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Abstract. This paper describes an evolution of the 3store RDF storage
system, extended to provide a SPARQL query interface and informed by
lessons learned in the area of scalable RDF storage.

1 Introduction

The previous versions of the 3store [1] RDF triplestore were optimised to pro-
vide RDQL [2] (and to a lesser extent OKBC [3]) query services, and had no
efficient internal representation of the language and datatype extensions from
RDF 2004 [4].

This revision of the 3store software adds support for the SPARQL [5] query
language, RDF datatype and language support. Some of the representation
choices made in the implementation of the previous versions of 3store made
efficient support for SPARQL queries difficult. Therefore, a new underlying rep-
resentation for the RDF statements was required, as well as a new query en-
gine capable of supporting the additional features of SPARQL over RDQL and
OKBC.

2 Related Work

The SPARQL query language is still at an early stage of standardisation, but
there are already other implementations.

2.1 Federate

Federate [6] is a relational database gateway, which maps RDF queries to existing
database structures. Its goal is for compatibility with existing relational database
systems, rather than as a native RDF storage and querying engine. However,
it shares the approach of pushing as much processing down into the database
engine as possible, though the algorithms employed are necessarily different. A
SPARQL front-end is under development.



2.2 Jena

Jena [7] is a Java toolkit for manipulating RDF models which has been developed
by Hewlett-Packard Labs. It has largely complete support for SPARQL features
over the in-memory store provided by the Jena engine.

There is also a SQL back-end available, sparql2sql, though it is not as com-
plete an implementation of the SPARQL specification and it does not perform
as much processing in the database engine as the technique described in this
paper.

2.3 Redland

The Redland Framework [8] also has substantial support for SPARQL queries
over its in-memory and on-disk stores, but does not have a query engine that
translates into relational expressions in the way that 3store and sparql2sql do.
3store uses the RDF parser and SPARQL query parser components from Red-
land, which were a great help in reducing the implementation effort.

3 The Design of the 3store RDF knowledge base

The overall architecture of this version of 3store (version 3) is broadly based on
the previous versions. The basic design, in which the RDF query expressions are
transformed to an SQL query expression containing a large number of simple
joins across a small number of tables has been shown to perform and scale
well [9].

3.1 Platform

For scalability and portability reasons the software is developed for POSIX com-
pliant UNIX environments in ANSI C. C is efficient and can easily be interfaced
to other languages such as PHP, Perl, Python, C++ and Java.

The license chosen was the GNU General Public License [10]. A Free Soft-
ware license, that allows free distribution under certain conditions. Although a
significant portion of 3store consists of libraries, the decision was made to license
it all under the General GPL, rather than the Lesser GPL. This should not cause
problems to proprietary software as there are non-library interfaces to the query
and storage engine.

As in previous versions of 3store, MySQL was chosen as the sole persistent
back-end. Although the MySQL optimiser is not particularly sophisticated it has
already be shown in 3store versions 1 and 2 to be adequate for optimising RDF
graph matching queries of the form produced by the 3store query translator.



3.2 Three layer model

The existing RDF engines that support medium sized knowledge bases and
database back-ends (such as Jena and Redland, discussed in Sections 2.2 and 2.3
respectively) mostly evaluate queries in the RDF part of the engine, rather than
in the underlying database. We believe that this misses an opportunity to let the
database perform much of the work using its built-in query optimiser (based on
its understanding of the indexes). Our experiences from the previous versions of
3store indicated that this can quantitatively reduce query execution times.

The 3-layer model of HYWIBAS[11] and SOPHIA[12] is used to perform
multi-level optimisations, and enable efficient RDBMS storage. Like SOPHIA,
and unlike HYWIBAS, 3store uses a unified storage mechanism for both classes
and instances, in part due to the underlying RDF syntax of RDF Schema.
3store’s layers can be characterised as RDF Syntax, RDF Representation and
Relational Database System, which are comparable to HYWIBAS’ Knowledge
Base System, Object Data Management System and Relational Database Sys-
tem.

RDF Syntax
RDF/XML
or N3

RDF Representation   
Triples

                 
Relational
Database
System

Fig. 1. 3store’s RDF adaptation of the 3 layer model, after Norrie et al. [11]

4 RDF–SQL Mapping

The mapping between RDF and SQL has been changed since the previous version
of 3store. In the previous version resources (URIs) and literals were kept in
separate tables, requiring the use of outer joins to return values. Resources and
literals are now kept in a single table, which allows inner joins to be used to
return values, at the cost of a larger table.



4.1 Hashing function

Resources and literals are internally identified by a 64 bit hash function. This
is used so that string comparisons can be kept to a minimum and to reduce the
storage requirements per statement.

Discrimination As before a portion of the MD5 function [13] is used for it’s
efficiency and universality (a hash function is universal if it has the property that
the probability of a collision between keys x and y when x 6= y is the same for
all x and y [14]). However recent concerns over MD5’s security [15] suggest that
it may be better to seek out a hash function that provides greater protection
from the possibility of hash collisions where security is a concern.

In order to allow the URI <http://aktors.org> to be easily distinguished
from the literal string "http://aktors.org" the hash space is divided into two
segments. Literals occupy the lower half of the 64 bit hash space and URIs
occupy the upper half, such that hash(literal(x)) & 263 = hash(uri(x)).

Additionally the literal hash values are modified by applying the bitwise
exclusive-or operator to bit ranges of the literal hash and the integer identifier of
the datatype and language. This ensures that that hash value for an integer literal
"100" is distinct from the float, string etc. literals with the same lexical form,
"100". This stage is not strictly necessary, but it facilitates certain comparisons
and joins we wish do do in the query language, and enables some optimisations.

Collisions The system detects colliding hashes for differing RDF nodes at as-
sertion time. Though there is no obvious way to recover from this state, it is
possible to warn the user and reject the RDF file containing the colliding hash.
This could potentially happen though a pair of URIs engineered to collide. With
the current state of the art in MD5 collisions they would both have to be at least
1024 bytes long [15], and it would take an extensive search to find a colliding
pair that contained only characters that were legal in URIs.

The “Birthday Paradox”1 gives the probability of an accidental hash collision
occurring anywhere in a knowledge base of 109 distinct nodes to be around
1 : 10−10 when using an effective 63 bit hash. The situation for literal values is
complicated by the exclusive-or operator, but the probability will be of a similar
order of magnitude.

4.2 SQL tabular storage

Due to the change in the hashing function used to represent RDF nodes the
SQL schema must also be changed. An overview of the tables and the relations
is shown in figure 5.

1 The Birthday Paradox gives the hash collision probability as p = 1 − (1 − 2−s)n

where s is the size of the hash (in bits) and n is the number of items. However this
assumes a perfectly even hashing function.



model subject predicate object

int64 int64 int64 int64

Fig. 2. Structure of the triples table

Triples The central table is the triples table (figure 2) which holds the hashes
for the subject, predicate, object and SPARQL GRAPH [5] identifier. The 64 bit
integer columns hold hashes of the RDF nodes that occupy those slots in the
triple. The model column is used to hold the GRAPH identifier, or zero if the triple
resides in the anonymous background graph.

hash lexical integer floating datetime datatype language

int64 text int64 real datetime int32 int32

Fig. 3. Structure of the symbols table

Symbols The symbols table (figure 3) allows reverse lookups from the hash
to the hashed value, for example, to return results. Furthermore it allows SQL
operations to be performed on pre-computed values in the integer, floating
or datetime value columns without the use of casts.

hash holds the value of the hash the represents this symbol (URI or literal).
URIs and literals may be discriminated by checking the value of the MSB of
the integer value, see section 4.1.

lexical holds the UTF-8 representation of the textual form of the symbol as
it appeared in the RDF document. This allow reconstruction of the node in
output documents or query results, and is used for the storage of URIs and
strings.

integer, floating and datetime are computed at assertion time according
to the RDF datatype of the literal to be stored. The floating column has
multiple uses and is used to store values in the XSD decimal, float and double
datatypes [16]. NULL (ω) is stored in the value columns for which there is no
value of that type.

datatype and language columns hold foreign keys to the datatypes and languages

tables respectively. Where the is no known RDF datatype or language for a
particular literal the appropriate columns are set to ω.

Datatypes and languages The datatypes and languages tables are joined
to the symbols table by the id columns. Datatype could have been stored in
the symbols table and joined back onto itself to recover the URI. However, the
author felt that the approach of keeping it in a separate table would be more
efficient overall. No benchmarking has been done to justify this decision.

The id column is an auto incrementing field in this implementation, though
it could equally be a hash of the value as in the triples table.



id uri

int32 text

id lang

int32 char(5)

Fig. 4. Structure of the datatypes and languages tables
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Fig. 5. ER diagram showing relationships between tables in the 3store schema

5 Query execution

As far as is possible the task of executing the query is passed down to the
database engine. This allows the database optimiser to operate on the query,
hopefully spot optimisations that are not clear from the external view of the
tables and benefit from decades of research into relational database optimisers.

5.1 Simple graph expression mapping

To illustrate how the mapping to relational database expressions is performed
for simple SPARQL queries imagine a query to discover the label associated the
URI mailto:alice@example. In SPARQL this query could be written as shown
in figure 6, where ?x is a variable to be bound by the results of the query.

SELECT ?x

WHERE { <mailto:alice@example.com>

<http://www.w3.org/2000/01/rdf-schema#label> ?x . }

mailto:alice@example.com ?x
http://www.w3.org/2000/01/rdf-schema#label

Fig. 6. Graph showing RDF structure and equivalent SPARQL query



This query may simply be translated into relational algebra2 as:

tmp(x)← πobject(σpredicate=hash(p)∧subject=hash(s)∧model=0(triples)

πlexical,datatype,language(tmp 1x=hash symbols)

where hash(s) and hash(p) are the 64 bit hash values for the URIs mailto:alice@-
example.com and http://www.w3.org/2000/01/rdf-schema#label respectively.
Equivalently the SPARQL query may be translated into MySQL’s dialect of SQL
as shown in figure 7.

CREATE TABLE tmp (

x bigint

)

INSERT INTO tmp

SELECT object

FROM triples

WHERE predicate=0xcf75ce12336ab89a

AND subject=0xbb37ab7444225966

AND model=0

SELECT v0.lexical, v0.datatype, v0.language

FROM tmp, symbols

WHERE tmp.x=symbols.hash

Fig. 7. Translation of query in figure 6 into SQL

Where the graph pattern is more complex and contains multiple triples, the
triples table must be joined to itself, as in:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX ex: <http://example.com/schema#>

SELECT ?uri ?homepage

WHERE { ?uri ex:homepage ?homepage .

?uri rdfs:label "Alice" . }

which becomes

2 In the paper describing the translation algorithm of the previous version of this
software [1] the authors used relational calculus. However, some of the expressions
used in this paper are more clearly expressed in relational algebra, which regrettably
makes comparisons difficult



tmp(homepage, uri)←πt0.object,t0.subjectσt1.object=0x64489c85dc2fe078

∧t1.predicate=0xcf75ce12336ab89a∧t1.model=0

∧t0.predicate=0xd290a78cfc5c100b∧t0.model=0

(ρt0(triples) 1t0.subject=t1.subject ρt1(triples))

πv0.lexical,v0.datatype,v0.language,v1.lexical,v1.datatype,v1.language

((tmp 1uri=hash ρv0(symbols)) 1homepage=hash ρv1(symbols))

The algorithm employed to implement the transformation of these simple
expressions is straightforward. First the triples table is joined once for each
triple in the pattern and renamed as tn (ρtn(triples)). Then the set of triples in
the graph pattern is traversed and triple slots (subject, predicate or object) with
constant values are constrained to their hash values. For example t1.predicate
is constrained to the hash for rdfs:label with σt1.predicate=0xcf75ce12336ab89a .
Concurrently variables are bound; when first encountered the triple and slot in
which the variable appears is recorded, and subsequent occurrences in the graph
pattern are used to constrain any appropriate joins with their initial binding, as
in 1t0.subject=t1.subject in the example.

To produce the intermediate results table (tmp), the hashes of any SPARQL
variables required to be returned in the results set are projected, as in πt0.object,t0.subject.

Finally, the hashes from the intermediate results table are joined to the
symbols table to provide the textual representation of the results. The datatype
and language columns are also projected to allow them to be returned for RDF
serialisation for example, or as data in the SPARQL XML results serialisation.

Clearly, the intermediate table could be projected within the final results
expression (see section 5.4). Keeping it separate at this stage of the processing
has advantages when dealing with more complex expressions. It allows a simple
representation of optional match expressions and can be used to circumvent the
join size optimiser restrictions on some database engines (including MySQL), by
breaking down the query into multiple sub expressions.

5.2 Optional match implementation

SPARQL’s OPTIONAL operator is used to signify a subset of the query that
should not cause the result to fail if it cannot be satisfied. As such it is roughly
analogous to the left outer join of relational algebra.

Again, the algorithm for the transformation from SPARQL to relational al-
gebra is quite straightforward. The triples are grouped according to what block
they appear in (the single “required” block, or one of the optional blocks). Inter-
mediate tables are produced for each block as before, but in the case of optional
blocks, columns that allow joining onto the required block must also be pro-
jected. In the example below uri is the only column which is present in both
intermediate tables.



The intermediate tables are then joined to the symbols table in the results
phase. The symbols tables for optional intermediate tables must be outer joined,
as the bindings may be ω from failed matches in the optional blocks.

Using this approach, the SPARQL query

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX ex: <http://example.com/schema#>

SELECT ?uri ?homepage

WHERE { ?uri rdfs:label "Alice" .

OPTIONAL { ?uri ex:homepage ?homepage . }

}

becomes3

tmp(uri)← πsubjectσobject=0x64489c85dc2fe078

∧predicate=0xcf75ce12336ab89a∧model=0(triples)

opt1(homepage, uri)← πobject,uriσpredicate=0xd290a78cfc5c100b

∧model=0(tmp 1uri=subject triples)

πv0.lexical,v1.lexcial((tmp 1uri=hash ρv0(symbols)) uri=uri(opt1

homepage=hashρv1(symbols)))

All simple, legal optional expressions may be transformed in this way. Though
a more sophisticated algorithm is required to express nested optional graph
patterns.

5.3 Value constraints

The application of value constraints can be more complex than the transforma-
tion of graph patterns. There is a simple case, where the value constraint refers
only to variables that are only bound in the current block and the constraint can
be mapped into an equivalent relational expression. In this case the constraint
may be applied simply by joining the symbols table and selecting on the ap-
propriate column. For example, where we have ?x ex:age ?y . FILTER(?y >

30) we can produce σinteger>30(triples 1object=hash symbols). However, there
are many cases where this simple transformation cannot be applied, including:

Non-relational expressions These may either be constraints that are beyond
the expressive power of the relational engine (such as certain regular expres-
sions) or extension functions that are implemented in the application layer.
These must be handled by externally processing the intermediate tables or
the final results table in the application layer.

3 In this example the projections of the datatype and language of the returned bindings
have been omitted for brevity.



Late bound expressions Sometimes it is desirable to place constraints in op-
tional blocks with variables that do not appear in that block. This is prob-
lematic as the bindings for that variable are not available at the time the
intermediate table is selected. In this case the constraint can be transferred
to the results processing step. Alternatively, if available the bindings for the
variables in question can be joined to the intermediate blocks in which they
appear. Delaying the selection of the FILTER constraints is undesirable as
it increases the size of the intermediate tables.

Required constraints on optionally bound variables In SPARQL it is syn-
tactically legal to place constraints in the required block on variables that
are bound only in an optional block. This has the effect of demoting the
optional block to a required block, so the blocks must either be merged or
the constraint must be delayed until the results phase of the query.

Additionally, there are complexities around the type constraints and promo-
tion rules of SPARQL. On the whole these can be expressed in relational algebra,
though a description of the algorithm is beyond the scope of this paper.

5.4 Optimisation

There are a number of layer two optimisations that can be performed on the
query. The purpose of these is to perform transformations on the relational
expressions that the relational engine would not be aware are valid (things that
are specific to RDF) or to aid the relational engine in further optimisations.

Expressions such as the one in figure 6 may be optimised by simply substitut-
ing the intermediate table into the results expression, with appropriate renaming
operations where necessary.

This operation may also be performed on certain simple optional match graph
patterns. The query in section 5.2 is an example. As there are no constraints or
dependencies between the blocks and each optional match consists of a single
triple, the intermediate tables may be substituted into the results expression to
form a single expression.

The benefit of this optimisation is in allowing the relational database’s opti-
miser to work over the whole query and to allow it to bypass the construction
of intermediate tables where possible. The total number of joins will be reduced
as the required intermediate table does not have to be joined a second time.

Another area to which optimisation can be applied is the projection of the
datatype and language attributes of a variable. Where the variable is known to
be only able to bind to URI values then there is no need for these values to be
projected. Equally, where the language or datatype attributes are constrained in
FILTER expressions in certain parts of the query then their values are known
to be constant.



6 Future work

Substantial development has been undertaken on this version of 3store. However,
there is still a considerable amount of work to be done before it reaches the level
of usability and performance of the previous versions.

6.1 Complete implementation

Not all the SPARQL features have been implemented at the time of writing.
In particular, the UNION operator and nested optional blocks have yet to be
supported. They pose considerable complexities to an efficient query translation.
It is hoped that the intermediate table building approach will be advantageous
in optimising queries using these features.

6.2 Reasoning

As yet there is no support for RDFS reasoning in this version. The current plan
is to forward port the 3store version 2 reasoner. This reasoner is sound but
incomplete [1], and has performed well in the past.

6.3 Optimisation

The biggest remaining implemented, unoptimised feature is the handling of
SPARQL graphs. The current GRAPH support is a more-or-less näıve imple-
mentation of the specification and is a considerable overhead compared to the
equivalent in previous versions of 3store. It is not yet clear what form a valid
and practical optimisation of this feature could take.

Additionally there are number of other expression optimisations that could
be developed.
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