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ABSTRACT 
Although non-stationarity in the level of a time series is always tested (and there is a variety of tests for 

this purpose), non-stationarity in the variance is sometimes neglected in applied research. In this work, 

the consequences of neglecting variance non-stationarity in economic time series, and the conceptual 

difference between variance non-stationarity and conditional variance are discussed. An ad hoc method 

for testing and correcting for variance non-stationarity is suggested. It is shown that the presence of 

variance non-stationarity leads to misspecified univariate ARIMA models and correcting for it, the 

number of model parameters is vastly reduced. The implications of the tests for the hypothesis of weak 

form market efficiency (WFME) are discussed. More specifically it is argued that the usual 

autocorrelation tests are inappropriate when based on the differences of asset prices. Finally, it is 

shown how the analysis of outliers is affected by the presence of variance non-stationarity.  
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1. Introduction 
 

Although non-stationarity in the level of a time series can always be tested 

(and there is a variety of tests of this purpose), in applied econometric research, non-

stationarity in the variance is often neglected. In this paper the consequences of 

neglecting variance non-stationarity are discussed. The principal problems are that 

univariate ARIMA models in the presence of variance non-stationarity can be 

seriously misspecified, and any analysis of outliers (i.e. aberrant observations) is 

invalid. These problems have important implications as will be argued later. The 

approach followed is a practical one. More specifically, in order to show the serious 

misspecification that can arise in ARIMA models as a result of   the non-correction of 

variance non-stationarity, a time series of 3-month US government treasury bill rates 

for which a univariate ARIMA model has been suggested by Pindyck and Rubinfeld 

(PR henceforth, 1991), is reanalysed and a different model, in which variance non-

stationarity is taken into account, is suggested. In addition, the same data set is 

analysed using the programme TRAMO (Gomez and Maravall, 1996) which selects 

the ARIMA model in an automatic way. The effect of variance non-stationarity in the 

identification of the various types of outliers will be examined using the above-

mentioned series, as well as data on the consumer price index (CPI) for Greece. Once 

again, programme TRAMO will be used for this purpose. This analysis gives us the 

opportunity to make some additional remarks on the practical importance of variance 

non-satationarity on time series modelling. Finally the implications for autocorrelation 

tests of the hypothesis of weak-form  market efficiency (WFME) are mentioned.  

The rest of this paper is organised as follows: In section 2, some theoretical 

and practical aspects regarding non-stationarity are reviewed. The effect of variance 

non-stationarity on univariate ARIMA modelling is examined in section 3. Section 4 

is devoted to the study of the effect of variance non-stationarity on the selection of 

various types of outliers. In section 5, the implications for testing of the WFME are 

discussed. Some concluding remarks are offered in section 6. 
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2. Non-stationarity 
 

A stochastic time series is said to be strictly stationary if the joint distribution 

of any set of observations is unaffected by a change of time origin (Box and Jenkins, 

1976). If a non-stationary series can be made stationary by just differencing it k times, 

the series is called homogeneously non-stationary of order k. However, as Box and 

Jenkins point out (1976), there is an unlimited number of ways in which a series can 

be non-stationary. Explosive behaviour (i.e. unit roots of the characteristic equation 

inside the unit circle) and evolutionary behaviour (as, for example, in the population 

growth of bacteria) are two cases in which the time series cannot be made stationary 

by just differencing. In practice, strict stationarity is difficult to test. Instead, the so-

called weak or wide sense stationarity, which refers to moments up to the second 

order, is testable. The conditions for wide sense stationarity are that the mean and 

variance are constant, and that all autocovariances are a function of the time lag only 

(if the assumption of normality is accepted, wide sense and strict stationarity 

coincide). 

There is a plethora of methods available for testing non-stationarity in levels 

(e.g. the Dickey Fuller and Augmented Dickey Fuller tests (Dickey and Fuller, 1979; 

1981), the Phillips and Perron test (Phillips and Perron, 1988), the pattern of 

autocorrelation and partial autocorrelation functions and the pattern of the spectral 

density function (Box and Jenkins, 1976; Liu, 1988). However, non-stationarity may 

exist not only in the mean but also in the variance. Let Xt be a stochastic process. If 

VAR(Xt) is somehow functionally related to the mean level of Xt, it is possible to 

select a transformation G(*) such that: VAR(G(Xt))= constant. The most widely used 

transformations for this purpose belong to the class of the power Box and Cox 

transformations (Box and Cox, 1964), although alternative transformations have also 

been suggested (e.g. Granger and Hughes, 1971). The Box and Cox transformation is 

given by the following expression: 
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As Granger and Newbold (1977) note, although there are tests for variance non-

stationarity, visual inspection of the data always remains a reasonable way for 

variance non-stationarity to be detected. It must be emphasised that variance non-
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stationarity is different from conditional heteroscedasticity, the latter being expressed 

by ARCH or GARCH type models (Engle, 1982; Bollerslev, 1986). In conditional 

heteroscedasticity, although the conditional variance is time varying, the 

unconditional variance is constant1. By way of an example, let the simplest case of an 

ARCH(1) model be considered. Then: 

 );( 1 ttt ebXfX ��
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For the above model it is easily proved (e.g. Enders, 1995) that:  


� The unconditional mean of et is equal to 0;  


� The conditional variance of et is equal to 	 �� �1 1
2et  , i.e. it is time 

dependent; 


� The unconditional variance of et  is equal to �/(1-�1) , i.e. it is a constant. 

For such models the parameters of the conditional variance are simultaneously 

estimated with the parameters referring to the level of the series.  

From the methodological point of view, variance non-stationarity should be corrected 

before removing non-stationarity in levels2. 
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3. The effect of variance non-stationarity on univariate ARIMA 
modelling. 
 

The general form of an ARIMA(p,d,q)(P,D,Q)s model is given by the 

following expression: 

�(�)�(�)�t=�(�)�t +	 

where: 

 B is the backward shift operator (BnXt=Xt-n); 

s is the seasonality, if the model is seasonal; 

p,d,q are the orders of the autoregressive polynomial, differencing, and 

moving average polynomial, respectively; 

P,D,Q are the orders of the seasonal autoregressive polynomial, seasonal 

differencing, and seasonal moving average polynomial, respectively; 

 �(�) = (1-
1�-...........-
pBp)(1-�1Bs-…..- �PBsP)  

 �(�) = (1-�1�-...........-�qBq)(1-�1�
s-.........-�qBsQ)  

 	 is the mean level 

 �t is a white noise process  

�(�) = (1-�)d(1-Bs)D is the operator for regular and seasonal differencing.  

As a first example of a univariate model in which variance non-stationarity has 

not been taken into account, the model of PR (1991, example 15.1) will be 

considered. The time series is that of the monthly rates of 3-month US government 

treasury bills from January 1950 to June 1988. The plot of this series is shown in 

Figure 1, while Figure 2 shows the first differences (both taken from PR). Then, using 

the Box-Jenkins methodology (Box and Jenkins, 1976) and experimenting with 

several rival univariate ARIMA models, PR select the following ARIMA(12,1,2) 

model as the most appropriate: 

(1+.4211B+.4811B2+0.0928B3-0.2139B4-0.0777B5+0.2512B6 +0.1490B7 +0.1340B8  

-0.1556B9-0.0272B10-0.1171B11+0.1559B12)(1-B)Yt= 

= 0.0109 + (1+ 0.8562B + 0.6257B2)�t  

with LBQ(36) = 28.16. 

PR base their decision for the selection of the particular model mainly on the 

statistically insignificant value of the Ljung - Box statistic (LBQ) at the 5% level, 

which means that the hypothesis that the residuals of the model are white noise cannot 

be rejected. However, a univariate model with 15 estimated parameters (12 
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autoregressive coefficients, 2 moving average coefficients, and a constant) is not 

parsimonious, and parsimony is an essential requirement for a good model. Moreover, 

all parameter estimates must be statistically significant. The results of the re-

estimation of the model of PR by the method of backscating (Liu, 1988) are given in 

Table 1. As it is evident from the results, three of the estimated coefficients and the 

constant are not statistically significant at the 5% level. Possibly PR were interested in 

the significance of all the AR coefficients jointly. However, from the correlation 

matrix of parameter estimates which is given in Table 2 it is apparent that several 

correlations are high (e.g. between �1 and 
1) indicating the presence of problems of 

parameter redundancy often found in models where both autoregressive as well as 

moving average coefficients are considered.  

The autocorrelation and partial autocorrelation functions (ACF and PACF, 

respectively) of the series are shown in Figures 3 and 4 respectively. As is evident 

from these plots, there are several not statistically significant autocorrelation and 

partial autocorrelation coefficients up to lag 12, and that explains the statistical 

insignificance of the coefficients discussed earlier. On the other hand, there are 

several significant spikes in both plots at lags higher than 12, and the intention of PR 

to reduce the LBQ value is another possible explanation for their selection of AR 

components up to lag 12. The character of both the ACF and PACF is rather 

confusing and does not favour the selected model.  

The source of most problems in regard to the above model is the fact that PR 

did not take into account variance non-stationarity, which from Figure 2 is most likely 

to be present. PR in a subsequent chapter of their textbook use this model as part of a 

combined time series-regression model (chapter 18), where in a footnote they quote 

for the residuals of the model that “the residuals do, however, exhibit 

heteroscedasticity. One could correct for this when estimating the model, but we have 

not chosen to do so”. Although it is acknowledged that PR did not dealt with 

heteroscedasticity for pedagogic purposes, their decision has far more serious 

consequences than their footnote implies. The lack of homogeneity in the variance 

distorts the variance, as well as the autocovariances of the time series, and terms that 

differ from previous or subsequent ones substantially, tend to be correlated with each 

other, even if they are several lags apart, possibly resulting in statistically significant 

coefficients at some of these lags. Such problems lead to overparameterised models. 
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Weiss (1984) showed that ignoring conditional heteroscedasticity would also result in 

a similar situation, i.e. an overparameterised ARMA model.  

From Figures 1 and 2 it may be seen that when the 3-month treasury bill rates 

rise, so does volatility. In practice the dependence of volatility on the mean level is 

examined using the so-called range-mean regression3 (Gomez and Maravall, 1996). 

This method does not reveal the particular functional form of the relationship between 

variance and mean, but, due to its robustness, is considered suitable when the size of a 

particular time series realisation is relatively small. The logarithmic transformation is 

used in all cases where the regression coefficient for the mean in the range-mean 

regression is statistically significant.  

For relatively long realisations, as the one under analysis, the following 

alternative methodology is suggested:  

1) The series is sliced into sections of equal length and the mean of each 

section ( Mi) is calculated.  

2) For each section the existence of a time trend is examined. For those cases 

where a trend is present the corresponding sections are detrended. 

3)  The standard deviation in each section (SDi) is estimated.  

4) A relationship of the form SDi = �Mi
�ui is assumed. 

5) �,� in the above relationship are estimated using the regression: 

 log(SDi) = log� + �log(Mi) +�i  

6) From the estimated value of � the transformation that stabilizes the variance 

can be derived (e.g. if �=1, the variance stabilizing transformation is the 

logarithmic, if �= 0.5, the suitable transformation is the square root, etc, see 

Mills, 1991). 

The advantage of this methodology over the range-mean regression is that it is 

suggestive regarding the identification of the particular functional form between mean 

and variance4.  

The estimates of the coefficients of the linear regression of log(SDi) against 

log(Mi) are shown in Table 3.The estimated value of � (0.83) is closer to 1, rather than 

to 0.5, suggesting the log transformation. Figure 5 shows the scatterplot of the local 

mean levels against the local standard deviations, which provides a visual inspection 

of the linear relationship between local mean and local standard deviation. The 

correlation coefficient was found to be 0.82. On the other hand, the correlation 

coefficient between the local mean and the local variance was 0.77 and the 
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corresponding plot (not shown) showed a less profound linear relationship than in the 

case of local mean and local standard deviation. Hence, the log-transformation was 

used to stabilise the variance5.  

The patterns of ACF and PACF for the first differences of the log-transformed 

series are shown in Figures 6 and 7 respectively. It is clear from these figures that a 

much smaller number of parameters is necessary, and as a matter of fact the pattern of 

both the ACF and PACF are a little more suggestive in regard to the underlying 

stochastic process. In Figure 6, there is a significant correlation of lag one of the ACF, 

while, in Figure 7, in the first few lags of the PACF a pattern of a damped sinus wave 

is recognisable. This clearly suggests a moving average process of order one (see Box 

and Jenkins, 1976 p.70 for a theoretical justification). Further, the two significant 

correlations at lags 6 and 7 in the ACF and the significant correlation at lag 6 in the 

PACF suggest an autoregressive process. Finally, from the significant correlations at 

lags 18 and 19 in the ACF and at lag 17 in the PACF, a specific process cannot be 

uniquely identified, but the high lags of these autocorrelations may be attributed to the 

existence of extreme values (outliers), which have not been smoothed out with the 

log-transformation. No correction of outliers was made at this stage for the sake of 

comparability with the model of PR. Although it is also possible that such 

autocorrelations at high lags are a result of remaining stationary autoregressive 

conditional heteroscedasticity6, a simple reason for this large-lag significant 

autocorrelation may just be the dependence of the autocorrelation estimators on the 

same time series. 

Based on these comments, models with four or three parameters were 

estimated and several of them were found to be adequate. Based on the minimum 

value of both the Akaike information criterion (Akaike, 1973) and Schwartz bayesian 

criterion (Schwartz, 1978) a multiplicative 3-parameter model was selected. 

Parameter estimates are presented in Table 3. Figure 8 shows the ACF of the residuals 

of the model. It can be seen that there is a significant coefficient at lag 7. However, at 

the 5% significance level, purely by chance, it is expected that 1 in 20 lags is 

significant. Alternatively this significant autocorrelation may again be attributed to the 

distorting effect of outliers. The values of the LBQ statistic at lags 24 and 36 are 

approximately 27 and 35 respectively. Both values are not significant at the 5% level. 

Hence, for the purposes of this work the residuals can be considered as white noise. (It 



 9

is possible that higher order dependencies (ARCH effects) may be present in the 

residuals but such a case was not examined). 

From the above analysis it is clear that by just transforming the data to obtain 

variance stationarity the result is really remarkable. The number of model parameters 

has been reduced from 15 to only 3. Needless to say the economic interpretation 

implied by the new model dramatically differs from that implied by the model of PR. 

In the 15-parameter model, changes in 3-month treasury bill rates depend on the 

changes of all the 12 previous months as well as the shocks of the last two months. 

The revised model implies that percentage changes in 3-month treasury bill rates 

(which are approximately equal to the logarithmic differences of the rates) depend 

mainly on the previous month’s shock of percentage changes and, to a lesser extent, 

on percentage changes of 6 lags (months) apart. 

In the above analysis the classical model building procedure of identification - 

estimation -diagnosis - metadiagnosis, proposed by Box and Jenkins (1976) was used. 

As an alternative to the above model building procedure, in which the role of the 

analyst is crucial, an additional analysis was performed using the TRAMO 

programme (Gomez and Maravall, 1996). This programme can suggest an ARIMA 

model automatically, but the orders of the regular autoregressive and moving average 

polynomials are restricted to up to 3 and those of the seasonal ones to 1. The 

programme offers the possibility of identifying automatically three types of outliers, 

using the methodology proposed by Box and Tiao (1976) and developed further by 

Tsay (1986), Chang et al. (1988) and Chen and Liu (1993) and modifying the value of 

the corresponding observations. More specifically, the TRAMO programme 

discriminates among three types of outliers according to their effect on a time series: 

(i) additive outliers (AO) which affect only a single observation of the series (ii) level 

shifts (LS) which imply a step change in the level of the series and (iii) transitory 

changes (TC) the effect of which is not extinguished in the next observation, as is the 

case with the additive outliers, but damps out gradually over a few periods.  

At first, TRAMO, using the result of a range-mean regression, log-transforms 

the data. Without any correction for outliers TRAMO failed to identify a model with 

acceptable diagnostics, as it cannot incorporate higher order autoregressive and/or 

moving average processes. When outlier detection and correction was chosen as an 

option, a seasonal ARIMA(0,1,1)(0,1,1)12 model was suggested with acceptable 

diagnostics. However, this was made possible only after the value of 16 observations 
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changed as they were detected and corrected as outliers7. However, the nature of the 

data (interest rates) does not suggest a seasonal model. Again such a model was 

chosen by the programme as this was the only way for higher order processes to be 

included in the model. Higher order processes, however, are often found in ARIMA 

models for interest rates (e.g. Mills, 1991, example 15.1).  

 

4. The effect of variance non-stationarity on the analysis of outliers. 
 

The most interesting part of the analysis with TRAMO in the previous section 

refers not to the model itself but to the selection of outliers. The order of the 

observations (year, month) selected as outliers, as well as the type of outlier 

corresponding to each of them are shown in Table 5. From the results of Table 5 it is 

very remarkable that most of the outliers are centred in the first part of the series (i.e. 

during the 1950s), rather than during the 1980s, as one would expect looking at Figure 

2. This is another important effect that the variance stabilising transformation incurs 

and should be taken into consideration particularly if someone tried to give any 

meaning to the outliers. Indeed, if the data are analysed without being log-

transformed, most of the outliers are concentrated in the latest part of the series. 

Although, the large number of outliers detected by TRAMO may again be attributed 

to the fact that the programme is not capable of incorporating higher order (>3) 

stochastic processes in an ARIMA model, the main argument (dependence of outlier 

detection on the variance stabilising transformation) does not change.  

In order to provide further evidence of the effect of variance non- stationarity 

on the selection of outliers, the series of the CPI for Greece (monthly values from 

January 1970 to December 1990) was also used. The CPI series itself is shown in 

Figure 9, and the series regularly and seasonally differenced in Figure 10. From 

Figure 10, it is obvious that the series is variance non-stationary. However, at first an 

ARIMA model was created, using TRAMO, without taking into account variance 

non-stationarity. TRAMO selected an ARIMA(0,1,3)(1,1,0)12 i.e. a multiplicative 

seasonal model. The parameter estimates are given in Table 6. The basic diagnostics 

for the residuals (i.e. no linear dependencies in the residuals indicated by LBQ below 

the critical value and no statistically significant correlations at low-lags) denote an 

initially acceptable model. The outliers found, as well as their type, are listed in Table 

7.  
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When non-stationarity in the variance is taken into account, and following the 

same procedure as in the previous section, it is found that the logarithmic 

transformation must be used to stabilize the variance. In this case (log-transformed 

data) TRAMO selected an ARIMA(1,1,1)(0,1,1)12 model. The parameter estimates for 

this model are shown in Table 8. Again in comparison to the model for the CPI 

without the logarithmic transformation the number of parameters has been reduced 

from 4 to 3. However, the number of observations that had to be characterised as 

outliers in the first case was much larger than in the second case. Indeed, the outliers 

identified in the second case (log-transformed data) and their characteristics are listed 

in Table 9. A comparison of the results in Tables 7 and 9 shows that a completely 

different set and type of outliers is selected, after the data have been log-transformed. 

Without the log-transformation all (seven) outliers are located in the latest part of the 

series. Using the log-transformation, the only two outliers (level shifts) are located in 

the early part of the series. 

 

5. Implications for the autocorrelation tests for the WFME 

hypothesis. 
 

The hypothesis of efficient markets states that security prices fully reflect all 

available information (Fama, 1970). For the case of WFME the available information 

confines to the past history of prices. To make the hypothesis of WFME empirically 

testable it is first assumed that equilibrium conditions can be expressed in terms of 

expected returns. The expected returns are determined adopting a pricing model, 

hence, the test of WFME is in fact a joint test of WFME and the pricing model. If the 

adopted model is that of constant expected returns, in this risk-unadjusted framework 

it makes sense to perform tests for autocorrelation in the security returns8. Granger 

(1975) argues that the conclusion about the statistical significance of the 

autocorrelation coefficients is the same and does not depend on whether the first 

differences of prices, or the first differences of the logs of prices (which are the 

continuously compounded rates of return) are used. Elton and Gruber (1995) quote a 

comprehensive list of results from autocorrelation tests performed by several 

researchers, in which the first differences of either the prices or the logs of prices are 

used. From the analysis of the previous sections it is clear that such tests are valid 
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only under the condition of variance stationarity in the series of first differences of 

prices. If this is not true, then the significance testing of the autocorrelation 

coefficients is invalid, as already shown. Variance non-stationarity in the first 

differences of prices is naturally expected for the following reason: if the model of 

constant (or near constant) expected returns is assumed, then when prices are 

comparatively higher (lower), so are price changes so as the returns are kept constant. 

Hence, the first differences of prices (price changes) are proportional to the mean 

level (prices) and consequently the variance is functionally related to the mean level. 

As the series of prices is in the vast majority of cases non-stationary of order one (in 

the first moment), prices are free to wander extensively and, hence, the variance is 

non-stationary. Consequently, autocorrelation tests cannot be applied to price 

changes. 

 

6. Conclusions 
 

In this paper three approaches to modelling variance non-stationary time series 

were examined. It was shown that neglecting variance non-stationarity may result to a 

serious distortion of a univariate time series model, and, inevitably, to a 

misconception of the underlying stochastic process and incorrect economic 

interpretation. Aside from a visual inspection of the original non-stationary series and 

its differences, statistically significant correlations scattered irregularly at different 

lags in both the ACF and PACF is another indication of variance non-stationarity and 

the analyst should consider the possibility of transforming the data, using a suitable 

transformation, before modelling the series. Although ad hoc and simple in nature, the 

method of splitting the series into sections of equal length and exploring qualitatively 

the possibility of a relationship between the means and the corresponding variances 

works well in revealing the existence and the character of variance non-stationarity. 

This ad hoc method, however, needs to be improved further, inasmuch as the 

separation of the series into sections of equal length is, to an extent, arbitrary and a 

subjective method is required.  

In addition, it was shown that variance stationarity is a crucial prerequisite for 

outlier analysis, and the identification of outliers of any type as well as any economic 

significance, which might be assigned to them, is invalid if this is not the case. The 

variance stabilising transformation should precede the search for outliers9.  
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As time series of asset prices are in most cases non-stationary and, hence, 

prices can wander extensively, in a framework of constant (or nearly constant) 

expected returns, prices are variance non-stationary, as price changes must be 

proportional to prices. Hence, price changes for autocorrelation tests for WFME 

should not be used. The log transformation, which is applied to asset prices before 

differencing, to a certain extent, stabilises the variance in the series of prices and then 

attention focuses directly on the modelling of (stationary) conditional variance of the 

returns in conjunction with the model for the returns themselves. However, this is not 

the case with interest rates and this is why in this work attention initially focused on 

the stabilisation of the unconditional variance. Of course after a suitable 

transformation has made the (unconditional) variance stationary, models for the 

conditional variance can be considered. This work, as mentioned previously, has been 

restricted to the unconditional variance only.  

Finally, it is very important to note that as series which are variance non-

stationary cannot have a proper autoregressive representation, if these series are not 

corrected for non-stationarity in the variance, any econometric methodology which is 

associated with autoregressive representation (VAR, ADF test, cointegration tests) 

cannot be legitimately applied using such series. 
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Endnotes 
 
1. The special case of an integrated GARCH (IGARCH) process where volatility 

persists may need further investigation in regard to this aspect. It has been shown 

(Nelson, 1990) that, unlike the usual random walk, the process is strictly stationary, 

but its unconditional variance is infinite. 

2. An alternative procedure has been suggested by Nelson and Granger (1979) in 

which the value of  is simultaneously estimated with the values of the model 

parameters. 

 3. Robustness could possibly be better assured by performing a range-median, rather 

than a range-mean regression. 

4. More generally, it can be assumed that changes in the variance of a time series may 

be attributed to the fact that the stochastic process responsible for the evolution of the 

series is not unique so that different processes act over different subsamples. Such 

differences in “regime” may be accounted for by using another variable (Hamilton 

1994; Hamilton and Raj 2002), which is also random. While this more general 

framework is appealing, the methodology proposed here is preferred if changes in the 

variance are assumed to be functionally and, hence, systematically linked to changes 

in the mean level and this statement is confirmed empirically.  

5. It must be noted at this point that before the application of the log-transformation it 

was checked that there were no zero values in the original series. In general for series 

of rates of returns the log transformation is usually applied in the series 1+Yt instead 

of the series Yt itself. 

6. Another possibility for the appearance of significant spikes at high lags of the ACF 

of a time series, which, however, is not the case here, is when the series is not 

invertible (i.e. having a zero in its spectra). This occurs for instance in some cases 

when the series is filtered with a linear filter. A classic example is the seasonally 

adjusted series (Maravall, 1995).  

7. The default parameters of the programme for outlier detection were used. 

8. Caution is needed when forecasts of the originally observed series are required (see 

Nelson and Granger, 1979). 

9. Sometimes practitioners apply such tests in a rather mechanistic way without much 

consideration of the assumptions under which the results of the tests are meaningful. 

Statistically significant correlations do not necessarily mean that the WFME 
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hypothesis is rejected, as what is really being tested is the joint hypothesis of 

efficiency along with the pricing model (constant expected returns). Moreover, even if 

statistically significant correlations are found and the model of constant expected 

returns is not rejected, these statistically significant autocorrelations may be attributed 

to frictions in the trading process (Cohen et. al 1980). In fact, frictions in the trading 

process lead to a distinction between observed returns, which reflect the frictions, and 

true returns, which are unobservable and would reflect a frictionless market (Cohen 

et. al 1980). True returns may be uncorrelated, even though observed returns are 

correlated. 
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Table 1 

Summary of the ARIMA(12,1,2) model of Pindyck and Rubinfeld 
Type  Order Estimate t-ratio 

MA 1 -0,80 -5,33 

MA 2 -0,61 -4,55 

AR 1 -0,37 -2,40 

AR 2 -0,48 -4,65 

AR 3 +0,10 +1,55 

AR 4 -0,21 -3,46 

AR 5 +0,08 +1,42 

AR 6 -0,26 -4,50 

AR 7 -0,13 -2,05 

AR 8 -0,13 -2,01 

AR 9 +0,15 +2,70 

AR 10 +0,02 +0,33 

AR 11 +0,12 +2,44 

AR 12 -0,18 -3,21 
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Table 2 

Correlation Matrix of Parameter Estimates for the ARIMA(12,1,2) model 

of Pindyck and Rubinfeld (estimation by backkasting method). 
 �1 �2 �1 �2 �3 �4 �5 �6 

�1 1000        

�2 0,695 1000       

�1 0,95 0,68 1000      

�2 0,266 0,786 0,332 1000     

�3 0,031 -0,369 0,127 -0,257 1000    

�4 0,259 0,403 0,236 0,487 0,138 1000   

�5 0,173 0,151 0,214 0,089 0,314 0,405 1000  

�6 -0,321 -0,132 -0,328 0,085 -0,09 0,322 0,281 1000 

�7 0,457 0,19 0,481 -0,018 0,279 0,06 0,447 0,09 

�8 0,382 0,528 0,406 0,493 -0,141 0,375 0,102 0,273 

�9 -0,167 -0,037 -0,13 0,133 0,136 0,061 0,178 0,064 

�10 -0,371 -0,405 -0,391 -0,261 0,182 0,042 -0,016 0,287 

�11 -0,088 -0,003 -0,114 0,009 -0,03 0,168 0,193 0,057 

�12 -0,554 -0,344 -0,575 -0,142 -0,13 -0,063 0,011 0,333 
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Table 3 

Estimation of the model: log(SDi) = log� + �log(Mi) +�i 

Coefficient Estimate t-ratio 

� -1.43 -5,08 

� 0.83 4.55 

 

 

Table 4 

Summary of the 3-parameter model  

A. Correlation matrix of parameter estimates 

 �1 �6 �19 

�1 1,00   

�6 -0,03 1,00  

�19 -0,03 -0,02 1,00 

 

B. Estimation of the parameters (backcasting method) 
Type Order Estimate t-ratio 

MA 1 -0,43 -10,06 

AR 6 -0,20 -4,33 

AR 19 -0,11 -2,40 
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Table 5 

Detected Outliers and their type 

Observation Date Type 

 Month Year  

104 8 1958 LS 

98 2 1958 LS 

365 5 1980 LS 

105 9 1958 LS 

126 6 1960 LS 

296 8 1980 TC 

366 6 1980 TC 

363 3 1980 AO 

377 5 1981 AO 

392 8 1892 LS 

383 11 1981 LS 

46 10 1953 LS 

49 1 1954 LS 

50 2 1954 AO 

286 10 1973 AO 

64 4 1955 LS 
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Table 6 

Estimation of the ARIMA(0,1,3)(1,1,0)12 model  
Type  Order Estimate t-ratio 

MA 1 0.56 8.64 

MA 2 0.14 2.00 

MA 3 0.31 4.77 

AR 12 0.35 4.90 

   LBQ(24) in residuals= 32.1 

 

 

Table 7 

Detected Outliers and their type 

Observation Year Type 

 Month Year  

245 5 1990 LS 

213 9 1987 AO 

225 9 1988 AO 

210 6 1987 AO 

193 1 1986 AO 

162 6 1983 LS 

246 6 1990 LS 
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Table 8 

Estimation of the ARIMA(1,1,1)(0,1,1)12 model  
Type  Order Estimate t-ratio 

MA 1 -0.61 -6.87 

MA 12 -0.79 -14.53 

AR 1 -0.87 -16.10 

   LBQ(24) in residuals= 12.2 

 

 

Table 9 

Detected Outliers and their type 

Observation Date Type 

 Month Year  

47 11 1973 LS 

109 1 1979 LS 
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FIGURE 1:3-MONTH US GONERNMENT TREASURY BILL RATES 
(MONTHLY VALUES)
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FIGURE 2: FIRST DIFFERENCES OF 3-MONTH US TRESURY BILL 
RATES
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FIGURE 3: PLOT OF ACF. FIRST DIFFERENCES OF THE ORIGINAL 
SERIES. DASHED LINES REPRESENT 95% CONFIDENCE INTERVAL
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FIGURE 4: PLOT OF PACF. FIRST DIFFERENCES OF THE ORIGINAL 
SERIES 
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FIGURE 5: SCATTERPLOT OF THE LOCAL MEAN LEVEL AGAINST 
LOCAL STANDARD DEVIATION
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FIGURE 6:PLOT OF ACF. FIRST DIFFERENCES OF THE LOG-
TRANSFORMED SERIES
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FIGURE 7: PLOT OF PACF. FIRST DIFFERENCES OF THE  LOG-
TRANSFORMED SERIES
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FIGURE 8: PLOT OF ACF. RESIDUALS OF THE 3-PARAMETER 
MODEL.
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FIGURE 9: PLOT OF CPI FOR GREECE
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FIGURE 10: PLOT OF THE FIRST REGULAR AND SEASONAL DIFFERENCES OF CPI 
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