especially those
that need to comply with Gramm-Leach-Bliley or HIPAA,
consider database architectures that off-load encryption
processing and secure key management to a separate,
centralized Encryption Server. The Encryption Server will
calculate the computation required by encryption or
decryption. This has two benefits. It removes the
computational overhead of cryptography from the DBMS
or application servers. And perhaps even more importantly, it
allows separation of encrypted data from encryption
keys. The keys in this architecture never leave the
encryption server. Locking down access and monitoring
the Encryption Server is important in this scenario as well,
but easily achievable.

Let’s review each solution in more detail.

Solution One: Implementing encryption inside the DBMS

If encryption features are available within your DBMS
product, you can encrypt and decrypt data within the
database and the process will be transparent to your
applications. The data is encrypted as soon as it is stored in
the database. Any data that enters or leaves the database,
though, will be transported as clear text. This is one of the
simplest database encryption strategies, but it presents
performance trade-offs and security considerations that must
be evaluated.

Encryption generally is implemented within the database
through a “database procedure call” (the terminology varies
by vendor). Some vendors support limited encryption
capabilities through database add-ons. Other vendors may
only provide all-or-nothing support for encryption — either
the entire database is encrypted, or nothing is. While this
may make sense for protecting your backup copies,
encryption of the entire database means additional
processing is expended on non-sensitive data — an overkill
situation resulting in unnecessary performance degradation.

Developing a Database Encryption Strategy

RSA Security Inc. 6

A major drawback to encrypting inside the database is the
extra processing load. Because encryption and decryption are
performed within the database, the DBMS is asked to
perform additional processing – not only when the data is
stored, but each time it is accessed. This additional processing
can add up.

Encrypting data when it is stored in the database using a
database procedure call is shown in the diagram below. The
procedure has to locate the stored encryption key (typically
encryption keys are stored in a restricted table in the
database) and query it. The DBMS must verify the procedure
can access the key. The database procedure then uses the key
in the encryption algorithm and returns the encrypted result.

Reading the data requires the same procedure in reverse.
Consider, for example, an application that does a sorted
report based on credit card data and accesses a database
containing encrypted card numbers. The database procedure
for decrypting an item is executed against each encrypted
data item. If it’s a large report, that can add up to a lot of
extra processing. On the other hand, applications that
depend on indexes built on encrypted data make the process
even slower. For performance, it is advisable to architect the
data so that encrypted data is not indexed. But, if you must
encrypt indexed data, encrypt the search value before
performing the search. This means that the search procedure
must be changed, and will require access to the encryption
function as well as the encryption key.

!!!!!!
!!!!!!

!!!!!!
!!!!!!

Cust. ID

Database Procedure

Address Card No. Key IDKeys

C U S T O M E R I N F O R M AT I O N K E Y S T O R A G E

C R E D I T C A R D N U M B E R S

D ATA B A S E

F I G U R E 3 : E N C R Y P T I N G I N F O R M A T I O N I N S I D E T H E D A T A B A S E

truly random the base numbers are. You should understand
how random keys are generated in your DBMS. What type of
pseudo random number generation is used? It may help to
talk to outside security experts about random number
generation in database products before making a purchase
decision. For example, RSA Security’s cryptography products
are designed to provide random number generation in both
software and hardware.

If you do not want to store your keys in a table in the
database, plan how you will store keys separately. The
strongest key protection is with separate hardware that
interoperates with the database. Depending on the level of
security required, this often means purchasing a hardware
security module (HSM), a device that provides secure storage
for encryption keys and, depending on the device, additional
features such as a co-processor to perform cryptographic
functions and hardware acceleration. HSMs are also a great
way to back up encryption keys.

Bottom line: This solution provides encryption, but does not
offer either secure key management or high performance.
Also, your DBMS vendor may only offer a few ciphers from
which to choose. Here’s a summary table of the pros and
cons of using DBMS-based encryption:

Developing a Database Encryption Strategy

RSA Security Inc. 7

The strongest argument in favor of encrypting data within
the DBMS is that applications are unaffected by the
encryption. You can implement DBMS-based encryption
without making any changes in legacy applications,
e-commerce applications, or any other applications that use
the data. However, this solution results in some equally
compelling negatives: unless you use encrypted commun-
ications between the database and your applications, the
data will be at risk of exposure while in transit. Also, if
encryption keys are stored within the database, or even in
other databases managed by the DBMS, the database
administrators may have access to them — and thus to any
of your encrypted data.

When evaluating database products, make sure you
understand the performance of the encryption ciphers and
strength of cipher based on key size. Many databases offer
only the DES or 3DES algorithms which are generally
regarded as slow performing. Another cipher, AES
(which will replace DES) is preferable from a security
perspective, or for higher performance and security evaluate
the RC5® block cipher.

Encryption keys are based on pseudo random number
generation. Thus the security of your data depends on how

Extra processing = performance degradation

Data at risk outside the database

Encryption keys are stored in a database table with

encrypted text, no separation of keys from text

To separate keys, additional hardware

is required — like HSMs

If protection of keys is based on passwords,

difficult to manage and insecure

Limited choice in algorithms supported

Applications are unaffected

Encryption may already provided in database product

S T R E N G T H S / B E N E F I T S W E A K N E S S E S

Solution Two: Applying Encryption Outside the Database

If the potential for data exposure in the database or in
transit between client and server concerns you, a more secure
solution is moving the encryption to the applications that
generate the data.

When you use client/server application security protocols like
SSL, sensitive data is in clear text form for the shortest
possible time. Encryption is performed within the application
that introduces the data into the system; it travels encrypted
and can be stored encrypted at its final destination. This
approach can provide good end-to-end data protection, but
may require changes to your applications to add or modify
encryption and decryption capabilities.

One way to achieve this type of a solution and optimize your
investment is to build an Encryption Server to provide
centralized encryption services for your entire database
environment. This simplifies management and provides more
control in a multi-application environment using many
databases. This server can be optimized to perform

cryptographic operations requested by your applications,
giving you the flexibility to allow applications to make
multiple requests for cryptographic operations, while
consolidating and implementing the cryptography in a
consistent way. Here is a diagram of an encryption process
that includes an encryption server to provide cryptography
processing and key storage (as illustrated in Figure 4):

One great benefit of this solution is it offers one of the best
secure key management strategies. This solution separates
encryption keys from the encrypted data stored in the
database (the encrypted data is injected into the database,
but the keys never leave the Encryption Server) providing
another layer of protection for the database. By contrast,
Scenario One stores keys in the database with the encrypted
data allowing an attacker easy access to both the keys and
encrypted data. In Scenario Two outlined by the diagram
above, the Encryption Server adds another layer of
protection between the database and the attacker. The keys
in the Encryption Server must be found before the hacker
can decrypt data. The goal is to harden the Encryption Server

Developing a Database Encryption Strategy

RSA Security Inc. 8

!!!!!!
!!!!!!

!!!!!!
!!!!!!

Encrypted Information

Crypto Service

D ATA B A S E C RY P T O S E R V E R

C U S T O M E R I N F O R M AT I O N K E Y S T O R A G E

Cust. ID Address Card No.Key ID Key IDKeys

F I G U R E 4 : E N C R Y P T I N G I N F O R M A T I O N O U T S I D E T H E D A T A B A S E

against intrusion so that if anyone gained access to sensitive
data in the database, they would find this text encrypted.

The Second Scenario is more secure because:

• Encryption keys are stored in hardware, separately
from the encrypted text.

• End-to-end encryption is applied between the client and
Encryption Server. Encrypted information is simply injected
into the database.

The solution requires:

• Protecting the application and Encryption Server with an
authentication strategy, preferably strong authentication,
allows only authorized users to decrypt sensitive
information by accessing keys stored in the Encryption
Server.

• Hardening the Encryption Server against intrusion by
monitoring it for suspicious activity and auditing event
logs regularly.

For corporations with a large number of applications that
require highly secure key storage, this approach puts them
in control of their data encryption and provides a standard
platform for encryption and key handling for all applications.

Other benefits include performance improvements gained
from off-loading the encryption from DBMSs, and the ability
to scale the encryption function on demand.

Building an encryption server and customizing applications to
work with it may seem like more work and expense in the
beginning. However, it offers greater security, better
performance and, ultimately, a lower cost of implementation
— you can maximize your investment by leveraging one
secure encryption solution across multiple applications and
lock down access to encryption keys across the enterprise.

Bottom line: This solution is one of the best for key manage-
ment and often offers more choices in algorithms which
could lead to higher performance. Importantly, this is a
scalable solution: it will be of particular long-term value to
enterprises with many databases and many users who need
to gain authorized access to encrypted data. Application-
based encryption will require custom development,
perhaps combined with consulting services and the
acquisition of commercial security products or services —
you have to understand the investment you are making and
the time required to deliver. Here’s a summary table of the
pros and cons.

Developing a Database Encryption Strategy

RSA Security Inc. 9

Communications overhead

Must administer more servers

Must change or modify applications

Must harden encryption server with an authentication

policy and a way to monitor and log events

Off-loads crypto processing from database server

Separates encrypted data from encryption keys

for secure storage

Easy to apply strong authentication solutions

that work with encryption server

Can separate administrator roles

More control over who accesses data

Scalable – can scale to handle encryption from

many applications and many databases

If database does not handle encryption functionality,

no need to buy a new database and migrate data

Provides end-to-end encryption from client to encryption server

S T R E N G T H S / B E N E F I T S W E A K N E S S E S

IV. RSA Security Solutions

RSA Security offers a full range of security products and
services designed to assess the database application, provide
strong authentication of users, deliver Web-based access
control for end users or administrators, and simplify the art
of building high-performing encryption applications.

Assessment, Planning and Implementation

RSA Professional Services offers a database assessment service
to review application architecture and design a database
strategy. The goal is to identify key sensitive data, analyze
the flow of data for potential vulnerabilities and threats, and
make design recommendations. Further planning and
implementation services are available for companies wishing
to deploy the recommended solution. Benefits to customers
include access to specialized encryption consultants and
knowledge transfer or training of staff.

Authentication

RSA SecurID® tokens and smart card solutions are designed to
deliver strong two-factor authentication that interoperate
with a wide variety of products and applications. These
products are easy for the end user interfacing with a
client/server application and they positively identify the user
with a higher level of trust than using a simple password.
RSA SecurID authenticators are as simple to use as entering a
password, but much more secure. Each end user is assigned
an RSA SecurID authenticator which generates a new,
unpredictable code every 60 seconds. The user combines this
number with a secret PIN to log into protected resources. The
authenticator is tied to a powerful algorithm generating a
new code every 60 seconds in the RSA SecurID authentication
server known as the RSA ACE/Server‚® solution. Only it knows
which number is valid at that moment in time for that
user/authenticator combination.

RSA Security products are designed to provide the strong
authentication required to protect access to the encryption
keys stored in the database or on an Encryption Server. Using
these authentication products, companies can reduce the
threat of external attacks on their database.

Access Management

For organizations seeking to control access and simplify
administration of their Unix environment, RSA Keon®

UnixControl software is a simple way to help lock down
access to these servers. This is especially important for
organizations who want to deploy a Unix Encryption Server
in front of their database. RSA Keon UnixControl software
employs a unique, non-intrusive architecture to help centrally
manage a UNIX environment. RSA Keon UnixControl
software is designed to perform the following functions. It
hardens the Encryption Server against intrusion. It can
centrally manage the identification and authentication of
users (it includes out of the box support for RSA SecurID
strong authentication products), and establish access control
while also providing data privacy and integrity monitoring of
the entire process. It simplifies administration by propagating
changes such as deleted or added user accounts across the
entire UNIX enterprise in a single step. In short, RSA Keon
UnixControl software helps simplify UNIX management while
enforcing a strict enterprise-wide security policy without
limiting productivity. Other features include file integrity
checking and operating system vulnerability testing. In
addition, RSA Keon UnixControl software is designed to
proactively log changes to security parameters, access
attempts, and administrative activities to create a complete
audit trail.

Developing a Database Encryption Strategy

RSA Security Inc. 10

• Know who is using app.

• Make it easy for end user

• Provide easy integration

• Provide choice of products

• Audit who has access

• Ease for administrator

• Scale to 1000s users

• Scale to 1000s servers

• Assess data flow in application

• Determine threats

• Re-design application

• Implement security

• Protect data

• Make it easy for developer

• Be high-performing

• Deliver trusted crypto

Assess, Plan & Design Authenticate Control Access Encrypt

Encryption

RSA BSAFE® encryption software is designed to allow
developers to easily build a solution that would off-load
encryption processing from the database to an encryption
server for better performance. Alternatively, RSA BSAFE
cryptography could be called from a stored database call to
encrypt information inside the database.

RSA BSAFE Crypto-C or RSA BSAFE Crypto-J (Java) developer
tools are designed to provide a wide range of high-
performing algorithms that are shipped with award-winning
documentation and comprehensive sample code to ease
development. In addition, RSA BSAFE SSL-C or SSL-J software
helps developers build a Secure Sockets Layer (SSL)
connection to encrypt and protect the privacy of
information as it travels between the Encryption Server and
the end users desktop. Today, RSA BSAFE software is
pervasively used on the Internet, helping to secure over 1
billion applications worldwide.

decide to implement encryption inside or outside the
database, RSA Security recommends:

• Encrypted information should be stored separately
from encryption keys.

• Strong authentication should be used to identify
users before they decrypt sensitive information.

• Access to keys should be monitored, audited and logged.

• Sensitive data should be encrypted end-to-end — while
in transit in the application and while in storage in enterprise
databases.

V. Conclusion

Database attacks are on the rise even as the risks of data
disclosure are increasing. Already the financial services and
health care industries must deal with legislation and
regulation on data privacy. Consumer concerns about data
disclosure and misuse will inevitably expand the responsibility
of your enterprise to secure customer information. Failure
could expose you to legal liability, negative publicity, lost
public trust, as well as cost you money and lost productivity.

In this environment, your security planning must include a
strategy for protecting sensitive databases against attack or
misuse by encrypting key data elements. Whether you

Developing a Database Encryption Strategy

RSA Security Inc. 11

Encrypted SSL session
secures data in transit.

Authentication Server

Application Server

Encryption Server built
using RSA BSAFE software
and protected by RSA Keon
UnixControl software

End User

RSA SecurID Token

Protected Database

Encrypted

Information

F I G U R E 5 : T H E R S A S E C U R I T Y D A T A B A S E E N C R Y P T I O N S O L U T I O N

Appendix A: Applying Encryption
Technology

To give sensitive data the highest level of security, it should
be stored "at rest" in encrypted form. This is best achieved
by using tested and industry-supported encryption
algorithms. To be successful, a database encryption strategy
must address a number of considerations that will affect the
security of the application and how the application performs.
These include:

• What is the best type of encryption for my data?

• What data needs to be protected using encryption?

• How strong must the cipher be?

Solution Two: Applying Eencryption Outside the Database

The goal of encryption is to make data unintelligible to
unauthorized readers and extremely difficult to decipher
when attacked. There are three general categories of
encryption algorithms: symmetric ciphers, hashing algorithms
and asymmetric ciphers.

Symmetric-key Ciphers

If the data is being encrypted for storage, symmetric
encryption is most commonly used. Symmetric-key ciphers use
the same key to encrypt and decrypt the data. There are two
types of symmetric ciphers: block ciphers and stream ciphers.
Stream ciphers are generally twice as fast as block ciphers but
they require the use of unique keys. Block ciphers on the
other hand, allow keys to be reused. Most DBMSs include
encryption features that use some form of block cipher
technology.

The recommended minimum key length for all symmetric
ciphers is 128-bits. Key length is extremely important to
data security because there are two main ways to attack
encrypted data. The "guess and check" attack is the first
type and is usually successful when an algorithm has been
implemented incorrectly or is based on bad random number
generation. Here the attacker is able to guess at a key, and
then tries it on a sample of the data. Second, the brute-
force guesswork approach is becoming more successful as
increasingly powerful computers makes it possible to create
and test a numbers of keys in relatively short periods of time.
For example, DES ciphers using 56-bit keys have fallen to
brute-force attacks in less than 24 hours. If you are using a
database with a symmetric cipher, look for at least a
128-bit key length. Anything less puts your data in an
unnecessary risk.

There are many popular symmetric key ciphers used for
database encryption and they include AES, DES, 3DES and
RC5 — all block ciphers. The RC4‚® algorithm — a stream
cipher — could also be used but each time a data input is
encrypted, a unique key must be used which makes key
management more complex. One main advantage of using
block ciphers is that they encrypt small blocks of data well,
and they can reuse keys within certain security parameters
before a new key must be used. One important block cipher,
DES, has been a government-recommended standard and is
widely used, but is also somewhat slow and generally viewed
as insecure. 3DES is an acceptable near-term alternative, with
AES also recommended as a strong replacement alternative.

Asymmetric-key Ciphers — a.k.a. Public Key Cryptography

If the data is being encrypted for storage, symmetric
encryption is most commonly used. Symmetric-key ciphers use
the same key to encrypt and decrypt the data. There are two
types of symmetric ciphers: block ciphers and stream ciphers.

Asymmetric algorithms use a pair of keys. The key pairs are
created using mathematical principles that allow any data
encrypted by one key to be decrypted only by the other.
Asymmetric-key ciphers are most commonly used to protect
data during transmission in a system that makes one key
public and keeps the other key secret. These algorithms are
more popularly known as public key cryptography and they
make up the foundation of a "public key infrastructure"
(PKI) which is based on a hierarchy of digital certificates that
contain a user’s public key and are "signed" as testament
that the holder of one key of a pair can trust any data that
key decrypts was encrypted by the matching key. "PKI"
sometimes refers simply to a trust hierarchy based on public-
key certificates, and in other contexts embraces the actual
application of public key cryptography like digital signature
services that can be provided to end users. The most widely
used algorithms for digital signatures are the RSA algorithm,
the U.S. government’s Digital Signature Algorithm (DSA), and
elliptic curve algorithms.

Asymmetric algorithms are generally used for authentication
and digital signatures rather than encrypting data.
Asymmetric operations are considerably slower than
symmetric key algorithms, making them not well-suited for
a database encryption strategy, because their performance
could adversely impact database performance. They may be
required, however, if you require strong integrity controls
over your data, such as to meet HIPAA or FDA 21 CFR
requirements. Digital signatures can provide this integrity
proof. If you want to apply signatures or to encrypt small
data items, you will want to off-load these operations from
your DBMS. One way to achieve this is with a procedure that
communicates with a separate cryptographic processor.

Developing a Database Encryption Strategy

RSA Security Inc. 12

Hashing Algorithms

Hashing algorithms do not encrypt data, but provide a one-
way transformation used to store data securely as well as to
verify data integrity. Put simply, hashing data for integrity is
like taking a fingerprint. Hashing a block of data yields a
"hash value" of a fixed byte length that is a unique digest
based on the data. When new data arrives that should
match the original, the new data is hashed and the two
hash values compared. If the data has not been corrupted or
altered the values will be identical. If the data has been
changed, the hash values will be different. Hashing is
commonly used to store password data. While the original
data can be hashed before storage or transmission, hashing
is not reversible and therefore should not be used as an
alternative to encrypting data.

Popular hashing algorithms include MD5 and SHA-1. Hashing
algorithms do not require a key, so key length is not a
consideration. Hashing operations have a fairly low
computational overhead: the impact of calculating hashes
within your DBMS will be roughly comparable to symmetric
encryption, without the key management issues. The size of
the value output by the hashing process is fixed — 20 bytes
for SHA-1, 16 bytes for MD5.

Appendix B: Authentication Methods
to Control Access to
Encryption Keys

Password-based Encryption

One solution is to encrypt or hash the encryption keys using
Password Based Encryption (PBE is supported by the PKCS#5
standard), so encryption keys are not stored in clear text. To
unlock the encryption key the user must know the password.
This solution, however, is just as strong as your password
policy. How strong is the password — will it stand up to a
dictionary attack? How many people know the password?
How far do you trust them? Another drawback, of course, is
if too many passwords are required, the system may be too
complex to be used properly. Also if a password is lost, there
is no way to decrypt the data. But, for some less complex
implementations, PBE could be worth considering.

Smart Cards or Cryptography Tokens

Smart cards or similar cryptographic tokens (based on public
key algorithms or time-synchronous technology) can offer a
range of strong authentication options. Smart cards provide
two-factor authentication, stronger than single-factor
password-based authentication because it is based on a thing
the user has (a smart card or token) as well as a thing the
users knows (a shared secret PIN or password).

Smart cards are easy for the end user. In a complex
application environment where many users with different
roles and responsibilities will need access to keys to decrypt
sensitive information, the users need only to insert their
smart card into the client device and the application
environment does all of the work. Audit trails can track who
accessed what and when.

Smart cards also may be used in solutions that require
multiple passwords because they can store username-
password combinations. In such a system, access to
encryption keys could require an authenticated user and an
authenticated smart card. The card could be controlled by a
security officer who would not have to be present when the
key is accessed. He or she would manage access to the keys
by managing possession of the physical card and audit trails
would provide documentation.

Biometrics

Biometric systems are based on something the user is — a
physical characteristic like a unique attribute (for example,
a fingerprint, voice or a retinal scan). Biometric systems
provide good authentication for solutions which can be
combined with passwords and/or smart cards to provide
simple two-factor or even three-factor authentication of
individual users.

About RSA Security

RSA Security, the most trusted name in e-security,® helps
organizations build trusted e-business processes through its
RSA SecurID® two-factor authentication, RSA ClearTrust® Web
access management, RSA BSAFE encryption and RSA Keon®

digital certificate management product families. With
approximately one billion RSA BSAFE-enabled applications in
use worldwide, more than twelve million RSA SecurID
authentication devices deployed and almost 20 years of
industry experience, RSA Security has the proven leadership
and innovative technology to address the changing security
needs of e-business and bring trust to the online economy.
RSA Security can be reached at www.rsasecurity.com.

Developing a Database Encryption Strategy

13

ACE/Server, BSAFE, ClearTrust, Keon, RSA, RSA Security, the RSA logo, SecurID and The Most

Trusted Name in e-Security are registered trademarks of RSA Security Inc. All other trademarks

mentioned herein are the property of their respective owners.

©2002 RSA Security Inc. All rights reserved.

DDES WP 0702

