
Allen Long; Beauty & The Beast – Use and Abuse of Fault Tree as a Tool

Provided as a free service by fault-tree.net 1 http://www.fault-tree.net

Beauty And The Beast – Use And Abuse Of The Fault Tree As A Tool

R. Allen Long: Hernandez Engineering, Inc., Huntsville, Alabama

Keywords: fault tree, cutsets, interfaces, software

Abstract

Fault Tree Analysis (FTA) has become a popular
tool for use in the Space Industry for the System
Safety Engineer. The fault tree is used for
everything from tracking hazard reports to
investigating accidents, as well as presentations
to management. Yet, experience in the space
industry has shown the fault tree is used most
often for purposes other than its original intent,
namely for evaluating inappropriate behavior in
complex systems

This paper describes proper application and
common misapplications of the fault tree as a
tool when evaluating inappropriate behavior in
complex systems. The paper addresses common
misconceptions and pitfalls about FTA such as
tracking only failures, and the belief that Failure
Modes and Effects Analysis (FMEA) can be used
in lieu of the fault tree.

Introduction

FTA in the space industry is rarely used to its full
potential. Moreover, the true beauty of the fault
tree has been overlooked more often than not.
FTA is perhaps the most misunderstood
methodology in wide use today. Yet, FTA is one
of the most beautiful of tools at an engineer’s
disposal. Although the concept and symbols are
relatively simple, proper development of a fault
tree is anything but simple. There are many
myths and misconceptions surrounding this
elegant tool.

A Most Beautiful and Versatile Tool For
Modeling Complex Systems

There is no one right way to develop a fault tree.
However, there are many wrong ways and even
more hard ways to perform a fault tree. Two of
the most important concepts to performing a
useful FTA (and maintaining your sanity) are:

Keep Your Eye On The Prize: FTA can be
developed as far down as the analyst wishes to
go. Often the fault tree takes on a life of its own

and drags the analyst down to the subatomic level.
An easy trap to fall in is developing the tree for
development’s sake; thus, losing the end game.
You wind up with a great tree that has no purpose.
Remember the prize is finding areas for
improvement on a system for which you can
provide reasonable design controls. The paradox
here is that the more adept you become at
performing FTA, the more likely you are to
develop the tree to a lower level than necessary.
Go with the flow, but don’t get carried away by it!

A well executed FTA goes beyond the FMEA in
identifying ways to cause the Top Undesired
Event. FTA can identify design, manufacturing,
processing, and handling “faults” in addition to
component failures.

FTA development can go far beyond a component
failure if required. Skill is required not only in
defining the appropriately framed Top Undesired
Event, but in determining the needs of the
particular customer or level of management as to
how much detail is needed. Management may
only need an FTA to a relatively top level.
However, a chemist may need the tree to go down
to “Brownian motion” in explaining a particular
problem. Herein lie both the beauty and the beast
of FTA.

Know Your Audience and Work the Crowd: On
one hand, when performed correctly and in
cooperation with the target audience, FTA can be
taken to the exact level of detail needed. On the
other hand, the FTA can be developed into an
unwieldy beast far beyond details that are not
useful for your customer. Moreover, the type of
logic used (i.e., “Failures” vs. “Scenarios”) can
turn a large detailed tree into nothing more than a
fancy FMEA or a breakout of systems and
subsystems. More often than not, fault tree
analysts ignore possible interactions and fail to
identify scenarios that do not neatly fall within
“Electrical,” “Mechanical,” “Structural” or similar
failures. Such a tree is rarely useful, and will fail
to identify many interactions that could cause the
Top Undesired Event (more on this subject later).

Allen Long; Beauty & The Beast – Use and Abuse of Fault Tree as a Tool

Provided as a free service by fault-tree.net 2 http://www.fault-tree.net

However, I caveat this with the following: FTA
can be tailored to the needs of a particular
project, system engineering group, investigation
team, or management organization. There have
been many instances in which I have found the
target audience did not want a fault tree in its
purest terms. The beauty is that FTA can be
adapted beyond the “FTA Purest” definition to
aid many organizations in identifying solutions to
problems ranging including: process control,
hardware failures, interactions of personnel with
machinery and processes, and inherent
functionality, reliability, or safety of a system’s
design.

Sometimes the most difficult part of a fault tree is
convincing the target audience that they need a
fault tree that is relatively pure. Since the
customer is always right, the analyst will often be
forced against his/her better judgment to tailor
the fault tree to the customer’s wishes. Much to
my dismay, some of these “customized” fault
trees have provided me with the most positive
customer feedback!

Wow! I Didn’t Know the System was Going to
Do That! (Or, Why Perform FTA vs. Other
Analytical Methods?)

Performed correctly, FTA often identifies
problems with a system other design and
analytical methods may have overlooked.
Complex relationships and interaction of
systems, components, and actions thought to be
unrelated can be discovered. On a complex
system, a properly developed FTA almost always
finds at least one “I didn’t know the system
would do that!” Call this a “Eureka.” The most
common “Eureka” is a common cross-link or
single point failure which could fail two
(supposedly) redundant or independent systems.

Eurekas are easiest found during the design of a
system. You are much less likely to find a
Eureka during an accident or incident
investigation – although it does happen. This is
especially true when the hardware is lost in space
or has been consumed in a fire on a test stand.

Can You Say Interfaces? One of the sad truths in
engineering today is that “integration” has been
reduced to a buzzword. Lots of lip service is
given to integration or the study of the interfaces.
However, engineering groups are largely
compartmentalized only “interfacing” with each

other after they have completed their respective
part of a project. Making the pieces fit together is
an afterthought – usually addressed too late in the
design process to provide a truly integrated
product or process. Each engineering discipline
basically bolts on its piece of hardware to the
project. It is this “cross-strapping” of systems
where the fault tree can pay for your effort. This
is the most likely place where problems have not
been adequately addressed nor discovered by the
various designers. This is where other analysis
methodologies and engineering disciplines fail and
where the system safety engineer can convince
other engineering groups that we are a legitimate
“engineering” discipline.

Develops Strong Minds and Bodies (of System
Engineering Talent) One of the greatest benefits
of FTA may come in the form of system engineers
who are much more knowledgeable of the system.
It is not unusual for a fault tree analyst to
understand the system and the
interaction/relationship of its subsystems better
than the design or system engineers with whom
the fault tree analyst is working. We talk about
integration in aerospace but often do not properly
train our engineers nor properly analyze the
system parts in a manner which will truly ensure
proper integration. FTA performed by an
experienced fault tree analyst together with a
systems engineer provides the project with a
systems engineer who is much more
knowledgeable than when the engineer started.

Simple Rules of Thumb In Performing FTA

How far is too far? Conquering the beast requires
the analyst to develop the tree to a manageable
level of detail. But, how do you determine how
far is too far?

A good rule of thumb is to develop the fault tree
down to the level at which you can exert
reasonable control. For example, if you are
analyzing a safe-&-arm system that involves a
programmable controller, you probably do not
have to go into the controller as part of your
analysis. Assume the controller can malfunction
and analyze the rest of the system to ensure there
are controls and/or inhibits to prevent inadvertent
firing of the circuit if the controller malfunctions.

If your system deals with “line replaceable units”
(LRU’s) you probably should stop at the LRU
level.

Allen Long; Beauty & The Beast – Use and Abuse of Fault Tree as a Tool

Provided as a free service by fault-tree.net 3 http://www.fault-tree.net

There may be times when you are analyzing the
black box itself. In these cases, you take the fault
tree development to the integrated circuit (i.e.,
the “chip” level). Chances are you can
recommend additional chips, additional or
different wiring or other components in the black
box. But, you will almost never be able to
change the internal design of the chip. Don’t
even go there!

 FMEA vs. FTA. Or, “Push That Button and
We‘re All Gonna Die!”

Often FMEA and FTA are mentioned in the same
sentence. A common fallacy is to assume that
use of the FMEA can supplant the FTA. It is not
unusual for the aerospace community to state that
every FTA basic event must match up with a
listing in an FMEA. Remember, FMEA’s are
based on the following assumptions:

1. Inputs into the component are correct (e.g.,
high pressure is not introduced into a low-
pressure system).

2. Assume that Operational Environment is
proper for the component (e.g., it is assumed
that a sensor in a corrosive atmosphere is
properly designed for that atmosphere. The
atmosphere does not contribute to the sensor
failure in the FMEA).

3. Only single point failures are addressed.
Redundancy is only addressed in terms of
“Like-Redundancy” of the same component.

4. Human error is groundruled out. Assembly,
maintenance, and operational errors are not
addressed in the FMEA methodology.
Lifting operations is a good example where
FMEA can only address a very few of the
potential hazards since most hazards are not
due to component failure.

5. The overall design is assumed to be correct.
The only exception of this is identifying
single point component failures that can
cause critical or catastrophic events. The
component failures are usually addressed in
terms of the expected failure rate or life of
the component (i.e., common cause failures,
inputs, and environmental factors are not
taken into account). Even a component
failure due to damage from an improper

input, handling, or installation damage/errors
is not addressed.

To illustrate this concept let’s look at a valve in
Figure 1, which is commanded open by a
programmable controller due to a change in
pressure. For this example, let’s assume the valve
is a remote-operated pneumatic valve in a gaseous
oxygen (GOX) system. This pneumatic valve is
driven open when air is supplied and spring-
driven closed when air is removed. Such a valve
would typically involve a solenoid valve which
when electricity is supplied, the solenoid moves
and diverts air to the pneumatic valve to drive the
pneumatic valve open. When power is removed
from the solenoid it closes via a spring.
Therefore, loss of electrical power would cause
the valve to close. A pressure transducer or
switch signals the programmable controller. The
programmable controller sends the electrical
signal to the pneumatic valve solenoid depending
upon the pressure transducer signal.

In our example, we are concerned with the valve
inadvertently closing. The following can cause
this:

1. Improperly commanded closed by the

programmable controller: controller failure,
faulty software, temporary interruption of
programmable controller function due to an
electrical transient, or improper start-up or
initialization by the operator.

2. Loss of power at the solenoid due to: 1)
cable failure/signal interruption between the
controller and the solenoid, 2) physical
damage to the wire/cable harness from

Programmable
Controller (PC)

Pneumatic Operated GOX
Supply Valve (POV)

Gaseous Oxygen
(GOX) Line

Pressure
Transducer

(PT)

Air Supply

Solenoid Actuator

Power

P

Figure 1

GOX
Supply

Pneumatic
Actuator (ACT)

Solenoid Operated
Pneumatic Valve (SOV)

(SOL)

Allen Long; Beauty & The Beast – Use and Abuse of Fault Tree as a Tool

Provided as a free service by fault-tree.net 4 http://www.fault-tree.net

vibration, operating environment, damage
from adjacent operations/equipment, short or
fault, overcurrent, 3) loss of facility
electrical power, or 4) contacts unable to
properly conduct power due to corrosion.

3. Solenoid Failure caused by: coil failure,
contact failure (inability to move/switch), or
mechanism failure/seizure.

4. Pressure Transducer fails to provide proper
signal.

5. Loss of air supply. The controller sends the
proper signal and the solenoid has properly
activated, but there is no air to drive the
pneumatic valve open. This could be caused
by: loss of air supply at the source (tank or
gas plant), venting of the air supply via relief
valve (failure or system overpressurization),
or damaged/broken, crimped or clogged
airline.

Several of these causes would be identified in the
FMEA. However, many would not. Even in
those component failures that are addressed in
an FMEA, many of the underlying causes would
not be identified. For instance, the pressure
switch might not be rated for the operating
environment. It therefore fails under normal
operating pressure because it was under-
designed. As a single point failure, the FMEA
might recommend a redundant switch. However,
if the basic design flaw is not identified, the
redundant switch would also fail under normal
operating pressures. The switch might also be
overpressurized due to a flaw in the system
design upstream of the switch. An upstream
regulator might be improperly set (i.e., it doesn’t
fail--the set-point is too high). In such a case, is
there a relief valve in the system to prevent
overpressurization of the system? The relief
valve could simply fail; or it could fail to relieve
because a bird’s nest or mud dauber hive is
blocking the orifice; or, the relief valve’s set
point is too high. The same valve
installation/calibration/maintenance schedule or
program which allows an improperly set or
maintained regulator could also allow the relief
valve to be improperly set or maintained!

This is where the fault tree struts its stuff. Events
in a fault tree are not always based upon a
component failure. The fault tree can find
problems within a system due to operator error,

design flaws, or undesirable interactions in which
combinations of “benign” failures or normally
expected operating conditions cause the top
undesired event. Interfaces and interactions are
most often the area in which a system breaks
down, malfunctions, or causes the Top Undesired
Event to occur. For instance, a sensor reading
anomaly due to a sensor failure itself is rarely the
problem. The chain of events set in motion by an
erroneous sensor is the potential problem. This
occurs at or across a system interface, and, for
purposes of this discussion, what if the sensors are
redundant? Is not the problem solved?--not
necessarily. An FMEA would most likely identify
the sensor as redundant and therefore not a
problem. What if both sensors are defective due
to a manufacturing lot problem? An erroneous
reading might not be due to a sensor failure but
due to a problem with the software or data
interpretation. Both sensors might be operating
exactly as designed but data is lost between the
sensors and the control system, The control
system may react improperly to a proper incoming
signal. Use of an improper sensor for the
environment could cause both sensors to fail due
to degradation.

Totally redundant systems designed by one group
are usually controlled by systems designed by a
different group. It is at this interface that the
problem usually arises. The control system group
may actually tie both redundant systems into a
single failure point. The failure point may in fact
not be a failure at all but an unexpected
consequence of a normally expected event. One
rocket motor manufacturer used a device called a
Vacu-Lift, which would basically grab onto and
lift an empty motor case using a vacuum system.
The redundant vacuum arrangement in the Vacu-
Lift was truly a thing of beauty. However, the two
totally redundant vacuum systems were tied into a
single venting solenoid. Activation of this
solenoid (via a single button) caused both sides of
the vacuum system to simultaneously vent (or
draw atmosphere). Thus, the elegantly designed
and executed redundant vacuum system was
completely undermined by a flawed execution of
the control system. This is a good example of two
engineering groups failing to properly coordinate
and implement the design as a team (i.e., in this
case, one engineer in charge of the vacuum and
mechanical systems and another engineer in
charge of the control system). Because of the
single solenoid, dropping the case due to venting
the vacuum through the solenoid could occur

Allen Long; Beauty & The Beast – Use and Abuse of Fault Tree as a Tool

Provided as a free service by fault-tree.net 5 http://www.fault-tree.net

because of: 1) solenoid Failure, 2) vent button
failure, and/or 3) operator accidentally pushing
the button. In this case, pressing a single button
could have truly caused personnel to die.

Another area the FMEA does not address is
damage to a system. Let’s use the common
automobile for a couple of examples to illustrate
FTA vs. FMEA: Let’s say we are investigating
an accident in which you have narrowed the
cause down to a braking problem. The FMEA
will assume that the problem is a Braking System
Failure. However, many likely causes will not be
covered using the FMEA approach. Examples
could include: slippery roads, failure of the
driver to brake in time (or not at all), bald tires,
improper brake fluid (wrong type), wet or oily
brake pads. Remember that most FMEA assume
inputs to the system are correct.

There are other issues that might or might not be
addressed using the FMEA depending upon the
groundrules used by the analyst such as
insufficient brake fluid or worn brake pads.
Technically, the pads have not failed. They just
may be less effective than new pads, depending
upon the analyst’s point of view.

Another example using the automobile could be
if the engine fails to run. Note that the term
“Engine Failure” is not used here. The engine
can fail to run for dozens of reasons not
associated with an engine component failure.
The engine could seize due to: 1) an insufficient
amount or the quality of oil (the owner has not
put oil in the car for some time or the owner put
in the wrong oil), 2) the owner went too long
between oil and filter changes, or 3) the oil filter
was not properly tightened and a leak occurs
between the filter and engine. Another reason
could be ignition switch failure. Depending upon
the FMEA analyst, this might be considered an
input or not part of the engine proper and he
could ground-rule it out.

The engine may stall due to a fuel problem. This
might be caused by: 1) a clogged filter (may or
may not be considered a “Failure”), 2) a
malfunctioning gas pump (also likely not to be
considered as part of the engine proper), 3)
water or other contaminate in the gas (such as
sugar in the gas tank from your teenager’s ex-
boyfriend or girlfriend), 4) clogged or crimped
gas line/vapor lock, 5) no gas in the gas tank or
fuel line leak.

The Three Biggest Myth-Conceptions Uncovered

Myth Number 1. -- “Oh, I can do FTA!” Or,
Everyone is an Expert in FTA: FTA looks
deceptively simple yet is rarely done correctly by
the FTA newcomer. Lots of FTA’s are produced
but few are actually of any significant value (other
than wowing others with an impressive graphic
that falsely indicates progress was made).

Fault tree analysts must have a logical mind and
the ability to VISUALIZE the logic structure and
interaction(s) of a system and its subsystems. The
analyst must understand the system as an
integrated interaction of subsystems.

A fault tree analyst must also have sufficient
understanding of the details of a wide variety of
systems and subsystems. The analyst must be able
to understand everything from chemical
interactions, electrical subsystems, mechanical,
structural and control systems, as well as human
interactions and procedural implications.

One of the problems we have in aerospace
integration is that we have not developed systems
experts knowledgeable in multiple technical areas.
Most disciplines tend to see only their own tiny
areas of expertise. Few engineers and other highly
technical personnel can divorce themselves from
their specific areas to look at the larger picture.
Even fewer are willing to learn technical details of
other disciplines and how those details affect the
larger picture. The interactions and interfaces are
often dealt with as necessary inconveniences to
getting their particular part connected to the
overall system; where-as in reality, the interfaces
and interactions are usually the whole point of the
project.

Unfortunately, this has lead to a plethora of FTA’s
that have little or no technical value. This being
the case, many organizations have fallen into the
trap of performing FTA simply to satisfy a
contractual or management requirement.
Therefore, we see poor FTA leading to apathy
toward fault trees and hence, poorer FTA. The
true beauty and full potential benefits of FTA have
thus been lost on many organizations.

Myth Number 2. -- “Any Fault Tree Software
Will Work.” (The so-called good programs are
too expensive.): Don’t save software dollars and
waste engineering megabucks and, do not confuse

Allen Long; Beauty & The Beast – Use and Abuse of Fault Tree as a Tool

Provided as a free service by fault-tree.net 6 http://www.fault-tree.net

FTA software graphics with CAD or presentation
graphics packages.

Good fault tree software is expensive. No
program is good at everything. Programs with
poor input interfaces or unwieldy output
processing will soak up so much of an analyst’s
time that the most expensive of programs could
have been purchased. Unfortunately in today’s
budget arena, engineering resources are often
paid for out of a different pot of money than is
the software. Therefore, wasteful use of
engineering time occurs more than management
would admit. A good FTA software package in
the hands of a seasoned analyst can save the
company or government literally hundreds of
thousands of dollars in a single year. Compared
with some programs, one good analyst can do the
work of five or six engineers using an inferior
program.

Inexpensive programs I have tested usually are
not very useful for complex systems or large
trees. Often, additional site licenses and other
“ups & extras” bring programs up to the same
cost level as the more expensive varieties.
Expect to pay around $15,000 - $20,000 for a
good FTA program with several site licenses.
The cost will be more than made up if your
organization is serious about FTA. As large as
the cost may seem, the savings in engineering
hours can often be recovered on a single project.

Even if your organization is not going to perform
quantitative analysis, a good FTA program is
more than a fancy PowerPoint or AutoCAD.
Good FTA software utilizes a relational database
structure in referencing logic structure. This
allows developing trees to compare different
hardware configurations using the same basic
components and events quickly and easily.
Pruning, re-arranging, copying and replicating
logic is very fast. On large trees, replicating
“like” logic from one large branch to another
takes only a few minutes. The rearranging of the
tree to fit on the printout is done automatically.
Such input and rearranging of the entire tree to
print out can take many hours on poor FTA
programs or programs that are strictly graphically
oriented. Such programs require manually
cutting, copying, pasting and rearranging all
affected branches of a tree. It is one thing if you
can just add new events to the end or bottom of a
tree. If you have to add logic and additional

events in the middle of a large tree, manual
rearrangement can be a hair pulling exercise.

Good FTA software can be even more critical for
those organizations who support accident
investigations with FTA. Upper management is
almost always involved in such investigations.
The “Big Guns” want iterations of the Fault Tree
fast! It is difficult for an organization to blame
their software on why they cannot get (sometimes
relatively minor) Fault Tree changes out quickly.
This can be especially embarrassing (even
contract limiting) if management or the customer
has previously utilized other companies or
organizations to perform FTA using state-of-the-
art software! It has also been my experience, that
a failure investigation can often be used to an
organization’s benefit in providing the stimulus
for management to provide funding for an
expensive FTA program.

Also, a good program will properly perform cutset
analysis and minimize the cutsets. This is a
valuable function even if you are not going to
quantify the result. I CAN NOT STRESS THIS
ENOUGH! Unfortunately, I do not have
sufficient room to explain minimal cutsets in this
paper. However, cutsets and cutset analysis are
discussed in a section below. For purposes of this
paper, “cutset” will always refer to a “minimal
cutset” (All good programs automatically compute
the minimal cutsets).

Myth Number 3. -- “Anyone With Fault Tree
Software Can Develop Effective FTA”: Give me
a Stradivarius violin and I will play like Itzak
Perlman or, for you jazz fans, Jean-Luc Ponty.
Perhaps a more appropriate example would be to
give me a good music composition software
package. After a couple of weeks to learn the
software, I will compose every bit as good as
Beethoven or Bach…you think? – Enough said!

Building the Perfect Beast -- Tips, Tricks, and
Pitfalls of Performing FTA

Define the Top Undesired Event as Precisely and
Narrowly as Possible: Even though we’ve all
heard that the Top Undesired Event should be
properly, narrowly, and precisely phrased, this
fact is blown off by many fault tree analysts.
Usually, the wider the scope of the Top Undesired
Event, the less useful the tree. Although the scope
of the tree can be too narrow, this is rarely the
case.

Allen Long; Beauty & The Beast – Use and Abuse of Fault Tree as a Tool

Provided as a free service by fault-tree.net 7 http://www.fault-tree.net

There was a Solid Rocket Booster nozzle
anomaly on at least one of the shuttle flights.
This anomaly was very specific in that it
involved erosion in a geometric pattern. Initially,
the team developing the fault tree began the tree
with a Top Undesired Event of “Nozzle
Anomaly.” Neither the erosion, nor the
geometric pattern was mentioned. Consequently
the investigation team began floundering because
the tree was too broad in scope. There could be
hundreds of nozzle anomalies that had nothing to
do with the erosion. There could even be dozens
of anomalies due to erosion that would never
cause a geometric pattern. It was not until a
seasoned fault tree analyst (a non-team member)
suggested that the Top Undesired Event be
narrowed to include erosion and the geometric
pattern that the tree and the team began to focus
in on the actual problem.

Divide Your Tree Into Branches Dealing With
Scenarios That Can Lead To The Top Undesired
Event: Do not define the tree branches in terms
of failures. Failures belong near the bottom of a
branch, such as under what would cause a
component to fail to function. (Failure is usually
only one of several reasons something fails to
function properly). Immediately breaking the
tree into subsystems such as “Electrical” or
“Mechanical” failures is one of the most heinous
mistakes in creating a fault tree. It is also the
most commonly used method of developing a
fault tree. In fact this method is almost an
institution among many organizations that are
acquainted with fault trees and therefore believe
they too are fault tree analysts. By breaking a
fault tree into such sections, the analyst is led
down the path of “Failures.” You might as well
perform a FMEA. Furthermore, interfaces will
never be addressed in such a tree. Therefore the
item(s) which need the most scrutiny will most
certainly be omitted! The very reason many
organizations fall into this trap is because this
allows organizations to easily pigeonhole
categories by engineering disciplines. One of the
most compelling reasons to perform FTA in the
first place is to ensure the interfaces are not
“botched” up or will not cause problems due to
poor integration.

Let’s go back to our pneumatic valve example in
Figure 1. If we list the Top Undesired Event as
“Pneumatic Valve Failure” and list the main
branches as: 1) Pneumatic Valve Mechanical
Failure, 2) Pneumatic Valve Electrical Failure,

and 3) Mechanical Valve Structural Failure, your
tree will be very short. The tree will be a little
bigger if you consider the solenoid valve as
integral to the pneumatic valve (as is the case in
some solenoid operated valves packages). Using
“Pneumatic Valve Failure” as the Top Undesired
Event would not identify electrical or command
problems with the programmable controller or
pressure transducer. Nor would it identify loss of
electrical power, or loss of air supply to the
solenoid valve. If you were to consider the
solenoid valve as a separate package from the
pneumatic valve, you would likely not identify the
solenoid valve at all as part of the pneumatic valve
failure.

Chances are, you are actually interested in what
would prevent gaseous oxygen from flowing
through the pneumatic valve. So, in this example,
a more appropriate Top Undesired Event would
be “GOX Fails to Flow Through Pneumatic
Valve.” Figure 2 shows what such a tree,
organized into scenarios instead of “Failures”
might look like.

Remember, in dealing with components, failures
are only one part of how a component can
contribute or cause the Top Undesired Event. If a
switch failure (closed in this example) can kill us
all, so can inadvertent commanding of the switch
closed. In this instance, the switch being
commanded closed might be caused by some other
failure (which we would miss if we develop the
fault tree in terms of the switch failure). A person
manually flipping the switch closed will have the
same result! In this instance, flipping the switch
closed might be called out in the procedure as a
normal part of the operational sequencing.

So…What the Heck IS a Cutset? AND, What
Good Is It?

Let’s talk about Cutsets. Every paper and
explanation I’ve read, every seminar and training
class I’ve attended has done a poor job in
explaining the Cutset Analysis and Cutsets. In
every class, everyone’s eyes glaze over who has
never used cutsets in analyzing their trees. I will
attempt to provide a good explanation.

Before you decide to skip this section be advised:
If you use a cutset analysis on a fault tree, you are
more likely to find something in the design which
can cause a problem — something no one else has
discovered. In other words, the System Safety

Allen Long; Beauty & The Beast – Use and Abuse of Fault Tree as a Tool

Provided as a free service by fault-tree.net 8 http://www.fault-tree.net

Engineer can finally show the other engineering
groups that the safety engineer is worth
something after all – that we can do more than
push paper, kick tires and write papers about

fault trees (or endless derivations of hazards
analysis techniques)! The safety engineer has
often been likened to those people in the Middle
Ages who bayoneted the wounded after a battle
was over (sort of like management and
accountants). Cutsets give you an opportunity to
be at the forefront of the battle—to actually have
input into the design.

Are you excited yet? I thought so. Let’s go!

The easiest way to think of a cutset is that each
cutset is one scenario or set of events which
causes the bad thing at the top of the tree to
occur. Every tree has several cutsets, usually
many cutsets, often hundreds or thousands of

cutsets. A cutset can also be a single-point failure
or event. Examples of cutsets:

If pushing the button causes us all to die, then

“Pushing the Button” is one cutset in the fault tree.

If you have to remove the duct tape from a circuit
and jiggle the blue wire to kill us all, we have a
single cutset involving two events: 1) Removing
the Duct Tape, and 2) Jiggling the Blue Wire.”
Let’s call this cutset number two.

Different cutsets can also include different
combinations of the same events. For example: if
your tree shows that jiggling the blue wire and
turning the red knob will kill us all, we now have a
third distinct cutset, even though two of the cutsets
include “jiggling the blue wire.”

This may all sound very obvious. Well, it might
be – but only in a small system with a small fault

GOX Fails To
Flow Through
Supply Valve

(POV)

Supply
Valve

(POV) Fails
To Open

Figure 2

Supply
Valve

Mechanical
Failure
(Closed)

Pneumatic
Actuator

(ACT)
Fails

Closed

Supply
Valve
(POV)

Decoupled
From

Actuator

POV Jams
(Proper
Torque
From

Actuator)

Supply
Valve

(POV) Fails
Closed

Solenoid
(SOL) Coil

Failure
(Open /
Short)

Solenoid
Contact
Failure

(Corroded,
Broken,
Shorted)

SOV
Jammed /

Seized
(Proper
Torque

From Act.)

Solenoid
Valve

Decoupled
From

Actuator

Loss of
Facility
Power
Shuts

Down PC

Loss of
Power

Between
Solenoid &
PC (Wiring

Failure)

SOV
Solenoid

(SOL)
Electrical

Failure

Solenoid
Valve
(SOV)

Mechanical
Failure

Power Loss -
PC Can’t

Send “Open”
Power to

Solenoid Coil

PC Sends
“Close” Signal
(i.e., Removes
Power From

Coil)

Solenoid
Valve
(SOV)
Fails

Closed

Solenoid
Valve Not

Commanded
Open by PC

Air Not
Supplied to
Pneumatic
Actuator

No Air @
Solenoid

Valve
(Supply

Problem)

Command
Error Due to

Press.
Transducer

Failure /
Signal

PC
Command

Failure
(Operator
Error, PC

Fails)

Insufficient
GOX @
Supply
Valve
(POV)

Allen Long; Beauty & The Beast – Use and Abuse of Fault Tree as a Tool

Provided as a free service by fault-tree.net 9 http://www.fault-tree.net

tree. If you are analyzing a small system for
which the fault tree only takes up two or three
pages, you have either not developed the fault
tree correctly, or you shouldn’t be wasting your
time on this methodology. (The obvious
exception to this rule though is if management
insists on a dog-and-pony chart). In a large tree
for a complex system, these events may have
been buried deep into the system. The duct tape,
wire, and red knob may all be in branches
located several pages from each other! You
probably would not discover these combinations
without performing the cutset analysis.

OK, what does finding these cutsets do for you?

It is the cutset analysis that can reveal the
“Eureka’s!” in a system. If the logic and naming
convention are correct for the events, seemingly
unrelated items often show up together. Even
more striking, is that a system previously thought
of as completely redundant or independent, can
reveal single point failures which were not
evident during initial design or other analyses.
This is the main reason cutsets do not have to be
quantified to have value.

Let’s go back to our previous cutset example and
look at the blue wire. Say, jiggling the blue wire
shows up in 15 different cutsets. By controlling
the jiggling of the blue wire, you have made it
much less likely for any scenario involving the
blue wire to occur. If you bolt down the wire,
then all the scenarios would have to include: 1)
“Bolts Have to be Removed,” 2) “Jiggle the Blue
Wire,” and 3) “Remove Duct Tape,” (or “Turn
Red Knob…”). You have turned all 15 two-
point cutsets into 15 three-point cutsets; i.e., it
takes three things to occur instead of two for us
all to die!

In a tree large enough to have the blue wire show
up 15 times, the fact would be lost in the
branches without performing the cutset analysis.
Once a cutset analysis is performed, you can sort
the cutsets to show any recurring events. Since
the events in these cutsets may be buried deep
within the tree, you might very well be the only
one to find these events are even related! You
may have just saved the day.

Another example could include our doomsday
button. Before you laugh this off as a possibility,
remember the Vacu-Lift venting system
mentioned above. Usually, inadvertently cross-

tying two subsystems is not as dramatic or simple
as tying them directly to the same button (although
it can happen). A subtle design flaw or a sneak
that bypasses a safeguard (such as the “Arm”
button) is more often the case. Such an
occurrence happened on the Saturn program and
was discovered as part of a Sneak Circuit
Analysis. In this case a sneak bypassed the “Arm”
switch and would allow the rocket to be fired by
simply pressing the “Fire” button. A classical
fault tree could also be used to discover such a
flaw, if the tree is properly scoped and the analyst
uses a nomenclature that is consistent throughout
the fault tree.

Gate and Event Names Under Any Old Name Will
Not Smell As Sweet

This brings me to my last point. Consistent
Nomenclature is CRITICAL. An inconsistent or too
rigid numbering system for gates and events can
mean the difference between a tree that is sweet or a
tree that stinks. Before we go on, let me explain
what I mean by nomenclature. There are two
components to a fault tree when using a good piece
of FTA software: 1) description of what the failure
is; and 2) the gate or event name (or label if you
prefer). The name or label is what the software uses
to perform the Boolean Algebra in calculating the
cutsets. Labeling of the gates is not nearly as critical
as is naming of events. However, consistency in the
gates will allow you to replicate logic for similar but
different components or subsystems. Consistent and
logical nomenclature will also allow you to compare
cutsets for symmetry. This is important when
analyzing complex redundant systems. Looking for
symmetry help you discover where you accidentally
used an “AND” gate in place of an “OR” gate and
vice versa.

Nomenclature that forces you to label the tree based
on the tree structure will rarely allow you to find
events that occur in multiple branches of the tree. A
seasoned analyst might be able to structure the tree
to circumvent this problem on a simple system. An
example of this type of labeling would be the Work
Breakdown Structure (WBS), i.e., 1, 2, 1.1, 1.2, 2.1,
2.2, etc. Use of a WBS or similar nomenclature will
almost always force you into breaking the tree into
engineering disciplines or areas of responsibility.
This can be useful in assigning and tracking action
items for an accident investigation, but will rarely
provide adequate insight into a complex system.

Allen Long; Beauty & The Beast – Use and Abuse of Fault Tree as a Tool

Provided as a free service by fault-tree.net 10 http://www.fault-tree.net

If your naming convention is not consistent, single
contributors to multiple branches or failures in a
tree will be lost. For simplicity, let’s say “Switch
ABC fails Open (off)” contributes to 7 different
failure scenarios in the tree. However, these 7
branches were developed on different days. Day
one you give the failure a name of “Switch-abc-cl.”
The next day you give the same switch on a
different part of the tree the name “SW-ABC-
Closed.” The next day it’s “SW-ABC-CL” on
branch 3 and so on. When you run the cutset
analysis, the same switch would actually appear as
7 different switches (or however many different
names you gave to “Switch ABC Fails
Closed/Off”). At a minimum, this same switch
contributes to no fewer than 7 scenarios. One
inhibit or control (maybe even eliminating the
switch) might help in 7 different failure scenarios.
But, since you didn’t label the event consistently, it
looks like you have 7 different switches
contributing to 7 different failures. In such a case,
you might fail to suggest improvements/controls for
the switch because it doesn’t look like a major
player. “If we have to spend money fixing 7
different areas, we will accept the risk” --
something I’m sure you’ve never heard from
management.

Another common problem, which often causes
confusion, is related to nomenclature, but is more
often due to ignorance as to how the fault tree
works. In replicating logic from one part of a tree
to another, untrained analysts and neophytes often
use the same nomenclature for similar but different
components. For instance, say we have two
switches ABC, and DEF, which are exactly the
same type of switch but are physically different
switches. Instead of using “SW-ABC-Fails- Open”
and “SW-DEF-Fails-Open,” the analyst uses “SW-
Fails-Open” in both places. A cutset analysis on
this fault tree would show the same failure
contributing to several scenarios, when in fact the
failures are caused by different components. This
can be an egregious error if your system were to
have a bunch of different switches.

Conclusion

Performing FTA is a craft that requires the
proper tools and knowledge of logic structure
and systems design. Although there are many
ways to use FTA, in the space community few
trees are developed that fully utilize the power of
this excellent tool. To fully realize the FTA
potential, the analyst must: 1) properly (and

narrowly) define the Top Undesired Event, 2)
arrange the tree into scenarios rather than
“failures,” 3) use a consistent nomenclature to
prevent confusing multiple failures as one failure
or vice versa, and 4) use a computer program to
perform cutset analysis. Above all, the analyst
must be able and willing to work with a wide
variety of engineering disciplines and subsystems.
This includes the ability to see how the pieces fit
in a system and to properly analyze the
interactions at the interfaces.

Biography

Allen Long, Senior System Safety Engineer,
Hernandez Engineering, Inc., MSFC, AL 35812
USA, Telephone – (256) 961-1177, facsimile –
(256) 544-8022, e-mail – allen.long@fault-
tree.net

Allen Long is a Senior System Safety Engineer for
Hernandez Engineering, Inc. on the Safety and
Mission Assurance Contract at Marshall Space
Flight Center (MSFC). He specializes in hazards
analysis FTA for systems and process design. Mr.
Long is considered the MSFC resource person for
FTA and regularly performs FTA for
Development Programs as well as for existing
systems and mishap investigations. Past projects
have included X-33 Linear Aerospike Engine and
Ground Support Systems design, Chandra X-Ray
Telescope, Gravity Probe B, Transfer Orbit Stage,
Solar Thermal Flight Experiment (Shooting Star),
and the International Space Welding Experiment.
He has been responsible for FTA on the majority
of mishap investigations at MSFC for the past ten
years on programs including both Tethered
Satellite System (TSS) missions, Alternate
Turbopump, External Tank, Shuttle Main Engine,
and Test Stand Operations associated with several
programs. Prior to working at MSFC Allen
worked for the Hazards Analysis Department at
Thiokol in Brigham City Utah. While at Thiokol,
Allen co-developed Thiokol’s Handbook for
Performing Hazards Analysis, and performed
numerous hazard analyses and FTA. He was also
responsible for the fault tree effort for the
Peacekeeper Core Removal Fire Investigation at
Thiokol.

mailto:allen.long@fault-tree.net
mailto:allen.long@fault-tree.net

