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Figure 1: A grayscale volume of a protein molecule (a), the segmentation at various thresholds (b), the skeleton generated by our segmentation-

free method (c), and the ground-truth structure of the protein (d).

ABSTRACT

Medical imaging has produced a large number of volumetric im-
ages capturing biological structures in 3D. Computer-based under-
standing of these structures can often benefit from the knowledge
of shape components, particularly rod-like and plate-like parts, in
such volumes. Previously, skeletons have been a common tool for
identifying these shape components in a solid object. However, ob-
taining skeletons of a grayscale volume poses new challenges due
to the lack of a clear boundary between object and background. In
this paper, we present a new skeletonization algorithm on grayscale
volumes typical to medical imaging (e.g., MRI, CT and EM scans),
for the purpose of identifying shape components. Our algorithm
does not require an explicit segmentation of the volume into object
and background, and is capable of producing skeletal curves and
surfaces that lie centered at rod-shaped and plate-shaped parts in
the grayscale volume. Our method is demonstrated on both syn-
thetic and medical data.
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1 INTRODUCTION

Bio-medical imaging techniques, such as MRI, CT and EM, are
routinely used to produce a large number of volumetric images.
Computer-based understanding of the biological structures, ranging
in scale from proteins to organs, from these 3D volumes has become
increasingly demanded by research efforts and clinical practices.

Oftentimes such understanding can be obtained by identifying
shape components, such as rod-like and plate-like parts, in the
3D volume. For example, blood vessels appear as rods in MRI
scans, and the cortical shell of bones appear as curved plates in CT
scans. Figure 1 (a) shows an example of a 3D volume of a pro-
tein molecule obtained using electron cryo-microscopy (cryo-EM)
at sub-nanometer resolution. Here the rod-like and plate-like parts
correspond to key building blocks of a protein, such as a-helices
(appearing in the volume as straight rods), B-sheets (as curved
plates), and loops (as curved rods). For comparison, the actual 3D
structure of this protein is shown in Figure 1 (d), where the three
protein building blocks are shown as green spirals (a-helices), blue
arrows (B-sheets) and orange curves (loops).

For solid objects, a typical approach for identifying their rod-like
and plate-like shape components is to consider the object’s skele-
ton [3]. An ideal skeleton for this purpose would consist of me-
dial curves and medial surfaces lying centered at the rod-like and
plate-like parts of the object [16, 4, 9]. Unfortunately, the 3D data
produced by medical imaging is usually in the form of a grayscale
volume, which lacks a clear boundary between the object and the
background. Although an object segmentation can be obtained by
some particular threshold gray value, the segmented objects may
have widely varying shapes depending on the choice of the thresh-
old (as illustrated in Figure 1 (b)). The skeletons of these segmen-
tations would assume very different shapes, and the skeleton at a
particular threshold may not reflect all shape components intrinsic
to the grayscale volume.
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1.1 Problem statement

We are interested in computing the skeleton of a grayscale volume
for identifying its intrinsic shape components. Instead of depending
on the segmentation at some threshold, the skeleton should consist
of curves and surfaces that are centered at the rod-like and plate-like
parts of the full, un-segmented grayscale volume.

In contrast to the vast literature on skeletonization of solid mod-
els, computing skeletons on un-segmented 3D volumes has received
much less attention (see review in Section 2). In particular, we
know of no existing method capable of extracting both skeletal
curves and surfaces from a grayscale volume for the purpose of
shape understanding without specific domain knowledge or an ob-
ject segmentation.

One aspect of this skeletonization problem that requires further
clarification is what constitutes a rod-like part or a plate-like part in
a grayscale volume. In these volumes, the gray values behave like
a density distribution, where voxels with higher values are likely
to be located closer to the center of the imaged subject. In ad-
dition, different parts of the subject may exhibit different bright-
ness levels. Many bio-medical imaging techniques (i.e. MRI, CT,
EM) produce volumes which have features that satisfy these obser-
vations. However, different imaging modalities (ex: T1-weighted
and T2-weighted MRI scans) capture different features of the sub-
ject being imaged, and thus what is characterized as a rod-like part
or a plate-like part will vary based on the imaging modality. We
explain our observations using a synthetic Hand volume in Figure
2(a), which contains 5 rod-like parts (the fingers) and 1 plate-like
part (the palm):

Observation 1: A shape component, such as a rod or a plate, in
a density-like volume is usually captured by the segmented object
at some threshold values. For example, the top four fingers in the
Hand volume appear as rods in the segmentation at one threshold
(b), while the palm forms a plate at a different threshold (c). How-
ever, this observation alone is not sufficient to disambiguate the dif-
ferent types of shape components located in the same part of the
volume. For example, the top four fingers also form a plate in the
segmentation (c).

Observation 2: The center of a shape component usually lies at
the “ridge” of the underlying density function. In particular, the
variation of gray values at a ridge point is usually smaller along the
ridge than in other directions. For example, the grayscale variation
along the center line of each finger is much smaller than along other
directions (as illustrated in the close-up view in (d)). In contrast, a
plate-like shape formed by the top four fingers would not have this
property, as the grayscale variation along the center surface of this
plate can be much greater than in some other direction, especially
between two fingers (as illustrated in the cross-section view in (e)).

1.2 Method

Our algorithm extracts the skeleton of a density-like grayscale vol-
ume guided by the above two principle observations. There are two
main stages in this algorithm. In the first stage, the algorithm visits
all possible threshold values and identifies the shape components
on the segmented object at each threshold by their center curves
and surfaces. According to Observation 1, the collection of these
shape components on various segmentations is a super-set of those
intrinsic to the grayscale volume, the latter of which, by Obser-
vation 2, are characterized by the ridge-like centers in the density
distribution. Hence, the second stage extracts the final skeleton as
the sub-set of curves and surfaces generated in the first stage that
exhibit small grayscale variation.

An example result of our method is shown in Figure 1 (c). Note
that the curves (black lines) and surfaces (orange faces) in the skele-
ton correspond well to a-helices and loops (which appear as rods

—x  (d) —x (e)

Figure 2: A grayscale volume (a), segmented surfaces at two thresh-
olds (b,c), and close-up view of two fingers at different angles (d,e)
where the pink arrows illustrate the magnitude of grayscale variation
in different directions. See Section 1.1.

in the volume) as well as f-sheets (which appear as plates in the
volume) in the actual protein structure in (d).

1.3 Contribution

The primary contribution of this paper is a novel algorithm for com-
puting the skeleton of a density-like grayscale volume. The algo-
rithm does not require segmentation at any particular threshold, and
the resulting skeleton consists of curves and surfaces centered at
rod-like and plate-like parts of the grayscale volume. The inde-
pendence from a threshold makes the skeletonization process less
sensitive to human bias and allows for the understanding of the in-
trinsic shapes in such a volume. The method is demonstrated on
both synthetic and medical data.

2 PREVIOUS WORK

Here we briefly review skeletonization methods for 3D solid and
grayscale models, with an eye towards identifying shape compo-
nents.

Solid models: Computing skeletons of 3D solid models has been
extensively researched in the past. A number of representative
methods include morphological thinning [2, 15, 20], distance trans-
forms [5], potential field methods [1], and Voronoi diagrams [18, 6].
For the purpose of identifying shape components, Saha et al.
[16] and Bonnassie et al.[4] differentiates curves and surfaces in
the skeletons generated by morphological thinning by classifying
skeleton voxels based on their local neighborhood . While the re-
sult of such classification can be highly sensitive to the quality of
the skeleton, the method of Ju et al. [9] directly extracts skeletal
curves and surfaces during the thinning process without need for
post-classification. These methods have been used to classify rod-
like and plate-like structures in bone matrices [16, 4] and proteins
[9].

Grayscale volumes: In contrast, few work has addressed skele-
tonization of un-segmented grayscale volumes. Although the use
of morphological thinning has been well-studied in the vision com-
munity for skeletonizing 2D grayscale images (see the excellent
survey by Mersal and Darwish [14]), extensions to 3D volumes
have been rare. Segmentation techniques (see surveys [17, 8, 21])
have been used to build solid models of grayscale volumes; how-
ever, skeletons computed from these models are medial to the seg-



mentation and do not align well with the high density regions of
the grayscale volume. In contrast the method of Svensson et al.
[19] generates skeletal surfaces starting from a known object seg-
mentation, but utilizes the interior grayscale information. Similar
to ours, the method of Doklada et al. [7] computes an initial skele-
ton by thinning on the full grayscale volume, but it then requires
a grayscale threshold to remove insignificant skeleton parts and is
designed only for skeletal curves.

In a different approach, Lopez et al. [12] identifies centers of a
grayscale distribution using a multi-local creaseness measure, con-
tinuing a body of research on ridge and valley detection in 2D im-
ages (see the survey and evaluation in [13]). However, Lopez’s
method results in a collection of center points that lack any curve
or surface structure necessary for identifying shape components.

Several researchers have proposed to explicitly extract both
curves and surfaces in a grayscale volume based on the second-
order tensor field of the volume [23, 11, 22]. However, these meth-
ods are either designed for visualizing flow anisotropy [23, 11]
rather than locating shape components, or require domain-specific
knowledge to find those curves or surfaces at the center of the shape
components [22]. In contrast, our method relies on the same ten-
sor field for extracting curve and surface geometry but is capable of
placing such geometry at the center of grayscale shape components
without the use of application-domain specific knowledge.

3 OVERVIEW
3.1 Data representation

Our algorithm takes in a volume represented as a 3D rectilinear
grid, where each grid point, called a voxel, is associated with a
grayscale value. The output skeleton of our algorithm consists of a
subset of voxels on this grid. Figure 3 shows examples of grids and
voxels where skeleton voxels are colored gray.

For the purpose of shape understanding, we define two types of
geometry, curves and surfaces, on a set of voxels. A curve is a
collection of voxel edges, each consisting of two voxels lying on
the ends of a grid edge. A surface is a collection of voxel faces,
each consisting of four voxels lying on the corners of a grid face
(i.e. a grid face surrounded by four voxel edges). For example, the
skeleton voxels on the left of Figure 3 form a voxel edge, and those
on the right form four voxel edges and a voxel face. In this figure
(and other figures in the paper), voxel edges are drawn as black
lines and voxel faces as orange quads.

7

Figure 3: Examples of grids with voxels (circled dots) where skeleton
voxels (gray) form edges (black lines) and a face (orange quad).

3.2 The algorithm

Given a density-like grayscale volume, our algorithm, guided by the
observations in Section 1.1, extracts skeletons consisting of curves
and surfaces corresponding to the rod-like and plate-like parts of
the volume. Since each shape component in the volume is captured
by the segmented object at some threshold value, we first identify
the set of all shape components at a range of threshold values. This
is done by accumulating the skeletal curves and surfaces computed
from the segmented objects at each threshold value. The sub-set of
this initial skeleton that represents the grayscale shape components
are then identified as those curves and surfaces exhibiting small

grayscale variations. This is done by comparing the directions of
these geometric elements with the shape of grayscale variation in a
local neighborhood of each voxel.

In order to extract two types of skeletal geometry, namely curves
and surfaces, we device a four-step flow that first extracts the skele-
tal surfaces followed by the skeletal curves. The generation of each
type of skeletal geometry follows the same stages of initial skeleton
generation and skeleton pruning, as illustrated in Figure 4:

e Step 1: Initial skeletonization. Accumulate the skeletal
surfaces of each segmentation of the grayscale volume at a
range of thresholds.

e Step 2: Pruning. Identifies those surfaces in the result of Step
1 that exhibit small grayscale variations.

e Step 3: Initial skeletonization. Accumulate the skeletal
curves of each segmentation of the original grayscale volume
at the same range of thresholds.

e Step 4: Pruning. Identifies those curves in the result of Step
3 that exhibit small grayscale variations.

To ensure accurate identification of surface and curve features,
surface skeletonization and pruning has to be done before curve
skeletonization and pruning. This restriction arises from the fact
that a curve can be geometrically defined as a subset of a surface,
and performing curve skeletonization (and pruning) on a feature
which is actually a surface (but not yet classified as a surface) will
result in that feature being incorrectly classified as a curve.

In the following sections, we will describe the skeletonization
and pruning steps in details.

4 INITIAL SKELETONIZATION

Given a segmented object at a particular threshold, which is made
up of voxels on a grid, a classical approach of obtaining its skeleton
is morphological thinning. To be able to identify shape components
such as rods and plates, we consider the iterative thinning approach
of [9], which selectively generates curves or surfaces (as defined in
Section 3.1) centered at these parts. Briefly, this method shrinks the
object to its medial structure by iteratively removing its border vox-
els. Skeletal curves or surfaces are identified by preserving voxels
at the ends of either curves or surfaces during thinning.

To accumulate the skeletal surfaces or curves computed at mul-
tiple thresholds, we make a small modification to the method of
[9] to utilize skeletons generated at different thresholds. Specif-
ically, we segment the volume with decreasing threshold values.
At each threshold, we compute the skeletal surfaces (in Step 1) or
curves (in Step 3) by thinning the segmented object while addition-
ally preserving, at each thinning iteration, the voxels belonging to
the skeletons generated at previous thresholds. This incremental
approach, combined with iterative thinning, ensures that skeletons
computed at lower thresholds are aligned with skeletons at higher
thresholds, and hence to regions with high gray values, which are
likely to be centers of the shape components in the grayscale vol-
ume. The results of this incremental thinning for the Hand example
in Figure 4 (a) are shown in (b,d).

In our implementation, the range of threshold values is taken as
the full range of gray values in the volume, unless the user specifies
a maximum and/or minimum gray value of interest. As enumerat-
ing each gray value present in the volume within the range can be
time-consuming, we may also use values at discrete intervals. In all
our examples, we discretize an input threshold range into 256 levels
and visit each level in descending order.
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Figure 4: The four steps in our algorithm. See Section 3.2.
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Figure 5: (a): Grayscale variation visualized as an ellipsoid. (b):
Scoring of a line (red) as ratio between length of the shortest axis
(blue) over that of the line segment in the ellipsoid. (c): Scoring of a
plane (red) as ratio between area of the smallest axial ellipse (blue)
over that of the cross-sectional ellipse.

5 PRUNING

The initial skeleton generated by the previous step (e.g., Figure 4
(b,d)) contains a super-set of skeletal surfaces or curves that repre-
sent the actual shape components of the grayscale volume. Based
on our earlier observation, the desired sub-set of surfaces or curves
are those along which the grayscale variation is smaller than along
other directions. We will identify this sub-set in two phases. First,
we will compute a score at each skeleton voxel based on the di-
rection of the skeletal surface or curve at that voxel with respect
to the shape of the local grayscale variation. Next, we will extract
well-formed surfaces or curves consisting of high-score voxels.

5.1 Scoring

Structure tensor: While it is possible to measure the grayscale
variation at each voxel by its local gradient, such measurement eas-
ily becomes unreliable in the presence of noise, which is typical
in medical volumes. Instead, the structure tensor offers an aver-
age measurement of such variation within a neighborhood of each
voxel, which is much more robust under noisy conditions. Specifi-
cally, we first compose a tensor T’ at a voxel p as a 3 x 3 matrix:

L L]" 2L L
Th=1|1L |x| L | =| L, I LL 6))
Iy Iy LI, LI I?

where I, = %, I, = % and I, = g—i are the partial derivatives in

the x, y and z directions of the grayscale volume / at p. Performing
spatial averaging of these tensors in the neighborhood of p using a
Gaussian convolution mask g4 with standard deviation o gives the

structure tensor Tp:
/
T, =go * T[,. )

The key piece of information offered by the structure tensor 7}, is
its Eigen-structure, which reveals the principal directions and mag-
nitudes of grayscale variation in the neighborhood of p. As shown
in Figure 5 (a), the “shape” of this variation can be visualized as
an ellipsoid whose axes are along the eigenvectors of T}, with the
magnitude of the corresponding eigenvalues. Intuitively, the gray
values around the voxel p vary more dramatically along directions
closer to the major axis of the ellipsoid (i.e., the eigenvector with
the largest eigenvalue), and less along directions closer to the minor
axis (i.e., the eigenvector with the smallest eigenvalue).

Scoring surfaces and curves The ellipsoidal representation
of the grayscale variation offers an intuitive way of measuring the
variation in any given direction. For example, the grayscale vari-
ation along a given line can be measured as the length of the line
segment within the ellipsoid (Figure 5 (b)). Since we are more in-
terested in whether such variation is smaller than variations in other
directions, we can score a voxel on a skeletal curve by the ratio of
the minimum length of such line segments (i.e., the shortest axis
of the ellipsoid) over the actual length along the tangent line of the
curve. Likewise, we can score a voxel on a skeletal surface by the
ratio of the minimum area of a cross-section in the ellipsoid (i.e.
formed by the two shortest axes) over the actual area of the cross-
section along the tangent plane of the surface (Figure 5 (c)).

Specifically, denote the eigenvectors and eigenvalues of the
structure tensor T, by {v1,v2,v3} and {uy,uz,u3}. As Ty, is a pos-
itive semi-definite matrix u; > up > u3 > 0. Given a line passing
through the origin in the unit direction of ¢ = {cx, ¢y, c; }, the length
of the line segment within the ellipsoid is

ujurus

L(c)=
\/u%u%c,% + u%u%c% + u%u%cg

. 3)

Given a plane passing through the origin defined by two orthogo-
nal unit vectors ny = {nix,n1y,ni} and ny = {noy,nyy,no,} on the
plane, the area of the cross-section of the ellipsoid (which is an el-
lipse) is computed as:

T
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Figure 6: Voxel scores on the skeletal surfaces (top) and curves
(bottom) in Figure 4 (b,d), showing the ellipsoidal representation
of grayscale variations and the tangent orientation of surfaces and
curves. Blue and red indicate high and low scores.

The score of a skeletal curve with tangent vector c is therefore the
ratio L(v3)/L(c), and the score of a skeletal surface with tangent
vectors ny,ny is the ratio A(v,v3)/A(ny,ny). Note that the score
is bounded between [0, 1], where 1 corresponds to the direction of
minimum grayscale variation locally at p. To avoid possible nu-
merical instability when evaluating scoring functions for very small
values of uy, up and u3, we note the limit of these functions are well
defined when one or more of the eigenvalues approach zero, which
is detailed in Appendix A. In practice, we treat any eigenvalue
smaller than a threshold (such as 0.00001) as zero and directly ap-
ply the limit formula.

Due to the use of a rectilinear grid, the tangent orientation of the
skeletal surface or curve at a voxel, if computed locally, will assume
a limited number of directions restricted by the axes-aligned voxel
faces and edges (i.e. six if using N6 connectivity). To overcome
this limitation, we obtain these orientations by computing a best-
fitting line or plane to all voxel faces or edges in a neighborhood of
the voxel p.

In Figure 6, we show the scores computed for the surfaces and
curves resulting from the initial skeletonization steps in Figure 4
(b,d). Note that lower scores (colored red) effectively indicate
skeletal geometry (e.g., surfaces and curves between the fingers)
that do not correspond well to actual shape components in the
grayscale volume.

5.2 Feature extraction

Given the scoring of skeleton voxels (e.g., Figure 6), we next need
to identify pieces of surfaces (in Step 2) or curves (in Step 4) con-
sisting of high-scored voxels. Ideally, the final skeleton should
consist of clean, recognizable surfaces and curves that are free of
extraneous features such as small branches and islands. To this
end, we first remove all voxels that score below a threshold. We

(@) (b)

Figure 7: An MRI scan of blood vessels in the human head (a), the
skeleton generated by our algorithm (b) that captures thin blood ves-
sels which are barely visible to the naked eye (A, B).

find that the threshold of 1/+/3 (the ratio of the edge length over
the diagonal length of a unit cube) works well for both surfaces
and curves. Next, we utilize the morphological opening operator in
[9] designed for skeletal curves and surfaces to remove extraneous
skeleton features. Given user-specified size parameters &g, &, this
operator removes surface branches with radius smaller than & and
curve branches shorter than &.. The final results of skeleton pruning
for the hand example are shown in Figure 4 (c,e).

As shown in [9], the choice of &, €. controls the minimum size
of the surface or curve feature in the final skeleton. This number
typically only depends on the grid resolution and the type of subject
being imaged. In our experiments, we use & = & = 5 except for
imaged subjects made up of only rod-like parts (e.g., blood vessels),
where we set & = oo, and subjects made up of only plate-like parts
(e.g., cortical bones), where we set £, = oo.

6 RESULTS

(d)

Figure 9: A CT scan of a human foot (a), the skeleton generated by
our algorithm (b) that captures the cortical bones as surfaces, and a
cross-section view (c,d).
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Figure 8: A CT scan of blood vessels in the human head (a), the skeletal curves obtained after initial skeletonization (Step 3) (b) and pruning

(Step 4) (d), and the voxel scoring during pruning (c).

Data Set Dimensions Step 1 Step 2 Step 3 Step 4 Total

(voxels) Time | Voxels | Time | Voxels | Time | Voxels | Time | Voxels Time
Hand 129 x 129 x 129 4.12 3640 4.40 1981 3.85 2331 1.65 2202 14.04
Protein 2ITG 64 x 64 x 64 6.76 4736 3.18 142 6.79 1198 | 0.73 659 17.48
Protein 1TIM 96 x 96 x 96 16.87 8954 5.93 978 | 17.04 3067 1.75 1735 41.61
Protein IBTV 128 x 128 x 128 || 34.29 12232 8.48 747 | 34.76 3777 | 2.73 1910 80.27
Blood Vessels (CT) 121 x 71 x 66 11.67 6608 0.59 0| 11.78 4737 1.85 1757 25.90
Blood Vessels (MRI) | 101 x 82 x 111 11.34 10313 0.71 0| 11.41 7753 | 2.75 2662 26.23
Bones 150 x 128 x 128 || 33.50 | 143617 | 76.29 | 78178 | 29.67 | 105708 | 9.98 | 78178 | 149.44

Table 1: Time taken (in seconds) for each step of the algorithm (see Section 3.2) and the number of skeleton voxels after each step.

We demonstrate our algorithm on a set of medical data produced
by MRI, CT and cryo-EM imaging, where the biological structure
of interest consists of rod-like and/or plate-like components.

Figure 7 shows the results of our method on an MRI scan of
blood vessels in the human head. Observe from the close-up views,
that, without relying on a particular threshold value, our technique
was able to capture vessels at a wide range of gray levels and thick-
nesses, some of which are not even visible to the naked eye.

Figure 8 shows both the intermediate and final results of our
method on a CT scan of blood vessels. The usefulness of prun-
ing based on grayscale variations is illustrated in the close-up view
between two vessels, where a skeletal curve is generated during ini-
tial skeletonization (as the segmented surface is connected at a low
gray level), but receives a low score (b) as the curve exhibits a large
grayscale variation, and finally gets removed (d).

Figure 9 shows another example where our method computes a
surface skeleton of cortical bones in a CT scan of the human foot.
As seen in the cross-sections (c,d), our technique accurately cap-
tures the shell-shape of the cortical bones and preserves their hol-
low nature. Note that the skeleton is computed independent of any
thresholds, and hence is capable of capturing both bright and dark
potions of the cortical shell well.

Finally, we present two more examples of skeletonization of pro-
tein volumes imaged by cryo-EM in Figure 10. As mentioned ear-
lier, the rod-like and plate-like parts of these volumes correspond
well to key building blocks of the protein, including o-helices (rod-
like), B-sheets (plate-like) and loops (rod-like). Observe from Fig-
ure 10(c) that our method is capable of capturing shape components

that correlate well with the actual protein structures shown in (d).

We additionally compare our method with a previous method by
Yu et al. [22] for computing skeletal curves and surfaces specif-
ically in cryo-EM data. Yu’s method also relies on the structure
tensor for extracting the skeletal geometry, but requires explicit
knowledge about the typical thickness of o-helices and -sheets
as well as their brightness level in order to locate the correspond-
ing rod-like and plate-like parts in the volume. In comparison with
the result of Yu’s method in Figure 10 (b), our method, without any
domain-specific knowledge (i.e. the typical thickness of a-helices
and f3-sheets, or their brightness levels), additionally extracts skele-
tal curves that correspond to loop structures in the protein. The dif-
ficulty Yu’s method faces when identifying loops arises from the
fact that loops lack a uniform thickness and are often at low gray
levels in a cryo-EM volume.

All experiments were performed on a PC with a 3GHz Pentium-
D CPU and 4GB of memory (our implementation runs on a single
thread, thus utilizes only one of the cores of the CPU). Table 1
shows the breakdown of the time for each step in our algorithm.
The time complexity of the initial skeletonization process is O(ng),
where n is the number of voxels, and g is the number of distinct
gray-levels in the grayscale volume. The pruning process has a
time complexity of O(€s) where s is the number of voxels in the
initial skeleton, and € is the minimum size of the curve or surface
feature in the final skeleton.



Figure 10: Cryo-EM volumes of proteins (1TIM and 2ITG) at 8A resolution (a), skeletons computed by the method of [22] (b) and our method

(c), and the ground-truth structure of these proteins (d).

7 CONCLUSION AND DISCUSSION

In this paper we proposed an innovative approach for skeletoniza-
tion of density-like grayscale volumes, for the purpose of shape
understanding. Our method does not require any explicit segmen-
tation of the volume, is robust under the presence of noise, and is
capable of extracting skeletal surfaces and curves corresponding to
plate-like and rod-like grayscale shape components. We tested our
technique on synthesized and medical data-sets to demonstrate its
behavior in different application domains.

Limitations While emphasizing shape representation, the re-
sulting skeleton of our method may not exhibit the desired topol-
ogy of the imaged subject. For example, as can be observed in
the top left curve of Figure 10 (c,d), the skeleton contains extra-
neous loops and broken curves. This topological noise is mainly
due to the sensitivity of morphological thinning to image noise in
the initial skeletonization stage. Unlike a solid model, the topology
of the imaged subject in the grayscale volume is not well defined,
and a correct topology often needs to be defined by a human ex-
pert. In the future we would like to investigate the incorporation of
recently-developed topology-repair methods [10] that would guide
the skeletonization process using user-specified topology.

The assumptions based on the observations of Section 1.1 limit
the applicability of our technique to density-like grayscale volumes
where features of interest are in high-density areas. Although typ-
ical in medical imaging, they may not apply to other data (e.g., a
photograph of a scene). We would like to explore the extension of
our algorithm to a more general set of data. One possible solution
is to explore mapping functions that convert grayscale volumes in a
different form to those satisfying our assumptions.

As described in the earlier section, the performance of the initial
skeletonization step is dependant on the number of distinct gray-
levels of the volume. While the performance can be improved
by discretizing the range of gray-levels, performing iterative thin-
ning for each single gray-level is still time-consuming. To make
the process more efficient, a possible alternative that we will ex-

plore in the future is to perform only one iterative thinning step
from low-density regions to high-density regions, while adjusting
the shape and topology preservation criteria in binary thinning to
the grayscale data.
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A SCORING FUNCTIONS IN LIMIT CASES

The ellipsoidal representation of the structure tensor has a clear
geometric shape in the limit cases when the eigenvalues approach
zero, and can be used to explicitly derive the limit of scoring func-
tions in these conditions.

When u; approaches zero so does uy and u3 (as u; > up > u3). In
this case we treat the ellipsoid as a sphere, where all embedded line
segments have the same length, and all embedded cross sections
have the same area. Therefore, the value of the scoring functions
(the ratio between the minimal and actual length / area) will always
evaluate to one.

L(v3)
u;—0 L(C) v (5)
lim A02:v3) _ (6)

u;—0 A(nl,ng)

In the case where u, approaches zero, so does u3, reducing the
ellipsoid to a needle with an infinitesimally small circular cross sec-
tion (also can be interpreted as an infinitely long cylinder). Here,
the minimal line (or surface) is the projection of the actual line (or

surface) onto the plane defined by the surface normal vy, reducing
the scoring functions to the following vector dot products:

L(v3)  (vix(exv))
w0 Lie) v x lex )’ @
m m:(mxng)wzl. @

u—0 A(nl 7”2)

When u3 approaches zero, the ellipsoid reduces to a cylinder
with an infinitesimally small height and an ellipse shaped cross sec-
tion where 1| and u, are the length of the axes. The minimal line
is the projection of the actual line onto the v3 vector, reducing the
curve scoring function to the following vector dot product:

L(v3)
uz—0 L(C)

=c-v3. 9

The surface score on the other hand, reduces to the product of two
ratios; the first being the ratio between u; and the length of the
curve within the ellipsoid in the /| direction, and the second being
the ratio between /, and its projection onto the v3 vector. /; and
I are orthogonal unit vectors which both lie on the actual surface.
Additionally, /; also lies in the plane defined by the normal v3.

Ava,vs) \/u%cosz(G)—i-u%sinz(G) 1y vs) 0
uz—0 A(I’l],ng) - up X 2v3), (

where,

vy Xn

=220
[[vs x|’

lz=}’l><ll7

6 = arccos(v - I1), n=(ny xny).
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