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ABSTRACT 
 
There is a considerable amount of literature about image denoising using wavelet-based methods. Some new ideas 
where also reported using fractal methods. In this paper we propose a hybrid wavelet-fractal denoising method. Using a 
non-subsampled overcomplete wavelet transform we present the image as a collection of translation invariant copies in 
different frequency subbands. Within this multiple representation we do a fractal coding which tries to approximate a 
noise free image. The inverse wavelet transform of the fractal collage leads to the denoised image. Our results are 
comparable to some of the most efficient known denoising methods. 
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1. INTRODUCTION 
 
Denoising i.e. restoration of electronically distorted images is an old but also still a relevant problem discussed in the 
literature 2, 3, 4, 5, 6, 7, 8. There are many different cases of distortions. One of the most prevalent cases is distortion due to 
additive white Gaussian noise which can be caused by poor image acquisition or by transferring the image data in noisy 
communication channels. Early methods to restore the image used linear filtering or smoothing methods. These 
methods where simple and easy to apply but their effectiveness is limited since this often leads to blurred or smoothed 
out in high frequency regions.  
All denoising methods use images artificially distorted with well defined white Gaussian noise to achieve objective test 
results. Note however that in real world images, to discriminate the distorting signal from the “true” image is an ill 
posed problem since it is not always well defined whether a pixel value belongs to the image or it is part of unwanted 
noise. 
 
Newer and better approaches perform some thresholding in the wavelet domain of an image. The idea of wavelet 
thresholding relies on the assumption that the signal magnitudes dominate the magnitudes of the noise in a wavelet 
representation, so that wavelet coefficients can be set to zero if their magnitudes are less than a predetermined threshold.  
More recent developments focus on more sophisticated methods, like local or context-based thresholding in the wavelet 
domain 3, 4, 8. Some methods are inspired by wavelet-based image compression methods 3, 4, 5, 6, 8. A new approach to 
image denoising was proposed using fractal compression techniques for denoising. As fractal coding can be performed 
in the wavelet domain it is also possible to carry out the fractal denoising in the wavelet domain 9. The background of 
all these methods is based on the idea that denoising is a special case of lossy image compression. In this sense lossy 
image compression can be understood as image restoration. 
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In this paper we propose another way to combine fractal and wavelet-based methods inspired by 9. Here we use a non-
subsampled overcomplete wavelet representation of the image which combined with a modification of the conventional 
fractal coding approach. The major disadvantage of fractal image coders, their difficulty to encode finely structured 
image patterns will be used to for denoising images. Natural image structures possess similarities across resolution 
scales, which normally can be exploited for fractal image coding. Noisy structures however have no resemblance in 
other resolutions or other parts of the image and can therefore not be encoded using fractal coders. Encoding a noisy 
image with a fractal coder results in a good approximation of “natural” / self similar structures, whereas the noisy 
contents can not be described. Using conventional fractal coding schemes usually will lead to annoying blocking 
artifacts. This can be overcome if the fractal encoding is performed in the wavelet domain. This paper examines the 
ability to fractal denoise images using a non-subsampled overcomplete wavelet approach. Modifications to the standard 
fractal encoding scheme are described.   
Our results are comparable or better than some than some of the most efficient known denoising methods.  
The organization of the paper is as follows. In section 2 we describe the proposed algorithm and present the results in 
section 3. 

1.1. Fractal image coding 
Fractal image coding can be described as follows: The image to be encoded is partitioned into non-overlapping range 
blocks Y. The task of the fractal coder is to find a larger block of the same image (a domain block) X’ for every range 
block such that a transformation of the domain block is a good approximation of the range block (figure 1). The 
transformation consists of a geometrical transformation γ  and a luminance transformation λ . The geometrical 
transformation performs a lowpass filtering and sub-sampling followed by a position shift. The luminance 
transformation scales the intensities and changes the mean of the downscaled domain block X. The collage is the 
approximation that is obtained if all fractal transforms are applied to the original image. Fractal coding consist in 
finding a good collage that is very similar to the original image. Under the condition that these transformations are 
contractive, this set of transformations can iteratively be applied to any initial image which then will converge to the 
decoded image (the fractal attractor). Fractal encoding of images is lossy. Compression can be achieved if the set of 
transformations can be described more efficiently than the original pixel data. The error between the original image and 
the fractal collage will always be exceeded by the error of the decoded fractal attractor.  
 

 
Fig. 1: A fractal approximation of a range block Y through a transformed domain block X’ 

Smooth regions and edges are very self similar and can be coded efficiently by fractal coders. Irregular textures or noisy 
regions can not be approximated well, as they do not possess similarities across scales. This can be overcome by using a 
coding scheme with variable block sizes (e.g. quadtree partitioning) or hybrid coding approaches combining fractal 
coding with other coding techniques. Various optimizations of fractal coding schemes were performed. However as 
described in the next section, it turned out that fractal coding can be described as a mapping of coefficient-trees in a 
wavelet decomposition of an image. Fractal coding is nothing else but a wavelet coder with a very restricted mapping 
rule for coefficient (sub-)trees. This is one reason why other (non “fractal restricted”) wavelet coders outperformed pure 
fractal coding schemes 12. 



1.2. Fractal coding in the wavelet domain 
Under the partitioning constraint that every domain block is made up of an even number of range blocks conventional 
fractal coding can be described in the Haar-wavelet domain. The approximation of a range block through a contracted 
domain block in the spatial domain then can be described as the prediction (or extrapolation) of fine scale coefficients 
from coarse scale coefficients in the wavelet domain. The spatial contraction (lowpass average filtering and 
subsampling) corresponds to moving coefficients to the next higher frequency scale (figure 2). Now the decoding can be 
performed in a non-iterative way by consecutively extrapolating higher frequency coefficients from lower frequency 
coefficients. Fractal coding in the wavelet domain is not limited to the Haar-wavelet. The usage of smooth basis 
wavelets corresponds to fractal coding with overlapping range blocks in the spatial domain, thus avoiding blocking 
artefacts. 
A detailed description of the analogy of fractal coding in the spatial and the wavelet domain can be found in 10. The 
geometrical transformation consists in picking a wavelet coefficient-tree of a domain block X’ and to eliminate the 
highest frequency coefficients. This corresponds to a lowpass filtering and subsampling. Then this reduced coefficient-
tree X is mapped to the position of the coefficient-tree of the range block Y in the next higher frequency levels. The 
luminance transformation allows the values of the mapped coefficients to by multiplied by a scaling factor a. The mean 
of the range block to be changed or set by adjusting or setting one single (root) coefficient in the lowest frequency band.   
 

 
Fig. 2: Interpretation of fractal coding in the wavelet domain. The approximation of a range block Y  

 through a spatially contracted domain block X’ (left) can be done in the wavelet domain (right). 

1.3. Wavelet based denoising schemes 
The idea of wavelet thresholding relies on the assumption that the signal magnitudes dominate the magnitudes of the 
noise in a wavelet representation, so that wavelet coefficients can be set to zero if their magnitudes are less than a 
predetermined threshold. Donoho and Johnstone 11 proposed hard- and soft-thresholding methods for denoising, where 
the former leaves the magnitudes of coefficients unchanged if they are larger than a given threshold, while the latter just 
shrinks them to zero by the threshold value.  
However, the major problem with both methods and most of its variants is the choice of a suitable threshold value. Most 
signals show a spatially non-uniform energy distribution, which motivates the choice of a non-constant threshold. Since 
a given noisy signal may consist of some parts where the magnitudes of the signal are below the globally defined 
threshold and other parts where the noise magnitudes exceed that given threshold, methods relying on a globally defined 
threshold cut of parts of the signal, on the one hand, and leave some noise untouched, on the other hand. This 
observation led to the idea of a spatially adaptive threshold choice depending on the relationship of local energy 
(variance) of the observed signal and the noise variance.  
Chang et al. 3, 4 were the first to propose this kind of spatially adaptive wavelet thresholding for image denoising. Their 
method of selecting a spatially adaptive threshold is based on a context model, which involves neighboring coefficients 
of the wavelet decomposition for the estimation of the local variance. The authors extended this idea by using a more 
elaborate context model and by iterating the context-based thresholding process in the denoised wavelet representation, 
which led to significantly improved results 8. 



1.4. Fractal denoising 
Fractal denoising tries to use the fact that fractal coders can describe self similar structures across scales very well but 
do fail to approximate noisy structures. Consequently if a conventional fractal image coder is applied to a noisy image it 
will produce a noise reduction. The task of fractal denoising is to construct a fractal code for the noisy image such, that 
either the collage or the attractor is closer to the original noise-free image than the non encoded noisy image. Opposed 
to fractal compression no restrictions to the number or complexity of the transformations have to be made.  
The fractal code for the image to be denoised has to be constructed in such a way that the original image parts have to 
be preserved (approximated as well as possible) whereas all noisy components should be discarded. In order to achieve 
this, a careful choice of fractal encoding parameters has to be made. Figure 3 shows the influence of the block size of a 
fractal coder if applied to a noisy image. If the range block sizes are chosen to be large, then all noisy components will 
be removed, however the quality of the original image will also be degraded. A smaller range block size will improve 
the image quality. If the range block size is too small however, all details from the original image can be approximated 
well but now also the noisy components will be approximated, which brings back the noisy components leading to a 
lower overall quality. This example demonstrates the importance of a proper choice of the fractal encoding parameters, 
that need to be adapted to the image content and the amount of noise. A simple approach is to use a quadtree 
partitioning scheme. If some decision criterion (like the approximation error) is exceeded for a range block, then this 
block is split into four smaller blocks. Figure 3 (lower line, middle) shows the coding result of a quadtree partitioning 
with improved denoising results. However also this result is still far from being acceptable. In addition it should be 
observed how the image quality is severely affected by blocking artifacts if a fractal coder operating in the spatial 
domain is used for denoising.      
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Fig. 3: Comparison of fractal encodings of a noisy image using variable range block sizes (bs) 



Ghazel et. al. 9 proposed to estimate the fractal code of a noiseless image from a noisy image. If it is possible to 
determine this “noiseless code” then obviously the attractor will be very similar to the noise-less image. We will discuss 
our experiments and results concerning this idea in the next section. 
 

2. PROPOSED ALGORITHM 

2.1. Fractal denoising in the wavelet domain 
Like fractal image coding also fractal image denoising can be performed in the wavelet domain. This is an effective 
approach to avoid blocking artifacts in the fractal approximation. However if typical octave band wavelet 
decompositions are used, only a limited set of domain blocks is available leading to reduced coding efficiency. This 
again can be overcome by employing a non-subsampling overcomplete wavelet decomposition of the image.  
The usage of an overcomplete wavelet decomposition corresponds to the usage of a set of shifted images. If a fractal 
approximation is determined not only for one image but for all of these shifted versions, then an additional noise 
reduction gain is to be expected. If identical signals are superimposed by different statistical independent noise signals, 
then the addition of these noisy signals will lead to an attenuation of the noise as the wanted signals are correlated 
whereas the uncorrelated noisy signal attenuate each other.  
Fractal denoising suffers from two problems: some parts of the original signal are not approximated well, whereas some 
noisy parts are approximated by the fractal coder although they are not part of the wanted signal. Under the assumption 
that these both problems do occur in different regions in the set of the shifted images, the inverse wavelet transform 
which corresponds to the superposition of the images (shifted back) will reduce the noise and improve the 
approximation quality of the reconstructed image.  
To emphasize our approach two aspects shall be mentioned: Using an overcomplete wavelet decomposition even with a 
Haar-wavelet fractal coder no blocking artifacts will occur. In addition to our best knowledge the best denoising results 
are obtained using overcomplete wavelet decompositions, balancing the effects of uncertain thresholding of 
coefficients. 
One further advantage of the wavelet domain is the fact, that range blocks need not be restricted to the wavelet-
coefficient trees which correspond to the range blocks in the spatial domain. Our denoising scheme uses individual 
separate sub-trees in the three different frequency orientations (horizontal, vertical and diagonal direction).      
 

2.2. Estimation of noise-less fractal codes from a noisy image  
The task of a fractal coder is to approximate each range block (or a wavelet sub-tree) Yi by a scaled domain block Xj . 

jiji XaY ⋅≈  
In the noiseless case the optimal scaling factor aij is determined by 
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where E[] denotes the expectation value. The best fractal approximation is to choose the domain block Xj leading to the 
smallest squared L2 distance 
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In the presence of noise however, the domain and range vectors are distorted: 
NYYNXX +=+= ˆ;ˆ  

If a scaling factor â  is to be determined in the noisy image, the noise will affect the result.  
(sub-indices i and j are omitted for simplicity)   
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Under the independence assumption between the noise and the image signal, we have: 
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Ghazel et. al. 9  propose to recalculate the scaling factor of the noise-free case from the noisy image data: 
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Ghazel et. al. use this result to determine the collage error of the noise-less fractal code, which then can be computed 
using statistics from the noisy image. They claim that a significant improvement in fractal denoising can be achieved, if 
this modified scaling factor is used for the error criterion for the selection of the fractal code of the noise-less image: 

( ) 2222222 ]ˆˆ[2][]ˆ[][]ˆ[ ijijjijiij YXEaNEXEaNEYE −+++=∆  

We tried to verify this result, but could not determine any gain in the denoising behavior of the fractal coder. This may 
be due to the fact, that we might have used a wrong estimate for γ.  
However we think the calculation of the original scaling factor of the noise-less image from the noisy image has several 
problems: ∆2

ij still is dependent on the noise-free image (which is not available) as γ depends on E[X2] which cannot 
easily be estimated or measured. E[N2] the variance of the noise can be determined for the entire image, however it will 
be different for individual domain and range blocks especially if these blocks are small. A third problem occurs if 
domain and range blocks share some wavelet coefficients, because now the noisy part is correlated. This overlap 
happens quite often for fractal encoding. 
The result for the calculation of the noise-less scaling factor is rather unanticipated, as this means the scaling factor a 
can only become larger. However larger scaling factors advance the noise propagation to higher frequency bands. 
 
We modified our fractal denoising scheme in a different way. First we also perform an estimation of the variance of the 
corrupting noise. The estimation of the “real noise variance” is performed by using the robust median estimator in the 
highest subband (highpass filtered in both directions) of each of the four different ‘branches’ of the whole quadtree of 
subbands as proposed by Donoho et al. 5, 11.   
 
For the choice of the scaling factor a we distinguish two cases: If ]ˆ[YE (≈ the variance of the range block) is much larger 

than the estimated global noise variance 2ˆ Nσ ; then the influence of the noise can be neglected. If ]ˆ[YE  is smaller 
however, a large scaling factor could amplify the noise. We chose a modified scaling factor a~  as 
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Where K is a constant to be chosen, we found a value of K=3 to be a good choice. As collage error criterion for the 
selection of the fractal code we use 

( ) 2222222 ]ˆˆ[~2][]ˆ[~][]ˆ[ ijijjijiij YXEaNEXEaNEYE −+++=∆ , 

which is similar to the previous error selection criterion except for the modified scaling factor. Using this modification 
we observed a better denoising capability of the fractal coder. 

2.3. Choice of parameters 
We realized a fractal denoising scheme using a non-subsampled overcomplete wavelet representation with five wavelet 
decomposition levels for the domain blocks which corresponds to four decomposition levels for the range blocks. As 
wavelet filters we investigated the classical fractal Haar-, the Daubechies biorthogonal 9/7, and the Villasenor's 
biorthogonal 18/10-wavelet 1. For the subsampled wavelet representation in all cases the 18/10-wavelet outperformed 
the Haar-wavelet by a large amount and gave constantly little better results than the 9/7-wavelet. This difference 
between the filters is reduced in the case of the non-subsampled overcomplete wavelet representation. 
Range and domain sub-trees were treated independently in the different orientations. In the spatial domain the largest 
corresponding range block would have a size of 16 x 16 pixels. In the wavelet domain this domain block is represented 
by one DC-coefficient plus three individual sub-trees for each orientation, each containing 85 coefficients. The range 
sub-trees can be split using a quadtree partitioning scheme. Figure 4 (right) shows how a sub-tree is split into four 
smaller sub-trees. As splitting criterion we do not use the collage error, we found the variance of the range sub-tree to 
be a better splitting criterion. The maximum splitting depth can go down to single coefficients.      



 

              
Fig. 4.: left: Approximation of a range wavelet sub-tree Y through a domain sub-tree X of the same spatial orientation, the upper 

mapping shows part of a sub-tree that has been split, right: splitting of one sub-tree to one coefficient plus four new smaller sub-trees. 

As we use a non-subsampled overcomplete wavelet representation, fractal denoising has to performed for all branches 
of the wavelet quadtree. For a four level decomposition there are 256 images to be denoised. However this can be done 
very quickly as only a few suited domain sub-trees from a search region centered at the parent position of the range sub-
tree are examined (Figure 5 right). In our current implementation the search for appropriate domain sub-trees is limited 
to the same wavelet tree of a particular shift. 

      
Fig. 5.: left: non-subsampled overcomplete wavelet representation, right: Approximation of a range wavelet sub-tree Y  

through a domain sub-tree X of the same spatial orientation, only domain sub-trees from a search region are used. 

 

3. EXPERIMENTAL RESULTS 
 
Table 1 compares our proposed fractal denoising scheme to the fractal wavelet denoising scheme proposed by Ghazel 
et. al. 9. It should be observed, that the overcomplete non subsampled wavelet decomposition gives greatly improved 
denoising results, this at the cost of higher computation time.  
 

Table 1: Comparisons of fractal denoising techniques (Lena image σN = 25, PSNR = 20.17 dB ) 

 Haar  
overcomplete 

Haar  
subsampled 

18/10 
overcomplete

18/10 
subsampled Ghazel FW9 

PSNR 30.76 28.08 30.94 29.13 29.80 
RMSE 7.39 10.06 7.23 8.91 8.25 



             
noisy image  
σN = 25 
PSNR = 20.17 dB 

fractal denoised Haar-wavelet 
(subsampled) 
PSNR = 28.08 dB 

fractal denoised 18/10-wavelet  
(overcomplete) 
PSNR = 30.94 dB 

Fig. 6: Example images from table 1 

Figure 7 compares the results of our fractal-wavelet denoising scheme with other sophisticated context-based denoising 
schemes in the wavelet domain 4, 8. For the Lena image the results are comparable to the Chang denoising scheme, 
whereas for the Barbara image there is still an important gap between the results, which seems to come from the fact, 
that our splitting criterion does not detect the bad approximation of important high frequency coefficients. However it 
should be remarked that even our subsampled wavelet denoiser outperforms the classical Lee filter 2.   
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Fig. 7: Comparison with sophisticated non-fractal denoising schemes 



4. CONCLUSIONS 
 

We proposed a fractal denoising scheme operating in a non-subsampled overcomplete wavelet decomposition. 
Denoising results are significantly improved compared to a subsampled wavelet decomposition. For some images the 
denoising results are comparable to other state of the art wavelet denoisers. For other images there is still an important 
gap between the results. This is particular true for the Barbara image, which is related to the fact that better splitting 
criteria are needed in order to properly distinguish important signal components in the high frequency components.  
Further research will investigate such techniques. In addition instead of a top-down approach, also a bottom-up 
partitioning scheme could be useful. Further improved approximation results are to be expected if domains from trees 
from shifted images are possible, which is not yet implemented in our current approach.   
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