Elektrotechnik Master Informatik-Ingenieurwesen

Bachelor Master

Modulhandbuch I

Studiendekanat für Elektrotechnik und Informationstechnik an der Technischen Universität Hamburg-Harburg

24.04.2009

Prof. Dr. H. Werner Studiendekan

Inhaltsverzeichnis

Modulbeschreibungen für BSc Elektrotechnik und Informatik-Ingenieurwesen

Modul:	Betriebssysteme	. 7
Modul:	Digitale Verarbeitungssysteme	. 9
Modul:	Diskrete Algebraische Strukturen	11
Modul:	Graphentheorie und Optimierung	13
	Einführung in Datenbanksysteme	
Modul:	Einführung in die Informationssicherheit	17
	Elektrische Maschinen	
Modul:	Elektronische Bauelemente	21
Modul:	Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische	
	Felder	
	Elektrotechnik II: Wechselströme und grundlegende Bauelemente	
Modul:	Grundlagen der Regelungstechnik	27
	Halbleiterschaltungstechnik	
	Hardware-Praktikum	
	Maschinelles Rechnen und Rechnerarchitektur	34
Modul:	Objektorientierte Programmierung, Algorithmen und	
	Datenstrukturen	
	Verteilte Systeme	
	Leitungstheorie	
	Mathematik I	
	Mathematik II	45
Modul:	Mathematik III: Höhere Analysis und gewöhnliche	
	Differentialgleichungen	
	Komplexe Funktionen	
	Partielle Differentialgleichungen	
	Mechanik I für ET/IT: Statik und Festigkeitslehre	
	Mechanik II für ET/IT: Dynamik	
	Messtechnik	
	Nachrichtenübertragung	
	Netzwerktheorie	
	Numerische Methoden	
	Physik I	
	Physik II	
	Praktikum I: Physik und Rechentechnik	
	Praktikum II: Elektrotechnische Experimente	
	Praktikum III: Projekte Elektrotechnik	
	Prozedurale Programmierung	
	Proseminar Mathematik	
	Rechnerarchitekturen	
	Rechnernetze	
	Software Engineering	
	Softwarepraktikum	
	Numerische und seminumerische Programmierung	
	Stochastische Prozesse	
	Systemtheorie	
	Theoretische Elektrotechnik I: Zeitunabhängige Felder	
Modul.	Theoretische Elektrotechnik II: Zeitabhängige Felder	96

Modul:	Werkstoffe der Elektrotechnik
Modulb	eschreibungen für MSc Elektrotechnik und Informatik-Ingenieurwesen
Modul:	3D-Computer Vision 103
Modul:	Adaptive Rechensysteme 105
Modul:	Algebraische Geometrie und Statistik 107
Modul:	Algebraische Statistik 109
Modul:	Numerische algebraische Geometrie111
Modul:	Allgemeine Messtechnik und Sensorik I: Messungen grundlegender nichteletrischer Größen 113
Modul:	Radiometrische, akustische und optoelektronische Messtechnik 115
	Anwendungsicherheit118
	Architektur und Implementierung von Datenbanksystemen 120
	Bioinformatik121
Modul:	Boundary-Elemente-Methoden 123
	CAD-Werkzeuge und Methodik für die IC-Entwicklung 125
	CMOS-Nanoelektronik
Modul:	Computational Web 129
	Computergraphik und Animation 130
	Digitale Audiosignalverarbeitung 132
Modul:	Digitale Bildcodierung 134
Modul:	Digitale Bildverarbeitung 136
Modul:	Digitale Signalprozessoren
Modul:	Drahtlose Kommunikationssysteme 140
	Effiziente Algorithmen142
Modul:	Eigenwertaufgaben144
	Einführung in die Antennentheorie146
Modul:	Eingebettete Prozessornetzwerke
Modul:	Wissenschaftliches Rechnen und Genauigkeit 150
Modul:	Intilligente Autonome Agenten 152
Modul:	Elektrischer Entwurf und Charakterisierung von Packages und
	Interconnects
	Elektromagnetische Verträglichkeit 156
	Elektromechanik und Contromechanik 158
	Elektronische Bauelemente
	Entwurf von web-basierten Anwendungen 161
	Faseroptik und Integrierte Optik 163
	Finite-Elemente-Methoden 165
	Grundlagen des Maschinellen Lernens und Data Minings 167
	Halbleitertechnologie I: Basisprozesse
Modul:	HF-Bauelemente und -Schaltungen I: Verstärker und
	Frequenzumsetzer
Modul:	HF-Bauelemente und -Schaltungen II:
	Hochfrequenzsignalerzeugung 173
	Informations- und Codierungstheorie
	Informationstechnik in der Logistik
	Integrierte Produktentwicklung I inkl. CAD-Praktikum 179
Modul:	Integrierte Schaltungen 181

Modul:	Iterative Lösung linearer Systeme	183
	Kommunikationsnetze I: Grundlagen	
	Analyse und Struktur von Kommunikationsnetzen	
	Mechanik IV: Schwingungen, Stoß, Analytische Mechanik,	
	Kontinuumsmechanik	189
Modul:	Medizinelektronik	191
Modul:	Messmethoden der Optischen Nachrichtentechnik	193
	Mikroprozessorsysteme	
	Mikrosystementwurf	
	Mikrosystemtechnik	
	Mikrosystemtechnologie	
Modul:	Mikrowellen- und Optikpraktikum	203
	Mobilkommunikation	
Modul:	Multimedia-Informationsextraktion und -retrieval	206
Modul:	Mustererkennung	207
Modul:	Netzwerksicherheit	209
Modul:	Neuronale Netze und Genetische Algorithmen für die Regelung	
	dynamischer Systeme	211
Modul:	Nichtlineare Dynamik	213
Modul:	Nichtlineare Regelungen	215
Modul:	Numerik großer nichtlinearer Systeme	217
Modul:	Numerik partieller Differentialgleichungen	219
Modul:	Numerische Mathematik	220
Modul:	Numerische Methoden	222
	Numerische Simulation	
	Numerische Simulation inkompressibler Strömungen	
	Computational Fluid Dynamics	
	Numerische Software	
	Numerische Verfahren zur Feldberechnung	232
Modul:	Objektorientierte Systementwicklung in der	
	Automatisierungstechnik	
	Optimale und Robuste Regelung	
	Nichtlineare Optimierung	
	Konvexe und semidefinite Optimierung	
	Optische Nachrichtentechnik	243
Modul:	Optische Nachrichtentechnik: Optische Wellenleiter, aktive/passive	
	Komponenten und Übertragungsysteme	
	Optoelektronik I: Wellenoptik	
	Optoelektronik II: Quantenoptik	
	Organisation des Produktionsprozesses	
Modul:	Parameterschätzung und adaptive Regelung	253
Modul:	Physik der Halbleiterbauelemente I: Elektronische Bandstruktur	
	und Thermodynamisches Gleichgewicht	
Modul:	Physik der Halbleiterbauelemente II: Boltzmann-Transportgleichung	
	und Rekombinationsprozesse	
	Planung logistischer Systeme	
	Mikrosystementwurf	
	Praktikum: Schaltungsentwurf – analog / digital	
	Produkt Planung und -Entwicklung	
	Produktionslogistik	
MODUI:	Prozessautomatisierungstechnik	269

Modul: Pr	rozessdatenverarbeitung 2	271
Modul: Pr	rozessmesstechnik2	273
Modul: Q	uantencomputing 2	275
	•	277
		279
	,	281
		283
	-	285
	•	287
		289
	• •	291
	•	293
	echnische Akustik I: Akustische Wellen, Lärmschutz,	
		295
		297
	, , , , , , , , , , , , , , , , , , ,	299
		802
	•	305
		307
	<u> </u>	309
		311
		313

Modul: Betriebssysteme

Lehrveranstaltungen:

Titel	Тур	SWS
Betriebssysteme / Operating Systems	Vorlesung	2,00
Betriebssysteme / Exercise: Operating Systems	Übung	1,00

Modulverantwortlich: Prof. Dr. Volker Turau

Dozent(in): Prof. Dr. Volker Turau

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Informatik-Ingenieurwesen	B.Sc.	6.	Pflicht
Elektrotechnik [Diplom] - Nachrichtentechnik - Digitale Kommunikationsnetze	Diplom	8.	Wahlpflicht
Elektrotechnik [Diplom] - Technische Informatik	Diplom	6.	Pflicht
Informatikingenieur [Diplom]	Diplom	6.	Pflicht
Informationstechnologie	B.Sc.	4.	Pflicht
Technomathematik	Diplom	8.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	4.	Pflicht
Informationstechnologie (neu)	B.Sc.	4.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundlagen der Informatik

Angestrebte Lernergebnisse:

Kenntnisse: Vermittlung der grundlegenden Konzepte von Prozess- und Speichermanagement unter besonderer Berücksichtigung verteilter Betriebssysteme.

Inhalt:

- Einführung und Struktur von Betriebssystemen
- Threads und Synchronisation
- Deadlock und CPU Scheduling
- Speichermanagement I (Adresstransformation und virtueller Speicher)
- Speichermanagement II (Dateisystem)
- Transaktionen und Zuverlässigkeit
- Einführung in verteilte Betriebssysteme
- Kommunikation in verteilten Systemen (Architektur und Protokolle)
- Prozesse und Prozessoren in verteilten Systemen
- Verteiltes Dateiensystem
- Sicherheit

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

PowerPoint Präsentation, Programmierübungen am Rechner, E-Learning-Plattform

Literatur:

Operating Systems, William Stallings, 5th Edition, Prentice Hall 2005, ISBN: 013127837-1 (Hauptquelle, Vorlesung folgt in weiten Teilen diesem Buch).

Operating System Concepts, A. Silberschatz, P.B. Galvin, Addison-Wesley, 1994

Distributed Operating Systems, A. Tanenbaum, Prentice Hall, Inc., 1995

Modern Operating Systems, A. Tanenbaum, Prentice Hall, 2001

Distributed Systems Principles and Paradigms, A. Tanenbaum, M. van Stehen, Prentice Hall, 2002

Modul: Digitale Verarbeitungssysteme

Lehrveranstaltungen:

Titel	Тур	SWS
Digitale Verarbeitungssysteme	Vorlesung	3,00
Digitale Verarbeitungssysteme	Übung	1,00

Modulverantwortlich: Prof. Dr. Georg Friedrich Mayer-Lindenberg

Dozent(in): Prof. Dr. Georg Friedrich Mayer-Lindenberg

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Elektrotechnik	B.Sc.	5.	Pflicht
Allgemeine Ingenieurwissenschaften - Systemtechnik	B.Sc.	5.	Pflicht
Elektrotechnik [Diplom]	Diplom	5.	Pflicht
Informatikingenieur [Diplom]	Diplom	3.	Pflicht
Informationstechnologie	B.Sc.	3.	Pflicht
Hochschulübergr. Studiengang Wirtschaftsingenieurwesen	Diplom	1.	Wahlpflicht
Maschinenbau [Diplom] - Konstruktionstechnik - Flugzeugsystemtechnik	Diplom	7.	Pflicht
Technomathematik	Diplom	5.	Pflicht
Elektrotechnik	B.Sc.	3.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	3.	Pflicht
Informationstechnologie (neu)	B.Sc.	3.	Pflicht
Flugzeug-Systemtechnik	M.Sc.	1.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 94

Kreditpunkte: 5,00

Voraussetzungen:

Grundlagen der Elektrotechnik, Informatik für Ingenieure I

Angestrebte Lernergebnisse:

Kenntnisse über den Aufbau digitaler Systeme, insbesondere die verwendeten Grundschaltungen und Algorithmen

Kenntnisse über Techniken der parallelen und seriellen Verarbeitung in effizienten Hardware-/Softwaresystemen

Inhalt:

Digitale Schaltungen und Komponenten

- CMOS-Technik
- Energieverbrauch
- Prozessoren, Speicher und FPGA, konfigurierbare Systeme
- Komponentenhierarchie: Chips und Leiterplatten
- Signalführung auf Leiterplatten

Einführung in VHDL

- Programmiersprachliche Aspekte
- Beschreibung von Gattern und Registern
- Simulation und Test
- Schaltungssynthese

Rechenfunktionen

- Addierer und Subtrahierer
- Multiplizierer
- Serielle Rechenschaltungen
- Fließkommaarithmetik
- Polynomarithmetik

Mikroprozessoren

- Automaten und Steuerungsschaltungen für sequenzielle Berechnungen
- Aufbau eines Prozessorsystems
- Prozessordesign in VHDL
- Ein- und Ausgabe, Interrupt und DMA
- Systemdesign mit Prozessoren und FPGAs, Modellierung, HW/SW-Codesign

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Open-Office-Präsentation, Wandtafel

Literatur:

F. Mayer-Lindenberg, "Dedicated Digital Prozessors" (Wiley 2004)

J.F. Wakerly, Digital design: Principles and Practices.

Modul: Diskrete Algebraische Strukturen

Lehrveranstaltungen:

Titel	Тур	SWS
Diskrete Algebraische Strukturen	Vorlesung	2,00
Diskrete Algebraische Strukturen	Übung	1,00

Modulverantwortlich: Prof. Dr. Karl-Heinz Zimmermann

Dozent(in): Prof. Dr. Karl-Heinz Zimmermann

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Informatik-Ingenieurwesen	B.Sc.	3.	Wahlpflicht
Informatikingenieur [Diplom]	Diplom	1.	Pflicht
Informationstechnologie	B.Sc.	1.	Pflicht
General Engineering Science (neu)	B.Sc.	3.	Wahlpflicht
Informatik-Ingenieurwesen	B.Sc.	3.	Pflicht
Informationstechnologie (neu)	B.Sc.	1.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Keine

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegende Prinzipien und Methoden der h\u00f6heren Mathematik vom Standpunkt der endlichen Konfigurationen.
- Fertigkeiten: Beherrschung grundlegender Begriffe und Beweistechniken.
- Kompetenzen: Befähigung zum selbständigen und effizienten Lernen.

Inhalt:

- Aussagen, Aussageformen, Tautologien, Schaltfunktionen
- Prädikate, Quantoren, Beweistechnik, Semantik der Zuweisung
- Mengen, Mengenoperationen, Mengensysteme, axiomatische Mengenlehre
- Relationen, Digraphen, Komposition, mehrstellige Relationen, relationale Datenbanken
- Homogene Relationen, Äquivalenzen, Ordnungen, Hüllen
- Abbildungen, spezielle Abbildungen Permutationen, Familien, Folgen, Multimengen, Analyse von Algorithmen
- Natürliche Zahlen, Peano-Arithmetik, vollständige Induktion, fundierte Induktion, Schleifenprogrammierung

- Endliche und unendliche Mengen, abzählbare und überabzählbare Mengen, Berechenbarkeit von reellen Zahlen
- Elementare Abzählungsprinzipien, Schubfachprinzip, Prinzip der doppelten Abzählung, Prinzip der Inklusion-Exklusion
- Kombinationen, Permutationen, Bellzahlen, Typisierung von Permutationen
- Mengenpartitionen, Zahlpartitionen, Stirlingzahlen

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Lehrbuch, Tafelanschrieb, Folien, One Minute Paper

Literatur:

K.-H. Zimmermann: Diskrete Mathematik, BoD, 412 S., 2006

F. Kasch, B. Pareigis: Grundbegriffe der Mathematik, Fischer Verlag, 1991

S. Singh: Fermats letzter Satz - Die abenteuerliche Geschichte eines mathematischen Rätsels, Hanser, 1998

D. Hofstaedter: Gödel, Escher, Bach, dtv Verlag, 1996, (5. Auflage)

Modul: Graphentheorie und Optimierung

Lehrveranstaltungen:

Titel	Тур	SWS
Graphentheorie und Optimierung	Vorlesung	2,00
Graphentheorie und Optimierung	Übung	1,00

Modulverantwortlich: Prof. Dr. Karl-Heinz Zimmermann

Dozent(in): Prof. Dr. Karl-Heinz Zimmermann

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Informatik-Ingenieurwesen	B.Sc.	4.	Wahlpflicht
General Engineering Science - Computer Engineering	B.Sc.	4.	Wahlpflicht
Informatikingenieur [Diplom]	Diplom	2.	Pflicht
Informationstechnologie	B.Sc.	2.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	4.	Pflicht
Informationstechnologie (neu)	B.Sc.	2.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Diskrete Mathematik I

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegende Theorie und Anwendung algebraischer Grundstrukturen.
- Fertigkeiten: Beherrschung grundlegender Begriffe, Methoden und Beweisverfahren.
- Kompetenzen: Verwendung von rudimentären Methoden in informatischen und ingenieurwissenschaftlichen Anwendungen. Abbildung einer allgemeinen Problemstellung auf ein Teilproblem. Befähigung zum selbständigen und effizienten Lernen.

Inhalt:

- Arithmetik der ganzen Zahlen, Ringe, Schedules für Laufschleifen.
- Teilbarkeitslehre, Euklidischer Algorithmus, Satz von Bezout, Primzahlen, Hauptsatz der Arithmetik, Gödelisierung.
- Restklassenringe, lineare Kongruenzensysteme, Zerlegung von Restklassenringen, modulare Rechenwerke.
- Einheiten in Ringen, Eulersche Phi-Funktion, Integritätsringe, Körper, moderne Kryptographie (RSA).
- Verbände, Ordnungen, distributive und komplementäre Verbände, Begriffsverbände.
- Boolesche Algebren, Schaltalgebren, kombinatorische Schaltungen.
- Graphen, Durchlaufen von Graphen, Bäume.
- Planare Graphen.

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Lehrbuch, Tafelanschrieb, Folien, One Minute Paper

Literatur:

K.-H. Zimmermann: Diskrete Mathematik, BoD, 412 S., 2006

R. Haggerty: Diskrete Mathematik, Addison Wesley, 2004

Modul: Einführung in Datenbanksysteme

Lehrveranstaltungen:

Titel Тур **SWS** Vorlesung Einführung in Datenbanksysteme/Introduction to Database Systems 2,00 Einführung in Datenbanksysteme/Lab class: Introduction Database Systems Übung 1,00

Modulverantwortlich: Prof. Dr. Ralf Möller

Dozent(in): Prof. Dr. Ralf Möller

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Informatik-Ingenieurwesen	B.Sc.	5.	Pflicht
Allgemeine Ingenieurwissenschaften - International Production Management	B.Sc.	5.	Pflicht
Elektrotechnik [Diplom] - Technische Informatik	Diplom	7.	Wahl
Elektrotechnik [Diplom] - Technische Informatik - I+K-Anwendungssysteme	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom]	Diplom	5.	Pflicht
Informationstechnologie	B.Sc.	3.	Pflicht
Hochschulübergr. Studiengang Wirtschaftsingenieurwesen	Diplom	1.	Wahl
Biotechnology	M.Sc.	1.	Wahlpflicht
Verfahrenstechnik [Diplom]	Diplom	7.	Wahl
Informatik-Ingenieurwesen	B.Sc.	5.	Pflicht
Informationstechnologie (neu)	B.Sc.	3.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Informatik I und II, Algorithmen und Datenstrukturen, Objektorientierte Programmierung

Angestrebte Lernergebnisse:

 Kenntnisse: Grundlegende Zusammenhänge, Theorien und Methoden des Fachgebietes Datenbanken

Inhalt:

- Einführung
- Konzeptuelle Datenmodellierung:
 - o Grundlagen, Relationencharakterisierung (1:N, M:N)
 - o Multiplizitäten/Min-Max-Kardinalitäten, Aggregation, Generalisierung
- Implementierungsmodelle: Relationales Datenmodell
 - o Grundlagen

Referentielle Integrität, Schlüssel, Fremdschlüssel, kanonische Abbildung von Entitytypen und Relationships ins Relationenmodell

Funktionale Abhängigkeiten (fds)

Aktualisierungs-, Einfüge- und Löschanomalien,

Relationale Algebra

o Relationale Entwurfstheorie:

Hülle bzgl. FD-Menge, kanonische Ueberdeckung von FD-Mengen, Normalisierung, verlustfreie und äbhängigkeitsbewahrende Zerlegung, mehrwertige Abhängigkeiten (mvds)

- Anfragesprachen, SQL
- Mehrbenutzersynchronisation und Fehlerbehandlung: Transaktionen
 - o Motivation, Mehrbenutersynchronisation, ACID-Eigenschaften, Sperren, Zweiphasen-Sperrprotokoll
 - o Integritätsbedingungen
 - o Isolationsgrade
- Implementierungsmodelle: Objektrelationale Datenmodelle
 - ORDBs und Objektrelationale Middleware
- Implementierungsmodelle für semistrukturierte Daten
 - o Anfragesprache XQuery
- Deduktive Datenbanken (Datalog)

Datalog, Safety, Rekursion, Negation (stratifiziertes Datalog),

Auswertung nicht-rekursiver Datalog-Programme,

naive und semi-naive Auswertung rekursiver Datalog-Programme

Verteilte Datenbanken

Vertikale und horizontale Fragmentierung, Rekonstruierbarkeit, Redundanz, Transparenz, verteilte Transaktionen, 2-Phasen-Commit-Protokoll, Verteiltes Sperren

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Präsentationen (pdf), Tafelanschrieb

Literatur:

• A. Kemper, A. Eickler, Datenbanksysteme - 5. Auflage, Oldenbourg, 2004

Modul: Einführung in die Informationssicherheit

Lehrveranstaltungen:

Titel	Тур	SWS
Introduction to Security	Vorlesung	2,00
Introduction to Security	Übung	1,00

Modulverantwortlich: Prof. Dr. Dieter Gollmann

Dozent(in): Prof. Dr. Dieter Gollmann

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informationstechnologie - Softwaresysteme	B.Sc.	5.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	3.	Wahlpflicht
Informationstechnologie (neu)	B.Sc.	5.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundlagen der diskreten Mathematik

Angestrebte Lernergebnisse:

- Kenntnisse: differenzierte Sicht von Sicherheitszielen; grundlegende Mechanismen für Computersicherheit (Zugriffskontrolle, Softwaresicherheit) und für Kommunikationssicherheit (Kryptographie)
- System- und Methodenkompetenz: elementare Sicherheitsanalyse und Bewertung von Sicherheitslösungen
- Soziale Kompetenzen: Verständnis der Kernaspekte von Sicherheitsmanagement und der Beziehung zwischen technischen und nicht-technischen Sicherheitsaspekten

Inhalt:

- Sicherheitsziele
- Sicherheitsmanagement
- Malware Softwaresicherheit
- Kryptographie: grundlegende Mechanismen und Dienste
- Zugriffskontrolle: IBAC, RBAC, Code-basierte Zugriffskontrolle Standards: ISO, ETSI, IETF, PKCS
- Gesetze und regulatorische Rahmenbestimmungen
- Fallstudie: Public Key Infrastructures

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Powerpoint, Tafel

Literatur:

D. Gollmann: Computer Security (2. Auflage), Wiley, 2006.

Modul: Elektrische Maschinen

Lehrveranstaltungen:

Titel	Тур	sws
Elektrische Maschinen	Vorlesung	2,00
Elektrische Maschinen	Übung	1,00

Modulverantwortlich: Prof. Dr. Günter Ackermann

Dozent(in): Prof. Dr. Günter Ackermann

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Energietechnik	B.Sc.	5.	Pflicht
Allgemeine Ingenieurwissenschaften - Flugzeug-Systemtechnik	B.Sc.	5.	Pflicht
Allgemeine Ingenieurwissenschaften - Theoretischer Maschinenbau	B.Sc.	5.	Pflicht
Maschinenbau [Diplom] - Fertigungstechnik	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Konstruktionstechnik - Flugzeugsystemtechnik	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Konstruktionstechnik - Produktentwicklung	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Energietechnik	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Thermische Energieanlagen und Schiffsmaschinenbau - Thermische Energieanlagen	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Thermische Energieanlagen und Schiffsmaschinenbau - Schiffsmaschinenbau	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	5.	Pflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	5.	Pflicht
Schiffbau [Diplom] - Schiffsmaschinenbau	Diplom	7.	Wahlpflicht
Energie- und Umwelttechnik [Diplom]	Diplom	5.	Wahlpflicht
Energie- und Umwelttechnik [Diplom] - Energietechnik	Diplom	7.	Wahlpflicht
Elektrotechnik	B.Sc.	3.	Pflicht
Maschinenbau	B.Sc.	5.	Pflicht
Schiffbau und Meerestechnik	M.Sc.	3.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Vorlesung: Grundlagen der Elektrotechnik, Mathematik für Ingenieure

Angestrebte Lernergebnisse:

- Kentnisse: Kenntnisse grundlegender Zusammenhänge, Theorien und Methoden elektrischer Gleichstrom-, Synchron- und Asynchron- Maschinen
- Methodenkompetenz: Beherrschen einschlägiger Methoden und Modellierungswerkzeuge für den Betrieb elektrischer Maschinen
- Systemkompetenz:Realisierung allgemeiner Funktionsprizipien elektrischer Maschinen sowie deren Auslegung und Dimensionierung

Inhalt:

- Induktionsgesetz, magnetische Felder in Luft und Eisen, Energie und Kraftwirkung, Drehmomenterzeugung und Verluste in elektrischen Maschinen
- Gleichstrommaschinen: Funktionsprinzip, Aufbau, Drehmomenterzeugung, Betriebskennlinien, Kommutierung, Wendepole und Kompensationswicklung,
- Drehfelder in elektrischen Maschinen
- Asynchronmaschine: Funktionsprinzip, Aufbau, Ersatzschaltbild und Kreisdiagramm, Betriebskennlinien, Auslegung des Läufers,
- Synchronmaschine: Funktionsprinzip, Aufbau, Verhalten bei Leerlauf und Kurzschluss, Ersatzschaltbild und Zeigerdiagramm
- Drehzahlvariable Antrieb mit Frequenzumrichtern
- Sonderbauformen elektrischer Maschinen, Schrittmotoren

Studien	/Prüfun	asleistu	ngen:
CLUGICII	,, , ,,,,,,,,	93151314	

Schriftlich	

Medienformen:

Power Point, Tafelanschrieb, Folien

Literatur:

Wird überarbeitet

Modul: Elektronische Bauelemente

Lehrveranstaltungen:

Titel	Тур	SWS
Elektronische Bauelemente / Electronic Devices	Vorlesung	3,00
Elektronische Bauelemente/Electronic Devices	Übung	1,00

Modulverantwortlich: Prof. Dr. Jörg Müller

Dozent(in): Prof. Dr. Jörg Müller

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Elektrotechnik	B.Sc.	5.	Pflicht
Allgemeine Ingenieurwissenschaften - Informatik-Ingenieurwesen	B.Sc.	5.	Pflicht
Allgemeine Ingenieurwissenschaften - Materialwissenschaften	B.Sc.	5.	Pflicht
Elektrotechnik [Diplom]	Diplom	5.	Pflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	7.	Wahlpflicht
Elektrotechnik	B.Sc.	5.	Pflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Informationstechnologie (neu)	B.Sc.	5.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 124

Kreditpunkte: 6,00

Voraussetzungen:

Physik für Elektrotechniker, Werkstoffe der Elektrotechnik (Ladungsträger in Halbleitern, Bändermodell, Stromfluß-, Anregungsmechanismen) Netzwerkanalyseverfahren,

Angestrebte Lernergebnisse:

Kenntnis der Wirkprinzipien der wichtigsten Halbleiterbauelemente und ihrer Modellierung als Netzwerkelemente zur Vorbereitung der Halbleiterschaltungstechnik/ -analyse und Schaltungssimulation. Anwendung der Bauelemente im jeweiligen Grundbetrieb. Eigenständiges Erkennen von physikalischen Zusammenhängen und Finden von Lösungen für komplexe Aufgabenstellungen.

Inhalt:

- Elektronen und Löcher in Halbleitern (Halbleitergrundgleichungen, Rekombination, Grenzflächen)
- Grundeigenschaften der Halbleiterbauelemente

- Halbleiterdiode (Prinzip, stat./dyn. Modellierung, Ersatzschaltung, Diodenarten, typische Anwendungen)
- Bipolartransistor (Prinzip, stat./dyn. Modellierung, Ersatzschaltung, Grundstromkreis, typische Anwendungen)
- Thyristor
- Metall-Halbleiterübergang, Anwendungen
- Feldeffekttransistoren, JFET und MOS-Transistoren (Prinzipien, Arten, Modellierung, Grundstromkreis, Grundschaltungen)

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Power Point Präsentation

Literatur:

- Skript
- Unger, Schutz, Weinhausen, Elektronische Bauelemente und Schaltungen, Vieweg, UnitextSze, Physics of semiconductors, J,Whiley&SonsMöschwitzer, Grundlagen der Halbleiter und Mikroelektronik, Carl Hanser Verlag

Modul: Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische Felder

Lehrveranstaltungen:

TitelTypSWSElektrotechnik I: Gleichstromnetzwerke und elektromagnetische FelderVorlesung3,00Elektrotechnik I: Gleichstromnetzwerke und elektromagnetische FelderÜbung2,00

Modulverantwortlich: Prof. Dr. Jan Luiken ter Haseborg

Dozent(in): Prof. Dr. Jan Luiken ter Haseborg

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften	B.Sc.	1.	Pflicht
Elektrotechnik [Diplom]	Diplom	1.	Pflicht
Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	1.	Pflicht
Elektrotechnik	B.Sc.	1.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	1.	Pflicht
Informationstechnologie (neu)	B.Sc.	1.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 70, Eigenstudium: 140

Kreditpunkte: 7,00

Voraussetzungen:

Mathematische und physikalische Grundlagen

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegendes Verständnis elektrotechnischer und formelmäßiger Zusammenhänge, Beherrschung einschlägiger Methoden zur Lösung elektrotechnischer Probleme
- Methodenkompetenz: Modellierung und Bewertung komplexer Netzwerke
- Systemkompetenz: Systemorientiertes Denken

Inhalt:

- Der zeitlich konstante elektrische Strom: (Das ohmsche Gesetz, spezifischer Widerstand, Leitfähigkeit, Temperaturabhängigkeit, Atomaufbau, Strom, Stromdichte)
- Die elektrische Spannung: (Energie, Leistung, elektrisches Potential)
- Elektrische Netzwerke: (1. Kirchhoffscher Satz, 2. Kirchhoffscher Satz, Parallel-, Reihenschaltung, Stern/Dreieckumwandlung, Spannungsteiler, Brückenschaltung, Ersatzspannungsquelle, Ersatzstromquelle)

- Berechnung linearer Netzwerke: (Anwendung der Kirchhoffschen Sätze, vollständiger Baum, Maschenstromverfahren, Knotenpotentialverfahren, Überlagerungssatz, Leistungsanpassung, Wirkungsgrad)
- Kraftfelder: (Vektorrechnung, Vektorfelder, skalare Felder, Feldlinien, Äquipotentialflächen, wirbelfreie Felder, Feldbilder)
- Das elektrostatische Feld: (Kraft im elektrischen Feld, Coulombsches Gesetz, Dielektrizitätskonstante, relative Dielektrizitätskonstante, dielektrische Verschiebungsdichte, Feldbilder)
- Das stationäre elektrische Strömungsfeld: (Flächenintegral der elektrischen Stromdichte, elektrische Feldstärke und Leistungsdichte im stationären Strömungsfeld)
- Kondensatoren: (Influenz, elektrischer Dipol, Kapazität, Reihen- und Parallelschaltung, geschichtete Dielektrika, Plattenkondensator, Zylinderkondensator, Kugelkondensator, Energiedichte im elektrostatischen Feld)
- Das magnetische Feld: (magnetische Induktion, magnetische Feldstärke, Permeabilitätskonstante, relative Permeabilitätskonstante, magnetische Spannung, elektrische Durchflutung, magnetischer Fluß, Berechnung magnetischer Felder (Biot-Savartsches Gesetz))
- Magnetische Felder an Grenzflächen, magnetische Kreise: (magnetischer Widerstand, magnetischer Leitwert, Berechnung von magnetischen Kreisen)
- Magnetisierung, Magnetisierungskennlinie: (Weiss´sche Bezirke, Diamagnetismus, Paramagnetismus, Ferromagnetismus, Hystereseschleife, Remanenzinduktion, Koerzitivfeldstärke, Scherung, Berechnung von Dauermagneten)
- Kraftwirkungen im magnetischen Feld: (Lorentz-Kraftgesetz, stromdurchflossener Leiter im magnetischen Feld)
- Die elektromagnetische Induktion: (Induktionsgesetz, induzierte Spannung, Selbstinduktivität, Energie im magnetischen Feld, Berechnung von Selbstinduktivitäten, Gegeninduktivität)
- Maxwellsche Gleichungen in Integralform

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Tafel, Overheadfolien

Literatur:

M. Albach: "Grundlagen der Elektrotechnik 1", Pearson Education, 2004, ISBN 3-8273-7106-6

M. Albach: "Grundlagen der Elektrotechnik 2", Pearson Education, 2005, ISBN 3-8273-7108-2

W.-E. Büttner: "Grundlagen der Elektrotechnik 1", 2004 Oldenbourg-Verlag, ISBN 3-486-27295-0

L. Papula: "Mathematik für Ingenieure und Naturwissenschaftler", Bände I und II, Vieweg Verlag Wiesbaden, ISBN 3-528-84236-9; ISBN 3-528-84237-7, 2000

K. Lunze: "Einführung in die Elektrotechnik", Verlag Technik, ISBN 3-341-00980-9, 1991

A. R. Hambley: "Electrical Engineering, Principles and Applications", fourth edition, 2008, Prentice Hall, New Jersey 07458, ISBN 0-13-198922-7

Modul: Elektrotechnik II: Wechselströme und grundlegende Bauelemente

Lehrveranstaltungen:

Titel	Тур	SWS
Elektrotechnik II: Wechselströme und grundlegende Bauelemente	Vorlesung	3,00
Elektrotechnik II: Wechselströme und grundlegende Bauelemente	Übung	2,00

Modulverantwortlich: Prof. Dr. Christian Schuster

Dozent(in): Prof. Dr. Christian Schuster

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	2.	Pflicht
Elektrotechnik	B.Sc.	2.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	2.	Pflicht
Informationstechnologie (neu)	B.Sc.	2.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 70, Eigenstudium: 140

Kreditpunkte: 7,00

Voraussetzungen:

Elektrotechnik I

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegende Theorien, Zusammenhänge und Methoden der Elektrotechnik in den Feldern der linearen Netwerktheorie, komplexen Notation, Darstellung im Frequenzbereich, einfachen passiven und aktiven Bauelemente
- Fertigkeiten: Beherrschen einfacher analytischer Methoden zur Analyse von Wechselstrom-Netzwerken
- Kompetenzen: Erkennen von typischen Problemen (und deren Lösungen) im genannten Fachgebiet

Inhalt:

- Wechselströme, RLC-Elemente bei Wechselströmen
- Darstellung von Sinussignalen
- Lineare Zweipole-Elemente in komplexer Darstellung
- Leistung in Wechselstrom-Schaltkreisen
- Lineare Netzwerke im Frequenzbereich, Nyquist und Bode Plots, Schwingkreise
- Einfache nichtlineare und aktive Bauelemente, Operationsverstärker
- Übertrager, Drehstrom und Energiewandler
- Elektrische Leitungsmechanismen

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Tafel, Folien

Literatur:

M. Albach, "Grundlagen der Elektrotechnik 1", Pearson Studium, (2004)

M. Albach, "Grundlagen der Elektrotechnik 2", Pearson Studium, (2005)

Heinrich Frohne et al., "Moeller Grundlagen der Elektrotechnik", Teubner (2005)

Ilja N. Bronstein et al., "Taschenbuch der Mathematik", Harri Deutsch (2005)

Modul: Grundlagen der Regelungstechnik

Lehrveranstaltungen:

TitelTypSWSGrundlagen der RegelungstechnikVorlesung2,00Grundlagen der RegelungstechnikÜbung2,00

Modulverantwortlich: Prof. Dr. Herbert Werner

Dozent(in): Prof. Dr. Herbert Werner

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften	B.Sc.	5.	Pflicht
Allgemeine Ingenieurwissenschaften - Energietechnik	B.Sc.	5.	Pflicht
Elektrotechnik [Diplom]	Diplom	5.	Pflicht
Informatikingenieur [Diplom]	Diplom	5.	Pflicht
Informationstechnologie - Informations- und Kommunikationssysteme	B.Sc.	5.	Pflicht
Maschinenbau [Diplom] - Fertigungstechnik	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Konstruktionstechnik	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Energietechnik	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Thermische Energieanlagen und Schiffsmaschinenbau	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Werkstofftechnik	Diplom	7.	Pflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	5.	Pflicht
Mediziningenieurwesen	Diplom	5.	Pflicht
Verfahrenstechnik [Diplom]	Diplom	5.	Pflicht
Biotechnologie/Verfahrenstechnik [Diplom]	Diplom	5.	Pflicht
Energie- und Umwelttechnik [Diplom]	Diplom	7.	Pflicht
Elektrotechnik	B.Sc.	5.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	5.	Pflicht
Energie- und Umwelttechnik	B.Sc.	5.	Pflicht
Informationstechnologie (neu)	B.Sc.	5.	Pflicht
Maschinenbau	B.Sc.	5.	Pflicht
Verfahrenstechnik	B.Sc.	5.	Pflicht
Bioverfahrenstechnik	M.Sc.	1.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 124

Kreditpunkte: 6,00

Voraussetzungen:

Grundkenntnisse der Behandlung von Signalen und Systemen im Zeit- und Frequenzbereich und der Laplace-Transformation.

Angestrebte Lernergebnisse:

- Kenntnisse: Dynamik von einfachen Regelkreisen, Bewertung in Zeit- und Frequenzbereich
- Methodenkompetenz: Modellierung dynamischer Systeme, Synthese von einfachen Regelkreisen
- System- und Lösungskompetenz: Auswahl geeigneter Analyse- und Synthesemethoden
- Soziale Kompetenz: Verständnis englischsprachiger Fachliteratur zum Thema

Inhalt:

Signale und Systeme

- Lineare Systeme, Differentialgleichungen und Übertragungsfunktionen
- Systeme 1. und 2. Ordnung, Pole und Nullstellen, Impulsantwort und Sprungantwort
- Stabilität

Regelkreise

- Prinzip der Rückkopplung: Steuerung oder Regelung
- Folgeregelung und Störunterdrückung
- Arten der Rückführung, PID-Regelung
- System-Typ und bleibende Regelabweichung
- Inneres-Modell-Prinzip

Wurzelortskurven

- Konstruktion und Interpretation von Wurzelortskurven
- Wurzelortskurven von PID-Regelkreisen

Frequenzgang-Verfahren

- Frequenzgang, Bode-Diagramm
- Minimalphasige und nichtminimalphasige Systeme
- Nyquist-Diagramm, Nyquist-Stabilitätskriterium, Phasenreserve und Amplitudenreserve
- Loop shaping, Lead-Lag-Kompensatoren
- Frequenzgang von PID-Regelkreisen

Totzeitsysteme

- Wurzelortskurve und Frequenzgang von Totzeitsystemen
- Smith-Prädiktor

Digitale Regelung

- Abtastsysteme, Differenzengleichungen
- Tustin-Approximation, digitale PID-Regler

Software-Werkzeuge

- Einführung in Matlab, Simulink, Control Toolbox
- Rechnergestützte Aufgaben zu allen Themen der Vorlesung

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Tafelanschrieb, Folien, Matlab/Simulink-Demos (Beamer), Lecture Notes

Literatur:

Werner, H., Lecture Notes "Control Systems 1"

G.F. Franklin, J.D. Powell and A. Emami-Naeini "Feedback Control of Dynamic Systems", Addison Wesley, Reading, MA, 2002, ISBN 0-13-03233934

K. Ogata "Modern Control Engineering", Fourth Edition, Prentice Hall, Upper Saddle River, NJ, 2002, ISBN 0-13-043245-8

R.C. Dorf and R.H. Bishop, Ninth Edition, Addison Wesley, Reading, MA 2001, ISBN 0-13-030660-6

Modul: Halbleiterschaltungstechnik

Lehrveranstaltungen:

Titel	Тур	SWS
Halbleiterschaltungstechnik	Vorlesung	3,00
Halbleiterschaltungstechnik	Übung	1,00

Modulverantwortlich: Prof. Dr. Wolfgang Krautschneider

Dozent(in): Prof. Dr. Wolfgang Krautschneider

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Elektrotechnik	B.Sc.	6.	Pflicht
Elektrotechnik [Diplom]	Diplom	6.	Pflicht
Informatikingenieur [Diplom]	Diplom	6.	Pflicht
Informatikingenieur [Diplom]	Diplom	6.	Wahl
Informatikingenieur [Diplom] - Informationselektronik	Diplom	8.	Wahlpflicht
Informationstechnologie	B.Sc.	4.	Pflicht
Mechatronik/Joint Curriculum Mechatronik - Block I: Elektrotechnik	Diplom	8.	Wahlpflicht
Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	6.	Wahlpflicht
Elektrotechnik	B.Sc.	6.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	6.	Wahlpflicht
Informationstechnologie (neu)	B.Sc.	6.	Wahlpflicht
Mediziningenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 124

Kreditpunkte: 6,00

Voraussetzungen:

Grundbegriffe elektronischer Bauelemente, Analyse von Gleich- und Wechselspannungsnetzwerken Vorlesung "Grundlagen der Elektrotechnik I und II oder Elektrotechnik für Informationstechnik I und II".

Angestrebte Lernergebnisse:

 Kentnisse: Entwicklung eines genauen Verständnisse zur operativen Einschätzung von Potenzial und Problemen zukünftiger CMOS-Generationen. Genaue Kenntnisse der wichtigsten Grundschaltungen im Analog- und Digitalbereich sowie von Logik- und Speicherschaltungen. • Fertigkeiten: Erwerben der Fertigkeit, Lösungsansätze zur Berechnung von Schaltungen zu erstellen und grundlegende Berechnungen durchzuführen.

Inhalt:

- Grundschaltungen mit MOS-Transistoren für Logikgatter und Verstärker
- Typische Anwendungsfälle in der digitalen und analogen Schaltungstechnik
- Realisierung logischer Funktionen
- Schaltungen für die Speicherung von binären Daten
- Strukturverkleinerung von CMOS-Schaltkreisen und weitere Leistungssteigerung
- Operationsverstärker und ihre Anwendungen
- Grundschaltungen mit bipolaren Transistoren
- Dimensionierung beispielhafter Schaltungen
- Berechung des elektrischen Verhaltens von BICMOS-Schaltungen

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Power Point Präsentation, Folien, Skript, Tafel

Literatur:

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc 2. Auflage, 2005, ISBN: 047170055S

H.-G. Wagemann und T. Schönauer, Silizium-Planartechnologie, Grundprozesse, Physik und Bauelemente, Teubner-Verlag, 2003, ISBN 3519004674

K. Hoffmann, Systemintegration, Oldenbourg-Verlag, 2. Aufl. 2006, ISBN: 3486578944

U. Tietze und Ch. Schenk, E. Gamm, Halbleiterschaltungstechnik, Springer Verlag, 12. Auflage, 2002, ISBN 3540428496

Modul: Hardware-Praktikum

Lehrveranstaltungen:

TitelTypSWSHardwarepraktikum IIPraktikum2,00

Modulverantwortlich: Prof. Dr. Georg Friedrich Mayer-Lindenberg

Dozent(in): Prof. Dr. Georg Friedrich Mayer-Lindenberg

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatikingenieur [Diplom]	Diplom	4.	Pflicht
Informationstechnologie	B.Sc.	4.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	5.	Pflicht
Informationstechnologie (neu)	B.Sc.	5.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

Das Praktikum baut auf die in der Vorlesung "Digitale Verarbeitungssysteme" gelegten Grundlagen über VHDL- und CPU-Design auf.

Der vorherige, erfolgreiche Besuch dieser Vorlesung ist für die erfolgreiche Durchführung des Praktikums zwingend erforderlich.

Angestrebte Lernergebnisse:

- Kompetenz zur Implementation von Booleschen Funktionen und Automaten
- sowie einer einfachen CPU in einer FPGA-Umgebung unter Verwendung von VHDL.

Inhalt:

Im Praktikum werden

- eine Reihe von einfachen VHDL-Designs durchgeführt,
- simuliert,
- und in einer FPGA-Umgebung getestet.

Am Ende steht das Design des in der DVS-Vorlesung behandelten Prozessors, welches auf dem FPGA erprobt werden kann.

Dieses Hardware-Praktikum gibt eine Einführung in die praktische Benutzung eines Hardware-Entwurfssystems. Die in der Vorlesung "Digitale Verarbeitungssysteme" (3.Semester) erworbenen theoretischen Kenntnisse sollen angewandt werden, indem aufeinander aufbauende Entwurfsaufgaben

1	Einführung in die Entwicklungsumgebung
2	Sequentielle Grundschaltungen
3	Ein-/Ausgabe-Peripherie
4	Implementierung eines einfachen Prozessors

zu lösen sind. Das Praktikum endet mit der Realisierung und Inbetriebsetzung des in der Vorlesung diskutierten Prozessors auf einem FPGA, wobei eine betriebsfähige FPGA-Hardware-Umgebung zur Verfügung gestellt wird.

Studien/Prüfungsleistungen:

Für die erfolgreiche Gruppenarbeit gibt es einen Schein. Es wird geprüft und bescheinigt

- regelmäßige Teilnahme am Gruppenprojekt,
- notwendiges Grundverständnis
- hinreichendes Verständnis des Projektergebnisses

Literatur:

Wird überarbeitet

Modul: Maschinelles Rechnen und Rechnerarchitektur

Lehrveranstaltungen:

Titel	Тур	SWS
Maschinelles Rechnen und Rechnerarchitektur	Vorlesung	3,00
Maschinelles Rechnen und Rechnerarchitektur	Übung	1,00

Modulverantwortlich: Prof. Dr. F. Mayer-Lindenberg

Dozent(in): Prof. Dr. F. Mayer-Lindenberg

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften	B.Sc.	2.	Pflicht
General Engineering Science	B.Sc.	2.	Pflicht
Elektrotechnik [Diplom]	Diplom	2.	Pflicht
Informatikingenieur [Diplom]	Diplom	2.	Pflicht
Informationstechnologie	B.Sc.	2.	Pflicht
Fach Informatik für GWL [Staatsexamen]	Lehramt	2.	Pflicht
Technomathematik	Diplom	2.	Pflicht
Elektrotechnik	B.Sc.	2.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	2.	Pflicht
Informationstechnologie (neu)	B.Sc.	2.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 124

Kreditpunkte: 6,00

Voraussetzungen:

keine

Angestrebte Lernergebnisse:

- Kenntnisse über Grundbegriffe des maschinellen Rechnens, den Aufbau von Digitalrechnern und Techniken und Modelle für deren Einsatz.
- Kompetenz einer strukturelle Sicht der Funktionsweise und Anwendung digitaler Systeme.
- Grundlagen für die digitale Schaltungstechnik werden durch die Diskussion Boole"scher Funktionen gelegt.
- Die Betrachtung von Komplexitätsaspekten ist Grundlage für den effizienten Entwurf von Systemen in Hardware und Software.
- Kenntnisse und Fähigkeiten: Beschreibung von Rechner- und Programmstrukturen mittels Automaten, ferner der Beschreibung der Synchronisation der Ein- und Ausgaben und Verarbeitungsschritte mittels Petri-Netzen.

Inhalt:

Grundbegriffe der Informatik

- Maschinelles Rechnen
- Algorithmen
- Berechenbarkeit
- Komplexität

Arithmetik und spezielle Funktionen

- Codierung von Zahlen
- Rechnerarithmetik
- Approximation reeller Funktionen

Rechenmaschinen mit Speicher

- Endliche Automaten
- Programmierbare Universalrechner
- CPU und Speicher
- Ein- und Ausgabeschnittstellen

Zeitverhalten von Programmen

- Befehls-Schedules
- Parallele Verarbeitungsprozesse auf einem Rechner
- Interrupts und Kontextwechsel
- Petri-Netze

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Open-Office-Präsentation, Wandtafel, Internet-Skript

Literatur:

F. Mayer-Lindenberg, Konstruktion digitaler Systeme, Vieweg-Verlag

Goos, Vorlesungen über Informatik, Springer-Verlag

Modul: Objektorientierte Programmierung, Algorithmen und Datenstrukturen

Lehrveranstaltungen:

Titel	Тур	SWS
Objektorientierte Programmierung, Algorithmen und Datenstrukturen	Vorlesung	3,00
Objektorientierte Programmierung, Algorithmen und Datenstrukturen	Übung	1,00
Objektorientierte Programmierung, Algorithmen und Datenstrukturen	Praktikum	1,00

Modulverantwortlich: Prof. Dr. Rolf-Rainer Grigat

Dozent(in): Prof. Dr. Rolf-Rainer Grigat

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften	B.Sc.	3.	Pflicht
General Engineering Science	B.Sc.	3.	Pflicht
Elektrotechnik [Diplom]	Diplom	3.	Pflicht
Informatikingenieur [Diplom]	Diplom	3.	Pflicht
Informationstechnologie	B.Sc.	3.	Pflicht
Fach Informatik für GWL [Staatsexamen]	Lehramt	1.	Pflicht
Technomathematik	Diplom	3.	Pflicht
Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	3.	Pflicht
Elektrotechnik	B.Sc.	3.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	3.	Pflicht
Informationstechnologie (neu)	B.Sc.	3.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 70, Eigenstudium: 140

Kreditpunkte: 7,00

Voraussetzungen:

Maschinelles Rechnen und Rechnerarchitektur

Angestrebte Lernergebnisse:

- Kenntnisse: grundlegender Zusammenhänge, Theorien und Methoden des generische Programmierung, Design Patterns, Algorithmen und Datenstrukturen
- Fertigkeiten: Beherrschen einschlägiger Methoden und Werkzeuge für Objektorientierte und generische Programmierung in C++ und Java

Inhalt:

Objektorientierte Analyse und Entwurf:

- Objektorientierte Programmierung in C++ und Java
- generische Programmierung
- UML
- Design Patterns

Datenstrukturen und Algorithmen:

- Komplexität von Algorithmen
- Suchen, Sortieren, Hashing, Stapel, Schlangen, Listen, Bäume(Heap, 2-3-4, Trie, Huffman, Patricia), Mengen, Prioritätswarteschlangen, gerichtete und ungerichtete Graphen (Spannbäume, kürzeste und längste Wege)

Studien/Prüfungsleistung	en:
--------------------------	-----

schriftliche Prüfung

Medienformen:

Mit LaTeX erstellte pdf-Slides

Literatur:

Sciptum von Grigat / Kricke

Modul: Verteilte Systeme

Lehrveranstaltungen:

Titel	Тур	SWS
Verteilte Systeme	Vorlesung	2,00
Verteilte Systeme	Übung	1,00
Verteilte Systeme	Praktikum	1,00

Modulverantwortlich: Prof. Dr. Volker Turau

Dozent(in): Prof. Dr. Volker Turau

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Informatik-Ingenieurwesen	B.Sc.	4.	Wahlpflicht
Allgemeine Ingenieurwissenschaften - International Production Management	B.Sc.	4.	Wahlpflicht
General Engineering Science - Computer Engineering	B.Sc.	4.	Wahlpflicht
Informatikingenieur [Diplom]	Diplom	4.	Pflicht
Informationstechnologie	B.Sc.	4.	Pflicht
Technomathematik	Diplom	4.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	4.	Pflicht
Informationstechnologie (neu)	B.Sc.	4.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 94

Kreditpunkte: 5,00

Voraussetzungen:

Gute Programmierkenntnisse in C/C++

Angestrebte Lernergebnisse:

- Kenntnisse: Vertiefte Kenntnisse im Bereich verteilter Systeme und verteilter Algorithmen
- Methodenkompetenz: Studierende in die Lage versetzen verteilte Systeme zu entwerfen und implementieren
- Systemkompetenz: Systemorientiertes Denken mit Blick auf die Prinzipien interoperabler verteilter Systeme einschließlich Beherrschung von Schnittstellenproblematiken
- Soziale Kompetenzen: Praktikum in Teamarbeit

Inhalt:

• Einführung in verteilte Systeme

- Architekturen für verteilte Systeme
- Client-Server Architekturen
- Internet Protokolle
- HTTP: Einfacher entfernter Aufruf
- Entfernter Aufruf
- Nachrichtenorientierte Kommunikation
- Synchronisierung
- Verteilte Algorithmen
- Verteilte Dateisysteme
- Namensdienste

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Power Point Präsentation, Folien, Tafelanschrieb

Literatur:

1. Verteilte Systeme - Konzepte und Design, 4. überarbeitete Auflage, George Coulouris, Jean Dollimore, Tim Kindberg Pearson Studium, 2005 ISBN: 3-8273-7022-1

2. Verteilte Systeme - Grundlagen und Paradigmen, Andrew Tanenbaum und Marten van Steen Pearson Studium, 2003 ISBN: 3-8273-7057-4

Modul: Leitungstheorie

Lehrveranstaltungen:

Titel	Тур	SWS
Leitungstheorie	Vorlesung	2,00
Übung: Leitungstheorie	Übung	1,00

Modulverantwortlich: Prof. Dr. Arne Jacob

Dozent(in): Prof. Dr. Arne Jacob

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Elektrotechnik	B.Sc.	5.	Pflicht
Elektrotechnik [Diplom]	Diplom	5.	Pflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	7.	Wahlpflicht
Technomathematik	Diplom	7.	Pflicht
Elektrotechnik	B.Sc.	5.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundlagen der Elektrotechnik

 Differential- und Integralrechnung sowie Grundkenntnisse über gewöhnliche Differentialgleichungen, Funktionentheorie und lineare Algebra erwartet.

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegender Zusammenhänge der Wellenausbreitung auf Leitungen der Niederfrequenz- und Hochfrequenztechnik
- Fertigkeiten: Beherrschen einschlägiger Berechnungsmethoden, Grundverständnis für allgemeine Ausbreitungsvorgänge erlangen

Inhalt:

- Mathematische Behandlung der Wellenausbreitung am Modell elektrischer Leitungen Leitungen im eingeschwungenen Zustand
- Ausgleichsvorgänge und Impulse auf Leitungen
- Widerstandstransformation und Leitungsdiagramm
- Ersatzschaltungen und Kettenleiter
- Mehrfachleitungen und symmetrische Komponenten
- Hohlleiter und optische Wellenleiter

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Tafelanschrieb, Folien, Experimente

Literatur:

Unger, H.-G.: Elektromagnetische Wellen auf Leitungen, Hüthig Verlag, 1991

Modul: Mathematik I

Lehrveranstaltungen:

Titel	Тур	SWS
Analysis I	Vorlesung	2,00
Lineare Algebra I	Vorlesung	2,00
Analysis I + Lineare Algebra I in 14täglichem Wechsel	Anleitung	2,00
Analysis I + Lineare Algebra I in 14täglichem Wechsel	Anleitung	2,00

Modulverantwortlich: Prof. Dr. Wolfgang Mackens

Dozent(in): Prof. Dr. Wolfgang Mackens, Dozenten der Universität Hamburg

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften	B.Sc.	1.	Pflicht
Allgemeine Ingenieurwissenschaften	B.Sc.	1.	Wahl
General Engineering Science	B.Sc.	1.	Pflicht
Bauingenieurwesen und Umwelttechnik [Diplom]	Diplom	1.	Pflicht
Bauingenieurwesen und Umwelttechnik [Diplom]	Diplom	1.	Wahl
Elektrotechnik [Diplom]	Diplom	1.	Pflicht
Elektrotechnik [Diplom]	Diplom	1.	Wahl
Informatikingenieur [Diplom]	Diplom	1.	Pflicht
Informatikingenieur [Diplom]	Diplom	1.	Wahl
Informationstechnologie	B.Sc.	1.	Pflicht
Informationstechnologie	B.Sc.	1.	Wahl
Maschinenbau [Diplom]	Diplom	1.	Pflicht
Maschinenbau [Diplom]	Diplom	1.	Wahl
Schiffbau [Diplom]	Diplom	1.	Pflicht
Schiffbau [Diplom]	Diplom	1.	Wahl
Verfahrenstechnik [Diplom]	Diplom	1.	Pflicht
Verfahrenstechnik [Diplom]	Diplom	1.	Wahl
Biotechnologie/Verfahrenstechnik [Diplom]	Diplom	1.	Pflicht
Biotechnologie/Verfahrenstechnik [Diplom]	Diplom	1.	Wahl
Energie- und Umwelttechnik [Diplom]	Diplom	1.	Pflicht
Energie- und Umwelttechnik [Diplom]	Diplom	1.	Wahl
Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	1.	Pflicht
Bauingenieur-/Umweltingenieurwesen	B.Sc.	1.	Pflicht
Elektrotechnik	B.Sc.	1.	Pflicht

Informatik-Ingenieurwesen	B.Sc.	1.	Pflicht
Informationstechnologie (neu)	B.Sc.	1.	Pflicht
Energie- und Umwelttechnik	B.Sc.	1.	Pflicht
Maschinenbau	B.Sc.	1.	Pflicht
Schiffbau	B.Sc.	1.	Pflicht
Verfahrenstechnik	B.Sc.	1.	Pflicht
Bioverfahrenstechnik	B.Sc.	1.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 112, Eigenstudium: 128

Kreditpunkte: 8,00

Voraussetzungen:

Schulmathematik

Angestrebte Lernergebnisse:

Vorlesungen und Übungen:

- Kenntnisse: Gründliche Kenntnis der angegebenen Inhalte; erstes Verständnis der Bedeutung dieser fundamentalen mathematischen Strukturen;
- Methodenkompetenz: In Übungen erworbene Fähigkeit, die zugehörigen mathematischen Methoden sinnvoll auf Standardprobleme anwenden zu können.

Anleitung:

- Kenntnisse: Ideen, wie an Übungsaufgaben herangegangen werden kann.
- Methodenkompetenz: Einfache mathematische Bearbeitungstechniken.

Inhalt:

Lineare Algebra:

- Vektoren im Anschauungsraum: Rechenregeln, inneres Produkt, Kreuzprodukt, Geraden und Ebenen.
- Allgemeine Vektorräume: Teilräume, Isomorphie, Euklidische Vektorräume,
 Orthonormalbasis, Orthonormalisierung, normierte Vektorräume, komplexe Zahlen, komplexe
 Vektorräume.
- Lineare Gleichungssysteme: Gaußelimination, Matrizen, lineare Abbildungen, Matrizenprodukt, lineare Systeme, inverse Matrizen, Kongruenztransformationen, LR-Zerlegung, Block-Matrizen, Determinanten.

Analysis:

 Grundzüge der Differential- und Integralrechnung einer Variablen: Aussagen, Mengen und Funktionen; natürliche und reelle Zahlen; Konvergenz von Folgen und Reihen; Stetigkeit und Differenzierbarkeit; Mittelwertsätze; Satz von Taylor; Kurvendiskussion; Fehlerrechnung; Fixpunkt-Iterationen.

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Power Point Präsentation, Smart Board, Matlab Demonstration, Java applets, Tafelanschrieb, Buch

Literatur:

Lineare Algebra:

W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994

W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994

Analysis:

Ansorge, R. und H. J. Oberle: Mathematik für Ingenieure, Band 1; Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000

Oberle, H.J., K. Rothe und Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen; Verlag Wiley-VCH, Berlin, Weinheim, New Yotk, 2000.

Modul: Mathematik II

Lehrveranstaltungen:

Titel	Тур	SWS
Analysis II	Vorlesung	2,00
Analysis II	Übung	1,00
Analysis II	Anleitung	1,00
Lineare Algebra II	Vorlesung	1,00
Lineare Algebra II	Übung	1,00
Lineare Algebra II	Anleitung	1,00

Modulverantwortlich: Prof. Dr. Heinrich Voß

Dozent(in): Prof. Dr. Heirich Voß, Prof. Dr. Wolfgang Mackens, Dozenten der Universität Hamburg

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften	B.Sc.	2.	Pflicht
Allgemeine Ingenieurwissenschaften	B.Sc.	2.	Wahl
Bauingenieurwesen und Umwelttechnik [Diplom]	Diplom	2.	Pflicht
Bauingenieurwesen und Umwelttechnik [Diplom]	Diplom	2.	Wahl
Elektrotechnik [Diplom]	Diplom	2.	Pflicht
Elektrotechnik [Diplom]	Diplom	2.	Wahl
Informatikingenieur [Diplom]	Diplom	2.	Pflicht
Informatikingenieur [Diplom]	Diplom	2.	Wahl
Informationstechnologie	B.Sc.	2.	Pflicht
Informationstechnologie	B.Sc.	2.	Wahl
Maschinenbau [Diplom]	Diplom	2.	Pflicht
Maschinenbau [Diplom]	Diplom	2.	Wahl
Schiffbau [Diplom]	Diplom	2.	Pflicht
Verfahrenstechnik [Diplom]	Diplom	2.	Pflicht
Verfahrenstechnik [Diplom]	Diplom	2.	Wahl
Biotechnologie/Verfahrenstechnik [Diplom]	Diplom	2.	Pflicht
Biotechnologie/Verfahrenstechnik [Diplom]	Diplom	2.	Wahl
Energie- und Umwelttechnik [Diplom]	Diplom	2.	Pflicht
Energie- und Umwelttechnik [Diplom]	Diplom	2.	Wahl
Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	2.	Pflicht
Bauingenieur-/Umweltingenieurwesen	B.Sc.	2.	Pflicht
Elektrotechnik	B.Sc.	2.	Pflicht

Informatik-Ingenieurwesen	B.Sc.	2.	Pflicht
Informationstechnologie (neu)	B.Sc.	2.	Pflicht
Energie- und Umwelttechnik	B.Sc.	2.	Pflicht
Maschinenbau	B.Sc.	2.	Pflicht
Schiffbau	B.Sc.	2.	Pflicht
Verfahrenstechnik	B.Sc.	2.	Pflicht
Bioverfahrenstechnik	B.Sc.	2.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 98, Eigenstudium: 112

Kreditpunkte: 7,00

Voraussetzungen:

Mathematik I

Angestrebte Lernergebnisse:

Vorlesungen und Übungen:

- Kenntnisse: Gründliche Kenntnis der angegebenen Inhalte; Verständnis der Bedeutung der mathematischen Strukturen.
- Methodenkompetenz: In Übungen erworbene Fähigkeit, die zugehörigen mathematischen Methoden sinnvoll auf Probleme anwenden zu können. Ausbau der in Mathematik I erworbenen Kompetenzen.

Anleitung:

Weitere Förderung der grundsätzlichen Arbeits- und Problemlösefähigkeit.

Inhalt:

Lineare Algebra:

- Lineare Abbildungen:Basiswechsel, orthogonale Projektion, orthogonale Matrizen, Householder Matrizen
- Lineare Ausgleichsprobleme: QR-Zerlegung, Normalgleichungen, lineare diskrete Approximation
- Eigenwertaufgaben: Diagonalisierbarkeit von Matrizen, normale Matrizen, symmetrische und hermitesche Matrizen, Jordansche Normalform

Analysis:

- Potenzreihen und elementare Funktionen
- Interpolation
- Integration (bestimmte Integrale, Hauptsatz, Integrationsregeln, uneigentliche Integrale, parameterabhängige Integrale)
- Anwendungen der Integralrechnung (Volumen und Mantelfläche von otationskörpern, Kurven und Bogenlänge, Kurvenintegrale)
- numerische Quadratur
- periodische Funktionen und Fourier-Reihen

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Power Präsentation, Smart Board, Matlab Demonstration, Java applets, Tafelanschrieb, Buch

Literatur:

Lineare Algebra:

W. Mackens, H. Voß: Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994

W. Mackens, H. Voß: Aufgaben und Lösungen zur Mathematik I für Studierende der Ingenieurwissenschaften, HECO-Verlag, Alsdorf 1994

Analysis:

Ansorge, R. und H.J. Oberle: Mathematik für Ingenieure, Band I, Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000

Oberle, H.J., K.Rothe und Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen. Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000

Modul: Mathematik III: Höhere Analysis und gewöhnliche Differentialgleichungen

Lehrveranstaltungen:

Titel	Тур	SWS
Differentialgleichungen I	Vorlesung	2,00
Analysis III	Anleitung	1,00
Analysis III	Übung	1,00
Analysis III	Vorlesung	2,00
Differentialgleichungen I	Übung	1,00
Differentialgleichungen I	Anleitung	1,00

Modulverantwortlich: Prof. Dr. Jens Struckmeier

Dozent(in): Dozenten der Universität Hamburg

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften	B.Sc.	3.	Pflicht
Allgemeine Ingenieurwissenschaften	B.Sc.	3.	Wahl
General Engineering Science	B.Sc.	3.	Pflicht
General Engineering Science	B.Sc.	3.	Wahl
Bauingenieurwesen und Umwelttechnik [Diplom]	Diplom	3.	Pflicht
Bauingenieurwesen und Umwelttechnik [Diplom]	Diplom	3.	Wahl
Elektrotechnik [Diplom]	Diplom	3.	Pflicht
Elektrotechnik [Diplom]	Diplom	3.	Wahl
Informatikingenieur [Diplom]	Diplom	3.	Pflicht
Informatikingenieur [Diplom]	Diplom	3.	Wahl
Informationstechnologie - Informations- und Kommunikationssysteme	B.Sc.	5.	Pflicht
Maschinenbau [Diplom]	Diplom	3.	Pflicht
Maschinenbau [Diplom]	Diplom	3.	Wahl
Schiffbau [Diplom]	Diplom	3.	Pflicht
Schiffbau [Diplom]	Diplom	3.	Wahl
Verfahrenstechnik [Diplom]	Diplom	3.	Pflicht
Verfahrenstechnik [Diplom]	Diplom	3.	Wahl
Biotechnologie/Verfahrenstechnik [Diplom]	Diplom	3.	Pflicht
Biotechnologie/Verfahrenstechnik [Diplom]	Diplom	3.	Wahl
Energie- und Umwelttechnik [Diplom]	Diplom	3.	Pflicht
Energie- und Umwelttechnik [Diplom]	Diplom	3.	Wahl

Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	3.	Pflicht
Bauingenieur-/Umweltingenieurwesen	B.Sc.	3.	Pflicht
Elektrotechnik	B.Sc.	3.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	3.	Pflicht
Energie- und Umwelttechnik	B.Sc.	3.	Pflicht
Maschinenbau	B.Sc.	3.	Pflicht
Schiffbau	B.Sc.	3.	Pflicht
Verfahrenstechnik	B.Sc.	3.	Pflicht
Bioverfahrenstechnik	B.Sc.	3.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 112, Eigenstudium: 128

Kreditpunkte: 8,00

Voraussetzungen:

Mathematik I und II

Angestrebte Lernergebnisse:

 Kenntnisse: Fundamentale Fakten der Differential- und Integralrechnung in mehreren Veränderlichen sowie der Theorie und ersten Ansätzen zur Numerik der Differentialgleichungen.

• Methodenkompetenz: Fähigkeit, mathematischen Aspekte in ingenieurwissenschaftlichen und einfach gehaltenen mathematischen Originalarbeiten sinnentnehmend lesen zu können.

Inhalt:

Analysis III:

 Fortsetzung der Vorlesung Analysis II. Es werden die Grundzüge der Differential- und Integralrechnung mehrerer Variablen behandelt.

Die Einzelthemen sind:

- Differentialrechnung mehrerer Veränderlichen
- Mittelwertsätze und Taylorscher Satz
- Extremwertbestimmung
- Implizit definierte Funktionen
- Extremwertbestimmung bei Gleichungsnebenbedingungen
- Newton-Verfahren für mehrere Variable
- Bereichsintegrale
- Kurven- und Flächenintegrale
- Integralsätze von Gauß und Stokes

Differentialgleichungen I:

 In dieser Vorlesung werden die Grundzüge der Theorie und Numerik gewöhnlicher Differentialgleichungen behandelt.

Die Einzelthemen sind:

- Einführung und elementare Methoden
- Existenz und Eindeutigkeit bei Angangswertaufgaben
- Lineare Differentialgleichungen
- Stabilität und qualitatives Lösungsverhalten
- Randwertaufgaben und Grundbegriffe der Variationsrechnung
- Eigenwertaufgaben
- Numerische Verfahren zur Integration von Anfangs- und Randwertaufgaben
- Grundtypen bei partiellen Differentialgleichungen

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen.

Powerpointpräsentation, Folien, MATLAB-Demonstrationen, Tafelanschrieb

Literatur:

Ansorge, R. und H.J. Oberle: Mathematik für Ingenieure, Band 2. Verlag Wiley-VCH, Berlin, Weinheim, New York, 2003.

Oberle, H.J., K. Rothe und Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen. Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000.

Modul: Komplexe Funktionen

Lehrveranstaltungen:

Titel	Тур	SWS
Komplexe Funktionen	Vorlesung	2,00
Komplexe Funktionen	Übung	1,00
Komplexe Funktionen	Anleitung	1,00

Modulverantwortlich: Prof. Dr. Jens Struckmeier

Dozent(in): Dozenten der Universität Hamburg

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Elektrotechnik	B.Sc.	4.	Wahl
Allgemeine Ingenieurwissenschaften - Elektrotechnik	B.Sc.	4.	Wahlpflicht
Allgemeine Ingenieurwissenschaften - Informatik-Ingenieurwesen	B.Sc.	4.	Wahl
Allgemeine Ingenieurwissenschaften - Mechatronik	B.Sc.	4.	Wahl
Allgemeine Ingenieurwissenschaften - Mechatronik	B.Sc.	4.	Wahlpflicht
Allgemeine Ingenieurwissenschaften - Mechatronik	B.Sc.	6.	Pflicht
Allgemeine Ingenieurwissenschaften - Systemtechnik	B.Sc.	4.	Wahl
Allgemeine Ingenieurwissenschaften - Systemtechnik	B.Sc.	4.	Wahlpflicht
General Engineering Science - Electrical Engineering	B.Sc.	4.	Wahl
General Engineering Science - Electrical Engineering	B.Sc.	4.	Wahlpflicht
General Engineering Science - Mechatronics	B.Sc.	4.	Wahl
General Engineering Science - Mechatronics	B.Sc.	4.	Wahlpflicht
General Engineering Science - Systems Engineering	B.Sc.	4.	Wahlpflicht
Elektrotechnik [Diplom]	Diplom	4.	Pflicht
Elektrotechnik [Diplom]	Diplom	4.	Wahl
Informatikingenieur [Diplom] - Algorithmen und Architekturen	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - Wissenschaftliches Rechnen	Diplom	8.	Wahlpflicht
Schiffbau [Diplom]	Diplom	4.	Pflicht
Schiffbau [Diplom]	Diplom	4.	Wahl
Elektrotechnik	B.Sc.	4.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	6.	Wahlpflicht
Informationstechnologie (neu)	B.Sc.	4.	Wahlpflicht
Informationstechnologie (neu)	B.Sc.	6.	Wahlpflicht
Energie- und Umwelttechnik	M.Sc.	2.	Pflicht
Verfahrenstechnik	M.Sc.	2.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Mathematik I bis III

Angestrebte Lernergebnisse:

- Kenntnisse: Verständnis über, formale Beschreibung von komplexen Funktionen.
- Methodenkompetenz: F\u00e4higkeit die zugeh\u00f6rigen Analyse- und Rechentechniken in den Ingenieurvorlesungen und bei prakische Aufgabenstellungen anzuwenden.

Inhalt:

Komplexe Funktionen:

In dieser Vorlesung werden die Grundzüge der Funktionentheorie behandelt.

Die Einzelthemen sind:

- Funktionen einer komplexen Variablen
- Komplexe Differentiation
- Konforme Abbildungen
- Komplexe Integration
- Cauchysche Hauptsatz
- Cauchysche Integralformel
- Taylor- und Laurent-Reihenentwicklung
- Singularitäten und Residuen
- Integraltransformationen: Fourier- und Laplace-Transformation

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Powerpointpräsentation, Folien, MATLAB-Demonstrationen, Tafelanschrieb

Literatur:

Ansorge, R. und H.J. Oberle: Mathematik für Ingenieure, Band 2. Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000.

Henrici, P. und R. Jeltsch: Komplexe Analysis für Ingenieure, Birkhäuser Verlag, Basel, 1998.

Tveito, A. und R. Winther: Einführung in partielle Differentialgleichungen, Spinger, Berlin, Heidelberg, New York, 2002

Modul: Partielle Differentialgleichungen

Lehrveranstaltungen:

Titel	Тур	SWS
Partielle Differentialgleichungen	Vorlesung	2,00
Partielle Differentialgleichungen	Übung	1,00
Partielle Differentialgleichungen	Anleitung	1,00

Modulverantwortlich: Prof. Dr. Jens Struckmeier

Dozent(in): Dozenten der Universität Hamburg

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Elektrotechnik	B.Sc.	4.	Wahl
Allgemeine Ingenieurwissenschaften - Elektrotechnik	B.Sc.	4.	Wahlpflicht
Allgemeine Ingenieurwissenschaften - Informatik-Ingenieurwesen	B.Sc.	4.	Wahl
Allgemeine Ingenieurwissenschaften - Mechatronik	B.Sc.	4.	Wahl
Allgemeine Ingenieurwissenschaften - Mechatronik	B.Sc.	4.	Wahlpflicht
Allgemeine Ingenieurwissenschaften - Mechatronik	B.Sc.	6.	Pflicht
Allgemeine Ingenieurwissenschaften - Systemtechnik	B.Sc.	4.	Wahl
Allgemeine Ingenieurwissenschaften - Systemtechnik	B.Sc.	4.	Wahlpflicht
General Engineering Science - Electrical Engineering	B.Sc.	4.	Wahl
General Engineering Science - Electrical Engineering	B.Sc.	4.	Wahlpflicht
General Engineering Science - Mechatronics	B.Sc.	4.	Wahl
General Engineering Science - Mechatronics	B.Sc.	4.	Wahlpflicht
General Engineering Science - Systems Engineering	B.Sc.	4.	Wahlpflicht
Elektrotechnik [Diplom]	Diplom	4.	Pflicht
Elektrotechnik [Diplom]	Diplom	4.	Wahl
Informatikingenieur [Diplom] - Algorithmen und Architekturen	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - Wissenschaftliches Rechnen	Diplom	8.	Wahlpflicht
Schiffbau [Diplom]	Diplom	4.	Pflicht
Schiffbau [Diplom]	Diplom	4.	Wahl
Elektrotechnik	B.Sc.	4.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	6.	Wahlpflicht
Informationstechnologie (neu)	B.Sc.	4.	Wahlpflicht
Informationstechnologie (neu)	B.Sc.	6.	Wahlpflicht
Energie- und Umwelttechnik	M.Sc.	2.	Pflicht
Verfahrenstechnik	M.Sc.	2.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Mathematik I bis III

Angestrebte Lernergebnisse:

- Kenntnisse: Verständnis über, formale Beschreibung von partiellen Differentialgleichungen.
- Methodenkompetenz: Fähigkeit die zugehörigen Analyse- und Rechentechniken in den Ingenieurvorlesungen und bei prakische Aufgabenstellungen anzuwenden.

Inhalt:

Differentialgleichungen II:

In dieser Vorlesung werden die Grundzüge der Theorie und Numerik partieller Differentialgleichungen behandelt.

Die Einzelthemen sind:

- Beispiele für partielle Differentialgleichungen
- quasilineare Differentialgleichungen erster Ordnung
- Normalformen linearer Differentialgleichungen zweiter Ordnung
- harmonische Funktionen und Maximumprinzip
- Maximumprinzip für die Wärmeleitungsgleichung
- Wellengleichung
- Lösungsformel nach Liouville
- spezielle Funktionen
- Differenzenverfahren
- finite Elemente

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen.

Powerpointpräsentation, Folien, MATLAB-Demonstrationen, Tafelanschrieb

Literatur:

Ansorge, R. und H.J. Oberle: Mathematik für Ingenieure, Band 2. Verlag Wiley-VCH, Berlin, Weinheim, New York, 2000.

Henrici, P. und R. Jeltsch: Komplexe Analysis für Ingenieure, Birkhäuser Verlag, Basel, 1998.

Tveito, A. und R. Winther: Einführung in partielle Differentialgleichungen, Spinger, Berlin, Heidelberg, New York, 2002

Modul: Mechanik I für ET/IT: Statik und Festigkeitslehre

Lehrveranstaltungen:

TitelTypSWSMechanik I für ET/IT: Statik und FestigkeitslehreVorlesung2,00Mechanik I für ET/IT: Statik und FestigkeitslehreÜbung2,00

Modulverantwortlich: Prof.- Dr. Uwe Weltin

Dozent(in): Prof.- Dr. Uwe Weltin

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	4.	Pflicht
Elektrotechnik	B.Sc.	2.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	2.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 94

Kreditpunkte: 5,00

Voraussetzungen:

Grundlagen der Mathematik und Physik

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegender Zusammenhänge, Theorien und Methoden der Mechanik.
- Fertigkeiten: Beherrschen einschlägiger Methoden und Werkzeuge.
- Soziale Kompetenz: Befähigung zum selbständigen und effizienten Lernen.

Inhalt:

- 1. Einführung in die Mechanik
 - Grundlagen
 - Begriffe / Definitionen
 - Disziplinen
 - Geschichtlicher Abriß

2. Grundlagen der Statik

- Kraftbegriff
- Gleichgewicht
- Schnittprinzip
- Systeme starrer Körper

3. Grundlagen der Festigkeitslehre

- Spannungen / Dehnungen
- Hook'sches Gesetz
- Temperaturdehnung
- Biegung / Torsion
- Statisch unbestimmte Systeme

4. Grundlagen der Dynamik

- Kinematik des Massenpunktes
- Kinetik des Massenpunktes
- Kinematik des starren Körpers
- Systeme starrer Körper
- Schwingungen mechanischer Systeme (Analogie zu ET)

5. Methoden der analytischen Mechanik

- Prinzip der virtuellen Arbeit
- Prinzip von D'Alembert
- Lagrange'sche Gleichungen 2. Art

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Literatur:

Wird überarbeitet

Modul: Mechanik II für ET/IT: Dynamik

Lehrveranstaltungen:

Titel	Тур	SWS
Mechanik II für ET/IT: Dynamik	Vorlesung	2,00
Mechanik II für ET/IT: Dynamik	Übung	1,00

Modulverantwortlich: Prof.- Dr. Uwe Weltin

Dozent(in): Prof.- Dr. Uwe Weltin

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	B.Sc.	3.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Mechanik I für ET/IT: Statik und Festigkeitslehre

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegender Zusammenhänge, Theorien und Methoden der Mechanik.
- Fertigkeiten: Beherrschen einschlägiger Methoden und Werkzeuge.
- Soziale Kompetenz: Befähigung zum selbständigen und effizienten Lernen.

Inhalt:

- Ausgewählte Themen aus der Mechanik
- Vertiefung der bisher erlangten Kenntnisse
- Anwendungsbeispiele und Rechneranwendungen

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Literatur:

Wird überarbeitet

Modul: Messtechnik

Lehrveranstaltungen:

Titel	Тур	SWS
Messtechnik	Vorlesung	2,00
Messtechnik	Übung	1,00

Modulverantwortlich: Prof. Dr. Jan Luiken ter Haseborg

Dozent(in): Prof. Dr. Jan Luiken ter Haseborg

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik	B.Sc.	4.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	6.	Wahlpflicht
Informationstechnologie (neu)	B.Sc.	6.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Elektrotechnik I

Angestrebte Lernergebnisse:

- Kentnisse: Verständnis messtechnischer Zusammenhänge, formale Beschreibung grundlegender Gesetze der Messtechnik
- Methodenkompetenz: Bewertung komplexer messtechnischer Systeme
- Systemkompetenz: Systemorientiertes Denken

Inhalt:

Grundlagen, Definitionen, Messgrößen, Einheiten

- Aufgaben und Lösungswege in der Messtechnik
- Metrologie, Einheiten, Normale
- elektrische Messgrößen, Mittelwerte
- messtechnisch relevante Wirkung elektrischer Größen

Messfehler, statistische Verfahren

- Messinformationssystem
- Messfehler
- absoluter und relativer Fehler
- Grundbegriffe der Statistik (relative Häufigkeit, Wahrscheinlichkeit, Wahrscheinlichkeitsdichte, Verteilungsfunktion)
- Fehlerrechnung (systematische und zufällige Fehler)
- Fehlerfortpflanzung

Elektrische Messgeräte

- Arbeitsprinzipien elektrischer Messgeräte, Analog- u. Digitalverfahren
- Messwerke (z.B. Drehspulmeßwerk, elektrodynamisches Meßwerk, Skalengleichungen, Messbereichserweiterung)
- Analog-Digital-Converter (Prinzipien)

Gleichstrommessbrücken und -kompensatoren

Wechselstrommesstechnik

- Anwendung der komplexen Rechnung auf Wechselstrommesskreise
- komplexe Wechselstromgrößen, Zeigerdiagramm, Ortskurve, Verlustfaktor
- Wechselstrommessbrücken
- Messung von Wechselstromgrößen
- Mittelwerte
- zeitabhängige Größen
- Gleichrichtung
- ideale und reale Gleichrichterkennlinie
- lineare und quadratische Mittelwertgleichrichtung
- Einweg-, Mittelpunkt-, Vollweggleichrichtung, Spitzenwertgleichrichtung
- Messwerke für Wechselstromgrößen
- Messung von Effektivwerten
- Leistungsmessung
- Einphasenwechselstrom
- Drehstrom

Elektronenstrahloszilloskop

- Elektronenstrahlröhre
- Horizontaleinheit, Vertikaleinheit, Triggereinheit
- Frequenzkompensierter Eingangsteiler (Tastkopf)

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Tafel, Overheadfolien

Literatur:

Hoffmann "Taschenbuch der Messtechnik", Fachbuchverlag Leibzig, 1998

Lerch "Elektrische Messtechnik", Springer Verlag, 1996

Lerch, Kaltenbacher, Lindinger "Übungen zur Elektrischen Messtechnik", Springer Verlag, 1996

Bergmann "Elektrische Messtechnik", Vieweg Verlag 1988

Frohne, Ueckert "Grundlagen der elektrischen Messtechnik", Teubner Verlag, 1984

Felderhoff "Elektrische Messtechnik", Hauser Verlag, 1982

Pflier, Jahn, Jentsch "Elektrische Messtechnik und Messverfahren", Springer Verlag,

1978

Mühl "Einführung in die elektrische Messtechnik"Teubner Verlag, ISBN 3-

519-06388-3, 2001

Reichwein, Hochheimer, Simic "Messen, Regeln, und Steuern, Grundoperationen der

Prozessleittechnik", 2003 WILEY-VCH Verlag GmbH & Co. KGaA,

Weinheim, ISBN 3-527-30572-6

Modul: Nachrichtenübertragung

Lehrveranstaltungen:

Titel	Тур	SWS
Nachrichtenübertragung	Vorlesung	2,00
Nachrichtenübertragung	Übung	1,00

Modulverantwortlich: Prof. Dr. Hermann Rohling

Dozent(in): Prof. Dr. Hermann Rohling

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik	B.Sc.	5.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	5.	Wahlpflicht
Informationstechnologie (neu)	B.Sc.	5.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Systemtheorie

Angestrebte Lernergebnisse:

- Kenntnisse: Vermittluing der Grundlagen der analogen und digitalen Nachrichtenübertragung
- Methodenkompetenz: Modellbildung und Bewertung komplexer Systeme
- Systemkompetenz: Systemorientiertes Denken, Dekomposition komplexer Systeme
- Soziale Kompetenzen: Befähigung zum selbstständigen und effizienten Lernen

Inhalt:

- Einführung in die Nachrichtentechnik
- Nachrichtensignale und Übertragungssysteme
 - o Klassifikation von Signalen und Übertragungssystemen
- Analoge und digitale Übertragung im Basisband
 - Analoge Basisbandübertragung
 - o Diskretisierung analoger Signale
 - o Digitale Basisbandübertragung
- Analoge und digitale Trägermodulation
 - Modulationsverfahren
 - Sender- und Empfängerstrukturen
 - o Störeinflüsse
 - Systembeispiele

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Powerpoint Präsentation, Skript, Tafelanschrieb

Literatur:

Lüke, Signalübertragung. Springer-Verlag, ISBN 3-540-54824-6

H. Rohling, Einführung in die Informations- und Codierungstheorie. Teubner-Verlag, ISBN 3-519-06174-0

Kammeyer K. D., Nachrichtenübertragung. Teubner-Verlag, Stuttgart 1992, ISBN 3-519-06142-2

Jürgen Goebel, Kommunikationstechnik. Hüthig Verlag, ISBN 3-7785-3904-3

Modul: Netzwerktheorie

Lehrveranstaltungen:

Titel	Тур	SWS
Netzwerktheorie Circuit Theory	Vorlesung	2,00
Netzwerktheorie / Exercise : Circuit Theory	Übung	2,00

Modulverantwortlich: Prof. Dr. Arne Jacob

Dozent(in): Prof. Dr. Arne Jacob

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Elektrotechnik	B.Sc.	3.	Wahlpflicht
Allgemeine Ingenieurwissenschaften - Mechatronik	B.Sc.	3.	Wahlpflicht
Allgemeine Ingenieurwissenschaften - Mechatronik	B.Sc.	5.	Pflicht
Allgemeine Ingenieurwissenschaften - Systemtechnik	B.Sc.	3.	Wahlpflicht
General Engineering Science - Electrical Engineering	B.Sc.	3.	Wahlpflicht
General Engineering Science - Mechatronics	B.Sc.	3.	Wahlpflicht
Elektrotechnik [Diplom]	Diplom	3.	Pflicht
Mechatronics	M.Sc.	1.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik - Ergänzungsmodul ET	Diplom	5.	Pflicht
Mechatronik/Joint Curriculum Mechatronik - Ergänzungsmodul ET	Diplom	7.	Pflicht
Mechatronik/Joint Curriculum Mechatronik - Ergänzungsmodul AIW/GES/Maschinenbau	Diplom	5.	Pflicht
Mechatronik/Joint Curriculum Mechatronik - Ergänzungsmodul AIW/GES/Maschinenbau	Diplom	7.	Pflicht
Elektrotechnik	B.Sc.	3.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 94

Kreditpunkte: 5,00

Voraussetzungen:

Die Vorlesung schließt unmittelbar an Grundlagen der Elektrotechnik (1. und 2. Semester) an und ergänzt und verallgemeinert die dort erstmals gebrachte Wechselstromrechnung. Diese Vorlesung sowie die Vorlesung Mathematik für Ingenieure sind Grundlagen zum Verständnis des Stoffes der Netzwerktheorie.

Angestrebte Lernergebnisse:

Die Vorlesung soll, ausgehend von der Berechnung von Gleichstrom- sowie Wechselstromschaltungen, die Grundlagen der Netzwerktheorie vermitteln. Dabei werden auch Schaltungen mit aktiven Elementen behandelt, um die Grundlagen für das Kernfach "Elektronische Schaltungen" im 6. Semester zu legen.

Inhalt:

Allgemeine Netzwerksätze

- Periodische Anregung von linearen Netzwerken
- N-Tor-Netzwerke
- Einschaltvorgänge im Zeitbereich
- Einschaltvorgänge im Frequenzbereich; Laplace-Transformation
- Frequenzverhalten von passiven Zweipol-Netzwerken

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Tafelanschrieb, Folien, Experimente

Literatur:

Jacob, A.: Vorlesungsskript

Modul: Numerische Methoden

Lehrveranstaltungen:

Titel	Тур	SWS
Numerische Methoden	Vorlesung	2,00
Numerische Methoden	Übung	1,00

Modulverantwortlich: Prof. Dr. Heinrich Voß

Dozent(in): Prof. Dr. Heinrich Voß

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	5.	Wahlpflicht
Bauingenieur-/Umweltingenieurwesen	B.Sc.	5.	Wahlpflicht
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Elektrotechnik	M.Sc.	3.	Wahlpflicht
Informatik-Ingenieurwesen	B.Sc.	5.	Pflicht
Informationstechnologie (neu)	B.Sc.	5.	Pflicht
Energie- und Umwelttechnik	M.Sc.	1.	Pflicht
Bioverfahrenstechnik	M.Sc.	1.	Pflicht
Verfahrenstechnik	M.Sc.	1.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Analysis, Lineare Algebra

Angestrebte Lernergebnisse:

• Kenntnisse: Methoden der Numerischen Mathematik

• Fertigkeiten: Aufgaben der Ingenieuranwendungen mit numerischen Methoden erfolgreich zu lösen

Inhalt:

Die wichtigsten numerischen Methoden aus den Gebieten

- Fehleranalyse
- Interpolation
- Quadratur
- Lineare Gleichungssysteme
- Lineare Ausgleichsproblems
- Eigenwertaufgaben
- Nichtlineare Gleichungssysteme
- Anfangswertaufgaben gewöhnlicher Differentialgleichungen
- Randwertaufgaben gewöhnlicher Differentialgleichungen

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Präsentation (pdf-files) und Demonstration (MATLAB), Tafel

Literatur:

H. Voss: Grundlagen der Numerischen Mathematik, Skript TU Hamburg-Harburg 2007

M. Bollhöfer, V. Mehrmann: Numerische Mathematik. Vieweg, Wiesbaden 2004

Modul: Physik I

Lehrveranstaltungen:

Titel	Тур	SWS
Physik I	Vorlesung	2,00
Physikl	Übung	1,00

Modulverantwortlich: Prof. Dr. Robert L. Johnson

Dozent(in): Prof. Dr. Robert L. Johnson

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	1.	Pflicht
Elektrotechnik	B.Sc.	1.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	1.	Pflicht
Informationstechnologie (neu)	B.Sc.	1.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

gute Schulkenntnisse in Mathematik und Physik

Angestrebte Lernergebnisse:

- Kenntnisse: Physikalischer Grundbegriffe, Verständnis physikalischer Phänomene und Gesetze
- Fähigkeiten: Physikalische Gesetze zur Lösung technischer Probleme anzuwenden

Inhalt:

- Einführung: Was ist Physik, Wechselwirkungen, physikalische Größen, SI-System, physikalisches Messen
- Kinematik: ein-, zwei- und dreidimensionale Bewegung, gleichförmig, beschleunigt, Kreisbewegung
- Dynamik: Masse, Impuls, Kraft, Newton´sche Axiome, Inertialsystem, Beispiele für Kräfte, Impulserhaltung, System mit veränderlicher Masse
- Arbeit und Energie: Arbeit, Leistung, kinetische und potentielle Energie
- Energieerhaltung: Erhaltung der mechanischen Energie, Stöße
- Rotationsbewegung: Drehimpuls, Drallsatz, Erhaltung des Drehimpulses, Rotation eines starren Körpers, Trägheitsmoment, Massenmittelpunkt, symmetrischer Kreisel
- Harmonische Schwingungen: Definition, lineares Kraftgesetz, Feder-Masse-System, Fadenpendel, Physikalisches Pendel, energetische Betrachtung, gedämpfte Schwingung, erzwungene Schwingung

- Bemerkungen zu strömenden Medien: laminare und turbulente Strömung, Kontinuitätsgleichung, Satz von Bernoulli, dynamischer Auftrieb
- Thermodynamik: Erster Hauptsatz, Wärmekapazitäten, Carnot'scher Kreisprozess und zweiter Hauptsatz, Zustandsänderungen, Carnot-Maschine und Wärmepumpe, Entropie, reale Gase, Phasenübergänge

Studien/Prüfungsleistungen:

schriftliche Prüfung

Midienformen:

Power Point, Tafelanschrieb, Folie

Literatur:

Douglas C. Giancoli "Physik", ISBN: 3827371570

Pearson Studium Juli 2006 - 3., aktualisierte Auflage.

Modul: Physik II

Lehrveranstaltungen:

Titel	Тур	SWS
Physik II	Vorlesung	2,00
Physik II	Übung	1,00

Modulverantwortlich: Prof. Dr. Robert L. Johnson

Dozent(in): Prof. Dr. Robert L. Johnson

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	2.	Pflicht
Elektrotechnik	B.Sc.	2.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	2.	Pflicht
Informationstechnologie (neu)	B.Sc.	2.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Physik I, Mathematik I

Angestrebte Lernergebnisse:

- Kenntnisse: Physikalischer Grundbegriffe, Verständnis physikalischer Phänomene und Gesetze
- Fähigkeiten: Physikalische Gesetze zur Lösung technischer Probleme anzuwenden.

Inhalt:

- Mechanische Wellen: Ausbreitung, harmonische Wellen, stehende Wellen, Schwebungen, Polarisation, Doppler-Effekt.
- Elektromagnetische Wellen: Wellengleichung, ebene elektromagnetische Welle, Phasengeschwindigkeit, Energietransport.
- Geometrische Optik: geradlinige Ausbreitung von Licht, Reflexion, Brechung, Linsen- und Spiegeloptik, optische Instrumente, Photometrie.
- Wellenoptik: Interferenz und Beugung, Auflösungsvermögen optischer Instrumente, Spektralapparate, Holographie, Polarisation, Doppelbrechung, optische Aktivität, Holographie.
- Von der klassischen Physik zur Quantenphysik: lichtelektrischer Effekt, Comptoneffekt, Welle-Teilchen-Dualismus, Spektrallinien.
- Elementare Atomphysik: Atommodelle von Thomson und Rutherford, Bohr'sches Atommodell.
- Elemente der Quantenmechanik: Wellenfunktion und deren Interpretation, eindim. Schrödinger-Gl., Teilchen im Kastenpotential, Harmonischer Oszillator, Planck'sche

- Strahlung, Tunneleffekt und Tunnelmikroskop, Wasserstoffatom, Pauliprinzip und Quantenzahlen, Mehrelektronenatome, Röntgenstrahlung.
- Grundlagen der Laserphysik
- Einführung in die Festkörperphysik: Gitter und Bindung, Metalle, Modell des freien Elektronengases, Bändermodell, Halbleiter, Stör- und Eigenleitung; Supraleitung.
- Elemente der Kernphysik: Kernteilchen, Kernkräfte, Massendefekt und Kernbindung, Tröpfchenmodell, radioaktive Zerfälle, Kernspaltung und Kernfusion.

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Power Point, Tafelanschrieb, Folien

Literatur:

Douglas C. Giancoli "Physik", SBN: 3827371570

Pearson Studium, Juli 2006, 3., aktualisierte Auflage.

Modul: Praktikum I: Physik und Rechentechnik

Lehrveranstaltungen:

TitelTypSWSPraktikum I: Physik und RechentechnikLaborpraktikum2,00

Modulverantwortlich: Prof. Dr. M. Eich (Physik-Anteil), Prof. Dr. S. Rump (Software-Anteil)

Dozent(in): Prof. Dr. W. Hansen, Prof. Dr. D. Heitmann (Physik-Anteil); PD Dr. C. Jansson (Software-

Anteil)

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik	B.Sc.	2.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	2.	Pflicht
Informationstechnologie (neu)	B.Sc.	2.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 32

Kreditpunkte: 2,00

Voraussetzungen:

- Physics-Part: Kenntnisse des der Inhalte der Vorlesungen Physik I und II
- Software-Part: Teilnahme an den Vorlesungen Analysis I und II sowie Lineare Algebra I und II

Angestrebte Lernergebnisse:

Angestrebte Lernergebnisse (Physik-Anteil):

- Kenntnisse: Grundlegende physikalische Zusammenhänge und Gesetzmäßigkeiten werden selbstständig erarbeitet. Abdeckung wesentlicher Gebiete der Physik
- Methoden: Durchführung von physikalischen Experimenten durch die Studierenden in kleinen Arbeitsgruppen. Vermittlung von Fähigkeiten zur nachvollziehbaren Dokumentation experimenteller Resultate in Versuchsprotokollen. Auswertung und Diskussion der Ergebnisse
- Soziale Kompetenzen: Teamfähigkeit. Rhetorische Fähigkeiten im Rahmen der Vorbereitungs- und Auswertungskolloquien

Angestrebte Lernergebnisse (Software-Anteil):

- Kenntnisse: Grundlegende Kenntnisse der Programmierung in MATLAB.Programmierung numerischer Verfahren für nichtlineare Gleichungssysteme. Grundlagen der Rechnerarithmetik. Kondition von Problemen und Verfahren. Berechnung verifizierter numerischer Resultate mit INTLAB
- Methoden: Erkennen der Unterschiede zwischen schlecht konditionierten Problemen und schlecht konditionierten Verfahren. Beurteilung der Güte numerischer Resultate anhand von Beispielen

 Soziale Kompetenzen: Befähigung im Umgang mit Programmen für numerische Probleme Selbstständiges Programmieren.

Inhalt:

Inhalt (Physik-Anteil):

Insgesamt sollen genau 5 Versuche aus folgenden Themenfeldern gemacht werden:

- Wärme
- Elektromagnetische Felder
- Atom- und Kernphysik
- Schwingungen und Wellen
- Energiewandler

Inhalt (Software-Anteil):

Während des Praktikums lernen die Studenten den Umgangn mit der Programmiersprache MATLAB sowie der MATLAB Toolbox INTLAB kennen. Tutorials mit Beispielen und Übungsaufgaben werden zur Verfügung gestellt. Anschließend werden Grundlagen der Rechnerarithmetik behandelt, und anhand zahlreicher Beispiele werden Rundungsfehlerananlysen durchgeführt. Hier wird ebenfalls ein Tutorial zur Verfügung gestellt. Für die Problemklasse der nichtlinearen Gleichungssysteme werden Verfahren implementiert, die sowohl approximative als auch verifizierte numerische Resultate berechnen. Güte und Aufwand werden mit Hilfe vieler Beispiele untersucht.

Studien/Prüfungsleistungen:

Testate

Literatur:

Literatur (Physik-Teil):

Orear, J., Physik, Hanser, 1989

Vogel, H., "Gerthsen" Physik, Springer, 2004

Tipler, P. A., Physik für Wissenschaftler und Ingenieure, Spektrum, 2004

Giancoli, D. C., Physik, Pearson Studium, 2006

Halliday, D.; Resnick R., Physik, Wiley-VCH, 2005

Fishbane, P. M., Physics for scientists and engineers, Prentice-Hall International, 2004

Cutnell, J. D., Physics - Student Solutions Manual, Wiley & Sons Inc., 2006

Literatur (Software-Teil):

Moler, C., Numerical Computing with MATLAB, SIAM, 2004

The Math Works, Inc., MATLAB: The Language of Technical Computing, 2007

Rump, S. M., INTLAB: Interval Labority, http://www.ti3.tu-harburg.de

Highham, D. J.; Highham, N. J., MATLAB Guide, SIAM, 2005

Modul: Praktikum II: Elektrotechnische Experimente

Lehrveranstaltungen:

Titel Typ SWS

Praktikum II: Elektrotechnische Experimente Laborpraktikum 2,00

Modulverantwortlich: Prof. Dr. Christian Schuster

Dozent(in): Dr. Heinz-Dietrich Brüns und Kollegen in weiteren Instituten

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik	B.Sc.	3.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	3.	Pflicht
Informationstechnologie (neu)	B.Sc.	3.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 32

Kreditpunkte: 2,00

Voraussetzungen:

Elektrotechnik I und II

Angestrebte Lernergebnisse:

- Kenntnisse: durch praktische Anwendung vertieftes Wissen in wichtigen Teilgebieten der Grundlagen der Elektro- und Informationstechnik (siehe Liste unten)
- Fertigkeiten: Umsetzung des theoretischen Wissens in praktischen Aufgabenstellungen, insbesondere Aufbau, Vermessung und Problemanalyse bei Bauelementen, Schaltungen und elektrischen Maschinen.
- Kompetenzen: Team- und Kommunikationsfähigkeit, Befähigung über Sachverhalte und Probleme zu diskutieren, Lösungen zu finden und Ergebnisse zusammen zu fassen

Inhalt:

Im Praktikum II sind Versuche zu den folgenden Themengebieten durchzuführen:

- Kennlinien und Einsatz von Halbleiter-Bauelementen
- Verhalten grundlegender analoger Schaltungen
- Aufbau und Funktionsweise einfacher digitaler Schaltungen
- Programmierung eines Mikrocontrollers
- Leistungsmessung im Ein- und Mehrphasensystem
- Aufbau und Betriebsverhalten von elektrischen Maschinen

Die Versuche greifen wichtige Themen aus den Vorlesungen Elektrotechnik I und II praktisch auf und vertiefen sie. Dadurch wird der Stoff gefestigt und mit Anschauung versehen.

Die Versuche werden in Gruppen von je drei Studierenden durchgeführt.

Studien/Prüfungsleistungen:

Testate über die erfolgreiche Durchführung jedes Versuches

Medienformen

Versuchsaufbauten in den Instituten des Studienbereiches

Literatur:

Versuchsbeschreibungen (erhältich auf den Internet-Seiten des Institutes für Theoretische Elektrotechnik und darin enthaltene Literaturempfehlungen

Modul: Praktikum III: Projekte Elektrotechnik

Lehrveranstaltungen:

TitelTypSWSPraktikum III: Projekte ElektrotechnikLaborpraktikum4,00

Modulverantwortlich: Prof. Dr.-Ing. Gerhard Matz

Dozent(in): Institute der ET/IT

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	4.	Pflicht
Elektrotechnik	B.Sc.	4.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 64

Kreditpunkte: 4,00

Voraussetzungen:

Praktikum I und II

Angestrebte Lernergebnisse:

- Kenntnisse: Sensorik, Funkdatenübertragung, Steuerung, Programmierung
- Methodenkompetenz: Analyse und Design eines komplexen Mess-, Steuerungs- und Datenübertragungssystems
- Systemkompetenz: Verständnis der Teikomponenten und kombinatorischen Funktion
- Problemlösungskompetenz: Technische Realisierung von Hard- und Software
- Soziale Kompetenz: Organisation eines Projektes in der Gruppe von bis zu 8 Studenten, gemeinsame Durchführung des Projektes bis zur Präsentation des Ergebnisse

Inhalt:

Unterschiedliche Projekte werden von den Instituten der ET/IT angeboten, vorbereitet und mit den Studenten in der Gruppe gestaltet und durchgeführt. Dauer pro Projekt: 12 Nachmittage im Sommersemester. Präsentation letzte Vorlesungswoche

Vorschläge:

- Kooperierende Roboter
- PC-gesteuertes Umwelt-Messfahrzeug
- Intelligente Autos
- Schaltungsdesign für Pong-Spiel
- Robotersteuerung
- Geräuscherkennung

Studien/Prüfungsleistungen:

Berechte, Präsentation des Projektergebnisses

Literatur:

Vorbereitung individuell zum Projekt

Modul: Prozedurale Programmierung

Lehrveranstaltungen:

Titel	Тур	SWS
Prozedurale Programmierung	Vorlesung	1,00
Prozedurale Programmierung	Übung	1,00
Prozedurale Programmierung	Praktikum	2,00

Modulverantwortlich: Prof. Dr. Siegfried Rump

Dozent(in): Prof. Dr. Siegfried Rump

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	1.	Pflicht
Informatikingenieur [Diplom]	Diplom	1.	Pflicht
Informationstechnologie	B.Sc.	1.	Pflicht
Elektrotechnik	B.Sc.	1.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	1.	Pflicht
Informationstechnologie (neu)	B.Sc.	1.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 94

Kreditpunkte: 5,00

Voraussetzungen:

keine

Angestrebte Lernergebnisse:

- Kenntnisse: Programmiertechnischer Grundbegriffe, Grundkenntnisse eines methodischen Programmierens
- Methodenkompetenz: Erkennen, Beschreiben und Lösen von prozeduralen Programmierungsproblemen.

Inhalt:

- Aufbau eines Rechners
- Zahldarstellungen
- interaktive Entwicklungsumgebungen
- Ein- und Ausgabe
- Felder
- Zeiger
- Bitmanipulationen
- Numerische Datentypen
- Kontrollstrukturen
- Dynamischer Speicher
- Unterprogramme
- Rekursion
- Listen und Strukturen
- Filekonzept
- Modulkonzept
- strukturiertes Programmieren

Studien/Prüfungsleistungen:

schriftliche Prüfung:

Zulassungsvorraussetzung für die Klausur sind 70% der Punkte aus den Übungen und 70% der Punkte des Programmierprojektes

Medienformen:

Folien, Tafelanschrieb

Literatur:

Wird überarbeitet

Modul: Proseminar Mathematik

Lehrveranstaltungen:

TitelTypSWSProseminar MathematikSeminar2,00

Modulverantwortlich: Prof. Dr. Heinrich Voß

Dozent(in): PD Dr. Batra, PD Dr. Jansson, Prof. Dr. Lukacova, Prof. Dr. Mackens, Prof. Dr. Mayer-

Lindenberg, Prof. Dr. Rump, Prof. Dr. Voß, Prof. Dr. Zimmermann

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	6.	Wahlpflicht
Informatik-Ingenieurwesen	B.Sc.	4.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 32

Kreditpunkte: 2,00

Voraussetzungen:

Lineare Algebra, Analysis

Angestrebte Lernergebnisse:

• Kenntnisse: Mathematische Grundprobleme zu bennen und zu bschreiben.

Kompetzenz: Mathematische Texte zu erarbeiten und vorzutragen

Inhalt:

wechselnde mathematische Texte

Studien/Prüfungsleistungen:

Vortrag

Medienformen:

Voträge durch Studierende

Literatur:

Wird überarbeitet

Modul: Rechnerarchitekturen

Lehrveranstaltungen:

Titel	Тур	SWS
Rechnerarchitekturen	Vorlesung	2,00
Rechnerarchitekturen	Übung	1,00

Modulverantwortlich: Prof. Dr. Thomas Teufel

Dozent(in): Prof. Dr. Thomas Teufel

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Informatik-Ingenieurwesen	B.Sc.	6.	Pflicht
Elektrotechnik [Diplom] - Technische Informatik	Diplom	6.	Pflicht
Informatikingenieur [Diplom]	Diplom	6.	Pflicht
Technomathematik	Diplom	6.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	5.	Pflicht
Informationstechnologie (neu)	B.Sc.	5.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Kenntnisse aus der Vorlesung "Digitale Verarbeitungssysteme"

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegende Prinzipien moderner Rechnerarchitekturen und Vorgehensweisen
- Methodenkompetenz: Verschiedene Klassifikationen einordnen
- Systemkompetenz: Konstruktives und systematishes Denken
- Soziale Kompetenz: Befähigung zum selbsttätigen Lernen und verantwortungvoller Umgang beim Entwurf sicherheitsrelevanter Systeme

Inhalt:

- Grundlagen des Rechnerentwurfs (Entwurfsmethodik, quantitative Prinzipien, Leistungsbewertung, Kosten)
- Befehlssatzentwurf (Klassifikation von Architekturen, Darstellung von Operanden, Befehlssätze, Befehlsformate, Befehlstypen, Speicheradressierung, Adressierungsarten, Assemblersprache, Einfluß höherer Programmiersprachen und Compiler)
- Prozessorentwurf (Rechenwerk, Steuerwerk, festverdrahtete Steuerung, mikroprogrammierte Steuerung, Interrupts)
- Befehlspipelining (Prinzip des Pipelining, Pipeline-Hazards, Pipeline-Scheduling)
- Speicherentwurf (Speicherhierarchie, Cache, Hauptspeicher, periphere Speicher)
- Systementwurf (Ein/Ausgabesysteme, programmierte Ein/Ausgabe, DMA, Ein/Ausgabeprozessoren, Kommunikation, Busse, Systemsteuerung)
- Vektor-, Parallelrechner

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Skript, Folie, Tafelanschrieb

Literatur:

J.L. Hennessy, S.A. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufmann Publishers

J.P. Hayes, Computer Architecture and Organisation, McGraw-Hill Book Company

W.K. Giloi, Rechnerarchitektur, Springer Verlag

Modul: Rechnernetze

Lehrveranstaltungen:

TitelTypSWSRechnernetzeVorlesung2,00RechnernetzeÜbung1,00

Modulverantwortlich: NN (NF Prof. Killat)

Dozent(in): Dr. Venzke

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Informatik-Ingenieurwesen	B.Sc.	5.	Pflicht
Elektrotechnik [Diplom] - Technische Informatik	Diplom	7.	Pflicht
Informatikingenieur [Diplom]	Diplom	5.	Pflicht
Informationstechnologie	B.Sc.	3.	Pflicht
Fach Informatik für GWL [Staatsexamen]	Lehramt	5.	Pflicht
Mechatronics	M.Sc.	1.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik - Block III: Informatik	Diplom	7.	Wahlpflicht
Technomathematik	Diplom	7.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	5.	Pflicht
Informationstechnologie (neu)	B.Sc.	3.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundlagen der Informatik

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegenden Prinzipien und Grundbegriffe der Internet-Kommunikation zwischen Rechnersystemen.
- Methodenkompetenz: Erkennen, Beschreiben und Lösen von Problemen in der Internet-Kommunikations zwischen Rechnersystemen.

Inhalt:

- Internetübersicht
- Internetprotokolle
- Anwendungen

- Leistungscharakteristiken
- Transportprotokoll
- TCP Verkehrssteuerung
- IP Protokoll
- Dienstcharakteristiken
- Protokolle zur Verbesserung der Dienstqualität
- Interne Routing Protokolle
- Weitverkehrsnetze (WAN)
- Übertragungsprotokolle
- Lokale Netze (LAN)

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

PowerPoint Präsentation, Tafel, E-Learning-Plattform

Literatur:

Quelle der Vorlesungsfolien und Hintergrundinformationen in: Computer Networking with Internet Protocols and Technology William Stallings Pearson Education International, 2004 ISBN: 0-13-191155-4 erstellt wurden und kontinuierlich erweitert werden.

Computernetzwerke und Internets Douglas E. Comer Pearson Studium, 2000 ISBN: 3-8273-7012-4

Computernetze Larry L. Peterson, Bruce S. Davie dpunkt.verlag, 2000 ISBN: 3-932588-69-X

Modul: Software Engineering

Lehrveranstaltungen:

Titel	Тур	SWS
Software-Engineering	Vorlesung	2,00
Software-Engineering	Übung	1,00

Modulverantwortlich: Prof. Dr. Sibylle Schupp

Dozent(in): Prof. Dr. Sibylle Schupp

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften	B.Sc.	6.	Wahl
Allgemeine Ingenieurwissenschaften - Informatik-Ingenieurwesen	B.Sc.	6.	Pflicht
Elektrotechnik [Diplom] - Technische Informatik - I+K-Anwendungssysteme	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom]	Diplom	6.	Pflicht
Informationstechnologie	B.Sc.	4.	Pflicht
Technomathematik	Diplom	6.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	4.	Pflicht
Informationstechnologie (neu)	B.Sc.	4.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Objektorientierte Programmierung, Algorithmen und Datenstrukturen

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegender Zusammenhänge des Fachgebietes Software-Engineering.
- Methodenkompetenz: Erkennen, beschreiben und lösen von Software-Engineering-Problemen.

Inhalt:

Einführung

Begriffsbestimmung, Systeme, Modelle, Qualitätskriterien

• Phasen und Vorgehensmodelle

Ueberblick, Planungsphase, Lastenheft

Validierung vs. Verifikation

- Aufwandsabschätzung
- Definitionsphase

Pflichtenheft, Begriffliche Analyse, Metriken für Code-Eigenschaften

• Teil-Ganzes-Beziehungen

Formale Grundlagen (Mereologie)

Spezifikation mit UML: Strukturdiagramme Teil 1

Klassendiagramme, Klassen, Attribute, Operationen, Assoziationen, Multiplizitäten,

• Semantik von UML-Klassendiagrammen

Schlußfolgern über Klassendiagramme

• Spezifikation mit UML: Objekt-, Paket- und Verhaltensdiagramme

Objektdiagramme, Paketdiagramme, Use-Case-Diagramme, Aktivitäten, Zustandsdiagramme, Interaktionsdiagramme

Automatentheoretische Semantik der Verhaltensdiagramme

OCL: Object Constraint Language

Erhöhung der Ausdruckskraft in Struktur- und Verhaltensmodellierung

 Definitionsformen für die Semantik von Struktur- und Verhaltensmodellen Schwache Spezifikation der Semantik von Struktur- und Verhaltensdiagrammen auf Metaebene (Metamodellierung)

Semantik von Aktivitäten durch Vor- und Nachbedingungen

Spezifikation und Verifikation mit Vor- und Nachbedingungen
 Schwächste Vorbedingungen und stärkste Nachbedingungen (nach Hoare)

 Software-Abstraktionen: Agile Methoden vs. Design mit automatischer Analyseunterstützung Extreme Programming als Beispiel für Agile Methoden, Alloy als Beispiel für Design mit automatischer Analyseunterstützung

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Präsentation (pdf), Tafelanschrieb

Literatur:

Helmut Balzert: Lehrbuch der Software-Technik, Band 1 und 2, Spektrum Akademischer Verlag, 1998.

Modul: Softwarepraktikum

Lehrveranstaltungen:

TitelTypSWSSoftwarepraktikumPraktikum2,00

Modulverantwortlich: Prof. Dr. Sibylle Schupp

Dozent(in): Prof. Dr. Sibylle Schupp, Prof. Dr. Volker Turau

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	B.Sc.	5.	Pflicht
Informationstechnologie (neu)	B.Sc.	5.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

Vertrautheit mit Grundkonzepten des Internet

C-Kenntnisse

Angestrebte Lernergebnisse:

- Kenntnisse: Konzepte, Techniken und Werkzeuge für Datenbank- und Internetanwendungen
- Methodenkompetenz: Analyse, Entwurf und Implementierung von TCP-Protokollen und relationalen Datenbanken kennen und anwenden lernen
- Systemkompetenz: Praktisch die Schwierigkeiten der Entwicklung eines größeren Systems erfahren
- Soziale Kompetenzen: Systemrealisierung im Team durchführen können (einschließlich Teamorganisation), selbständiges Aneignen benötigter Technologien und Schnittstellen

Inhalt:

- relational calculus
- SQL
- TCP
- Sockets
- software metrics

Studien/Prüfungsleistungen:

Präsentationen, mündliche Mitarbeit, abgegebene Programme

Medienformen:

PowerPoint Präsentation, Whiteboard, Softwareentwicklungswerkzeuge

Literatur:

lan Sommerville: Software-Engineering. Addison-Wesley. (Grundlagen: Analyse, Design, Realisierung)

E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns, Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Modul: Numerische und seminumerische Programmierung

Lehrveranstaltungen:

Titel	Тур	SWS
Sprachen und Algorithmen I	Vorlesung	2,00
Sprachen und Algorithmen I	Übung	1,00

Modulverantwortlich: Prof. Dr. Siegfried Rump

Dozent(in): Prof. Dr. Siegfried Rump

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Informatik-Ingenieurwesen	B.Sc.	5.	Pflicht
Elektrotechnik [Diplom] - Technische Informatik	Diplom	5.	Pflicht
Informatikingenieur [Diplom]	Diplom	5.	Pflicht
Informationstechnologie	B.Sc.	5.	Wahlpflicht
Technomathematik	Diplom	5.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	5.	Wahlpflicht
Informationstechnologie (neu)	B.Sc.	3.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundkenntnisse in Mathematik und Numerik, mind. eine Programmiersprache

Angestrebte Lernergebnisse:

- Kentnisse: Grundlagen verschiedener Programmiersprachenkonzepte, Rechnerarithmetik
- Methodenkompetenz: Das Erkennen, Beschreiben und Lösen von Problemen mithilfe verschiedener Programmiersprachenkonzepte, Rechnerarithmetik.

Inhalt:

- Algorithmen
- Gleitpunktarithmetik, Axiome IEEE 754
- Arithmetiken von Avizienis, Olver, Matula
- Kettenbrüche
- BLAS
- Computeralgebra
- Automatische Differentiation
- Turingmaschinen und Berechenbarkeit
- Churchsche These
- Busy Beaver
- NP-Klassen
- TSP

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Tafelanschrieb, Folien, Power Point

Literatur:

Wird überarbeitet

Modul: Stochastische Prozesse

Lehrveranstaltungen:

TitelTypSWSStochastische ProzesseVorlesung2,00Stochastische ProzesseÜbung1,00

Modulverantwortlich: Prof. Dr. Hermann Rohling

Dozent(in): Prof. Dr. Hermann Rohling

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Nachrichtentechnik	Diplom	6.	Pflicht
Informatikingenieur [Diplom]	Diplom	4.	Pflicht
Informationstechnologie	B.Sc.	4.	Pflicht
Elektrotechnik	B.Sc.	4.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	4.	Pflicht
Informationstechnologie (neu)	B.Sc.	4.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Vorlesungen Mathematik I-IV, Systemtheorie I+II

Angestrebte Lernergebnisse:

- Kenntnisse: Vermittlung von Grundlagen der Wahrscheinlichkeitstheorie, Methoden zum Umgang mit stochastischen Prozessen, Verfahren der statistischen Nachrichtentheorie
- Methodenkompetenz: schrittweise verfeinerte Modellbildung
- Systemkompetenz: Systemorientiertes Denken
- Soziale Kompetenzen: Befähigung zum selbstständigen und effizienten Lernen

Inhalt:

- Zufällige Ereignisse und Wahrscheinlichkeitstheorie
- Stochastische Größen und deren Wahrscheinlichkeitsverteilungen
- Funktionen stochastischer Größen
- Folgen stochastischer Größen
- Stochastische Prozesse
- Statistische Entscheidungstheorie (Detektion)
- Parameterschätzung (Estimation)

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Powerpoint Präsentation, Skript, Tafelanschrieb

Literatur:

Papoulis, A.: "Probability, random variables and stochastic processes", McGraw-Hill, 1991, MAH-355

Viertl, R.: "Einführung in die Stochastik", Springer Verlag Berlin, 1997, MAH-396

Fisz, M.: "Wahrscheinlichkeitsrechnung und mathematische Statistik", VEB Verlag Technik Berlin, 1989, MAH-301

Gendenko, B.W.: "Einführung in die Wahrscheinlichkeitstheorie", Akademie Verlag, 1991, MAH-377

Fliege, N.: "Systemtheorie", Teubner Verlag, 1992, NTC-334

Kroschel, K.: "Statistische Nachrichtentheorie", Springer Verlag, 1996, NTC-309

Mertins, A.: "Signaltheorie", Teubner Verlag, 1996, NTC-342

AB Nachrichtentechnik: Versuchsbeschreibung "Stochastische Prozesse"

Modul: Systemtheorie

Lehrveranstaltungen:

Titel	Тур	SWS
Systemtheorie	Vorlesung	3,00
Systemtheorie	Übung	1,00

Modulverantwortlich: Prof. Dr. Hermann Rohling, Prof. Dr. Wolfgang Meyer

Dozent(in): Prof. Dr. Hermann Rohling, Prof. Dr. Wolfgang Meyer

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik	B.Sc.	4.	Pflicht
Informatik-Ingenieurwesen	B.Sc.	4.	Pflicht
Informationstechnologie (neu)	B.Sc.	4.	Pflicht
Mediziningenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 124

Kreditpunkte: 6,00

Voraussetzungen:

Elektrotechnik I + II, Mathematik I + II

Angestrebte Lernergebnisse:

- Kenntnisse: Vermittlung von Kenntnissen der Prinzipien und Theorie zeitkontinuierlicher sowie zeitdiskreter Signale und Systeme
- Methodenkompetenz: Modellbildung und Bewertung komplexer Systeme
- Systemkompetenz: Systemorientiertes Denken, Dekomposition komplexer Systeme
- Soziale Kompetenzen: Befähigung zum selbstständigen und effizienten Lernen

Inhalt:

- Einführung: Signale und Systeme, Zeitkontinuierliche Signale, Systeme
- Fourier-Transformation: Fourier-Integral, Eigenschaften und Rechenregeln, Leistungssignale, Symmetrieeigenschaften, Faltung und Korrelation, Rücktransformation
- Laplace-Transformation: Definition und Korrespondenzen, Konvergenz, Kausalität und Stabilität, Eigenschaften und Rechenregeln, Rücktransformation
- Kontinuierliche LTI-Systeme: Systemantwort im Zeitbereich, Frequenzgang und Übertragungsfunktion, Dämpfung, Phase und Gruppenlaufzeit, Kausalität und Stabilität, Systembeschreibung mit Zustandsgleichungen
- Diskrete Fourier-Transformationen: Dirac-Impulsreihen, Fourier-Reihen, Zeitdiskrete Fourier-Transformation, Zeitdiskrete Fourier-Reihen, Diskrete Fourier-Transformationen

- Z-Transformation: Definition und Korrespondenzen, Konevergenz, Kausalität und Stabilität, Eigenschaften und Rechenregeln, Spezifische Eigenschaften der einseitigen Z-Transformation, Faltung und Korrelation, Umkehrintegral und Rücktransformation
- Signalabtastung und -rekonstruktion: Nichtideale Abtastung, Ideale Abtastung, Abtasttheorem, Ideale Rekonstruktion, Nichtideale Rekonstruktion, Äquivalente zeitdiskrete Signalverarbeitung, Abtastung im Frequenzbereich
- Diskrete LTI-Systeme: Systemantwort im Zeitbereich, Kausalität und Stabilität, Frequenzgang und Übertragungsfunktion, Systembeschreibung mit Differenzengleichungen, Systembeschreibung mit Zustandsgleichungen

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Powerpoint Präsentation, Skript, Tafelanschrieb

Literatur:

Fliege, N.: Systemtheorie. Informationstechnik. B.G. Teubner, Stuttgart, 1991. Signatur TUHH-Bibliothek: NTC-334

Lüke, H.D.: Signalübertragung. Springer, Berlin, 1975. ISBN 3-540-54824-6. Signatur TUHH-Bibliothek: NTC 315

Oppenheim, Alan V.: Discrete-Time Signal Processing. Prentice-Hall, London, 1989. Signatur TUHH-Bibliothek: NTB 370, EKC 327

Proakis, John G.: Introduction to Digital Signal Processing. Macmillan Publishing Company, New York, 1988

Modul: Theoretische Elektrotechnik I: Zeitunabhängige Felder

Lehrveranstaltungen:

TitelTypSWSTheoretische Elektrotechnik I: Zeitunabhängige FelderVorlesung2,00Theoretische Elektrotechnik I: Zeitunabhängige FelderÜbung1,00

Modulverantwortlich: Prof. Dr. Christian Schuster

Dozent(in): Prof. Dr. Christian Schuster

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	4.	Pflicht
Elektrotechnik	B.Sc.	4.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 108

Kreditpunkte: 5,00

Voraussetzungen:

Grundlagen der Elektrotechnik, Vektoralgebra und -analysis, gewöhnliche und partielle Differentialgleichungen

Angestrebte Lernergebnisse:

- Kenntnisse: Mathematischer und physikalischer Hintergrund der Theorie elektromagnetischer Felder im Hinblick auf die elektrotechnische Praxis
- Fertigkeiten: Beherrschen einschlägiger Lösungsmethoden für Probleme der Feldtheorie
- Kompetenzen: Vertieftes Verständnis des Verhaltens elektromagnetischer Felder

Inhalt:

- Grundlagen und Definitionen: Maxwell's Gleichungen in integraler und differentieller Form, Randbedingungen, Energie im elektromagnetischen Feld, Ladungserhaltungssatz, Klassifikation elektromagnetischer Felder
- Statische Felder: elektrostatische und magnetostatische Felder, Separation der Variablen, numerische Verfahren, elektrische Polarisation, Magnetisierung
- Stationäre Felder: elektrisches Strömungsfeld (Ohm'sches Gesetz, Joule'sches Gesetz, Kirchhoff'sche Theoreme), magnetisches Feld stationärer Ströme (Ampere'sches Gesetz, skalares und Vektor Potenzial, Biot-Savart'sches Gesetz, magnetische Energie)

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Tafel, Folien, Skript

Literatur:

Richard Feynman et al., "Feynman Vorlesungen über Physik. Band 2: Elektromagnetismus und Struktur der Materie", Oldenbourg (2001)

Günther Lehner, "Elektromagnetische Feldtheorie für Ingenieure und Physiker", Springer (2003)

Pascal Leuchtmann, "Einführung in die elektromagnetische Feldtheorie", Pearson Studium (2005)

Wolfgang Nolting, "Grundkurs theoretische Physik. Band.3: Elektrodynamik", Springer (2004)

Murray Spiegel, "Höhere Mathematik für Ingenieure und Naturwissenschaftler. Theorie und Anwendung", Schaum's Outline Series, Mcgraw-Hill Professional (1978)

Modul: Theoretische Elektrotechnik II: Zeitabhängige Felder

Lehrveranstaltungen:

Titel	Тур	SWS
Theoretische Elektrotechnik II: Zeitabhängige Felder	Vorlesung	2,00
Theoretische Elektrotechnik II: Zeitabhängige Felder	Übung	1,00

Modulverantwortlich: Prof. Dr. Christian Schuster

Dozent(in): Prof. Dr. Christian Schuster

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	5.	Pflicht
Elektrotechnik	B.Sc.	5.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 108

Kreditpunkte: 5,00

Voraussetzungen:

Grundlagen der Elektrotechnik, Vektoralgebra und -analysis, gewöhnliche und partielle Differentialgleichungen, Theoretische Elektrotechnik I

Angestrebte Lernergebnisse:

- Kenntnisse: Mathematischer und physikalischer Hintergrund der Theorie elektromagnetischer Felder im Hinblick auf die elektrotechnische Praxis
- Fertigkeiten: Beherrschen einschlägiger Lösungsmethoden für Probleme der Feldtheorie
- Kompetenzen: Vertieftes Verständnis des Verhaltens elektromagnetischer Felder

Inhalt:

- Quasi-Stationäre Felder: Faraday'sches Gesetz, Induktions-Koeffizienten, Skin Effekt, Wirbelströme, Abschirmung zeitlich veränderlicher Felder
- Elektromagnetische Wellen and Strahlung: Wellen-Gleichungen, elektrische and magnetische Hertz'sche Dipole, Wellen-Impedanz, ebene Wellen in verlustbehafteten und verlustfreien Medien, Polarisation, Reflektion, Wellenleiter

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Tafel, Folien, Skript

Literatur:

Richard Feynman et al., "Feynman Vorlesungen über Physik. Band 2: Elektromagnetismus und Struktur der Materie", Oldenbourg (2001)

Günther Lehner, "Elektromagnetische Feldtheorie für Ingenieure und Physiker", Springer (2003)

Pascal Leuchtmann, "Einführung in die elektromagnetische Feldtheorie", Pearson Studium (2005)

Wolfgang Nolting, "Grundkurs theoretische Physik. Band.3: Elektrodynamik", Springer (2004)

Murray Spiegel, "Höhere Mathematik für Ingenieure und Naturwissenschaftler. Theorie und Anwendung", Schaum's Outline Series, Mcgraw-Hill Professional (1978)

Modul: Werkstoffe der Elektrotechnik

Lehrveranstaltungen:

Titel	Тур	SWS
Werkstoffe der Elektrotechnik I	Vorlesung	2,00
Werkstoffe der Elektrotechnik I	Übung	1,00

Modulverantwortlich: Prof. Dr. Wolfgang Bauhofer

Dozent(in): Prof. Dr. Wolfgang Bauhofer

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	5.	Wahlpflicht
Elektrotechnik	B.Sc.	3.	Pflicht
Informationstechnologie (neu)	B.Sc.	5.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

keine

Angestrebte Lernergebnisse:

- Kenntnisse: Aufbau, Legierungsbildung und strukturelle Eigenschaften der in der Elektrotechnik eingesetzten Werkstoffe; mechanische, elektrische, thermische, dielektrischen, magnetische und chemische Eigenschaften von Werkstoffen und Legierungen mit Bezug auf die Anwendungen in der Elektrotechnik
- Methodenkompetenz: Erkennen der Bedeutung von Werkstoffeigenschaften für die Elektrotechnik

Inhalt:

- Atomaufbau und Periodensystem Größen von Atomen und Ionen
- Atombindung und Kristallstruktur
- Mischkristalle und Phasenmischungen:
 Diffusion, Zustandsdiagramme, Ausscheidung und Korngrenzen
- Werkstoffeigenschaften
 Mechanische, thermische, elektrische, dielektrische Eigenschaften
- Metalle
- Halbleiter
- Keramiken und Gläser
- Polymere
- Magnetische Werkstoffe
- Elektrochemie: Oxidationszahlen, Elektrolyse, Energiezellen, Brennstoffzellen

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Powerpoint Präsentation, Tafelanschrieb

Literatur:

H. Schaumburg: Einführung in die Werkstoffe der Elektrotechnik, Teubner (1993)

Elektrotechnik Master Informatik-Ingenieurwesen

Bachelor Master

Modulhandbuch II

Studiendekanat für Elektrotechnik und Informationstechnik an der Technischen Universität Hamburg-Harburg

24.04.2009

Prof. Dr. H. Werner Studiendekan

Modul: 3D-Computer Vision

Lehrveranstaltungen:

TitelTypSWS3D-Computer VisionVorlesung2,00

Modulverantwortlich: Prof. Dr. Rolf-Rainer Grigat

Dozent(in): Prof. Dr. Rolf-Rainer Grigat

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften	B.Sc.	6.	Wahl
Elektrotechnik [Diplom]	Diplom	8.	Wahl
Elektrotechnik [Diplom] - Technische Informatik - Hardware	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - Algorithmen und Architekturen	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - I+K-Anwendungssysteme	Diplom	8.	Wahlpflicht
Information and Media Technologies	M.Sc.	2.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	2.	Wahlpflicht
Informationstechnologie	B.Sc.	6.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Mediziningenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

Lineare Algebra, Grundlagen der Stochastik

Angestrebte Lernergebnisse:

- Kenntnisse: Breites theoretische und methodisches Fundament der projektiven Geometrie, vertiefte Kenntnisse am Beispiel der Parameterschätzung zur Kamerakalibrierung
- Methodenkompetenz: Theoriegeleitetes Anwenden sehr anspruchsvoller Methoden und Verfahren des Fachgebietes (Plückermatrizen, starke und schwache Kalibrierung, DLT, EM, trifokaler Tensor)
- Problemlösungskompetenz: Erkennen von Problemen, kreativer Umgang mit den Prozessen des wissenschaftlichen Aufbereitens und Formalisierens von Problemen (Kalibrierung realer Kamera, Linsenfehler)

Inhalt:

- Projektive Geometrie und Transformationen in 2D und 3D
- Epipolare Geometrie und Fundamentalmatrix
- Homographien
- Trifokaler Tensor
- Expectation Maximization

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Projektion von pdf-Slides

Literatur:

Skriptum Grigat/Wenzel

Hartley, Zisserman: Multiple View Geometry in Computer Vision. Cambridge 2003.

Modul: Adaptive Rechensysteme

Lehrveranstaltungen:

Titel Typ SWS

Adaptive Rechenssysteme / Adaptive Compute Systems Vorlesung 2,00

Modulverantwortlich: Prof. Dr. Georg Friedrich Mayer-Lindenberg

Dozent(in): Prof. Dr. Georg Friedrich Mayer-Lindenberg

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	7.	Wahl
Informatikingenieur [Diplom]	Diplom	7.	Pflicht
Information and Communication Systems	M.Sc.	1.	Wahlpflicht
Mechatronics	M.Sc.	1.	Wahlpflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	7.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik - Block III: Informatik	Diplom	7.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

Grundkenntnisse über Algorithmen, Digitale Systeme.

Hilfreich aber nicht obligatorisch sind die Vorlesungen "Sprachen und Algorithmen", "Digitale Filter", "Digitale Signalprozessoren", "Mustererkennung"

Angestrebte Lernergebnisse:

 Kentnisse: Die Vorlesung soll in verschiedene Techniken und Heuristiken zum Aufbau adaptiver und "intelligenter" Systeme einführen, die z.T. Vorstellungen über die Arbeitsweise biologischer Systeme auf ingenieurwissenschaftliche Probleme übertragen. Zwischen den Hauptthemen "Neuronale Netze", "Genetische Algorithmen" und "Fuzzy Logic" bestehen vielfältige Querverbindungen.

Inhalt:

- Neuronale Netzwerke :
- Netzwerkarchitekturen (Multilayer, Hopfield, Kohonen, ART, Pulsed etc.)
- Lernalgorithmen

- Anwendungen zur Klassifikation, Mustererkennung
- Adaptive Filter
- FIR-Filter, LMS-Algorithmus
- IIR-Filter, Anwendungen
- Genetische Algorithmen:
- allgemeine Eigenschaften
- Anwendungen, genetische Programmierung, Automatennetze
- Strukturoptimierung von neuronalen Netzen
- Fuzzy Logic:
- Grundbegriffe
- Inferenz, Fuzzy Control
- Beziehungen zu genetischen Algorithmen und neuronalen Netzen
- Rechnerstrukturen
- Ausblick: Intelligente Systeme, maschinelle Intelligenz

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Literatur:

Goos, Vorlesungen über Informatik Band IV, Springer-Verlag

H.Ritter, T.Martinez, K.Schulten, Neuronale Netze

K. Weicker, Evolutionäre Algorithmen, Teubner 2002

Modul: Algebraische Geometrie und Statistik

Lehrveranstaltungen:

Titel	Тур	SWS	
Algebraische Methoden	Vorlesung	2,00	
Algebraische Methoden	Übung	1,00	

Modulverantwortlich: Prof. Dr. Karl-Heinz Zimmermann

Dozent(in): Prof. Dr. Karl-Heinz Zimmermann

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundkenntnisse aus Diskreter Mathematik, Linearer Algebra und Analysis.

Angestrebte Lernergebnisse:

- Kenntnisse: Vertiefte Kenntnisse auf Teilgebieten zwischen Algebra, konvexer Analysis, Kombinatorik und algebraischer Topologie.
- Fertigkeiten. Theorie geleitetes Anwenden algebraisch-kombinatorischer und algebraischtopologischer Methoden.
- Kompetenzen: Formalisieren von Problemstellungen, Bewerten unterschiedlicher Lösungsansätze.

Inhalt:

- Lineare Programmierung (Dualitätssatz, ganzzahlige lineare Programmierung, Simplex-Verfahren)
- Algebraische Kombinatorik (Gruppen, Gruppenoperationen, Lemma von Burside, Färbungen, Zykelindikatoren, Satz von Polya, Anwendungen)
- Kombinatorische Knotentheorie (Isotopie, Reidemeister-Operationen, Knotenpolynome)

Studien/Prüfungsleistungen:

Schriftliche Prüfung.

Medienformen:

Lehrbuch, Folien, Tafelanschrieb

Literatur:

K.-H. Zimmermann: Diskrete Mathematik, BoD, 2006.

C. Adams: Das Knotenbuch, Spektrum, 1995.

Modul: Algebraische Statistik

Lehrveranstaltungen:

Titel	Тур	SWS
Kombinatorische Optimierung	Vorlesung	2,00
Kombinatorische Optimierung	Übung	1,00

Modulverantwortlich: Prof. Dr. Karl-Heinz Zimmermann

Dozent(in): Prof. Dr. Karl-Heinz Zimmermann

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	6.	Wahl
Elektrotechnik [Diplom] - Technische Informatik - Hardware	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom]	Diplom	6.	Wahl
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Analysis I,II, Lineare Algebra I, II, Informatik I, II.

Angestrebte Lernergebnisse:

- Kenntnisse: Vertiefte Kenntnisse auf einem Teilgebiet der Bioinformatik.
- Fertigkeiten. Theorie geleitetes Anwenden algebraisch-statistischer Methoden in der molekularen Biologie.
- Kompetenzen: Formalisieren von Problemstellungen, Bewerten unterschiedlicher Lösungsansätze.

Inhalt:

- Statistik: Statistische Modelle für diskrete Daten, lineares und torisches Modell, EM-Algorithmus, Markov-, Hidden-Markov und graphische Modelle.
- Informatik: Tropische Arithmetik, Dynamische Programmierung, Sequenz-Alignment, Polytope, Bäume und Metriken.
- Algebra: Varietäten und Gröbnerbasen, Implizitisierung, ML-Schätzung, tropische Geometrie.
- Biologie: Genome, statistische Modelle für biologische Sequenzen und Mutationen.

Studien/Prüfungsleistungen:

Mündliche Prüfung

n	"	~	ΙО	nı	_	rn	20	n	•
ıv		u	ıc		u		16		-

Tafel, Folien

Literatur:

Wird überarbeitet

Modul: Numerische algebraische Geometrie

Lehrveranstaltungen:

Titel	Тур	SWS
Vorlesung Algorithmen in Algebra und Analysis	Vorlesung	2,00
Übung Algorithmen in Algebra und Analysis	Übung	1,00

Modulverantwortlich: PD Dr. Prashant Batra

Dozent(in): Prof. Dr. Prashant Batra

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Technische Informatik - Hardware	Diplom	7.	Wahlpflicht
Elektrotechnik [Diplom] - Technische Informatik - Wissenschaftliches Rechnen	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom]	Diplom	5.	Wahlpflicht
Informatikingenieur [Diplom] - Algorithmen und Architekturen	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - Wissenschaftliches Rechnen	Diplom	7.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

- Modulare Arithmetik
- GAUSS"sche Elimination

Angestrebte Lernergebnisse:

Algebraische Lösung von Gleichungen und Gleichungssystemen wird möglich durch:

- Kenntnisse: Erlernen von Eliminationsmethoden für lineare und nicht-lineare Gleichungen, Symbolische Beschreibung der Lösung nicht-linearer Gleichungen, Beschreibungsmaße für die Kosten exakter, symbolischer und numerischer Methoden, Fähigkeiten: Elimination in polynomialen Gleichungssystemen von mehreren Veränderlichen
- Kompetenzen: Geometrische Interpretation der Lösung nicht-linearer Systeme (Schnitte geometrischer Figuren)

Inhalt:

- Algebraische Lösung von Gleichungen
- Aufwandsmaße zur Beurteilung eines Lösungsverfahrens
- Lösungsformeln im Vergleich mit Algorithmen

- Euklidscher Algorithmus
- Fundamentalsatz der Algebra
- Chinesischer Restsatz
- Hauptsatz über Symmetrische Funktionen
- Gauss"sche Elimination
- Gröbner-Basen
- Buchberger-Algorithmus

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Power Point, Folien, Tafelanschrieb

Literatur:

H. Lüneburg: Gruppen, Ringe, Körper, Oldenbourg, 1999.

W. Decker; C. Lossen: Computing in Algebraic Geometry, Springer, 2006.

N. Lauritzen: Concrete Abstract Algebra, Cambridge University Press, 2005.

Chee Keng Yap: Fundamental Problems of Algorithmic Algebra, Oxford University Press, 2000.

Netz-Skripte:

T. Sauer: "Computer-Algebra".

W. Schmale: "Algebra II".

DeckerSchreyer: Buchentwurf: "Varieties, Gröbner Bases, and Algebraic Curves".

C.K. Yap: Kapitel aus "Fundamental Problems of Algorithmic Algebra".

Modul: Allgemeine Messtechnik und Sensorik I: Messungen grundlegender nichteletrischer Größen

Lehrveranstaltungen:

TitelTypSWSAllgemeine Messtechnik und Sensorik IVorlesung2,00

Modulverantwortlich: Prof. Dr. Ernst Brinkmeyer

Dozent(in): Prof. Dr. Ernst Brinkmeyer

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik	Diplom	6.	Pflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	6.	Pflicht
Elektrotechnik	M.Sc.	1.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

BSc in Elektrotechnik

Angestrebte Lernergebnisse:

- Kenntnisse: Verständnis von Grundlagen und Prinzipien der Messung nichtelektrischer Größen
- Kompetenzen: F\u00e4higkeit f\u00fcr Bewertung, Auswahl und Weiterentwicklung von Messverfahren

Inhalt:

- Einführung: Grundbegriffe der Meßtechnik
- Statische Beschreibung von Meßsystemen
- Längenmessung und Winkelmessung
- Zeit- und Frequenzmessung
- Dynamische Beschreibung von Meßsystemen
- Messung von Masse, Beschleunigung, Kraft und Druck
- Messung von Geschwindigkeit, Volumen- und Massenstrom
- Kernspin-Tomographie

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen

Power Point Präsentation, Folien, Tafelanschrieb

Literatur:

E. Schrüfer, Elektrische Meßtechnik - Messung elektrischer und nichtelektrischer Größen, Carl Hanser Verlag, 2007

J. Hoffmann (ed), Taschenbuch der Messtechnik, Hanser Fachbuchverlag, 2004

M.T. Vlaardingerbroek, Magnetic resonance imaging: theory and practice, Springer 1999

Modul: Radiometrische, akustische und optoelektronische Messtechnik

Lehrveranstaltungen:

Titel	Тур	SWS
Allgemeine Messtechnik und Sensorik II	Vorlesung	2,00
Optoelektronische Messsysteme	Vorlesung	2,00

Modulverantwortlich: Prof. Dr. Ernst Brinkmeyer

Dozent(in): Prof. Dr. Ernst Brinkmeyer

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik	Diplom	6.	Pflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	6.	Pflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Mediziningenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 124

Modulprüfung: Ja

Kreditpunkte: 6,00

Voraussetzungen:

Bsc in Elektrotechnik

Grundlagen der Messtechnik und der Wellenausbreitung

Angestrebte Lernergebnisse:

Allgemeine Messtechnik und Sensorik II

- Kenntnisse: Verständnis ausgewählter Messmethoden und ihrer physikalischen Grundlagen vor allem aus dem Gebiet der elektromagnetischen, akustischen und optischen Strahlungsmesstechnik
- Kompetenzen: Fähigkeit zur Bewertung, Auswahl und Weiterentwicklung der betreffenden und verwandten Messmethoden

Optoelektronische Messsysteme

- Kenntnisse: Verständnis für optoelektronische, insbesondere laseroptische Messmethoden außerhalb der Optschen Kommunikationstechnik
- Kompetenzen: F\u00e4higkeit zum Einsatz und zur Weiterentwicklung entsprechender Messmethoden

Inhalt:

Allgemeine Messtechnik und Sensorik II

- Messwertgewinnung, -übertragung, -aufbereitung
- Messung von/mit ionisierender Strahlung
- Temperaturmessung
- Gesetze der Wärmestrahlung und Strahlungsmessung
- Messung von/mit Schallwellen
- Messverfahren mit inkohärenter optischer Strahlung
- Messung physiologischer Größen: Lautstärke, Helligkeit
- Messverfahren mit kohärenter optischer Strahlung

Optoelektronische Messsysteme

- Kohärenzeigenschaften optischer Felder und grundlegende Eigeschaften von Lasern
- Laserinterferometrie für Präzisionsmessungen
- Holographische Interferometrie, Speckle-Messverfahren
- Lasertriangulation
- Laser-Doppler-Anemometrie
- Sensorssysteme auf der Grundlage von Faser-Bragg-Gittern
- Verteilte Temperatursensoren auf der Grundlage von Ramanstreuung
- LIDAR-Systeme
- Laserkreisel und faseroptische Kreisel

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Power Point Präsentation, Folien, Tafelanschrieb

Literatur:

Allegmeine Messtechnik und Sensorik II

- E. Hecht, Optik, Oldenbourg Verlag, 2001
- F. Pedrotti, Optik für Ingenieure, Springer 2005
- A. Donges, R. Noll, Lasermesstechnik, Hüthig 1993
- D. Bimberg, Messtechniken mit Lasern, Expert Verlag 1993
- F. Mayinger (ed), Optical measurements, Sringer 1994
- P.K. Rastogi (ed.), Digital speckle pattern interferometry and related techniques, John Wiley, 2001

Optoelektronische Messsysteme

- O. Dössel, Bildgebende Verfahren in der Medizin, Springer, 2000
- H. Haken, H. C. Wolf, Atom- und Quantenphysik, Springer 1993
- E. Hecht, Optik, Addison-Wesley, Oldenbourg 2001

Modul: Anwendungsicherheit

Lehrveranstaltungen:

TitelTypSWSApplication Security AnwendungsicherheitVorlesung2,00Exercise: Application Security AnwendungsicherheitÜbung1,00

Modulverantwortlich: Prof. Dr. Dieter Gollmann

Dozent(in): Prof. Dr. Dieter Gollmann

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	8.	Wahl
Informatikingenieur [Diplom] - I+K-Anwendungssysteme	Diplom	8.	Wahlpflicht
Information and Media Technologies	M.Sc.	2.	Wahlpflicht
Mechatronics	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Vertrautheit mit Web Services, Middleware-Architekturen

Angestrebte Lernergebnisse:

- Kenntnisse: aktuelle Ansätze zur Sicherung von verteilten Anwendungen, insbesondere von Web Services
- System- und Methodenkompetenz: Sicherheitsanalyse und Entwurf von Sicherheitslösugen für verteilte Anwendungen
- Soziale Kompetenz: Würdigung der gesetzlichen Auflagen, die in Anwendungen, welche personenbezogene Daten verarbeiten, zu berücksichtigen sind

Inhalt:

- Sicherheitsprinzipien
- Web-Services-Sicherheit
- Middleware-Sicherheit (CORBA)
- Zugriffskontrolle Trust Management Trusted Computing
- Datenschutz: OECD Prinzipien, Datenschutzgesetze
- icherheitslösungen für ausgewählte Anwendungen

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Powerpoint, Tafel

Literatur:

Webseiten der OMG, W3C, OASIS, WS-Security, OECD, TCG

Ulrich Lang: CORBA Security, Artech House, 2002

D. Gollmann: Computer Security (2. Auflage), Wiley (2006)

Modul: Architektur und Implementierung von Datenbanksystemen

Lehrveranstaltungen:

Titel	Тур	SWS
Architektur und Implementierung von Datenbanksystemen	Vorlesung	2,00
Architektur und Implementierung von Datenbanksystemen/	Übung	1,00

Modulverantwortlich: Prof. Dr. Ralf Möller

Dozent(in): Prof. Dr. Ralf Möller

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Einführung in Datenbanksysteme

Angestrebte Lernergebnisse:

- Kentnisse: Verständnis über, formale Beschreibung von Architektur und Implementierung von Datenbanksystemen.
- Methodenkompetenz: Das Erkennen, Beschreiben und Lösen von Problemen, die mit der Architektur und Implementierung von Datenbanksystemen gelöst werden können.

Inhalt:

Wird überarbeitet

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Präsentation (pdf), Tafelanschrieb

Literatur:

Wird überarbeitet

Modul: Bioinformatik

Lehrveranstaltungen:

Titel	Тур	SWS
Bioinformatik	Vorlesung	2,00
Übung: Bioinformatik	Übung	1,00

Modulverantwortlich: Prof. Dr. Karl-Heinz Zimmermann

Dozent(in): Prof. Dr. Karl-Heinz Zimmermann

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	7.	Wahl
Informatikingenieur [Diplom] - Algorithmen und Architekturen	Diplom	7.	Wahlpflicht
Informationstechnologie	B.Sc.	5.	Wahlpflicht
Biotechnology	M.Sc.	3.	Wahlpflicht
Biotechnologie/Verfahrenstechnik [Diplom] - Grundlagen	Diplom	7.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Elementare Wahrscheinlichkeitsrechnung und Analysis.

Angestrebte Lernergebnisse:

- Kenntnisse: Vertiefte Einsicht in die Bioinformatik, interdisziplinarer Zusammenhang mit Molekularbiologie.
- Fertigkeiten: Theorie geleitetes Anwenden von rechnergestützten Verfahren und Werkzeugen zur Lösung bioinformatischer Probleme.
- Kompetenzen: Formalisieren von Problemstellungen, Bewerten unterschiedlicher Lösungsansätze, Befähigung zur Teamarbeit mit Molekularbiologen.

Inhalt:

- Struktur von Aminosäuren und Proteinen
- DNA, Gene, Genome und Biosynthese
- Paarweises Alignment von Sequenzen
- Multiples Alignment von Sequenzen
- Phylogenetische Bäume
- Sekundärstrukturvorhersage von Proteinen
- Tertiärstrukturvorhersage von Proteinen

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Lehrbuch, Folien, Tafelanschrieb

Literatur:

Wird überarbeitet

Modul: Boundary-Elemente-Methoden

Lehrveranstaltungen:

TitelTypSWSBoundary Element Methods / Boundary-Elemente-MethodenVorlesung2,00Exercises: Boundary Element Methods/ Boundary-Elemente-MethodenÜbung1,00

Modulverantwortlich: Prof. Dr. Otto von Estorff

Dozent(in): Prof. Dr. Otto von Estorff

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Energietechnik	M.Sc.	2.	Wahlpflicht
Produktentwicklung und Produktion	M.Sc.	2.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 45, Eigenstudium: 105

Kreditpunkte: 5,00

Voraussetzungen:

Mechanik I, II und Mathematik I, II, III (insbesondere Differentialgleichungen)

Angestrebte Lernergebnisse:

- Kenntnisse: Vertiefte Kenntnisse der Boundary-Elemente-Methode verknüpft mit einem breiten theoretischen und methodischen Fundament.
- Fertigkeiten: Theoriegeleitetes Anwenden sehr anspruchsvoller Methoden und deren Umsetzung in die technisch wissenschaftliche Programmierung.
- Kompetenzen: Erkennen von Problemen; kreativer Umgang mit den Prozessen des wissenschaftlichen Aufbereitens und Formulierens anspruchsvoller Berechnungsaufgaben.

Inhalt:

- Randwertprobleme
- Integralgleichungen
- Fundamentallösungen
- Elementformulierungen
- numerische Integration
- Lösung von Gleichungssystemen (Statik, Dynamik)
- Spezielle BEM Formulierungen
- Kopplung FEM und BEM
- Übungen am PC (Erstellung eigener BEM-Routinen)
- Anwendungsbeispiele

Studien/Prüfungsleistungen:

Klausur

Medienformen:

PowerPoint Präsentation, Umdrucke, Folien, Tafelschrieb

Literatur:

Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden

Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Modul: CAD-Werkzeuge und Methodik für die IC-Entwicklung

Lehrveranstaltungen:

Titel	Тур	SWS
CAD-Werkzeuge	Vorlesung	2,00
Methodik für die IC-Entwicklung	Vorlesung	2,00

Modulverantwortlich: Prof. Dr. Wolfgang Krautschneider

Dozent(in): Prof. Dr. Volkhard Klinger

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik	M.Sc.	1.	Wahl
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 124

Modulprüfung: Ja

Kreditpunkte: 6,00

Voraussetzungen:

CAD-Werkzeuge

• Vorlesung Halbleiterschaltungstechnik oder vergleichbares

Methodik für die IC-Entwicklung

• Grundlagen des IC-Entwurfes

Angestrebte Lernergebnisse:

CAD-Werkzeuge

- Kenntnisse: Wichtige Grundprinzipien elektronischer Schaltkreise und von Hardware-Beschreibungssprachen
- Methodenkompetenz: Strategien zur Weiterentwicklung elektronischer Schaltkreise
- Systemkompetenz: Verstehen des Design Flow vom Design Capture und Frontend über Simulation sowie Verifikation und Backend bis zum Test
- Lösungskompetenz: Entwicklung optimaler Lösungen für anwendungsspezifische Schaltkreise
- Sozialkompetenz: Vertiefen der erworbenen F\u00e4higkeiten in einem teamarbeitsbasierten Beispielprojekt

Methodik für die IC-Entwicklung

- Kenntnisse: Grundfunktionalität der wichtigsten Software-Werkzeuge für den Entwurf hochintegrierter Schaltkreise.
- Methodenkompetenz: Aufbaus und Nutzung von Schaltkreiseditoren und Designbibliotheken.
- Systemkompetenz: Durchführung von Schaltkreissimulationen und kritische Bewertung der Ergebnisse.
- Lösungskompetenz: Strategien für die effiziente Wiederverwendung von Designmodulen (Design-Reuse). Durchführung transienter Analysen von Grundschaltungen mit aktiven Bauelementen zur Optimierung der Spezifikationen.

Inhalt:

CAD-Werkzeuge

- Motivation, Gesetz von Moore, Design Kreis
- HW-Technologie: Full-Custom, Semi-Custom, Gate-Array, programmierbare Bausteine
- Design Flow: Design Capture and Frontend, Schematic Entry, Graphics Entry, Design Rules, Simulation, Verifikation, Synthese and Backend, Production Test, Design for Testability
- Hardware Beschreibungssprachen: Sprach-Konzepte, Beispiele
- Beispielprojekt

Methodik für die IC-Entwicklung

- Bipolare Technologie
- Transistor-Modelle
- TTL-Familien
- ECL-Familien
- I²L-Technik
- Unipolare Technologie
- Transistor-Modelle
- CMOS-Grundschaltungen
- Transmission-Gate Technik
- Dynamische Schaltungstechnik

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Tafel, OH-Projector, Beamer

Literatur:

Handouts werden verteilt

Modul: CMOS-Nanoelektronik

Lehrveranstaltungen:

Titel	Тур	SWS
CMOS-Nanoelektronik	Vorlesung	2,00
CMOS-Nanoelektronik	Übung	1,00

Modulverantwortlich: Prof. Dr. Wolfgang Krautschneider

Dozent(in): Prof. Dr. Wolfgang Krautschneider

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik	M.Sc.	1.	Pflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

- Kenntnisse der Funktionsweise von MOS-Bauelementen und Grundlagen der Halbleiterphysik
- Vorlesung "Halbleiterschaltungstechnik"

Angestrebte Lernergebnisse:

- Kenntnisse: Funktionsweise von MOS-Transistoren mit sehr kleinen Strukturabmessungen. Wichtige Messverfahren zur Bestimmung zuverlässigkeitsrelevanter Bauelementeparameter
- Methodenkompetenz: Analyse höchstintegrierter Logik- und Speicherschaltkreise
- Systemkompetenz: Strukturierung komplexer Schaltungsblöcke
- Lösungskompetenz: Überwinden technischer und physikalischer Barrieren bei der Strukturverkleinerung

Inhalt:

- Aufbau und Funktionsweise von Nanometer CMOS-Bauelementen
- Höchstintegrierte Speicher im Multi-Gigabit-Bereich
- Schaltungstechnik höchstintegrierter Schaltungen
- CMOS-Technologie für Nanometer-Bauelemente
- Parasitäre Effekte bei sehr kleinen Strukturen
- Zuverlässigkeitsverhalten bei sehr Bauelementen im Nanometerbereich
- Wirtschaftliche Gesichtspunkte bei Nanometer-CMOS

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Power Point Präsentation, Folien, Skript, Tafel

Literatur:

Vorlesungsskript

Y. Taur und T.H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 8th reprint, 2006

R.F. Pierret, Advanced Semiconductor Fundamentals, Prentice Hall, 2003

K. Rim, 32 nm CMOS Technology, IEDM Short Course, 2006

Modul: Computational Web

Lehrveranstaltungen:

Titel	Тур	SWS
Computational Web	Vorlesung	2,00
Computational Web	Übung	1,00

Modulverantwortlich: Prof. Dr. Helmut Weberpals

Dozent(in): Prof. Dr. Helmut Weberpals

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Information and Communication Systems	M.Sc.	1.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 4,00

Vorausetzung:

Keine

Angestrebte Lernergebnisse:

Wird überarbeit

Inhalt:

- Introduction to the Computational Web
- Grid Services Architecture
- Web Services Architecture
- Computational Web Services
- Future Trends
- The Semantic Grid

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienform:

Tafelanschrieb, Folien, Power Point Präsentation.

Literatur: Wird überarbeitet

Modul: Computergraphik und Animation

Lehrveranstaltungen:

Titel	Тур	SWS
Computergraphik und Animation	Vorlesung	2,00
Übung: Computergraphik und Animation	Übung	2,00

Modulverantwortlich: Prof. Dr. Helmut Weberpals

Dozent(in): Prof. Dr. Helmut Weberpals

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	8.	Wahl
Elektrotechnik [Diplom] - Technische Informatik - I+K-Anwendungssysteme	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - I+K-Anwendungssysteme	Diplom	8.	Wahlpflicht
Information and Media Technologies	M.Sc.	2.	Wahlpflicht
Informationstechnologie	B.Sc.	6.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 94

Kreditpunkte: 5,00

Voraussetzung:

Wird überarbeitet

Angestrebte Lernergebnisse:

Wird überarbeitet

Inhalt:

- Introduction to the Computational Web
- Grid Services Architecture
- Web Services Architecture
- Computational Web Services
- Future Trends
- The Semantic Grid

Studien/Prüfungsleistungen:
Semesterbegleitende Prüfung
Medienform:
Tafelanschrieb, Folien, Power Point Präsentation.
Literatur:

Wird überarbeitet

Modul: Digitale Audiosignalverarbeitung

Lehrveranstaltungen:

TitelTypSWSDigitale AudiosignalverarbeitungVorlesung2,00

Modulverantwortlich: Prof. Dr.-Ing. Udo Zölzer

Dozent(in): Prof. Dr.-Ing. Udo Zölzer

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Nachrichtentechnik - Digitale Übertragungstechnik	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom]	Diplom	5.	Wahlpflicht
Informatikingenieur [Diplom] - Kommunikation in Netzen	Diplom	7.	Wahlpflicht
Information and Communication Systems	M.Sc.	3.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	3.	Wahlpflicht
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

Systemtheorie I + II

Angestrebte Lernergebnisse:

- Kentnisse: Vertiefte Kenntnisse der digitalen Audiosignalverarbeitung mit einem breiten theoretischen und methodischen Fundament.
- Methodenkompetenz: Theoriegeleitetes Anwenden sehr anspruchsvoller Methoden und Verfahren der Signalverarbeitung.
- Problemlösungskompetenzen: Erkennen von Problemen und kreativer Umgang mit den Prozessen des wissenschaftlichen Aufbereitens und Formalisierens von Problemen.

Inhalt:

- Einführung (Studiotechnik, digitale Übertragungsverfahren, Speichermedien, Audio-Komponenten)
- Quantisierungsfehler (Zahlendarstellung, Quantisierungstheorem, Dither-Techniken, Spektralformung des Quantisierungsfehlers)
- AD/DA-Umsetzung (Nyquist-Abtastung, Überabtastungsverfahren, Delta-Sigma Verfahren, AD-Umsetzer, DA-Umsetzer)

- Audio-Verarbeitungssysteme (Festkomma-Prozessoren, Gleitkomma-Prozessoren, Ein/Mehrprozessorsysteme, digitale Audio-Interfaces)
- Klangbewertungsfilter (Entwurfsverfahren, IIR-Filter, Quantisierungseffekte, FIR-Filter, Filterbänke)
- Raumsimulation (erste Reflexionen, diffuser Nachhall, Rückkopplungsstrukturen, Messung von Impulsantworten, Approximation von Raumimpulsantworten)
- Dynamikbeeinflussung (Limiter, Compressor, Expander, Noisegate, statische Kennlinie, dynamisches Verhalten)
- Abtastratenumsetzung (synchrone Umsetzung, plesiochrone Umsetzung, einstufige Verfahren, mehrstufige Verfahren, Interpolationsverfahren)
- Datenkompression (verlustlose Datenkompression, verlustbehaftete Datenkompression, psychoakustische Grundlagen, ISO-MPEG1 Audio-Codierung)

Studien/Prüfungsleistungen:

Schriftliche Klausur

Medienformen:

JAVA-Applets, Tafelanschrieb, Beamer

Literatur:

U. Zölzer, Digitale Audiosignalverarbeitung, 3. Aufl., B.G. Teubner, 2005.

U. Zölzer (Ed), Digital Audio Effects, J. Wiley & Sons, 2002.

Modul: Digitale Bildcodierung

Lehrveranstaltungen:

TitelTypSWSDigitale BildkodierungVorlesung2,00

Modulverantwortlich: Prof. Dr.-Ing. Rolf-Rainer Grigat

Dozent(in): Prof. Dr.-Ing. Rolf-Rainer Grigat

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mikroelektronik - Physik und Technologie	Diplom	7.	Wahlpflicht
Elektrotechnik [Diplom] - Mikroelektronik - Bauelemente und Schaltungen	Diplom	7.	Pflicht
Elektrotechnik [Diplom] - Mikroelektronik - Mikrosystemtechnik	Diplom	7.	Wahlpflicht
Elektrotechnik [Diplom] - Nachrichtentechnik - Digitale Übertragungstechnik	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom]	Diplom	5.	Wahl
Informatikingenieur [Diplom] - Kommunikation in Netzen	Diplom	7.	Wahlpflicht
Information and Communication Systems	M.Sc.	1.	Wahlpflicht
Information and Media Technologies	M.Sc.	1.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	1.	Wahlpflicht
Mechatronics	M.Sc.	1.	Wahlpflicht
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

Lineare Algebra, Grundlagen der Stochastik, binäre Arithmetik

Angestrebte Lernergebnisse:

- Kentnisse: Breites theoretische und methodisches Fundament der Datenkompression und Videosignalcodierung, vertiefte Kenntnisse am Beispiel von MPEG-4 AVC
- System- und Lösungskompetenz: Erkennen von Problemen, kreativer Umgang mit den Prozessen des wissenschaftlichen Aufbereitens und Formalisierens von Problemen (Vergleich von verlustloser und verlustbehafteter Kompression auf der Basis von Quellenmodellen)

Inhalt:

- Information und Entropie
- Entropiecodierung (Huffmancodierung, Arithmetische Codierung)
- Verlustlose Codierung (DPCM, Lauflängencodierung, Ziv-Lempel, CALIC, JPEG-LS)
- Quantisierung (skalar, Vektorquantisierung)
- Transformationscodierung (DCT, hybride DCT)
- Bewegungsschätzung
- Teilbandcodierung

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Overhead-Projektor

Literatur:

Salomon, Data Compression, the Complete Reference, Springer, 2000

Solari, Digital video and audio compression, McGraw-Hill, 1997

Tekalp, Digital Video Processing, Prentice Hall, 1995

Modul: Digitale Bildverarbeitung

Lehrveranstaltungen:

Titel	Тур	SWS
Digitale Bildverarbeitung Digital Image Processing	Vorlesung	2,00
Übung:/Digitale Bildverarbeitung Digital Image Processing	Übung	1,00

Modulverantwortlich: Prof. Dr. Rolf-Rainer Grigat

Dozent(in): Prof. Dr. Rolf-Rainer Grigat

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Technische Informatik	Diplom	7.	Pflicht
Informatikingenieur [Diplom]	Diplom	7.	Pflicht
Informatikingenieur [Diplom] - Kommunikation in Netzen	Diplom	7.	Wahlpflicht
Information and Communication Systems	M.Sc.	3.	Wahlpflicht
Information and Media Technologies	M.Sc.	3.	Wahlpflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	7.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik - Block III: Informatik	Diplom	7.	Wahlpflicht
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	1.	Wahlpflicht
Mediziningenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

LTI Systemtheorie eindimensionaler Signale (Abtastung, Interpolation , Fourier Transformation, lineare zeitinvariante LTI-Systeme), lineare Algebra, Grundlagen der Stochastik (Erwartungswerte, Stichproben)

Angestrebte Lernergebnisse:

 Kentnisse: Breites theoretische und methodisches Fundament bildgebender Verfahren, vertiefte Kenntnisse am Beispiel der digitalen Filterung von Bildsignalen. Vertiefte Kenntnisse interdisziplinärer Zusammenhänge und der Einordnung des Fachgebietes in das wissenschaftliche und gesellschaftliche Umfeld (Systemtheorie, Filter, Physiologie, Wahrnehmungspsychologie)

- Methodenkompetenz: Theoriegeleitetes Anwenden sehr anspruchsvoller Methoden und Verfahren des Fachgebietes (Abtasttheorie mehrdimensionaler Signale, unitäre Transformationen, Charakterisierung von Sensor und Display)
- Problemlösungskompetenz: Erkennen von Problemen, kreativer Umgang mit den Prozessen des wissenschaftlichen Aufbereitens und Formalisierens von Problemen (exemplarische Anwendung für Handy-Kameras)
- Systemkompetenz: Bewerten unterschiedlicher Lösungsansätze in mehrdimensionalen Entscheidungsräumen (örtlich-zeitliche Signalverarbeitung, Bildfehler unter Abwägung von Wahrnehmung und Signaltheorie)

Inhalt:

- Wahrnehmung von Helligkeit und Farbe
- Farbräume
- Mehrdimensionale Diskretisierung in Ort und Zeit
- Dezimation
- Deinterlacing
- Flimmern und Flackern
- örtliche und zeitliche Aperturen von Bildsensoren und Displays
- Bildtransformationen
- Bildfilterung
- Kantenoperatoren
- Histogramm-Einebnung
- morphologische Operatoren
- homomorphe Filter
- Hough Transformation
- geometrische Momente

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Projektion von pdf-Slides

Literatur:

Pratt, Digital Image Processing, Wiley, 2001

Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989

Jähne, Haußecker, Computer Vision and Applications, Academic Press, 2000

Modul: Digitale Signalprozessoren

Lehrveranstaltungen:

TitelTypSWSDigital Signal Processors / Digitale SignalprozessorenVorlesung2,00

Modulverantwortlich: Prof. Dr. Georg Friedrich Mayer-Lindenberg

Dozent(in): Prof. Dr. Georg Friedrich Mayer-Lindenberg

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Nachrichtentechnik - Digitale Übertragungstechnik	Diplom	8.	Wahlpflicht
Elektrotechnik [Diplom] - Technische Informatik - Hardware	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - Algorithmen und Architekturen	Diplom	8.	Wahlpflicht
Information and Communication Systems	M.Sc.	2.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	2.	Wahlpflicht
Informationstechnologie	B.Sc.	6.	Pflicht
Mechatronics	M.Sc.	2.	Wahlpflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	8.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik - Block I: Elektrotechnik	Diplom	8.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

Vorlesungen Digitale Verarbeitungssysteme und Systemtheorie I/II, Digitale Filter, Mikroprozessorsysteme

Angestrebte Lernergebnisse:

Kenntnisse über das Systemdesign mit anwendungsorientierten Spezialprozessoren und FPGAs für den Anwendungsbereich der Digitalen Signalverarbeitung, über den Stand der Technik bei den verfügbaren Chips und Designmethoden für effiziente oder besonders leistungsfähige Systeme.

Inhalt:

FIR-Filterbau und Multiplizierer-Akkumulator

- Hochintegrierte Filterprozessoren
- Integer-Signalprozessoren
- Floating-Point-Chips
- Komplexe Systeme mit Signalprozessoren
- Hochleistungs-Mikroprozessoren
- digitale Signalprozessoren auf Basis von FPGAs
- Ausgewählte Anwendungen: FFT, schnelle Faltung, adaptive Filter
- Programmiertechnik und -werkzeuge

Studien/Prüfungsleistungen:

schriftliche Prüfung

Literatur:

- F. Mayer-Lindenberg, Dedicated Digital Processors, Wiley 2004
- J. G. Proakis, Digital Signal Processing, Prentice Hall 1996

Modul: Drahtlose Kommunikationssysteme

Lehrveranstaltungen:

TitelTypSWSDrahtlose KommunikationssystemeVorlesung2,00Drahtlose KommunikationssystemeÜbung1,00

Modulverantwortlich: Prof. Dr. Hermann Rohling

Dozent(in): Prof. Dr. Hermann Rohling

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik	M.Sc.	1.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Nachrichtenübertragung

Angestrebte Lernergebnisse:

- Kenntnisse: Vertieftes und ergänzendes Verständnis des Stoffes der Vorlesung Nachrichtenübertragung, mit dem Fokus auf Funkkommunikation
- Methodenkompetenz: Modellbildung und Bewertung komplexer Systeme
- Systemkompetenz: Systemorientiertes Denken, Dekomposition komplexer Systeme
- Soziale Kompetenzen: Befähigung zum selbstständigen und effizienten Lernen

Inhalt:

- Digitale Trägermodulation
- Signalraumdarstellung
- lineare Modulationsverfahren (PSK, ASK)
- CPM
- Empfängerstrukturen im additiven Gaußschen Rauschen
- Übertragungskanäle
- Mehrwegeausbreitung
- Fading
- Frequenz- und Zeitselektive Kanäle
- Kanalschätzung
- MIMO
- OFDM
- Trägersynchronisationsverfahren
- Statistische Entscheidungstheorie
- Codierte Übertragung

- Blockcodes
- Faltungscodes
- Turbo Codes
- Codierte Modulation
- Zugriffsverfahren
- TDMA, FDMA, CDMA
- Anwendungsbeispiele

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Powerpoint Präsentation, Skript, Tafelanschrieb

Literatur:

Wird überarbeitet

Modul: Effiziente Algorithmen

Lehrveranstaltungen:

TitelTypSWSEffiziente AlgorithmenVorlesung2,00

Modulverantwortlich: Prof. Dr. Siegfried Rump

Dozent(in): Prof. Dr. Siegfried Rump

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Technische Informatik - Wissenschaftliches Rechnen	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - Wissenschaftliches Rechnen	Diplom	7.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Sommer- und Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

Grundkenntnisse diskreter Mathematik

Angestrebte Lernergebnisse:

• Kentnisse: Vertiefte Kenntnisse in Netzwerk-Algorithmen

Inhalt:

- Lineare Optimierung
- Datenstrukturen
- Leftist heaps
- Minimum spanning tree
- Shortest path
- Maximum flow
- NP-harte Probleme via max-cut

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Folien, Tafelanschrieb

Literatur:

Wird überarbeiter

Modul: Eigenwertaufgaben

Lehrveranstaltungen:

Titel	Тур	SWS
Eigenwertaufgaben	Vorlesung	2,00
Eigenwertaufgaben	Übung	1,00

Modulverantwortlich: Prof. Dr. Heinrich Voß

Dozent(in): Prof. Dr. Heinrich Voß

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

• Kenntnisse in Linearer Algebra

Angestrebte Lernergebnisse:

• Kentnisse: Vertiefte Kenntnisse über Eigenwertaufgaben und ihre numerische Behandlung

Inhalt:

- Voll besetzte Eigenwertaufgaben
- Iterative Projektionsverfahren
- Lanczos Verfahren für symmetrische Probleme
- Krylov Unterraum Verfahren für nichtsymmetrische Probleme
- Jacobi-Davidson Verfahren
- AMLS (Automated Multi-Level Substructuring)
- Nichtlineare Eigenwert Probleme

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Präsentation (pdf-files) und Demonstration (MATLAB), Tafel

Literatur:

Z. Bai et al.: Templates for the solution of algebraic eigenvalue problems. SIAM, Philadelphia 2000

Modul: Einführung in die Antennentheorie

Lehrveranstaltungen:

TitelTypSWSIntroduction to Antenna Theory Einführung in die AntennentheorieVorlesung2,00Introduction to Antenna Theory Einführung in die AntennentheorieÜbung1,00

Modulverantwortlich: Prof. Dr. Arne Jacob

Dozent(in): Dr. Michael Höft

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - MSR4	Diplom	8.	Wahlpflicht
Elektrotechnik [Diplom] - Nachrichtentechnik - NT4	Diplom	8.	Wahlpflicht
Electromagnetics, Optics and Microwave Eng.	M.Sc.	2.	Wahlpflicht
Information and Communication Systems	M.Sc.	2.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Die Vorlesung baut auf Theoretische Elektrotechnik und Leitungstheorie auf.

Angestrebte Lernergebnisse:

- Kentnisse: Vertiefte Kenntnisse von Theorie und Anwendung von Antennen
- Methodenkompetenz: Berechnung der Antennenkenngrößen

Inhalt:

- Analyseverfahren: Vektorpotential, Dualität, äquivalente Quellen, Bildtheorie, Huygenssches Prinzip
- Berechnung der Grundstrukturen: Linearantennen, Aperturantennen, Gruppenstrahler
- Kenngrößen: Strahlungsdiagramm, Gewinn, Strahlungswiderstand, Reziprozität, Rauschen
- Ausbreitung von Radio- und Mikrowellen: geführte und Freiraum-Ausbreitung
- Beispiele zu Antennen: Sende- und Empfangsantennen für EMV, Mobilfunk-Antennen, stark bündelnde Antennen, Antennen für Erdstationen und Satelliten.

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Power Point Präsentation

Literatur:

R.E. Collin, Antennas and Radiowave Propagation, McGraw-Hill, New York 1985

Modul: Eingebettete Prozessornetzwerke

Lehrveranstaltungen:

TitelTypSWSEingebettete ProzessornetzwerkeVorlesung2,00

Modulverantwortlich: Prof. Dr. Georg Friedrich Mayer-Lindenberg

Dozent(in): Prof. Dr. Georg Friedrich Mayer-Lindenberg

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	7.	Wahlpflicht
Elektrotechnik [Diplom] - Nachrichtentechnik - Digitale Kommunikationsnetze	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - Algorithmen und Architekturen	Diplom	7.	Wahl
Mechatronics	M.Sc.	1.	Wahlpflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	7.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik - Block III: Informatik	Diplom	7.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

- Informatik f
 ür Ingenieure, Digitale Verarbeitungssysteme
- Nützlich: Mikroprozessortechnik, Realzeitsysteme, Rechnernetze, digitale Signalprozessoren

Angestrebte Lernergebnisse:

- Kenntnisse/KnowHow: Design und Anwendung eingebetteter Rechnersysteme verteilter Architektur, insbesondere heterogener Netzwerke von Mikroprozessoren und FPGAs und Single-Chip-Systeme, und dafür geeigneter Netzwerkstrukturen innerhalb von Chips und Leiterplatten.
- Kenntnisse über Spezifikation und Modellierung eingebetteter paralleler Systeme, Prozeßmodelle, Softwaretechniken und Programmierwerkzeuge.

- Verteilte Rechnerarchitekturen: Prozessornetzwerke
- Kommunikationsschnittstellen und -netzwerke
- Hardware- und Softwaremodelle verteilter Systeme

- Parallelität
- Message passing und remote procedure calls
 Programmiersprachen für verteilte Systeme
- Lastverteilung, Deadlockbehandlung

Studien/Prüfungsleistungen:

Mündliche Prüfung

Literatur:

Modul: Wissenschaftliches Rechnen und Genauigkeit

Lehrveranstaltungen:

Titel	Тур	SWS
Einschließungsmethoden	Vorlesung	2,00
Numerische Analysis und Matrixtheorie	Vorlesung	2,00

Modulverantwortlich: Prof. Dr. Siegfried Rump

Dozent(in): Prof. Dr. Siegfried Rump

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	7.	Wahl
Elektrotechnik [Diplom] - Technische Informatik - Wissenschaftliches Rechnen	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - Wissenschaftliches Rechnen	Diplom	7.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 124

Modulprüfung: Ja

Kreditpunkte: 6,00

Voraussetzungen:

Grundkenntnisse in Mathematik

Angestrebte Lernergebnisse:

Kentnisse: Vertiefte Kenntnisse von Einschließungsmethoden

Kentnisse: Vertiefte Kenntnisse von Matrixtheorien

Inhalt:

Erschließungsmethoden

- Verifikationsmethoden für lineare und nichtlineare Gleichungssysteme
- Implementierung in Matlab
- Praktische Anwendungen

Numerische Analysis und Matrixtheorie

mündliche Prüfung
Medienformen:
Folien, Tafelanschrieb
Literatur:

Studien/Prüfungsleistungen:

Modul: Intilligente Autonome Agenten

Lehrveranstaltungen:

Titel	Тур	SWS
Intilligente Autonome Agenten	Vorlesung	2,00
Intilligente Autonome Agenten	Übung	1,00

Modulverantwortlich: Prof. Dr. Ralf Möller

Dozent(in): Prof. Dr. Ralf Möller

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	7.	Wahl
Informatikingenieur [Diplom]	Diplom	5.	Wahl
Informatikingenieur [Diplom] - I+K-Anwendungssysteme	Diplom	7.	Wahlpflicht
Information and Media Technologies	M.Sc.	3.	Wahlpflicht
Informationstechnologie	B.Sc.	5.	Wahl
Mechatronics	M.Sc.	1.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Mediziningenieurwesen	M.Sc.	3.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Angewandte Logik

Angestrebte Lernergebnisse:

• Kenntnisse: grundlegender Zusammenhänge, Theorien und Methoden des Fachgebietes.

Inhalt:

Wird ergänzt

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Präsentation (pdf), Tafelanschrieb

Literatur:

Modul: Elektrischer Entwurf und Charakterisierung von Packages und Interconnects

Lehrveranstaltungen:

Titel Typ SWS

Elektrischer Entwurf und Charakterisierung von Packages und Interconnects Vorlesung 2,00

Exercise: Elektrischer Entwurf und Charakterisierung von Packages und Übung 1,00

Interconnects

Modulverantwortlich: Prof. Dr. Christian Schuster

Dozent(in): Prof. Dr. Christian Schuster

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Elektrotechnik	M.Sc.	3.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Theoretische Elektrotechnik I+II oder Elektromagnetische Felder, Leitungstheorie, Netzwerktheorie

Angestrebte Lernergebnisse:

- Kenntnisse: Vertiefung im Bereich des elektrischen Designs und Charakterisierung von HF Packages, Interconnects und Materialien mit breitem theoretischem und methodischen Fundament
- Fertigkeiten: Anwenden sehr anspruchsvoller Methoden (numerische Verfahren, Messtechnik) im genannten Fachgebiet
- Kompetenzen: Analysieren und Lösen von Problemen im genannten Fachgebiet, Kommunikation auf Englisch

- Die Rolle von Packages, Interconnects und Materialien in modernen Microsystemen
- Hauptziele und Konzepte im Package und Interconnect Design
- Unterschied zwischem digitalen und analogen Packaging
- Wiederholung relevanter Konzepte der elektromagnetischen Feldtheorie, der Kettenleitertheorie und der Netzwerktheorie
- Techniken und Geräte zur Messung in Zeit- und Frequenzbereich
- Numerische Werkzeuge für elektrische Analyse und Entwurf
- Entwurf und Characterisierung der Spannungsversorgung
- Entwurf und Characterisierung der Interconnects

- Entwurf und Characterisierung von Materialien und passiven Komponenten
 Multifunktionale Packages (systems on a package)
 CAD Werkzeuge für Package and Interconnect Entwurf

Studien	/Prüfunas	leistungen:

Studien/Prutungsleistungen:
Mündliche Prüfung
Medienformen:
Tafel, Folien
Literatur:
Wird überarbeitet

Modul: Elektromagnetische Verträglichkeit

Lehrveranstaltungen:

Titel	Тур	SWS
Elektromagnetische Verträglichkeit	Vorlesung	2,00
Elektromagnetische Verträglichkeit	Übung	1,00

Modulverantwortlich: Prof. Dr. Jan Luiken ter Haseborg

Dozent(in): Prof. Dr. Jan Luiken ter Haseborg

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - Messsysteme	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	7.	Wahlpflicht
Electromagnetics, Optics and Microwave Eng.	M.Sc.	1.	Pflicht
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Elektrotechnik	M.Sc.	3.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Elektrotechnik I und II

Angestrebte Lernergebnisse:

- Kentnisse: Diese Vorlesung vermittelt grundlegende und anwendungsspezifische Kenntnisse der Elektromagnetischen Verträglichkeit (EMV)
- Methodenkompetenz: EMV-Analyse komplexer Anlagen und Systeme
- Systemkompetenz: Systemorientiertes Denken
- Soziale Kompetenz: Englischsprachige Kommunikation

- Einleitung
- Vorbemerkung: EMV (EMC), EMI, EMP
- Grundlagen: Hochfrequenztechnik, Hochspannungstechnik
- Forschungs- und Entwicklungsvorhaben auf dem EMV-Gebiet im Arbeitsbereich Meßtechnik/ EMV der TU Hamburg-Harburg
- in der EMV gebräuchliche Größen und Einheiten
- Literatur

- EMI-Quellen
- Schmalband-, Breitbandstörungen
- transiente Netzüberspannungen, elektrostatische Entladungen (ESD)
- gestrahlte und leitungsgeführte Störungen
- elektrische, magnetische, elektromagnetische Feldstörungen
- Kopplungen
- Leitungen
- Leitungstheorie der Mehrfachleitungen
- Abschirmung von Leitungen
- Maß für die Güte der Abschirmung
- Transferimpedanz
- Transferadmittanz
- Ausbreitung von Strömen auf abgeschirmten Leitungen
- EMV-Maßnahmen
- Entkopplungen, Reduzierung von Kopplungen
- induktive Entkopplung
- kapazitive Entkopplung
- Potentialtrennung
- Optokoppler
- Erdung, Leitungsführung
- Schirmung (Nahfeld, Fernfeld)
- Reflexionsdämpfung
- Absorptionsdämpfung
- Einfluß von Materialeigenschaften (SYMBOL 99 f "Symbol"[endif][endif], μ)
- Schutz gegen leitungsgeführte Störungen
- Nutzsignalspektrum, Störsignalspektrum
- lineare Filter
- nichtlineare Filter
- Übertragungsverhalten von Filtern für die Nutzsignale
- EMV-Rahmenrichtlinie, Normung, EMV-Gesetzgebung

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Tafel, Overheadfolien

Literatur:

C. R. Paul: "Electromagnetic Compatibility", John Wiley & Sons Inc., 1991

C.R. Paul: "Analysis of Multiconductor Transmission Lines", John Wiley & Sons Inc., 1994,

H. Kaden: "Wirbelströme und Schirmung in der Nachrichtentechnik", Springer Verlag, Berlin, Göttingen, Heidelberg, 1950, 1959, 2006

Modul: Elektromechanik und Contromechanik

Lehrveranstaltungen:

Titel	Тур	SWS
Electromechanics and Contromechanics / Elektromechanik und Contromechanik	Vorlesung	2,00
Electromechanics and Contromechanics Elektromechanik und Contromechanik	Übung	1,00

Modulverantwortlich: Prof. Dr.-Ing. U. Weltin

Dozent(in): Prof. Dr.-Ing. U. Weltin

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Mechatronik	B.Sc.	6.	Pflicht
Informatikingenieur [Diplom] - Konstruktion, Fertigung und Logistik	Diplom	8.	Wahlpflicht
Mechatronics	M.Sc.	2.	Pflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	8.	Pflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Wird ergänzt!

Angestrebte Lernergebnisse:

Wird ergänzt!

Inhalt:

Wird überarbeitet

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Wird überarbeitet

Literatur: Wird überarbeitet

Modul: Elektronische Bauelemente

Lehrveranstaltungen:

Titel	Тур	SWS
Elektronische Bauelemente / Electronic Devices	Vorlesung	3,00
Elektronische Bauelemente/Electronic Devices	Übung	1,00

Modulverantwortlich: Prof. Dr. Jörg Müller

Dozent(in): Prof. Dr. Jörg Müller

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Elektrotechnik	B.Sc.	5.	Pflicht
Allgemeine Ingenieurwissenschaften - Informatik-Ingenieurwesen	B.Sc.	5.	Pflicht
Allgemeine Ingenieurwissenschaften - Materialwissenschaften	B.Sc.	5.	Pflicht
Elektrotechnik [Diplom]	Diplom	5.	Pflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	7.	Wahlpflicht
Elektrotechnik	B.Sc.	5.	Pflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Informationstechnologie (neu)	B.Sc.	5.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 124

Kreditpunkte: 6,00

Voraussetzungen:

Physik für Elektrotechniker, Werkstoffe der Elektrotechnik (Ladungsträger in Halbleitern, Bändermodell, Stromfluß-, Anregungsmechanismen) Netzwerkanalyseverfahren,

Angestrebte Lernergebnisse:

Kenntnis der Wirkprinzipien der wichtigsten Halbleiterbauelemente und ihrer Modellierung als Netzwerkelemente zur Vorbereitung der Halbleiterschaltungstechnik/ -analyse und Schaltungssimulation. Anwendung der Bauelemente im jeweiligen Grundbetrieb. Eigenständiges Erkennen von physikalischen Zusammenhängen und Finden von Lösungen für komplexe Aufgabenstellungen.

- Elektronen und Löcher in Halbleitern (Halbleitergrundgleichungen, Rekombination, Grenzflächen)
- Grundeigenschaften der Halbleiterbauelemente

- Halbleiterdiode (Prinzip, stat./dyn. Modellierung, Ersatzschaltung, Diodenarten, typische Anwendungen)
- Bipolartransistor (Prinzip, stat./dyn. Modellierung, Ersatzschaltung, Grundstromkreis, typische Anwendungen)
- Thyristor
- Metall-Halbleiterübergang, Anwendungen
- Feldeffekttransistoren, JFET und MOS-Transistoren (Prinzipien, Arten, Modellierung, Grundstromkreis, Grundschaltungen)

Studien	/Prüfun	asleistu	ınaen:

Schriftliche	Prüfung
	i i di di ig

Medienformen:

Power Point Präsentation

Literatur:

Skript

Unger, Schutz, Weinhausen, Elektronische Bauelemente und Schaltungen, Vieweg, UnitextSze, Physics of semiconductors, J,Whiley&SonsMöschwitzer, Grundlagen der Halbleiter und Mikroelektronik, Carl Hanser Verlag

Modul: Entwurf von web-basierten Anwendungen

Lehrveranstaltungen:

TitelTypSWSWeb Engineering / Entwurf u. Implementierung web-basierter SystemeVorlesung2,00Exercise: Web Engineering Entwurf u. Implmentierung web-basierter SystemeÜbung2,00

Modulverantwortlich: Prof. Dr. Volker Turau

Dozent(in): Prof. Dr. Volker Turau

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Information and Media Technologies	M.Sc.	1.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 94

Kreditpunkte: 5,00

Voraussetzungen:

Bachelor in Informatik, gute Kenntnisse der Programmiersprache Java, Grundkenntnisse relationaler Datenbanken (einfache SQL Anweisungen), Grundkenntnisse HTML

Angestrebte Lernergebnisse:

- Kenntnisse: Vertiefte Kenntnisse im Entwurf und der Implementierung web-basierter Systeme und der Spezifikation nicht-funktionaler Anforderungen solcher Systeme
- Methodenkompetenz: Zergliedern von komplexen web-basierten Systemen in Module und Beschreibung der Schnittstellen
- Systemkompetenz: Systemorientiertes Denken, Dekomposition komplexer Systeme
- Soziale Kompetenzen: Englischsprachige Kommunikation

Inhalt:

Web engineering umfasst die Anwendung von systematischen, ingenieurmäßigen und quantifizierbaren Vorgehensweisen für eine kosteneffektive Entwicklung von qualitativ hochwertigen, sehr großen Systemen auf Basis web-basierter Techniken.

- Inhalt:
- Protokolle und Standards (HTTP, XML)
- Kategorisierung von Anwendungen
- Techniken zur Durchführung von Anforderungsanalysen
- Web-basierter Entwicklungsprozess und Entwurfsmethoden
- Frameworks
- Integration von Alt-Anwendungen
- Evolution und Wartung web-basierter Systeme
- Testen und Verifikation

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

HTML Präsentation, Folien, Tafelanschrieb

Literatur:

- 1. Web-basietre Anwendungen entwickeln mit JSP 2 V. Turau, K. Saleck, C. Lenz dpunkt, 2004, 3898642356
- 2. Web Engineering G. Kappel, B. Pröll, S. Reich, W. Retschitzegger dpunkt, 2004, 3898642348
- 3. Web Engineering R. Dumke, M. Lother, C. Wille, F. Zbrog Pearson Studium, 2003, 827370809
- 3. Patterns of Enterprise Application Architecture: Martin Fowler Addison Wesley Professional, ISBN: 0321127420, 2002

Modul: Faseroptik und Integrierte Optik

Lehrveranstaltungen:

TitelTypSWSFaseroptik und Integrierte Optik/ Fibre and Integrated OpticsVorlesung2,00Übung: Faseroptik und Integrierte Optik/ Fibre and Integrated OpticsÜbung1,00

Modulverantwortlich: Prof. Dr. Manfred Eich

Dozent(in): Prof. Dr. Manfred Eich

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Nachrichtentechnik - Hochfrequenztechnik und Optik	Diplom	8.	Wahlpflicht
Electromagnetics, Optics and Microwave Eng.	M.Sc.	2.	Wahlpflicht
Information and Communication Systems	M.Sc.	2.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	2.	Wahlpflicht
Mechatronics	M.Sc.	2.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Elektrodynamik, Optik

Angestrebte Lernergebnisse:

Kenntnisse: Ziel der Vorlesung ist die Vermittlung der theoretischen und technologischen Grundlagen geführter optischer Wellen sowie deren Anwendungen in der optischen Signalverarbeitung. Vertiefte Kenntnisse und technologische Verfahren zu integriert optischen Schaltern und Modulatoren werden vermittelt.

- Theorie optischer Wellenleiter
- Ein- und Auskopplung
- Verluste
- Lineare und nichtlineare Dispersion
- Komponenten und technische Applikationen

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Power Point Präsentation, Skript, Folien, Tafelanschrieb

Literatur:

Hunsperger, R.G., Integrated Optics: Theory and Technology, Springer, 2002, ISBN: 3540433414

Agrawal, G.P., Fiber-Optic Communication Systems, Wiley, 2002, ISBN 0471215716

Marcuse, D., Theory of Dielectric Optical Waveguides, Academic Press, 1991, ISBN 0124709516

Tamir, T. (ed), Guided-Wave Optoelectronics, Springer, 1990, ISBN 038752780X

Modul: Finite-Elemente-Methoden

Lehrveranstaltungen:

TitelTypSWSFinite Element Methods / Finite-Elemente-MethodenVorlesung2,00Exercise: Finite Element Methods / Finite-Elemente-MethodenÜbung1,00

Modulverantwortlich: Prof. Dr. Otto von Estorff

Dozent(in): Prof. Dr. Otto von Estorff

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Flugzeug-Systemtechnik	B.Sc.	6.	Pflicht
Allgemeine Ingenieurwissenschaften - Mechatronik	B.Sc.	6.	Pflicht
Allgemeine Ingenieurwissenschaften - Theoretischer Maschinenbau	B.Sc.	6.	Pflicht
Bauingenieurwesen und Umwelttechnik [Diplom]	Diplom	6.	Wahlpflicht
Structural Engineering	M.Sc.	2.	Wahlpflicht
Informatikingenieur [Diplom] - Konstruktion, Fertigung und Logistik	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - Technische Dynamik	Diplom	8.	Wahlpflicht
International Production Management	M.Sc.	2.	Pflicht
Mechatronics	M.Sc.	2.	Pflicht
Maschinenbau [Diplom] - Fertigungstechnik	Diplom	8.	Wahlpflicht
Maschinenbau [Diplom] - Konstruktionstechnik - Flugzeugsystemtechnik	Diplom	6.	Pflicht
Maschinenbau [Diplom] - Konstruktionstechnik - Produktentwicklung	Diplom	6.	Pflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	6.	Pflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	6.	Pflicht
Technomathematik	Diplom	6.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Energietechnik	M.Sc.	3.	Wahlpflicht
Flugzeug-Systemtechnik	M.Sc.	1.	Pflicht
Mediziningenieurwesen	M.Sc.	1.	Pflicht
Produktentwicklung und Produktion	M.Sc.	1.	Pflicht
Theoretischer Maschinenbau	M.Sc.	1.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 45, Eigenstudium: 105

Kreditpunkte: 5,00

Voraussetzungen:

Mechanik I, II und Mathematik I, II, III (insbesondere Differentialgleichungen)

Angestrebte Lernergebnisse:

- Kenntnisse: Vertiefte Kenntnisse der Finite-Elemente-Methode verknüpft mit einem breiten theoretischen und methodischen Fundament.
- Fertigkeiten: Theoriegeleitetes Anwenden sehr anspruchsvoller Methoden und deren Umsetzung in die technisch wissenschaftliche Programmierung.
- Kompetenzen: Erkennen von Problemen; kreativer Umgang mit den Prozessen des wissenschaftlichen Aufbereitens und Formulierens anspruchsvoller Berechnungsaufgaben.

Inhalt:

- Grundbegriffe ingenieurwissenschaftlicher Berechnung
- Verschiebungsmethode
- hybride Formulierungen
- isoparametrische Elemente
- numerische Integration
- Lösung von Gleichungssystemen (Statik, Dynamik)
- Eigenwertprobleme
- Übungen am PC (Erstellung eigener FEM-Routinen)
- Anwendungsbeispiele (Hörsaalübungen und Hausaufgaben)

Studien/Prüfungsleistungen:

Klausur

Medienformen:

PowerPoint Präsentation, Umdrucke, Folien, Tafelschrieb

Literatur:

Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Modul: Grundlagen des Maschinellen Lernens und Data Minings

Lehrveranstaltungen:

Titel

Grundlagen des Maschinellen Lernens und Data Minings/Foundations of Machine
Learning and Data Mining

Übung: Grundlagen des Maschinellen Lernens und Data Minings/Lab class:

Übung 1,00
Foundation of Machine Learning and Data Mining

Modulverantwortlich: Prof. Dr. Ralf Möller

Dozent(in): Prof. Dr. Ralf Möller

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften	B.Sc.	6.	Wahl
Elektrotechnik [Diplom]	Diplom	8.	Wahl
Elektrotechnik [Diplom] - Technische Informatik - I+K- Anwendungssysteme	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom]	Diplom	8.	Wahlpflicht
Information and Communication Systems	M.Sc.	2.	Wahlpflicht
Information and Media Technologies	M.Sc.	2.	Wahlpflicht
Informationstechnologie	B.Sc.	6.	Wahl
International Production Management	M.Sc.	2.	Wahlpflicht
Verfahrenstechnik [Diplom]	Diplom	8.	Wahl
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Angewandte Logik.

Angestrebte Lernergebnisse:

Kenntnisse :grundlegender Zusammenhänge, Theorien und Methoden des Fachgebietes.

- Introduction
- Learning from observations
 Inductive learning, introduction to learning decision trees

- Decision tree learning: Information theory, information gain (ID3), extensions (C4.5), translating decision trees to rules
- Computational learning theory (PAC learning), incremental learning (version spaces)
- Uncertainty
- Wumpus example
- Bayesian networks
- Statistical Learning Methods: Maximum-likelihood parameter learning, Learning Bayesian networks structures
- Knowledge in learning
- Non-parametric learning
- Reinforcement learning

Studi	en/Pri	funas	sleistur	naen:
Otual	CII/I I C	HUHH	ncistai	19611.

Schriftliche Prufung	hriftliche Prüf	ung.
----------------------	-----------------	------

Medienformen:

Präsentation (pdf), Tafelanschrieb

Literatur:

Modul: Halbleitertechnologie I: Basisprozesse

Lehrveranstaltungen:

Titel	Тур	SWS
Halbleitertechnologie I: Basisprozesse	Vorlesung	4,00
Halbleitertechnologie/semiconductor technology	Praktikum	2,00

Modulverantwortlich: Prof. Dr. Jörg Müller

Dozent(in): Prof. Dr. Jörg Müller

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mikroelektronik	Diplom	6.	Pflicht
Informationstechnologie	B.Sc.	6.	Wahlpflicht
Materials Science	M.Sc.	2.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 98, Eigenstudium: 112

Kreditpunkte: 7,00

Voraussetzungen:

Halbleiterphysik

Angestrebte Lernergebnisse:

 Kentnisse: Vertiefte Kenntnis der wesentlichen Prozesse, ihrer Abfolge und Auswirkung zur Herstellung von Halbleiterbauelementen und hochintegtrierten Schaltungen

- Kristallherstellung (Si, GaAs)
- Scheibenpräparation
- Dotieren von Halbleitern, Dotierelemente, Legieren, Diffusion, Diffusionskoeffizienten in Halbleitern, theoretische Beschreibung der Diffusion, Erzeugung von pn-Übergängen, Diffusionsverfahren-Silizium, Diffusionsverfahren-Verbindungshalbleiter
- Ionenimplantation, Prinzip und Eigenschaften, Theorie, Implantationsschäden, Ausheilen, Anlagentechnik
- Natürliche Oxidation, thermische Oxidation, thermische Oxidation von III-V-Halbleitern
- Epitaxie, Gasphasenepitaxie, Gasphasenepitaxie für Silizium, Gasphasenepitaxie für Galliumarsenid, Flüssigphasenepitaxie
- Beschichtungsverfahren, CVD-Verfahren, Chemie der CVD-Verfahren, isolierende Schichten, leitende Schichten, Plasmaverfahren, PVD-Verfahren, Hochvakuum-Aufdampfen, Kathodenzerstäuben, Materialien für die Halbleitertechnik

- Strukturierverfahren, Ätztechnik, naßchemisches Ätzen, Plasmaätzverfahren, Maskierungsverfahren, subtraktive Verfahren, Fotolithographie, additive Verfahren
- Prozessablauf für Halbleiterbauelemente, Einzelhalbleiter, Kriterien für die Prozeßentwicklung, integrierte Schaltungen
- Aufbau- und Verbindungstechnik, Aufkleben und Trennen, Aufbau auf Träger, Kontaktieren

Studien	/Prüfun	gsleistun	gen:
---------	---------	-----------	------

Mündliche Prüfung	
Medienformen:	
Power Point Präsentation	
Literatur:	

Modul: HF-Bauelemente und -Schaltungen I: Verstärker und Frequenzumsetzer

Lehrveranstaltungen:

TitelTypSWSHochfrequenz-Bauelemente und -Schaltungen I: Verstärker und FrequenzumsetzerVorlesung 2,00Übung: Hochfrequenz-Bauelemente und -schaltungen I: Verstärker und FrequenzumsetzerÜbung 1,00

Modulverantwortlich: Prof. Dr. Arne Jacob

Dozent(in): Prof. Dr. Arne Jacob

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Nachrichtentechnik - Hochfrequenztechnik und Optik	Diplom	7.	Wahlpflicht
Electromagnetics, Optics and Microwave Eng.	M.Sc.	1.	Pflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

• Grundlagen der Halbleiterelektronik

• Empfohlen: Mikrowellen- und Optikpraktikum

Angestrebte Lernergebnisse:

- Kentnisse: Vertiefte Kenntnisse der Physik ausgewählter Hochfrequenz-Halbleiterbauelemente und ihrer Anwendung in Analogen Schaltungen
- Fertigkeiten: Analyse und Synthese Nichtlinearer Mikrowellenschaltungen auch mit modernen Software-Werkzeugen

- Verstärker:
- S-Parameter
- Stabilität (Heterojunction) Bipolar-Transistor, (High Electron Mobility) Feldeffekt-Transistor Schaltungsanwendungen
- Nichtlineare Verzerrungen
- Großsignal-Charakterisierung
- Mischer:
- Parametrische Rechnung pn- und Schottky-Diode
- FET Konversionsgewinn und Rauschzahl des Eindioden-Mischers

• Gegentakt-Mischer

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Tafelanschrieb, Folien, Laborvorführungen

Literatur:

S.M. Sze: Physics of Semiconductor Devices, John Wiley & Sons,1981

Voges, E.: Hochfrequenztechnik, Hüthig, 2004

Jacob, A.: Vorlesungsskript (deutsch)

Modul: HF-Bauelemente und -Schaltungen II: Hochfrequenzsignalerzeugung

Lehrveranstaltungen:

Titel	Тур	SWS
HF-Bauelemente und -Schaltungen II: Hochfrequenzsignalerzeugung	Vorlesung	2,00
HF-Bauelemente und -Schaltungen II: Hochfrequenzsignalerzeugung	Übung	1,00

Modulverantwortlich: Prof. Dr. Arne Jacob

Dozent(in): Prof. Dr. Arne Jacob

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Nachrichtentechnik - Hochfrequenztechnik und Optik	Diplom	8.	Wahlpflicht
Electromagnetics, Optics and Microwave Eng.	M.Sc.	2.	Pflicht
Elektrotechnik	M.Sc.	3.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundlagen der Halbleitertechnik

Angestrebte Lernergebnisse:

- Kentnisse: Vertiefte Kenntnisse der Physik ausgewählter Hochfrequenz-Halbleiterbauelemente und ihrer Anwendung in analogen Schaltungen
- Methodenkompetenz: Analyse und Synthese nichtlinearer Mikrowellenschaltungen auch mit modernen Software-Werkzeugen

- Oszillator:
- Anschwingverhalten
- Großsignalarbeitspunkt
- Stabilität
- Gunn-Element
- IMPATT-Diode
- Feldeffekt-Transistor (FET)
- Oszillator-Stabilisierung
- Frequenzvervielfacher:
- Harmonische Balance
- Rauschen in nichtlinearen Schaltungen
- pn- und Schottky-Diode

- FET
- SchaltungssyntheseGroßsignal-, Rausch- und Stabilitätsanalyse

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Tafelanschrieb, Folien, Laborvorführungen

Literatur:

S.M. Sze: Physics of Semiconductor Devices, John Wiley & Sons,1981

Voges, E.: Hochfrequenztechnik, Hüthig, 2004

Jacob, A.: Vorlesungsskript (deutsch)

Modul: Informations- und Codierungstheorie

Lehrveranstaltungen:

TitelTypSWSInformations- und Codierungstheorie / Information and Coding TheoryVorlesung 2,00Übung: / Informations- und Codierungstheorie / Exercise: Information an Coding TheoryÜbung 1,00

Modulverantwortlich: Prof. Dr. Ulrich Killat

Dozent(in): Prof. Dr. Ulrich Killat

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	8.	Wahl
Elektrotechnik [Diplom] - Nachrichtentechnik	Diplom	6.	Pflicht
Informatikingenieur [Diplom]	Diplom	6.	Wahlpflicht
Informatikingenieur [Diplom] - Kommunikation in Netzen	Diplom	8.	Wahlpflicht
Informationstechnologie - Informations- und Kommunikationssysteme	B.Sc.	6.	Wahlpflicht
Mechatronics	M.Sc.	2.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik - Block III: Informatik	Diplom	8.	Wahlpflicht
Technomathematik	Diplom	8.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Elementare Wahrscheinlichkeitsrechnung, Matrizenrechnung

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegendes Verständnis für die Konzepte von Informations- und Codierungstheorien
- Methodenkompetenz: F\u00e4higkeit geeignete Codierungsverfahren einzusetzen und deren Leistungsf\u00e4higkeit zu quantifizieren
- Systemkompetenz: Aufteilung eines komplexen Problems in Subprobleme
- Problemlösungskompetenzkompetenz: Fähigkeit für reale Systeme ein Fehlermodell zu entwickeln und dafür eine geeignete Fehlerbehandlung zu konzipieren

Inhalt:

- Grundbegriffe
- Endliche Stichprobenräume
- Theorie der Galoisfelder
- Modellierung des Kanals
- Information, Entropie, Irrelevanz, Zweideutigkeit, Transinformation, Kanalkapazität
- Grundbegriffe der Quellencodierung
- Data Translation Codes
- Shannon's Kanalcodierungstheorem (BSC-Kanal)
- Shannon Hartley Theorem
- Lineare Codes
- Zyklische Codes und deren Implementierung
- Reed Solomon Codes und deren Anwendung für die Compact Disc
- Faltungscodes

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Power Point Präsentation, Skript, Folien, Tafelanschrieb

Literatur:

- B. Friedrichs: Kanalcodierung, Springer (1995)
- R. Johanesson: Informationstheorie, Addison-Wesley (1992)
- H. Rohling: Einführung in die Informations- und Codierungstheorie

Modul: Informationstechnik in der Logistik

Lehrveranstaltungen:

TitelTypSWSInformationstechnologie in der LogistikVorlesung2,00

Modulverantwortlich: Prof. Dr. Thorsten Blecker

Dozent(in): Prof. Dr. Thorsten Blecker

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 32

Kreditpunkte: 2,00

Voraussetzungen:

Keine

Angestrebte Lernergebnisse:

- Kentnisse: Erlangung von soliden theoretischen Kenntnissen über die Potenziale und Anwendungen neuer Informationstechnologien in der Logistik
- Fertigkeiten: Herstellung des Praxisbezuges durch zahlreiche Beispiele und Fallstudien

Inhalt:

- Grundlagen des Logistik- und Supply Chain Managements
- Grundlagen des Informationsmanagements
- Grundlagen der Informationssysteme
- Empirische Studien in Bezug auf IT in der Supply Chain
- Relevanz der Information in der Supply Chain
- Logistikinformationssysteme
- Radio Frequency Identification (RFID)
- E-Logistik
- Electronic Sourcing
- E-Supply Chains
- Fallbeispiele und neue technische Entwicklungen

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Literatur:

- Kummer, S./Einbock, M., Westerheide, C.: RFID in der Logistik Handbuch für die Praxis, Wien 2005.
- Pepels, W. (Hsg.): E-Business-Anwendungen in der Betriebswirtschaft, Herne/Berlin 2002.
- Reindl, M./Oberniedermaier, G.: eLogistics: Logistiksysteme und -prozesse im Internetzeitalter, München et al. 2002.
- Schulte, C.: Logistik, 4. Auflage, München 2005
- Wildemann, H.: Logistik Prozeßmanagement, München 1997.
- Wildemann H. (Hsg.): Supply Chain Management, München 2000.

Modul: Integrierte Produktentwicklung I inkl. CAD-Praktikum

Lehrveranstaltungen:

TitelTypSWSIntegrierte Produktentwicklung I inkl. CAD-PraktikumVorlesung2,00Integrierte Produktentwicklung I inkl. CAD-PraktikumPraktikum2,00

Modulverantwortlich: Prof. Dr. Dieter Krause

Dozent(in): Prof. Dr. Dieter Krause und Mitarbeiter

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - International Production Management	B.Sc.	6.	Pflicht
Informatikingenieur [Diplom] - Konstruktion, Fertigung und Logistik	Diplom	8.	Wahlpflicht
Hochschulübergr. Studiengang Wirtschaftsingenieurwesen	Diplom	2.	Wahlpflicht
Maschinenbau [Diplom] - Fertigungstechnik	Diplom	6.	Pflicht
Maschinenbau [Diplom] - Konstruktionstechnik - Flugzeugsystemtechnik	Diplom	6.	Pflicht
Maschinenbau [Diplom] - Konstruktionstechnik - Produktentwicklung	Diplom	6.	Pflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	8.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Internationales Wirtschaftsingenieurwesen	M.Sc.	2.	Wahlpflicht
Energietechnik	M.Sc.	2.	Wahlpflicht
Flugzeug-Systemtechnik	M.Sc.	2.	Pflicht
Maschinenbau	B.Sc.	6.	Pflicht
Mediziningenieurwesen	M.Sc.	2.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 64

Kreditpunkte: 4,00

Voraussetzungen:

- Maschinenelemente und Grundoperationen der Fertigungstechnik I IV,
- Grundlagen der Konstruktionslehre I IV

Angestrebte Lernergebnisse:

- **Kenntnisse**: Vorstellung der Funktionsweise von 3D-CAD-Systemen, PDM-Systemen und deren nachgeschalteten Möglichkeiten. Praktisches Üben mit unterschiedlichen CAD-Systemen, um unterschiedliche Vorgehensweisen kennen zu lernen und selber ausprobieren zu können (Pflicht). Einführung in Leichtbau und Bauweisen, Dfx
- **Methodenkompetenz:** Bewertung unterschiedlicher CAD-, PDM-Systeme. Ablauf von CAE-Tools, wie FE-Berechnungen, Methodenwissen für Leichtbau
- **Systemkompetenz:** Einführungsstrategie von CAD-, PDM-Systemen inkl. der erforderlichen Rahmenbedingungen, wie z.B. Klassifikationsschemata
- Soziale Kompetenz: Teamarbeit beim CAD-Praktikum. Exkursion zu Unternehmen, Externe Vortragende

Inhalt:

- Einführung in die Integrierte Produktentwicklung
- 3D-CAD-Systeme und CAD-Schnittstellen
- Teile- und Stücklistenverwaltung / PDM-Systeme
- PDM in unterschiedlichen Branchen
- Sachmerkmale/Klassifizierungen
- CAD- / PDM-Systemauswahl und Hallenlayout-Systeme (HLS)
- Simulation (1)
- Simulation (2)
- Bauweisen
- Leichtbau
- Design for XCAD-Praktikum

Bestandteil der Vorlesung ist ein CAD-Praktikum, im Rahmen dessen die Studierenden den Umgang mit modernen CAD- und PDM-Systemen (HiCAD, CATIA V5 und ProEngineer) lernen sollen. Es werden hierzu mehrere Aufgabenstellungen im Testatbetrieb selbsttätig bearbeitet. Die Gruppeneinteilung für das Praktikum findet im Rahmen dieser Vorlesung statt.

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

PowerPoint Präsentation, Skript, Tafelschrieb, evtl. Exkursion, Referenten aus der Instustrie

Literatur:

Ehrlenspiel, K.: Integrierte Produktentwicklung, München, Carl Hanser Verlag

Lee, K.: Principles of CAD / CAM / CAE Systems, Addison Wesles

Schichtel, M.: Produktdatenmdoellierung in der Praxis, München, Carl Hanser Verlag

Anderl, R.: CAD Schnittstellen, München, Carl Hanser Verlag

Spur, G., Krause, F.: Das virtuelle Produkt, München, Carl Hanser Verlag

Modul: Integrierte Schaltungen

Lehrveranstaltungen:

TitelTypSWSIntegrierte SchaltungenVorlesung2,00

Modulverantwortlich: PD Dr. Dietmar Schröder

Dozent(in): PD Dr. Dietmar Schröder

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mikroelektronik	Diplom	6.	Pflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	8.	Wahlpflicht
Informationstechnologie	B.Sc.	6.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

Grundlagen der Elektrotechnik, Systemtheorie, Digitale Verarbeitungssysteme

Angestrebte Lernergebnisse:

• Kentnisse: Die Vorlesung gibt einen Überblick über Technologien und Systementwurfsmethoden für integrierte Schaltungen (ICs).

Inhalt:

- Arten von ICs (Standard-IC, anwendungsspezifische ICs)
- Trade-Offs von Full Custom-ICs, Standardzellen, Gate Arrays und FPGAs
- Technologie-Trends
- Schaltungsfamilien (CMOS, NMOS, BiCMOS, TTL, ECL)
- Performance und Kenngrößen
- Systementwicklung (Systembegriff, hierarchischer Entwurf)
- Projektmanagement von Entwicklungsprojekten (Projektplanung, Projektverfolgung, Projektsteuerung)

Studien/Prüfungsleistungen:

Mündliche Prüfung. Wegen der praktischen Arbeiten herrscht Präsenzpflicht im Semester.

Medienform:

Power Point Präsentation, Folien, Tafelanschrieb

Literatur:

Wird überarbeitet

Modul: Iterative Lösung linearer Systeme

Lehrveranstaltungen:

Titel	Тур	SWS
Iterative Lösung linearer Systeme	Vorlesung	2,00
Iterative Lösung linearer Systeme	Übung	1,00

Modulverantwortlich: Prof. Dr. Heinrich Voß

Dozent(in): Prof. Dr. Heinrich Voß

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Kenntnisse in Linearer Algebra

Angestrebte Lernergebnisse:

 Kentnisse: Vertiefte Kenntnisse über die numerische Behandlung großer, dünn besetzter Gleichungssysteme mit iterativen Methoden

Inhalt:

- Splitting Verfahren
- Semi-iterative Verfahren
- Verfahren der konjugierten Gradienten
- Methoden für indefinite symmetrische Systeme
- Minimierende Verfahren für nichtsymmetrische Systeme
- Verfahren für nichtsymmetrische Systeme mit kurzer Rekursion
- QMR Verfahren
- Mehrgitterverfahren

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Präsentation (pdf-files) und Demonstration (MATLAB), Tafel

Literatur:

H. Voss: Iterative Methods for Linear Systems of Equations. Lecture Notes 27, University of Jyväskylä 1993

Y. Saad: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia 2003

Modul: Kommunikationsnetze I: Grundlagen

Lehrveranstaltungen:

TitelTypSWSKommunikationsnetze I: GrundlagenVorlesung2,00Kommunikationsnetze I: GrundlagenÜbung1,00

Modulverantwortlich: Prof. Dr. Ulrich Killat

Dozent(in): Prof. Dr. Ulrich Killat

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Nachrichtentechnik	Diplom	7.	Pflicht
Information and Communication Systems	M.Sc.	1.	Wahlpflicht
Information and Media Technologies	M.Sc.	1.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	1.	Wahlpflicht
Mechatronics	M.Sc.	1.	Pflicht
Technomathematik	Diplom	7.	Pflicht
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Maschinenbau	B.Sc.	5.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundlagen der Wahrscheinlichkeitstheorie, Poisson Prozess

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegende Prinzipien und Problemklassen von Kommunikationsnetzen und ihren Protokollen
- Methodenkompetenz: Modellbildung und Bewertung komplexer Systeme
- Systemkompetenz: Systemorientiertes Denken, Dekomposition komplexer Systeme
- Soziale Kompetenzen: Englischsprachige Kommunikation

Inhalt:

- Auswirkungen der Topologie auf die Netzeigenschaften
- Synchronisation auf verschiedenen Ebenen der Kommunikation
- Fehlerbehandlung (Fehlerkorrektur, Fehlererkennung, Wiederanforderungsprotokolle)

- Flußkontrolle (Fenstertechnik, Nutzungsgrad des Kanals)
- Wegelenkung (Algorithmen für kürzeste Wege, Mehrwege-Routing, Broadcast-Routing)
- Vielfachzugriffsverfahren (Zeitmultiplex- und Reservierungsverfahren, Token-Verfahren, ALOHA, CSMA, CSMA/CD)
- Das OSI Referenzmodell
- Netzkopplungen (Brücken, Router)
- TCP/IP Protokolle

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Power Point Präsentation, Skript, Folien, Tafelanschrieb

Literatur:

F. Halsall: Data Communications, Computer Networks and Open Systems, 4th ed., Addison Wesley (1995-97)

A.S. Tanenbaum: Computer Networks, 4th ed., Pearson Education International (2003)

Larry L. Peterson & Bruce S.Davie: Computer Networks, Morgan Kaufmann Publisher (2000)

James F. Kurose & Keith W. Ross: Computer Networking, Pearson/Addison Wesley (2005)

A.S. Tanenbaum: Computernetzwerke, 4.Aufl., Pearson Studium (2003)

Modul: Analyse und Struktur von Kommunikationsnetzen

Lehrveranstaltungen:

Titel	Тур	SWS
Moderne Methoden zur Modellierung von Kommunikationsnetzen	Labor	2,00
Communication Networks II / Kommunikationsnetze II	Vorlesung	2,00
Exercise:Communication Networks II / Kommunikationsnetze II	Übung	1,00

Modulverantwortlich: Dr.-Ing. Lothar Kreft

Dozent(in): Prof. Dr. Ulrich Killat, Dr.-Ing. Lothar Kreft

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Nachrichtentechnik - Digitale Übertragungstechnik	Diplom	8.	Wahlpflicht
Elektrotechnik [Diplom] - Nachrichtentechnik - Digitale Kommunikationsnetze	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - I+K-Anwendungssysteme	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - Kommunikation in Netzen	Diplom	8.	Wahlpflicht
Information and Communication Systems	M.Sc.	2.	Wahlpflicht
Information and Media Technologies	M.Sc.	2.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 70, Eigenstudium: 110

Modulprüfung: Ja

Kreditpunkte: 600

Voraussetzungen:

- Basiskenntnisse der Warteschlangentheorie und der linearen Programmierung sind hilfreich
- Kenntnis der grundlegenden Prinzipien und Problemklassen von Kommunikationsnetzen und ihren Protokollen wie sie in "Kommunikationsnetze I" vermittelt werden

Angestrebte Lernergebnisse:

Moderne Methoden zur Modellierung von Kommunikationsnetzen

- Kenntnisse: Verfahren zur Netzplanung und Leistungsbewertung
- Methodenkompetenz: Einsatz von Simulatoren, MATLAB, Linearer Programmierung und heuristischen Methoden

- Systemkompetenz: Systemorientiertes Denken, Entwicklung von Abstraktionen
- Soziale Kompetenz: Teamarbeit

Kommunikationsnetze II: Aktuelle Netztechnik

- Kenntnisse: Konstruktionprinzipien drahtgebundener und drahtloser Netze, Methodik der Netzplanung
- Methodenkompetenz: Modellbildung, Einsatz von Optimierungsverfahren zur Netzplanung
- Systemkompetenz: Systemorientiertes Denken, Dekomposition komplexer Systeme
- Soziale Kompetenzen: Englischsprachige Kommunikation

Inhalt:

Moderne Methoden zur Modellierung von Kommunikationsnetzen

- Funktionsweise eines ereignisgesteuerten Simulators
- Modellierung von Kommunikationsnetzen
- Problemlösung mit NS2 und MATLAB
- Netzplanung als Optimierungsproblem
- Lösung von ganzzahligen oder gemischt ganzzahligen Optimierungsproblemen

Kommunikationsnetze II: Aktuelle Netztechnik

- ISDN (S-, U- Schnittstellen, LAP-D, Schicht 3 Protokolle)
- ATM Netze (Prinzipien, Zellgröße, Synchronisation, ATM Schicht, Koppelfelder)
- ATM Funktionen des Verkehrsmanagements (Rufannahme, Verkehrsformung, Parameterkontrolle)
- Dienstgüte in IP Netzen
- Mobilfunk (Funkübertragung, Funknetzplanung, GSM Netz, Vertraulichkeit und Authentisierung)
- Methodik der Netzplanung
- Wireless LANs

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

- Projekt
- Power Point Präsentation, Skript, Folien, Tafelanschrieb

Literatur:

NS2 Information im WWW: http://www.isi.edu/nsnam/ns/tutorial/index.html

Linear Programming FAQs http://www-unix.mcs.anl.gov/otc/Guide/faq/linear- programming-faq.html

W.D. Haaß: Handbuch der Kommunikationsnetze, Springer (1997)

Eberspächer/Vögel: GSM Global System for Mobile Communication, Teubner (1999)

Larry L. Peterson & Bruce S.Davie: Computer Networks, Morgan Kaufmann Publisher (2000)

Modul: Mechanik IV: Schwingungen, Stoß, Analytische Mechanik, Kontinuumsmechanik

Lehrveranstaltungen:

Titel	Тур	SWS
Mechanik IV	Vorlesung	3,00
Hörsaalübung: Mechanik IV	Hörsaalübung	1,00
Übung: Mechanik IV	Übung	2,00

Modulverantwortlich: Prof. Dr. Otto von Estorff, Prof. Dr. Norbert Hoffmann

Dozent(in): Prof. Dr. Otto von Estorff, Prof. Dr. Norbert Hoffmann

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Energietechnik	B.Sc.	3.	Wahlpflicht
Allgemeine Ingenieurwissenschaften - Flugzeug-Systemtechnik	B.Sc.	3.	Wahlpflicht
Allgemeine Ingenieurwissenschaften - Mechatronik	B.Sc.	3.	Wahlpflicht
Allgemeine Ingenieurwissenschaften - Theoretischer Maschinenbau	B.Sc.	3.	Wahlpflicht
Informatikingenieur [Diplom] - Technische Dynamik	Diplom	7.	Wahlpflicht
Maschinenbau [Diplom]	Diplom	3.	Pflicht
Mechatronik/Joint Curriculum Mechatronik - Ergänzungsmodul MB	Diplom	5.	Pflicht
Schiffbau [Diplom]	Diplom	3.	Pflicht
Technomathematik	Diplom	5.	Pflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Maschinenbau	B.Sc.	4.	Pflicht
Mediziningenieurwesen	M.Sc.	2.	Pflicht
Schiffbau	B.Sc.	4.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 85, Eigenstudium: 125

Kreditpunkte: 7,00

Voraussetzungen:

Vorlesungen und Übungen Technische Mechanik I und II, Mathematik I und II

Angestrebte Lernergebnisse:

- Kenntnisse: Kenntnisse grundlegender Zusammenhänge, Theorien und Methoden des Fachgebietes Mechanik.
- Fähigkeiten: Beherrschen einschlägiger Methoden und Werkzeuge
- Kompetenzen: Abbilden einer allgemeinen Problemstellung auf Teilprobleme der Mechanik oder Mathematik; Auswahl und Beherrschen geeigneter Methoden zur Problemlösung.

Inhalt:

- Kinetik-Fortsetzung
- Kinetik der Schwerpunktsbewegungen
- Kinetik der Relativbewegungen
- Kinetik des starren Körpers
- Kraftwirkungen von Rotoren
- Kreiselbewegungen
- Schwingungen (nichtlineare Pendelgleichung)
- Lineare Schwingungen mit einem und zwei Freiheitsgr.
- Stoßprobleme
- Methoden der analytischen Mechanik
- Langrange Gleichungen

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen.

Tafelanschrieb, Skript, Folien

Literatur:

Magnus, K.; Müller, H.H. (2005): Grundlagen der Technischen Mechanik. G. W. Teubner Verlag, Wiesbaden

Modul: Medizinelektronik

Lehrveranstaltungen:

Titel	Тур	SWS
Medizinelektronik	Vorlesung	2,00
Medizinelektronik	Übung	1,00

Modulverantwortlich: Prof. Dr. Wolfgang Krautschneider

Dozent(in): Prof. Dr. Wolfgang Krautschneider

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Elektrotechnik	M.Sc.	3.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahl

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Vorlesung "Halbleiterschaltungstechnik" oder "Circuit Design"

Angestrebte Lernergebnisse:

- Kentnisse: Verstehen wie bioelektrische Potenziale im Organismus erzeugt werden. Erwerb vertiefter Kenntnisse über die Aufnahme schwacher bioelektrischer Signale. Nachvollziehen der Funktionsweise von realisierten Systemen für EKG- und EEG-Aufnahme.
- Problemlösungskompetenz: Entwicklung der Fähigkeit, komplexere Probleme der Wechselwirkung von Mensch-Maschineschnittstellen zu beschreiben und Lösungsansätze zu entwickeln

Inhalt:

- Informationsübertragung durch Nervenzellen im menschlichen Organismus
- Biokompatibiltät von Elektroden
- Aufnahme sehr kleiner elektrischer Signale
- Design von sehr rauscharmen Verstärkern und hochgenauen Analog-Digitalwandlern
- Signalverabeitung bei kleinstem Leistungsverbrauch
- Drahtlose Daten- und Energieübertragung für Implantate

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Power Point Präsentation, Folien, Skript, Tafel

Literatur:

Vorlesungsskript

- G. Matthews, Neurobiology, 2nd edition, Blackwell Science, 2001
- W. Sansen, Analog Design Essentials, Springer, 2006

Modul: Messmethoden der Optischen Nachrichtentechnik

Lehrveranstaltungen:

Titel Typ SWS

Instrumentation in Fiber Optics / Messmethoden in der Optischen Nachrichtentechnik

Vorlesung 2,00

Modulverantwortlich: Prof. Dr. Ernst Brinkmeyer

Dozent(in): Prof. Dr. Ernst Brinkmeyer

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - Messsysteme	Diplom	7.	Wahlpflicht
Electromagnetics, Optics and Microwave Eng.	M.Sc.	1.	Wahlpflicht
Elektrotechnik	M.Sc.	3.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

Grundlagen der Messtechnik und Optik

Angestrebte Lernergebnisse:

- Kenntnisse: Verständnis der speziellen optischen Messprinzipien und Messmethoden in der Faseroptik
- Kompetenzen: F\u00e4higkeit zur Charakterisierung faseroptischer Komponenten und zur Weiterentwicklung entsprechender Messmethoden
- Soziale Kompetenz: Englischsprachige Kommunikation

Inhalt:

- Einführung in die Faseroptik
- Optische Spektralanalyse
- Charakterisierungsmethoden für optische Fasern und faseroptische Komponenten
- Rauschmessungen an optischen Signalen
- Charakterisierung optischer Verstärker

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Power Point Präsentation, Folien, Skript, Tafelanschrieb

Literatur:

E. Hecht, Optik, Oldenbourg Verlag, 2001

D. Derickson, Fiber-optic test and measurement, Hewlett-Packard Professional Books, Prentice-Hall, 1998

E. Brinkmeyer, Fasermesstechnik und Fasercharakterisierung, in: E. Voges, K. Petermann (ed) Handbuch der Optischen Kommunikationstechnik, Springer 2002

Modul: Mikroprozessorsysteme

Lehrveranstaltungen:

Titel	Тур	SWS
Mikroprozessorsysteme Microprocessor Systems	Vorlesung	2,00
Mikroprozessorsysteme	Übung	1,00

Modulverantwortlich: Prof. Dr. Thomas Teufel

Dozent(in): Prof. Dr. Thomas Teufel

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Systemtechnik	B.Sc.	6.	Pflicht
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik	Diplom	6.	Pflicht
Elektrotechnik [Diplom] - Nachrichtentechnik - Digitale Übertragungstechnik	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom]	Diplom	6.	Pflicht
Informatikingenieur [Diplom] - Algorithmen und Architekturen	Diplom	8.	Wahlpflicht
Informationstechnologie	B.Sc.	4.	Pflicht
Hochschulübergr. Studiengang Wirtschaftsingenieurwesen	Diplom	2.	Wahlpflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	8.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	8.	Pflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundlagen der Elektrotechnik und digitaler Schaltungen, Boole´sche Algebra sowie Grundlagen der Programmierung.

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegende Funktionsweise von Mikroprozessorsystemen
- Methodenkompetenz: Beherrschung der Methoden zum Aufbau von Mikroprozessorsystemen
- Systemkompetenz: Sicherer Entwurf von Anwendungen in der Automatisierungstechnik
- Soziale Kompetenzen: Umgang mit entsprechender Fachliteratur

Inhalt:

- Prozessor-Architektur und Programmiermodell (speziell 8/16-bit-CPU)
- Buskonzepte und Buszugriffsverfahren, Maschinenzyklen und Bussignale
- Konzepte der Interruptverfahren, Hardware-Priorisierung
- Schaltungsentwurf, TTL/CMOS-Anforderungen, Test- und Logikanalyse)
- Einsatz programmierbarer Logik
- Anforderungen an die Auslegung gedruckter Schaltungen
- Taktsynchrone Steuerungen und mikroprogrammierte Operationswerke
- Prozessoren mit CPU-Kern und integrierter Ein/Ausgabe-Peripherie
- Hardware-Struktur peripherer Bausteine und deren Programmierung
- Aspekte der Software-Konstruktion und des Einsatzes von Hochsprachen für "hardwarenahes" Programmieren
- verschiedene Hardware-Applikationen auf der Basis von Mikroprozessoren und Single-Chip-Mikrocomputern.

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Skript, Folien, Tafelanschrieb

Literatur:

J.F. Wakerly: Digital Design, Prentice Hall, 2001

J. Uffenbeck: Microcomputers and Microprocessors, Prentice Hall, 2000

Bähring: Mikrorechner Systeme, Springer Verlag 1991

R.J. Mitchell: Microprocessor Systems, MacMillan Press, 1995

Modul: Mikrosystementwurf

Lehrveranstaltungen:

Titel	Тур	SWS
Mikrosystementwurf	Vorlesung	2,00
Mikrosystementwurf	Übung	1,00

Modulverantwortlich: Prof. Dr. Manfred Kasper

Dozent(in): Prof. Dr. Manfred Kasper

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mikroelektronik - Mikrosystemtechnik	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	8.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	2.	Wahlpflicht
Informationstechnologie	B.Sc.	6.	Wahl
Mediziningenieurwesen	Diplom	8.	Wahl
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Mikrosystemtechnik, Grundlagen der numerischen linearen Algebra, Laplace Transformation

Angestrebte Lernergebnisse:

- Kenntnisse: Entwurf- und Simulationsverfahren für Mikrosysteme
- Methodenkompetenz: Modellerstellung und Beschreibung des funktionalen Verhaltens
- Problemlösungskompetenz: Auswahl und Beurteilung von Simulationsverfahren

Inhalt:

Entwurfsmethodik

- Entwurfsmethoden, Entwurfsablauf
- Spezifikation
- Allgemeine Lösungsmethoden, Konzeptphase

Systemsimulation

- Simulationsebenen, Netzwerkanalyse
- Lösung von Systemen gewöhnlicher Differentialgleichungen
- Lösung nichtlinearer Gleichungssysteme

Makromodelle

- Konzept
- Black-Box Modelle
- Identifikationsproblem

Beschreibung durch Netzwerkmodelle

- Voraussetzungen
- Zurückführung auf Widerstandsnetzwerke

Numerische Feldberechnung:

- Differenzenverfahren, Approximationsfehler
- Galerkin Verfahren, Finite Elemente Diskretisierung
- Komplexität, Konvergenzordnung
- Fehlerabschätzung, Netzverfeinerung

Physikalischer Entwurf und Systemintegration

- Partitionierung
- Plazierungsproblem
- Allgemeine Kopplungen und Zuverlässigkeitsaspekte

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Skript, Folie, Tafel, Präsentation

Literatur:

M. Kasper: Mikrosystementwurf, Springer (2000)

S. Senturia: Microsystem Design, Kluwer (2001)

Modul: Mikrosystemtechnik

Lehrveranstaltungen:

Titel	Тур	SWS
Microsystem Engineering / Mikrosystemtechnik	Vorlesung	2,00
Microsystem Engineering/ Mikrosystemtechnik	Übung	1,00

Modulverantwortlich: Prof. Dr. Manfred Kasper

Dozent(in): Prof. Dr. Manfred Kasper

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mikroelektronik	Diplom	7.	Pflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	7.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	1.	Wahlpflicht
Mechatronics	M.Sc.	1.	Pflicht
Materials Science	M.Sc.	1.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	7.	Pflicht
Mediziningenieurwesen	Diplom	7.	Pflicht
Elektrotechnik	M.Sc.	1.	Pflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Produktentwicklung und Produktion	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundlagen der Halbleitertechnik, Physik und Elektrotechnik

Angestrebte Lernergebnisse:

- Kenntnisse: Herstellungsverfahren und Materialen der Mikrosystemtechnik, Anwendungen in der Sensorik und Aktuatorik
- Methodenkompetenz: Analyse und Beschreibung des funktionalen Verhaltens
- Problemlösungskompetenz: Bewertung des Potenzials von Mikrosystemen

Inhalt:

Einführung

- Gegenstand der MST
- Mikro Makro
- Skalierung
- Größengleichungen und Kennzahlen

Technologien, Materialien, Prozesse

- Lithographie
- Schichtabscheidung
- Strukturierung, anisotropes Ätzen
- Prozeßabläufe

Systemintegration

- Trends in der Systemintegration, Elektronische Komponenten
- · Verdrahtungskapazität und Verdrahtungsbedarf
- AVT-Techniken
- Ausbeute, Test und Zuverlässigkeit

Aktoren

- Energiewandlung und Krafterzeugung
- Elektromagnetische Aktoren
- Reluktanzprinzip
- Piezoaktoren, Thermisch-mechanische Aktoren
- Reibung und Verschleiß

Sensoren

- Transducerprinzipien
- Signalerfassung und Signalaufbereitung
- Mechanische und physikalische Sensoren
- Beschleunigungssensor, Drucksensor
- Sensorarray

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Skript, Folie, Tafel, Präsentation

Literatur:

M. Kasper: Mikrosystementwurf, Springer (2000)

M. Madou: Fundamentals of Microfabrication, CRC Press (1997)

Modul: Mikrosystemtechnologie

Lehrveranstaltungen:

Titel	Тур	SWS
Mikrosystemtechnologie / Microsystems Technologies	Vorlesung	2,00
Mikrosystemtechnologie/ Microsystems Technologies	Praktikum	1,00

Modulverantwortlich: Prof. Dr. Jörg Müller

Dozent(in): Prof. Dr. Jörg Müller

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mikroelektronik - Mikrosystemtechnik	Diplom	7.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	1.	Wahlpflicht
Materials Science	M.Sc.	1.	Pflicht
Joint European Master Programm Materials Science	M.Sc.	1.	Pflicht
Joint European Master Programm Materials Science	M.Sc.	3.	Pflicht
Mechatronik/Joint Curriculum Mechatronik - Block IV: Meßtechnik und Sensorik	Diplom	7.	Wahlpflicht
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Elektrotechnik	M.Sc.	3.	Wahlpflicht
Produktentwicklung und Produktion	M.Sc.	1.	Wahl
Mediziningenieurwesen	M.Sc.	1.	Wahl

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Kenntnisse in Physik, Mikroelektronik, Mechanik

Angestrebte Lernergebnisse:

 Kenntnis . der aktuellen Herstellungsmethoden für Sensoren und insbeondere den Verfahren zur Erzeugung von mikromechanischen und mikrooptischen Komponenten für Aktoren und Mikrosysteme und deren Integration zu kompexen Systemen ähnlich denen der Mikroelektronik.

Inhalt:

- Einführung: physikalische Prinzipien für Sensoren und Mikrosysteme Sensorsysteme, Mikrosysteme, Sensorspezifikation, Aktoren, ergänzende Komponenten, Beispiele
- Basistechnologien:

Substrate, Strukturierverfahren

Photolithographie, Nass- und Trocken-Ätzverfahren, Laserstrukturieren

- Abscheideverfahren
 - Kleben und Kaschieren, Drucken, Dick- und Dünnschichttechnik
- Halbleitertechnologie
 - Oxidieren, Dotieren
- Abformverfahren

Formerzeugung, galvanisches Abformen, LIGA-, SIGA-Technik, Prägen und Spritzen

- Glastechnologie
 - Glasherstellung, Ionenaustausch
- Aufbau- und Verbindungstechnik
 Löten, Kleben, Legieren, anodisches, Fusions-, Draht- und Flip-Chip-Bonden
- Mikrosysteme
- Anwendung der Verfahren auf
- Druck-Kraft- und Beschleunigungsmessung, Bolometer und Massenflußmesser, Mikro- und integrierte Optik, integrierte Analysesysteme wie optische Spektrometer, chemische Sensoren, Massenspektrometer und Gaschromatographen, Aktoren wie Pumpen, Ventile, Motoren, Greifer, Schalter und Scanner

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Power Point Präsentation

Literatur:

A. Heuberger, Mikromechanik, Springer Verlag Berlin 1989

W.Menz, P.Bley, Mikrosystemtechnik für Ingenieure, VCH, Weinheim 1997

F. Völklein, T. Zetterer, Einführung in die Mikrosystemtechnik, Vieweg Braunschweig,, 2000

M.Madou, Fundamentals of Microfabrication, CRC Press, New York, 1997

Modul: Mikrowellen- und Optikpraktikum

Lehrveranstaltungen:

Titel Typ SWS

Praktikum: Hochfrequenztechnik / Optik Microwave / Optics Laboratory Praktikum 3,00

Modulverantwortlich: Prof. Dr. Arne Jacob, Prof. Ernst Brinkmeyer

Dozent(in): Prof. Dr. Arne Jacob, Prof. Ernst Brinkmeyer

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	7.	Wahl
Electromagnetics, Optics and Microwave Eng.	M.Sc.	1.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 48

Kreditpunkte: 3,00

Voraussetzungen:

Grundlagen in Hochfrequenztechnik und Optik (Pflichtvorlesungen)

Angestrebte Lernergebnisse:

 Methodenkompetenz: Geräte und Methoden der Hochfrequenz- und optischen Messtechnik kennenlernen und anwenden

Inhalt:

- Aus der Hochfrequenztechnik werden sechs Versuche durchgeführt:
- Hohlraumresonatoren
- Schottky-Dioden-Mischer
- n-Tore in der Mikrowellentechnik
- Nichtreziproke Ferrit-Bauelemente
- 4-PSK Modulator
- Phasenrauschen von Oszillatoren
- Dazu kommen zwei Versuche der Optik:
- Halbleiter-Laser
- Polarisationsoptik.

Studien/Prüfungsleistungen:

Testate, Protokolle

Literatur: Laborumdruck

Modul: Mobilkommunikation

Lehrveranstaltungen:

TitelTypSWSMobile Communications / MobilkommunikationVorlesung2,00Übung: Mobilkommunikation Exercise: Mobile CommunicationsÜbung1,00

Modulverantwortlich: Prof. Dr. Hermann Rohling

Dozent(in): Prof. Dr. Hermann Rohling

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Nachrichtentechnik - Digitale Übertragungstechnik	Diplom	8.	Wahlpflicht
Elektrotechnik [Diplom] - Nachrichtentechnik - Digitale Kommunikationsnetze	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - Kommunikation in Netzen	Diplom	8.	Wahlpflicht
Electromagnetics, Optics and Microwave Eng.	M.Sc.	2.	Wahlpflicht
Information and Communication Systems	M.Sc.	2.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	2.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Systemtheorie

Angestrebte Lernergebnisse:

- Kenntnisse: Überblick über bestehende und neue Mobilfunksysteme, Kenntnisse über technische Details und grundsätzliche Designkriterien
- Methodenkompetenz: Modellbildung und Bewertung komplexer Systeme
- Systemkompetenz: Systemorientiertes Denken
- Soziale Kompetenzen: Befähigung zum selbstständigen und effizienten Lernen, englischsprachige Kommunikation

Inhalt:

- Mobilfunkkanäle und deren modellhafte Beschreibung
- Technische Methoden der Funkkanalmessung
- Verfahren zur Signalentzerrung
- Methoden der digitalen Funkübertragungstechnik
- Verfahren der Kanalcodierung und des Fehlerschutzes
- Diversity
- Vielfachzugriffsverfahren
- Funkprotokolle
- Zellulare Netze

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Powerpoint Präsentation, Skript, Tafelanschrieb

Literatur:

John G. Proakis, Digital Communications (3rd Edition), McGraw-Hill, 1995 ISBN 0-07-051726-6

Modul: Multimedia-Informationsextraktion und -retrieval

Lehrveranstaltungen:

TitelTypSWSMultimedia-Informationsextraktion und -retrievalVorlesung2,00Übung: Multimedia-Informationsextraktion und -retrievalÜbung1,00

Modulverantwortlich: Prof. Dr. Ralf Möller

Dozent(in): Prof. Dr. Ralf Möller

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	8.	Wahl
Informatikingenieur [Diplom]	Diplom	6.	Wahl
Informatikingenieur [Diplom] - I+K-Anwendungssysteme	Diplom	8.	Wahlpflicht
Information and Media Technologies	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundkenntnisse in Informatik und diskreter Mathematik

Angestrebte Lernergebnisse:

• Kentnisse: Vertiefte Kenntnisse in Teilgebieten des Fachgebietes

Inhalt:

Wird überarbeitet

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Präsentation (pdf), Tafelanschrieb

Literatur: Wird überarbeitet

Modul: Mustererkennung

Lehrveranstaltungen:

Titel	Тур	SWS
Mustererkennung / Pattern Recognition	Vorlesung	2,00
Übung:/Mustererkennung / Pattern Recognition	Übung	1,00

Modulverantwortlich: Prof. Dr. Rolf-Rainer Grigat

Dozent(in): Prof. Dr. Rolf-Rainer Grigat

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften	B.Sc.	6.	Wahl
Elektrotechnik [Diplom] - Technische Informatik	Diplom	6.	Pflicht
Informatikingenieur [Diplom]	Diplom	6.	Pflicht
Informatikingenieur [Diplom] - Algorithmen und Architekturen	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - I+K-Anwendungssysteme	Diplom	8.	Wahlpflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	8.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Mediziningenieurwesen	M.Sc.	2.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Lineare Algebra, Grundlagen der Stochastik

Angestrebte Lernergebnisse:

- Kentnisse: Breites theoretische und methodisches Fundament der Merkmalsbewertung und Klassifikation, vertiefte Kenntnisse am Beispiel der Gesichtsanalyse
- Methodenkompetenz: Theoriegeleitetes Anwenden sehr anspruchsvoller Methoden und Verfahren des Fachgebietes (Bayes Schätztheorie, Klassifikation, Support Vector Machines, Algorithm Independent Learning, Boosting)
- Problemlösungskompetenz: Erkennen von Problemen, kreativer Umgang mit den Prozessen des wissenschaftlichen Aufbereitens und Formalisierens von Problemen (exemplarische Anwendung der Gesichtsanalyse)
- Systemkompetenz: Bewerten unterschiedlicher Lösungsansätze in mehrdimensionalen Entscheidungsräumen (Tradeoff Merkmalsselektion und Klassifikation, Dimension des Entscheidungsraums am Beispiel Gesichtsanalyse)

Inhalt:

- Struktur eines Mustererkennungssystems
- statistische Entscheidungstheorie
- Klassifikation mit statistischen Modellen
- polynomiale Regression
- Dimensionsreduktion
- Regression mit mehrlagigen Perzeptrons
- radiale Basisfunktionen
- Support Vector Machines
- unüberwachtes Lernen und Clusteranalyse
- algorithmen-unabhängiges Training (AdaBoost)

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Projektion von pdf-Folien

Literatur:

Wird überarbeitet

Modul: Netzwerksicherheit

Lehrveranstaltungen:

TitelTypSWSExercise: Network Security / Übung: NetzwerksicherheitÜbung1,00Network Security NetzwerksicherheitVorlesung2,00

Modulverantwortlich: Prof. Dr. Dieter Gollmann

Dozent(in): Prof. Dr. Dieter Gollmann

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Nachrichtentechnik - Digitale Kommunikationsnetze	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - Algorithmen und Architekturen	Diplom	8.	Wahlpflicht
Information and Communication Systems	M.Sc.	2.	Wahlpflicht
Information and Media Technologies	M.Sc.	2.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Diskrete Mathematik, Rechnernetze (TCP/IP)

Angestrebte Lernergebnisse:

- Kenntnisse: grundlegende Methoden der modernen Kryptographie; aktuelle standardisierte Netzwerksicherheitsprotokolle und Mechanismen
- System- und Methodenkompetenz: Analyse von Netzwerksicherheitsproblemen; Identifikation von geeigneten Sicherheitslösungen

Inhalt:

- Sicherheitsziele
- Kryptographische Dienste und Mechanismen
- Hashfunktionen
- Digitale Unterschriften: RSA und DSA
- Chiffrieralgorithmen: DES, AES, Modi von Blockchiffren, Stromchiffren
- Kryptanalysis, differentielle Stromanalyse
- Diffie-Hellman Schlüsselaustausch, Kerberos
- IPsec Protokolle, mobiles IPv6

- SSL/TLS
- GSM/UMTS Sicherheitsprotokolle
- Firewalls und Intrusion Detection Systems
- Testen von Netzwerksicherheit

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Powerpoint, Tafel

Literatur:

A. Menezes, P. van Oorschot, S. Vanstone: Handbook of Applied Cryptography, CRC Press (1997)

D. Gollmann: Computer Security (2. Auflage), Wiley (2006)

V. Niemi, K. Nyberg: UMTS Security, Wiley (2003)

Modul: Neuronale Netze und Genetische Algorithmen für die Regelung dynamischer Systeme

Lehrveranstaltungen:

Titel Typ SWS

Neural and Genetic Computing for Control of Dynamic Systems Vorlesung 2,00

Modulverantwortlich: Prof. Dr. Herbert Werner

Dozent(in): Prof. Dr. Herbert Werner

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - Regelungssysteme und Systemdynamik	Diplom	8.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

Theorie und Entwurf regelungstechnischer Systeme

Angestrebte Lernergebnisse:

- Kenntnisse: Nichtlineare Systemidentifikation, prädiktive Regelung, Synthese von Reglern mit vorgegebener Struktur
- Methodenkompetenz: Anwendungen neuronaler Netze und evolutionärer Algorithmen in der Regelungstechnik
- Systemkompetenz: Nichtkonvexe Optimierungsverfahren in der Regelungstechnik
- Soziale Kompetenzen: Englischsprachige Kommunikation

Inhalt:

- Multilayer Perceptron Networks
- Nichtlineare Systemidentifikation mit Hilfe neuronaler Netze
- Prädiktive Regelung mit Hilfe neuronaler Netze
- Genetische Algorithmen
- Entwurf von Reglern mit vorgegebener Sturktur
- Robuster Reglerentwurf mit Hilfe multikriterieller Optimierung
- Einführung relevanter Matlab-Toolboxen (Neural Network Based System Identification, Neural Network Based Control System Design, Genetic Algorithm)
- Fallstudien und Übungsbeispiele in Matlab-Simulink.

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Tafelanschrieb, Folien, Matlab/Simulink-Demos (Beamer), Skript

Literatur:

Werner, H., Lecture Notes "Neural Networks for Control of Dynamic Systems", "Genetic Algorithms for Control"

L. Ljung "System Identification - Theory for the User" Prentice Hall, 1999

M. Norgaard, O. Ravn, N.K. Poulsen and L.K. Hansen "Neural Networks for Modelling and Control of Dynamic

Systems", Springer Verlag, London, 2003

M.T. Hagan, H.B. Demuth and M.H. Beale "Neural Network Design", Brooks Cole, 1995

Z. Michalewicz and D.B. Fogel, "How to Solve It: Modern Heuristics" (2nd Edition), Springer Verlag, Berlin

Modul: Nichtlineare Dynamik

Lehrveranstaltungen:

Titel	Тур	SWS
Nichtlineare Dynamik	Vorlesung	2,00
Übung: Nichtlineare Dynamik	Übung	1,00

Modulverantwortlich: Prof. Dr. Norbert Hoffmann

Dozent(in): Prof. Dr. Norbert Hoffmann

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Flugzeug-Systemtechnik	B.Sc.	6.	Pflicht
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - Automatisierungssysteme	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - Technische Dynamik	Diplom	8.	Wahlpflicht
Mechatronics	M.Sc.	2.	Pflicht
Maschinenbau [Diplom]	Diplom	8.	Wahl
Maschinenbau [Diplom] - Energietechnik	Diplom	8.	Wahlpflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	8.	Pflicht
Mechatronik/Joint Curriculum Mechatronik - Block II: Mechanik	Diplom	8.	Wahlpflicht
Technomathematik	Diplom	8.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Flugzeug-Systemtechnik	M.Sc.	2.	Pflicht
Theoretischer Maschinenbau	M.Sc.	2.	Pflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 45, Eigenstudium: 105

Kreditpunkte: 5,00

,

Voraussetzungen:

Solide Kenntnisse in Mathematik

Angestrebte Lernergebnisse:

- Vertiefte Kenntnisse und Fertigkeiten zu Phänomenen und Methoden der Nichtlinearen Dynamik.
- Kenntnisse: Grundlegende Phänomene und Methoden der Nichtlinearen Dynamik
- Methodenkompetenz: Vermittlung von Methoden der Nichtlinearen Dynamik
- Systemkompetenz: Erkennen von Komponenten und Systemzusammenhängen dynamischer Systeme

• Soziale Kompetenzen: Eigen- und Teamarbeit bei Erarbeitung und Einübung der Lehrinhalte

Inhalt:

- Einführung und Grundlagen
- Verzweigungstheorie
- Chaotische Dynamik
- Analysemethoden

Studien/Prüfungsleistungen:

Mündliche oder schriftliche Prüfung

Medienformen:

Tafelanschrieb, Projektionstechniken

Literatur:

Steven Strogatz, Nonlinear Dynamics and Chaos, Perseus 2001.

Modul: Nichtlineare Regelungen

Lehrveranstaltungen:

Titel Typ SWS

Nichtlineare Regelungen (Nichtlineare Regelungssysteme) / Nonlinear Control Vorlesung 2,00

Modulverantwortlich: Dr.-Ing. Gerwald Lichtenberg

Dozent(in): Dr.-Ing. Gerwald Lichtenberg

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - Regelungssysteme und Systemdynamik	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - Technische Dynamik	Diplom	7.	Wahlpflicht
Mechatronics	M.Sc.	1.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik - Block I: Elektrotechnik	Diplom	7.	Wahlpflicht
Elektrotechnik	M.Sc.	3.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	3.	Wahlpflicht
Mediziningenieurwesen	M.Sc.	1.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

- Mathematik f
 ür Ingenieure 1-4 (insbesondere Differentialgleichungen)
- Regelungstechnik I (Grundlagen einschleifiger Regelkreise)
- Control Systems 2 (Steuerbarkeit, Beobachtbarkeit, Polzuweisung, Beobachter)

Angestrebte Lernergebnisse:

- Kenntnisse: Verständnis der wesentlichen Prinzipien zu Analyse und Entwurf nichtlinearer Regelungssysteme
- Fertigkeiten: Berechnung einfacher theoretischer Beispiele. Simulation und Analyse mit Standardwerkzeugen.
- Kompetenzen: System- und Lösungskompetenz: Formalisieren regelungstechnischer Aufgabenstellungen, Abstraktion und Zuordnung entsprechender Lösungsmethoden und tools
- Methodenkompetenz: Modellbildung, Analyse und Entwurf einfacher nichtlinearer Regelkreise
- Soziale Kompetenz: Englischsprachige Kommunikation, Teamwork bei der Lösung von Unterrichtsproblemen

Inhalt:

- Einführung in die nichtlineare Systemtheorie, Stabilitätsbegriff
- Nichtlineare Regelungsaufgaben, Regelungsstrukturen, Kennlinienglieder
- Methode der harmonischen Balance, Zwei-Ortskurven-Verfahren
- Stabilitätskriterien im Frequenzbereich: Popow-Kriterium und Kreis-Kriterium
- Direkte Methode nach Ljapunov, Konstruktion von Ljapunovfunktionen
- Methode der globalen Linearisierung, nichtlineare Beobachter
- Moderne Modellbildungs- und Regelungskonzepte, flachheitsbasierende Regelungen
- Simulationsprogramm MATLAB/SIMULINK, Computeralgebraprogramm MAPLE

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen.

Tafel, Beamer, Skript, Folien, PC-Übungen

Literatur:

Föllinger, O: Nichtlineare Regelungen I und II, Oldenbourg, 1998 bzw. 1993.

Kreuzer, E.: Numerische Untersuchung nichtlinearer dynamischer Systeme, Springer, 1987.

Unbehauen, H.: Regelungstechnik II, Vieweg, 1993.

Vidyasagar: Nonlinear Systems Analysis, 1978

Isidori: Nonlinear Control Systems, 1985

Khalil: Nonlinear Systems, 1992

Modul: Numerik großer nichtlinearer Systeme

Lehrveranstaltungen:

TitelTypSWSNumerik großer nichtlinearer SystemeVorlesung2,00Numerik großer nichtlinearer SystemeÜbung1,00

Modulverantwortlich: Prof. Dr. Wolfgang Mackens

Dozent(in): Prof. Dr. Wolfgang Mackens

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Verfahrenstechnik	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Mathematik I - III, Einführung in de Numerische Mathematik empfohlen

Angestrebte Lernergebnisse:

- Kenntnisse: Beherrschung der üblichen unten angegebenen Verfahren zur numerischen Behandlung großer nichtlinearer Gleichungssysteme.
- Methodenkompetenz: Fähigkeit, nichtlineare Probleme approximativ zu lösen und die gewonnene Lösungsnäherung zu bewerten.

Inhalt:

- Fixpunktmethoden
- Newton Typ Methoden
- Interpretation und Eigenschaften des Newton-Schritte
- Approximative Newton-Verfahren
- Globalisierung von Iteratuionsverfahren
- Dämpfung
- TRust-Region-Globalisierung
- Homotopie
- Kondensationsmethoden f
 ür sehr große Systeme

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Powerpointpräsentation, Folien, MATLB-Demonstrationen, Tafelanschrieb

Literatur:

J.E.Dennis, R.B. Schnabel: Numerical Methods for Uncontrained Optimization and Nonlinear Equations, SIAM 1996

Deuflhard, P.Hohmann, A.: Numerische Mahematik I, 2. Auflage, W.de Gruyter, Berlin 1993

Gramlich, G. und W. Werner: Numerische Mathematik mit MATLAB, dpunkt.verlag GmbH, Heidelberg 2000

Kelley. C.T.: Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia 1995

Ortega, J.M. and W.C. Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables, Academic Presse, New York, 1970

Schwetlick, H.: Numerische Lösung nichtlinearer Gleichungen. Deutscher Verlag der Wissenschaten, Berlin 1979

Modul: Numerik partieller Differentialgleichungen

Lehrveranstaltungen:

Titel	Тур	SWS
Numerik partieller Differentialgleichungen	Vorlesung	2,00
Übungen zur Numerik partiellen Differentialgleichungen	Übung	1,00

Modulverantwortlich: Prof. Dr. Wolfgang Mackens

Dozent(in): Prof. Dr. Wolfgang Mackens

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Mathematik I bis III

Angestrebte Lernergebnisse:

- Kenntnisse: Kennen der genannten Methoden zur Behandlung partieller Differentialgleichungen sowie ihrer gegenseitige Abgrenzungen.
- Kompetenzen: Einordnen elementarer partieller Differentialgleichung nach dem Typ;
 Zuordnung geeigneter Lösungsverfahren; Realisierung der Lösung mit MATLAB und FEMLAB

Inhalt:

- Elementare Theorie und Numerik Partielle Diferentialgleichungen:
- Typen partieller Differentialgleichungen
- wohlgestellte Probleme
- Fourier-Methoden
- Finite Differenzen
- Finite Elemente
- Finite Volumen
- Anwendungen

Studien/Prüfungsleistungen:

mündliche Prüfung

Literatur:

Wird überarbeitet

Modul: Numerische Mathematik

Lehrveranstaltungen:

Titel	Тур	sws
Numerische Mathematik	Vorlesung	2,00
Numerische Mathematik	Übung	1,00

Modulverantwortlich: Prof. Dr. Heinrich Voß

Dozent(in): Prof. Dr. Heinrich Voß

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Kenntnisse in Analysis, Lineare Algebra und Numerische Methoden

Angestrebte Lernergebnisse:

 Kentnisse: Vertiefte Kenntniss der Verfahren der Numerischen Mathematik; Verständniss der theoretischen Grundlagen numerischer Verfahren und Analyse ihrer Stabilitäts und/oder Konvergenzeigenschaften

Inhalt:

- Diskussion numerischer Verfahren aus den Gebieten
- Fehler- und Stabilitätsanalyse
- Interpolation
- Quadratur
- Lineare Gleichungssysteme
- Lineare Ausgleichsproblems
- Eigenwertaufgaben
- Nichtlineare Gleichungssysteme

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Präsentation (pdf-files) und Demonstration (MATLAB), Tafel

Literatur:

H. Voss: Grundlagen der Numerischen Mathematik, Skript TU Hamburg-Harburg 2007

G.H. Golub, C.F. Van Loan: Matrix Computations. The John Hopkins University Press, Baltimore, 3.ed. 1996

Modul: Numerische Methoden

Lehrveranstaltungen:

TitelTypSWSÜbung: Numerische Methoden (Grdl. Numerischen Mathematik)Übung1,00Numerische Methoden (Grundlagen der Numerischen Mathematik)Vorlesung2,00

Modulverantwortlich: Prof. Dr. Heinrich Voß

Dozent(in): Prof. Dr. Heinrich Voß

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	5.	Wahlpflicht
Bauingenieur-/Umweltingenieurwesen	B.Sc.	5.	Wahlpflicht
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Elektrotechnik	M.Sc.	3.	Wahlpflicht
Informatik-Ingenieurwesen	B.Sc.	5.	Pflicht
Informationstechnologie (neu)	B.Sc.	5.	Pflicht
Energie- und Umwelttechnik	M.Sc.	1.	Pflicht
Bioverfahrenstechnik	M.Sc.	1.	Pflicht
Verfahrenstechnik	M.Sc.	1.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Analysis, Lineare Algebra

Angestrebte Lernergebnisse:

- Kenntnisse: Methoden der Numerischen Mathematik
- Fertigkeiten: Aufgaben der Ingenieuranwendungen mit numerischen Methoden erfolgreich zu lösen

Inhalt:

- Die wichtigsten numerischen Methoden aus den Gebieten
- Fehleranalyse
- Interpolation
- Quadratur
- Lineare Gleichungssysteme

- Lineare Ausgleichsproblems
- Eigenwertaufgaben
- Nichtlineare Gleichungssysteme
- Anfangswertaufgaben gewöhnlicher Differentialgleichungen
- Randwertaufgaben gewöhnlicher Differentialgleichungen

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Präsentation (pdf-files) und Demonstration (MATLAB), Tafel

Literatur:

H. Voss: Grundlagen der Numerischen Mathematik, Skript TU Hamburg-Harburg 2007

M. Bollhöfer, V. Mehrmann: Numerische Mathematik. Vieweg, Wiesbaden 2004

Modul: Numerische Simulation

Lehrveranstaltungen:

Titel	Тур	sws
Numerische Simulation	Vorlesung	2,00
Numerische Simulation	Übung	1,00

Modulverantwortlich: Prof. Dr. Heinrich Voß

Dozent(in): Prof. Dr. Heinrich Voß

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Mediziningenieurwesen	M.Sc.	2.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	2.	Pflicht
Bioverfahrenstechnik	M.Sc.	2.	Wahlpflicht
Verfahrenstechnik	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Kenntnisse in Analysis und Gewöhnlichen Differentialgleichungen

Angestrebte Lernergebnisse:

 Kentnisse: Vertiefte Kenntnisse über die numerische Behandlung von gewöhnlichen Differentialgleichungen

Inhalt:

Numerische Behandlung gewöhnlicher Anfangswertaufgaben:

- Einschrittverfahren
- Mehrschrittverfahren
- Steife Probleme
- Differentiell-algebraische Gleichungen vom Index 1
- Linienmethoden für parabolische und hyperbolische Anfangswertaufgaben

Numerische Verfahren für Randwertaufgaben:

- Anfangswertmethoden
- Mehrzielmethode
- Differenzenverfahren
- Variationsmethoden

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Präsentation (pdf-files) und Demonstration (MATLAB), Tafel

Literatur:

H. Voss: Numerische Simulation. Skript TU Hamburg-Harburg 2005

E. Hairer, S.P. Norsett, G. Wanner: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-Verlag, New York, 2. ed.2000

E. Hairer, G. Wanner: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer-Verlag, New York, 2. ed..2004

U.M. Ascher, L.R. Petzold: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia 1998

Modul: Numerische Simulation inkompressibler Strömungen

Lehrveranstaltungen:

TitelTypSWSNumerical Simulation of Incompressible FlowVorlesung2,00Exercise: Numerical Simulation of Incompressible FlowÜbung1,00

Modulverantwortlich: Prof. Dr. Maria Lukacova

Dozent(in): Prof. Dr. Maria Lukacova

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Technische Informatik - Wissenschaftliches Rechnen	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - Wissenschaftliches Rechnen	Diplom	8.	Wahlpflicht
Maschinenbau [Diplom] - Energietechnik	Diplom	8.	Wahlpflicht
Bauingenieurwesen	M.Sc.	3.	Wahlpflicht
Wasser- und Umweltingenieurwesen	M.Sc.	3.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	3.	Wahlpflicht
Energietechnik	M.Sc.	3.	Wahlpflicht
Schiffbau und Meerestechnik	M.Sc.	3.	Wahl
Theoretischer Maschinenbau	M.Sc.	3.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Mathematik I, II, Numerik, Strömungsmechanik

Angestrebte Lernergebnisse:

- Kenntnisse: Theorie der viskosen kompressiblen und inkompressiblen Fluiden, numerische Methoden, Finite-Elemente-Verfahren, kombinierte Finite-Volumen-Finite-Elementen Verfharen, kontinuummechanische Modellierung
- Methodenkompetenz: Softwareentwicklung für Simulation komplexer viskosen Strömungen, Analyse mathematischer Modelle
- Systemkompetenz: die F\u00e4higkeiten die Grundtechniken numerischer Modellierung in der Str\u00f6mungsmechanik zu verwenden, Verst\u00e4ndnis f\u00fcr Abstraktionschritte bei mathematischer Modellierung komplexer Probleme in der Fluiddynamik, Konstruktion geeigneter numerischer Verfahren, Implementierung und Computersimulation
- Problemlösungskompetenz: Problemidentifikation, Auswahl geeigneter mathematischer Modelle und numerischer Verfahren

• Soziale Kompetenz: Englischsprachige Interaktion, projektbezogene selbständige Arbeit am PC, Präsentation der Ergebnisse, Teamarbeit im Rahmen eines Projektes

Inhalt:

- Bewegunsgleichungen viskoser Flüssigkeiten, Navier-Stokes-Gleichungen für inkompressible und kompressible Flüssigkeiten.
- Mathematische Resultate über Existenz und Eindeutigkeit der Lösung von inkompressiblen Navier-Stokes-Gleichungen.
- Finite-Elemente-Methode für elliptische Gleichungen, theoretische Resultate über Konvergenzordnung, Interpolationsfehler und Cea's Lemma.
- Finite-Elemente-Methode für Stokes-Gleichungen und für die inkompressiblen Navier-Stokes-Gleichungen, Babuska-Brezi-Stabilitätsbedingung, Chorin-Projektionsverfahren
- Experimentelle Untersuchung mit dem Featflow-Software und Matlab (Projektarbeit)
- Numerische Modellierung viskoser Strömungen mit der Unstetigen-Galerkin-Verfahren

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Power Point Präsentation, Matlab und Featflow Demonstration, Tafelanschrieb, Folien, Script

Literatur:

1. M.Lukacova:

Computational Fluid Dynamics, Skript 2002 http://www.tu-harburg.de/mat/hp/lukacova

2. M. Feistauer:

Mathematical Methdos in Fluid Dynamics, Longman Scientific & Technical, Harlow, 1993.

2. R.J. Le Veque:

Finite Volume Methods for Hyperbolic Problems, CUP, 2002.

3. H. Herwig:

Strömungsmechanik, Springer 2002.

4. E.F. Toro:

Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer 1999.

Modul: Computational Fluid Dynamics

Lehrveranstaltungen:

Titel	Тур	sws
Computational Fluid Dynamics	Vorlesung	2,00
Computational Fluid Dynamics	Übung	1,00

Modulverantwortlich: Prof. Dr. Maria Lukacova

Dozent(in): Prof. Dr. Maria Lukacova

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] – Technische Informatik – Wissenschaftliches Rechnen	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] – Wissenschaftliches Rechnen	Diplom	8.	Wahlpflicht
Maschinenbau [Diplom] – Energietechnik	Diplom	8.	Wahlpflicht
Bauingenieurwesen	M.Sc.	4.	Wahlpflicht
Wasser- und Umweltingenieurwesen	M.Sc.	4.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Energietechnik	M.Sc.	2.	Wahlpflicht
Schiffbau und Meerestechnik	M.Sc.	2.	Wahl
Theoretischer Maschinenbau	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Mathematik I, II, Numerik, Strömungsmechanik

Angestrebte Lernergebnisse:

- Kenntnisse: Theorie der hyperbolischen Erhaltungssätze, numerische Methoden, Finite-Volumen-Verfahren, kontinuummechanische Modellierung
- Methodenkompetenz: Softwareentwicklung für Simulation komplexer kompressibler Strömungen, Analyse mathematischer Modelle
- Systemkompetenz: die F\u00e4higkeiten die Grundtechniken numerischer Modellierung in der Str\u00f6mungsmechanik zu verwenden, Verst\u00e4ndnis f\u00fcr Abstraktionschritte bei mathematischer Modellierung komplexer Probleme in der Fluiddynamik, Konstruktion geeigneter numerischer Verfahren, Implementierung und Computersimulation
- Problemlösungskompetenz: Problemidentifikation, Auswahl geeigneter mathematischer Modelle und numerischer Verfahren

• Soziale Kompetenz: Englischsprachige Interaktion, projektbezogene selbständige Arbeit am PC, Präsentation der Ergebnisse, Teamarbeit im Rahmen eines Projektes

Inhalt:

- Kontinuumsmechanische Modellierung, Bewegungsgleichungen kompressibler Fluiden
- Mathematische Modellierung: hyperbolische Erhaltungsgleichungen, Methode der Charakteristiken, schwache Lösungen, Rankine-Hugoniot Bedingungen, Entropiebedingung
- Numerische Modellierung reibungsfreier kompressiblen Strömungen: Finite-Volumen Verfahren, Riemannsche Probleme, MUSCL Verfahren höherer Ordnung
- Numerische Modellierung viskoser Strömungen: kombinierte Finite Volumen/Finite Elementen Verfahren

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Power Point Präsentation, Matlab und CLAWPACK Demonstration, Tafelanschrieb, Folien, Script

Literatur:

M.Lukacova:

Computational Fluid Dynamics, Skript 2002 http://www.tu-harburg.de/mat/hp/lukacova

2. M. Feistauer:

Mathematical Methdos in Fluid Dynamics, Longman Scientific & Technical, Harlow, 1993.

2. R.J. Le Veque:

Finite Volume Methods for Hyperbolic Problems, CUP, 2002.

3. H. Herwig:

Strömungsmechanik, Springer 2002.

4. E.F. Toro:

Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer 1999.

Modul: Numerische Software

Lehrveranstaltungen:

TitelTypSWSNumerische SoftwareVorlesung2,00Numerische SoftwareÜbung1,00

Modulverantwortlich: Prof. Dr. Wolfgang Mackens

Dozent(in): Prof. Dr. Wolfgang Mackens

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Technische Informatik - Wissenschaftliches Rechnen	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - Wissenschaftliches Rechnen	Diplom	7.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	5.	Pflicht
Technomathematik	Diplom	7.	Pflicht
Process Engineering	M.Sc.	1.	Pflicht
Process Engineering	M.Sc.	3.	Pflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Mathematik I bis III ; wünschenswert : Einführung in die Numerik

Angestrebte Lernergebnisse:

- Kenntnisse: Elementare und fortgeschrittene numerische Methoden, wie sie im Inhaltsverzeichnis aufgeführt werden.
- Methodenkompetenz: Umgang mit MATLAB und verwandten numerischen Entwicklungsumgebungen; kritische Anwendung bestehendeer numerischer Codes
- Systemkompetenz: Systemorientierter Einsatz von Mathematik, Lösung komplexer Systeme durch Dekomposition

Inhalt:

Einführung in die praktische Behandlung numerischer Standardprobleme aus den Bereichen der Numerische Linearen Algebra, der nichtlinearen Gleichungssysteme, der (größtenteils unrestringierten) Optimierungsaufgaben, der gewöhnlichen und partiellen Differentialgleichungen. Ein Schwerpunkt liegt auf der Modularisierung der numerischen Aufgaben samt eines angepassten Einsatzes der numerischen Standard-Methoden, wie sie z.B.in MATLAB zur Verfügung gestellt werden.

Studien/Prüfungsleistungen:

schriftliche Prüfung am Rechner (MATLAB)

Medienformen:

Projektion von MATLAB Code; Tafelanschrieb

Literatur:

D.J. Higham, N.J.Higham: MATLAB Guide, SIAM 2000

Modul: Numerische Verfahren zur Feldberechnung

Lehrveranstaltungen:

Titel	Тур	SWS
Numerical Methods for Field Computation	Vorlesung	2,00
Numerical Methods for Field Computation	Übung	1,00

Modulverantwortlich: Prof. Dr. Christian Schuster

Dozent(in): Dr. Heinz-Dietrich Brüns

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - MSR4	Diplom	8.	Wahlpflicht
Elektrotechnik [Diplom] - Nachrichtentechnik - NT4	Diplom	8.	Wahlpflicht
Elektrotechnik [Diplom] - Technische Informatik - Wissenschaftliches Rechnen	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom]	Diplom	6.	Wahlpflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	8.	Wahlpflicht
Electromagnetics, Optics and Microwave Eng.	M.Sc.	2.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Theoretische Elektrotechnik I und II oder Elektromagnetische Felder

Angestrebte Lernergebnisse:

- Kenntnisse: Vertiefung in der numerischen Berechnung elektromagnetischer Felder und ihrer Methoden
- Fertigkeiten: Theoriegeleitetes Anwenden dieser Methoden in Übungen
- Kompetenzen: Sachkundige Beurteilung einzelner Verfahren, Kommunikation auf Englisch

Inhalt:

Moderne numerische Verfahren der elektromagnetischen Feldberechnung spielen eine wichtige Rolle bei der Auswertung von Strahlung und Kopplung (Beispiele Antennen), bei der Analyse elektromagnetischer Verträglichkeitsprobleme, bei der Konzeption analoger und digitaler Schaltungen

und bei der Entwicklung von Bauelementen. In dieser Lehrveranstaltung werden die Grundlagen der folgenden, wichtigen Verfahren vermittelt:

- Differenzenverfahren
- Methode der finiten Elemente
- Ersatzladungsverfahren
- Methode der Randelemente
- Monte Carlo-Verfahren
- TLM-Verfahren
- Momentenmethode
- Mehrfach-Multipolmethode
- Physikalische Optik
- Verfahren der geometrischen Optik (GTD, UTD)

Studien	/Prüfun	asleisti	ınden:
Otuaicii	,, i aiai	goioiou	arigeri.

Studien/Prüfungsleistungen:	
Mündliche Prüfung	

	Med	ienf	orm	en:
--	-----	------	-----	-----

Tafel, Folien

Literatur:

Wird überarbeitet

Modul: Objektorientierte Systementwicklung in der Automatisierungstechnik

Lehrveranstaltungen:

Titel

Object-Oriented System Development in Process Automation Objektorientierte
Systementwicklung in der Automat.-technik

Exercise: / Object-Oriented System Development in Process Automation
(Objektorient. Systementw. i.d. Autom.-technik)

Typ SWS

Vorlesung 2,00

Übung 2,00

Modulverantwortlich: Prof. Dr. Wolfgang Meyer

Dozent(in): Prof. Dr. Wolfgang Meyer

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - Automatisierungssysteme	Diplom	8.	Wahlpflicht
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - Regelungssysteme und Systemdynamik	Diplom	8.	Wahlpflicht
Information and Communication Systems	M.Sc.	2.	Wahlpflicht
Mechatronics	M.Sc.	2.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 94

Kreditpunkte: 5,00

Voraussetzungen:

- Grundkenntnisse in Software Engineerin und 1 Programmiersprache, z.B. eine prozedurale Sprache.
- Der Besuch der Vorlesung "Prozeßautomatisierungstechnik" von Prof. W. Meyer erleichtert das Verständnis, ist jedoch nicht Vorbedingung.

Angestrebte Lernergebnisse:

- Kenntnisse: Unified Modelling Language UML, Constraint-basierte Repräsentation ILOG OPL, Objektorientierte Entwicklungsumgebung Smalltalk
- Fertigkeiten: Objektorientierte Modellierung komplexer Fertigungsabläufe mittels UML, objektorientierte Implementierung komplexer UML-Modelle mittels Smalltalk
- Methodenkompetenz: Analyse und Design verteilter Planungssysteme anhand von UML
- Systemkompetenz: Formalisieren des Modellbildungsprozesses komplexer industrieller Fertigungssysteme mit UML

- Problemlösungskompetenz: Vergleichende Bewertung unterschiedlicher Lösungsmodelle, insbesondere der constraint- und objekt-basierten Ansätze für die Applikationssoftware AIPLANNER
- Soziale Kompetenz: Englischsprachige Kommunikation und Interaktion bei der Realisierung von Software-Projekten in kleinen Gruppen, z.B. "Ereignisgetriebene Simulationsumgebung für industrielle Transportsysteme"

Inhalt:

- Basisdefinitionen: Graphen und Netze
- Anwendungsproblem: Umrüstzeitminimierung in der Elektroindustrie
- Applikationssoftware: Planungssoftware AIPLANNER
- Objektorientierte Modellbildung: Prinzipien und Vorgehen
- Objektorientierte Modellierungssprachen: UML und Poseidon
- Objektorientiertes Modell: AIPLANNER als UML-Modell
- Objektorientierte Implementierung: Smalltalk-Kurs
- Objektbasierte Metriken: Qualitätsmessung objekt-basierter Software
- Constraint-basierte Modelle: Zeit-Logiken
- Agenten-basierte Modelle: UML-Erweiterungen

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Powerpoint Vorlesung, Software Demonstration, PC Übung

Literatur:

- J. Brauer: "Grundkurs Smalltalk Objektorientierung von Anfang an". Vieweg Verlag, Wiesbaden 2003
- B. Oestereich: "Objektorientierte Softwareentwicklung". Oldenbourg Verlag, München 1998
- W. Meyer: "Expert Systems in Factory Management Knowledge-based CIM". Ellis Horwood, New York 1990

Modul: Optimale und Robuste Regelung

Lehrveranstaltungen:

Titel	Тур	SWS
Optimal and Robust Control	Vorlesung	2,00
Optimal and Robust Control	Übung	1,00

Modulverantwortlich: Prof. Dr. Herbert Werner

Dozent(in): Prof. Dr. Herbert Werner

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - Automatisierungssysteme	Diplom	7.	Wahlpflicht
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - Regelungssysteme und Systemdynamik	Diplom	7.	Wahlpflicht
Mechatronics	M.Sc.	1.	Wahlpflicht
Mechatronics	M.Sc.	3.	Wahlpflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	7.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Flugzeug-Systemtechnik	M.Sc.	2.	Wahlpflicht
Mediziningenieurwesen	M.Sc.	2.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Theorie und Entwurf regelungstechnischer Systeme

Angestrebte Lernergebnisse:

- Kenntnisse: Darstellung von Entwurfszielen mit Hilfe der H2- und H-unendlich-Norm
- Methodenkompetenz: moderne Entwurfsverfahren für optimale und robuste Mehrgrößenregelungen
- Systemkompetenz: Konvexe Optimierung in der Regelungstechnik
- Soziale Kompetenzen: Englischsprachige Kommunikation

Inhalt:

- Lineare optimale Regelung, Matrix Riccati Gleichung
- Kalman Filter, LQG Regler, Loop Transfer Recovery
- H2 und H-unendlich Norm als Entwurfswerkzeuge
- Mixed Sensitivity Entwurf
- Reglerentwurf mit Hilfe linearer Matrixungleichungen (LMI)

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Tafelanschrieb, Folien, Matlab/Simulink-Demos (Beamer), Skript

Literatur:

Werner, H., Script: "Optimale und Robuste Regelung"

Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan "Linear Matrix Inequalities in Systems and Control", SIAM, Philadelphia, PA, 1994

Skogestad, S. and I. Postlewhaite "Multivariable Feedback Control", John Wiley, Chichester, England, 1996

Strang, G. "Linear Algebra and its Applications", Harcourt Brace Jovanovic, Orlando, FA, 1988

Zhou, K. and J. Doyle "Essentials of Robust Control", Prentice Hall International, Upper Saddle River, NJ, 1998

Modul: Nichtlineare Optimierung

Lehrveranstaltungen:

Titel	Тур	SWS
Nichtlineare Optimierung	Vorlesung	2,00
Nichtlineare Optimierung	Übung	1,00

Modulverantwortlich: PD Dr. Christian Jansson

Dozent(in): PD Dr. Christian Jansson

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - Automatisierungssysteme	Diplom	8.	Wahlpflicht
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - Regelungssysteme und Systemdynamik	Diplom	8.	Wahlpflicht
Elektrotechnik [Diplom] - Technische Informatik - Wissenschaftliches Rechnen	Diplom	8.	Wahlpflicht
Informatikingenieur [Diplom] - Wissenschaftliches Rechnen	Diplom	8.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

- Analysis I und II
- Lineare Algebra I und II

Angestrebte Lernergebnisse:

- Kenntnisse: Klassifizierung und Einordnung von Optimierungsproblemen und Optimierungsverfahren; Grundlagen klassischer Verfahren zur Bestimmung lokaler Minima und Maxima
- Methodenkompetenz: Einordnung von Methoden und Problemen
- Systemkompetenz: Umgang mit entsprechenden Softwarepaketen
- Soziale Kompetenzen: Befähigung zum Umgang mit der Fachliteratur; Selbstständiges und effizientes Lernen

Inhalt: Einleitung Beispiele

MATLAB und Optimization Toolbox

Grundlagen

- Extremwerte von Funktionen
- Satz von Taylor
- Positiv definite Matrizen
- Konvexe Mengen
- Konvexe Funktionen
- Charakterisierung differenzierbarer konvexer Funktionen

Optimalitätsbedingungen

- Probleme ohne Nebenbedingungen
- Probleme mit Nebenbedingungen, der Satz von Kuhn und Tucker

Optimierung dynamischer Systeme

- Einführung
- Pontryagin's Optimalitätsprinzip
- Riccati-Gleichung

Nichtlineare Minimierung ohne Nebenbedingungen

- Abstiegs- und Gradientenverfahren
- Newton-Verfahren
- Gedämpfte Newton-Verfahren
- Trust-Region Methoden
- Levenberg-Marquardt Verfahren
- Quasi-Newton Verfahren: Rang 1-Korrektur, DFP- und BFGS-Verfahren
- Numerische Tests und Testfunktionen
- Software

Nichtlineare Minimierung mit Nebenbedingungen

- Innere-Punkte Verfahren
- Newton-Verfahren zur Lösung der Kuhn-Tucker Bedingungen
- SQP-Verfahren
- Software

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Folien, Tafelanschrieb

Literatur:

- M.S. Bazaraa, H.D. Sheraly, C.M. Shetty: Nonlinear Programming, John Wiley, 1993
- S. Boyd, L. Vandenberghe: Convex Optimization, Cambridge University Press, 2004
- N.I.M. Gould, S. Leyffer: An Introduction to algorithms for nonlinear optimization, Springer, 2003

Modul: Konvexe und semidefinite Optimierung

Lehrveranstaltungen:

Titel	Тур	SWS
Konvexe und semidefinite Optimierung	Vorlesung	2,00
Konvexe und semidefinite Optimierung	Übung	1,00

Modulverantwortlich: PD Dr. Christian Jansson

Dozent(in): PD Dr. Christian Jansson

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - Automatisierungssysteme	Diplom	7.	Wahlpflicht
Elektrotechnik [Diplom] - Technische Informatik - Wissenschaftliches Rechnen	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - Wissenschaftliches Rechnen	Diplom	7.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	3.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Analysis I und II

• Lineare Algebra I und II

Angestrebte Lernergebnisse:

- Kenntnisse: Klassifizierung und Einordnung von Optimierungsproblemen, Grundlegende Zusammenhänge und Anwendung der konvexen Optimierung und aktuelle Forschung in der konvexen Optimierung
- Methodenkompetenz: Verifikation numerischer Berechnungen, einordnen von Methoden und Problemen
- Systemkompetenz: Umgang mit entsprechenden Softwarepaketen
- Soziale Kompetenzen: Befähigung zum Umgang mit der Fachliteratur und Selbstständiges und effizientes Lernen

Inhalt:

- Einleitung und Beispiele
- Mathematische Grundlagen der konvexen Optimierung
- Lineare Matrixungleichungen und semidefinite Optimierung
- Dualitätstheorie

- Anwendungen (Robuste Optimierung, Relaxationen für kombinatorische Optimierungsprobleme, polynomiale Probleme, Truss-Probleme)
- Innere Punkte Methoden für semidefinite Optimierungsprobleme
- Branch and Bound Verfahren
- Verifikation und Interval Arithmetik
- INTLAB und Anwendungen
- Verifizierte Resultate f
 ür semidefinite Optimierungsprobleme und das Softwarepaket VSDP
- Schlecht-gestellte Probleme
- Anhänge

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Folien, Tafelanschrieb

Literatur:

- S. Boyd, L. Vandenberghe: Convex Optimization, Cambridge University Press, 2004
- A. Nemirovski: Lectures on Modern Convex Optimization, SIAM, 2001
- C. Floudas, P.M. Pardalos (eds.): Encyclopedia of Optimization, Springer, 2001

Modul: Optische Nachrichtentechnik

Lehrveranstaltungen:

Titel	Тур	SWS
Optical Communications / Optische Nachrichtentechnik	Vorlesung	2,00
Optical Communications / Optische Nachrichtentechnik	Übung	1,00

Modulverantwortlich: Prof. Dr. Ernst Brinkmeyer

Dozent(in): Prof. Dr. Ernst Brinkmeyer

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundlagen aus Theoretische Elektrotechnik, Nachrichtentechnik, Leitungstheorie, Elektronische Bauelemente

Angestrebte Lernergebnisse:

- Kenntnisse: Verständnis grundlegender Prinzipien der Optischen Nachrichtentechnik
- Kompetenzen: F\u00e4higkeit f\u00fcr Entwurf und Bewertung optischer \u00dcbertragungssysteme Englischsprachige Kommunikation

Inhalt:

- Grundlagen optischer Wellenleiter
- Eigenschaften von Quarzglasfasern
- Passive Komponenten für die Faseroptik
- Grundlagen von Photodioden und LEDs
- Rauschen in Photodetektoren
- Laserdioden
- Optische Verstärker
- Nichtlinearitäten in optischen Fasern
- Optische Übertragungssysteme

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Power Point Präsentation, Folien, Tafelanschrieb

Literatur:

- G.P. Agrawal: Fiber-optic communication system. John Wiley&Sons, 2002
- J. Gowar, Optical communication systems, Prentice-Hall, 1997
- I.P. Kaminov, L. Koch (ed.), Optical Fiber Telecommunications, vol. IIIa, IIIb, Academic Press 1997
- E. Voges, K. Petermann (ed.): Optische Kommunikationstechnik, Springer, 2002

Modul: Optische Nachrichtentechnik: Optische Wellenleiter, aktive/passive Komponenten und Übertragungsysteme

Lehrveranstaltungen:

Titel	Тур	SWS
Optische Nachrichtentechnik I	Vorlesung	2,00
Optische Nachrichtentechnik II	Vorlesung	2,00
Optische Nachrichtentechnik II	Übung	1,00

Modulverantwortlich: Prof. Dr. Ernst Brinkmeyer

Dozent(in): Prof. Dr. Ernst Brinkmeyer

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] – Nachrichtentechnik	Diplom	6.	Pflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Elektrotechnik	MSc.	3.	Wahlpflicht

Zeitraum: Wintersemester und Sommersemester

Arbeitsaufwand: Präsenzstudium: 70, Eigenstudium: 140

Kreditpunkte: 7,00

Voraussetzungen:

Grundkenntnisse aus Theoretische Elektrotechnik, Nachrichtentechnik, Leitungstheorie und Elektronische Bauelemente

Angestrebte Lernergebnisse:

- Kenntnisse: Verständnis der wellenoptischen Seite der Optischen Nachrichtentechnik sowie Verständnis von Prinzipien und Schlüsselkomponenten der Optischen Nachrichtentechnik.
- Kompetenzen: F\u00e4higkeit zur Bewertung optischer \u00dcbertragungssysteme und zum Vergleich mit konventionellen \u00dcbertragungssystemen

Inhalt:

- Optische Nachrichtentechnik I
- Optische Grundlagen
- Wellenausbreitung in optische Wellenleitern
- Übertragungseigenschaften von Glasfasern
- Herstellung von Quarzglasfasern
- Passive Komponenten f
 ür die Faseroptik
- Optische Nachrichtentechnik II
- Grundlagen optischer Empfänger
- Rauschen in Photoempfängern

- Grundlagen optischer Halbleiterquellen
- Aufbau und Eigenschaften von Laserdioden
- Faseroptische Verstärker
- Nichtlinearitäten in optischen Fasern
- Faseroptische Übertragungssysteme

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Power Point Präsentation, Folien, Tafelanschrieb

Literatur:

- G.P. Agrawal: Fiber-optic communication system. John Wiley&Sons, 2002
- J. Gowar, Optical communication systems, Prentice-Hall, 1997
- I.P. Kaminov, L. Koch (ed.), Optical Fiber Telecommunications, vol. IIIa, IIIb, Academic Press 1997
- E. Brinkmeyer, Optische Fasern Grundlagen in: E. Voges, K. Petermann (ed.): Optische Kommunikationstechnik, Springer, 2002

Modul: Optoelektronik I: Wellenoptik

Lehrveranstaltungen:

Titel	Тур	SWS
Optoelectronics I	Vorlesung	2,00
Optoelectronics I	Übung	1,00

Modulverantwortlich: Prof. Dr. Manfred Eich

Dozent(in): Prof. Dr. Manfred Eich

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mikroelektronik	Diplom	7.	Pflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	7.	Wahlpflicht
Electromagnetics, Optics and Microwave Eng.	M.Sc.	1.	Wahlpflicht
Informationstechnologie	B.Sc.	5.	Wahlpflicht
Materials Science	M.Sc.	1.	Wahlpflicht
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundlagen in Elektrodynamik und Infinitesimalrechnung

Angestrebte Lernergebnisse:

Kentnisse: Ziel der Vorlesung ist die Vermittlung der grundlegenden Inhalte und Phänomene der Elektrooptik und Optoelektronik sowie ausgewählter Anwendungen. Vertiefte Erkenntnisse zur Anwendung von Matrixmethoden in der Optik werden vermittelt.

Inhalt:

- Einführung in die Optik
- Elektromagnetische Theorie des Lichtes
- Interferenz
- Kohärenz
- Beugung
- Fourier Optik
- Polarisation und Kristalloptik
- Matrixformalismus

- Reflektion und Transmission
- Komplexer Brechungsindex
- Dispersion
- Modulation und Schalten von Licht

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Power Point Präsentation, Skript, Folien, Tafelanschrieb

Literatur:

Hecht, E., Optics, Benjamin Cummings, 2001, ISBN: 0805385665

Goodman, J.W. Statistical Optics, Wiley, 2000, ISBN: 0471399167

Lauterborn, W., Kurz, T., Coherent Optics: Fundamentals and Applications, Springer, 2002, ISBN: 3540439331

Modul: Optoelektronik II: Quantenoptik

Lehrveranstaltungen:

Titel	Тур	SWS
Optoelectronics II	Vorlesung	2,00
Optoelectronics II	Übung	1,00

Modulverantwortlich: Prof. Dr. Manfred Eich

Dozent(in): Prof. Dr. Manfred Eich

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	6.	Wahl
Elektrotechnik [Diplom] - Mikroelektronik - Physik und Technologie	Diplom	8.	Pflicht
Elektrotechnik [Diplom] - Mikroelektronik - Bauelemente und Schaltungen	Diplom	8.	Wahl
Elektrotechnik [Diplom] - Mikroelektronik - Mikrosystemtechnik	Diplom	8.	Wahl
Elektrotechnik [Diplom] - Nachrichtentechnik	Diplom	8.	Wahl
Informatikingenieur [Diplom] - Informationselektronik	Diplom	8.	Wahlpflicht
Electromagnetics, Optics and Microwave Eng.	M.Sc.	2.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	2.	Wahlpflicht
Informationstechnologie	B.Sc.	6.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

canpainte: +,ot

Voraussetzungen:

Optoelektronik I: Wellenoptik

Angestrebte Lernergebnisse:

Kentnisse: Verständnis der grundlegenden Prinzipien der Lichterzeugung, Lichtdetektion und Licht-Materie-Wechselwirkungen. Vertiefte Kennnisse zur Laserphysik und Methoden zur Beschreibung der spektralen Eigenschaften und des Schaltverhaltens von Lasern werden vermittelt.

Inhalt:

- Erzeugung von Licht
- Photonen
- Thermisches und nichtthermisches Licht
- Laser Verstärker
- Rauschen
- CW-Laser (Gas, Festkörper, Halbleiter)
- Gepulste Laser
- Detection von Licht
- Optoelectronic Displays

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Power Point Präsentation, Skript, Folien, Tafelanschrieb

Literatur:

Demtröder, W., Laser Spectroscopy: Basic Concepts and Instrumentation, Springer, 2002, ISBN: 354065225

Kasap, S.O., Optoelectronics and Photonics: Principles and Practices, Prentice Hall, 2001, ISBN: 0201610876

Yariv, A., Quantum Electronics, Wiley, 1988, ISBN 0471609978

Wilson, J., Hawkes, J., Optoelectronics: An Introduction, Prentice Hall, 1997, ISBN: 013103961X

Siegman, A.E., Lasers, University Science Books, 1986, ISBN: 0935702113

Modul: Organisation des Produktionsprozesses

Lehrveranstaltungen:

Titel Typ SWS

Organisation des Produktionsprozesses / Production Process Organization

Vorlesung 2,00

Modulverantwortlich: Prof. Dr. Christian Nedeß

Dozent(in): Prof. Dr. Christian Nedeß

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Energietechnik	B.Sc.	5.	Wahl
Informatikingenieur [Diplom] - Konstruktion, Fertigung und Logistik	Diplom	7.	Wahlpflicht
International Production Management	M.Sc.	1.	Pflicht
Maschinenbau [Diplom] - Fertigungstechnik	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Konstruktionstechnik - Flugzeugsystemtechnik	Diplom	7.	Wahlpflicht
Maschinenbau [Diplom] - Energietechnik	Diplom	5.	Wahlpflicht
Maschinenbau [Diplom] - Thermische Energieanlagen und Schiffsmaschinenbau - Thermische Energieanlagen	Diplom	7.	Wahlpflicht
Schiffbau [Diplom] - Planung und Fertigung	Diplom	7.	Wahlpflicht
Allg: Betrieb und Management (Master-Stgs.)	M.Sc.	3.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 32

Kreditpunkte: 2,00

Voraussetzungen:

- Vordiplom / Bachelor
- BWLI

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegende Kenntnisse über inner- und überbetrieblicher Produktionsprozesse
- Systemkompetenz: Tiefes Verständnis für die komplexen Zusammenhänge eines Produktionssystems
- Sozialkompetenz: Zusammenhänge hinsichtlich der Übernahme von Führungsverantwortung.

Inhalt:

Diese Vorlesung verdeutlicht Kontext und Gestaltungsansätze für inner- und überbetriebliche Produktionsprozesse unter Berücksichtigung organisatorischer und personalbedingter Aspekte sowie des Informationsflusses, wie durch entsprechende Fallstudien dargestellt wird. Einzelthemen befassen sich mit:

- Produktion im Umbruch
- Organisation von Produktionsunternehmen
- Produktentwicklung und -beschreibung
- Arbeitsvorbereitung
- Fertigung
- Materialwirtschaft
- Qualitätsmanagement

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

PowerPoint Präsentation, Skript

Literatur:

Corsten, H.: Einführung in das industrielle Produktionsmanagement, 9. Aufl., München u.a. 2000

Hansmann, K.-W.: Industrielles Management, 7. Aufl., München u.a. 2000

Nedeß, Chr.: Organisation des Produktionsprozesses, Stuttgart 1997

Vahrenkamp, R.: Produktionsmanagement, 4. Aufl., München u.a. 2000

Wildemann, H.: Die modulare Fabrik, 5. Aufl., München 1998

Wiendahl, H.P.: Betriebsorganisation (für Ingenieure), 4th Ed., München 1997

Eversheim, W.: Organisation in der Produktionstechnik, Band 1-4, Düsseldorf 1996-2002

Warnecke, H.-J.: Der Produktionsbetrieb (Vol. I und II) Berlin, Heidelberg 1993

Modul: Parameterschätzung und adaptive Regelung

Lehrveranstaltungen:

TitelTypSWSParameterschätzung und adaptive RegelungVorlesung2,00

Modulverantwortlich: Prof. Dr.-Ing. Axel Munack

Dozent(in): Prof. Dr.-Ing. Axel Munack

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik	Diplom	7.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik - Block I: Elektrotechnik	Diplom	7.	Wahlpflicht
Verfahrenstechnik [Diplom]	Diplom	5.	Wahl
Verfahrenstechnik [Diplom]	Diplom	7.	Wahlpflicht
Elektrotechnik	M.Sc.	3.	Wahlpflicht
Maschinenbau	B.Sc.	1.	Pflicht
Bioverfahrenstechnik	M.Sc.	1.	Wahlpflicht
Bioverfahrenstechnik	M.Sc.	3.	Wahlpflicht
Verfahrenstechnik	M.Sc.	3.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 32

Kreditpunkte: 2,00

Voraussetzungen:

Regelungstechnik

Angestrebte Lernergebnisse:

Kentnisse: Die Vorlesung soll Kenntnisse über Methoden zur Parameterschätzung in dynamischen Systemen sowie deren Kombinationen mit Regelungsalgorithmen zu expliziten adaptiven Regelungsverfahren vermitteln.

Inhalt:

- Einleitung: Gauß-Methode der kleinsten Quadrate
- Parameterschätzung für nichtlineare dynamische Systeme (Off-line-Methoden; zeitkontinuierliche Modelle)
- Identifizierbarkeit von Parametern
- Adaptive Regelung nach dem OLFO-Verfahren
- Grundlagen der Darstellung zeitdiskreter Signale und Systeme
- Grundbegriffe stochastischer Prozesse
- Regler für stochastisch gestörte lineare zeitdiskrete Systeme
- Parameterschätzung für lineare dynamische Systeme (On-line-Methoden; zeitdiskrete Modelle)
- Adaptive Regelungen für lineare zeitdiskrete Systeme
- Generalized Predictive Control

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Folien, Arbeitsblätter, Tafel

Literatur:

Eine Literaturliste wird in der Vorlesung bekanntgegeben.

Modul: Physik der Halbleiterbauelemente I: Elektronische Bandstruktur und Thermodynamisches Gleichgewicht

Lehrveranstaltungen:

Titel Typ SWS

Physik der Halbleiterbauelemente I: Elektronische Bandstruktur und
Thermodynamisches Gleichgewicht

Physik der Halbleiterbauelemente I: Elektronische Bandstruktur und
Thermodynamisches Gleichgewicht

Übung 1,00

Modulverantwortlich: Prof. Dr. Wolfgang Bauhofer

Dozent(in): Prof. Dr. Wolfgang Bauhofer

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mikroelektronik	Diplom	6.	Pflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	8.	Wahlpflicht
Materials Science	M.Sc.	2.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Werkstoffe der Elektrotechnik, Grundlagen elektronischer Bauelemente

Angestrebte Lernergebnisse:

- Kenntnisse: Physikalische Grundlagen, die zum Verständnis der Funktionsweise von elektronischen und optoelektronischen Halbleiterbauelementen erforderlich sind
- Methodenkompetenz: Theoriegeleitete Interpretation der Funktionsweise von Halbleiterbauelementen

- Halbleitereigenschaften- Einführung
- Energiebandstruktur der Elektronen im Festkörper, Elektronen als Teilchen und als Welle, erlaubte und verbotene Energiebänder, Elektronen im periodischen Potential, Bandstrukturen wichtiger Halbleiter, Flächen konstanter Energie, optische Übergänge
- Bewegliche Elektronen, Löcherkonzept, effektive Massen, Relaxationszeit und Beweglichkeit
- Störstellen, Dotierung
- Gleichgewichtsstatistik für Elektronen und Löcher, Verteilungsfunktionen, Bandbesetzung, Fermi-Energie

mündliche Prüfung

Medienformen:

Power Point Präsentation, Tafelanschrieb

Literatur:

R. Paul: Halbleiterphysik, VEB Verlag Technik, Berlin (1974)

W. Heywang, H. W. Pötzl: Bänderstruktur und Stromtransport, Springer-Verlag (1976)

K. Hess: Advanced Theory of Semiconductor Devices, Prentice-Hall (1988)

Modul: Physik der Halbleiterbauelemente II: Boltzmann-Transportgleichung und Rekombinationsprozesse

Lehrveranstaltungen:

Typ SWS

Physik der Halbleiterbauelemente II: Boltzmann-Transportgleichung und Rekombinationsprozesse

Physik der Halbleiterbauelemente II: Boltzmann-Transportgleichung und Rekombinationsprozesse

Übung 1,00

Rekombinationsprozesse

Modulverantwortlich: Prof. Dr. Wolfgang Bauhofer

Dozent(in): Prof. Dr. Wolfgang Bauhofer

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mikroelektronik	Diplom	7.	Pflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	7.	Wahlpflicht
Elektrotechnik	M.Sc.	3.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Physik der Halbleiterbauelemnte I

Angestrebte Lernergebnisse:

- Kenntnisse: Physikalischen Grundlagen, die zum Verständnis der Funktionsweise von elektronischen und optoelektronischen Halbleiterbauelementen erforderlich sind
- Methodenkompetenz: Theoriegeleitetes Erkennen der Möglichkeiten und Grenzen der Simulation von Halbleiterbauelementen

- Transportvorgänge, Drude-Modell, Streumechanismen, Boltzmann-Transportgleichung und Näherungslösungen
- Nichtgleichgewichtsvorgänge, Quasi-Fermi-Niveau, Generation-Rekombination, Lumineszenz
- Semiklassische Behandlung der Wechselwirkung zwischen Halbleiter und elektromagnetischer Strahlung
- Halbleitergrundgleichungen und ihre Anwendung, pn-Übergang, Hetero-Übergänge, Halbleiter-Modellierung,
- Bauelemente-Simulation
- Physikalische Grenzen der Miniaturisierung
- Bauelemente mit neuartigen Funktionsprinzipien

mündliche Prüfung

Medienformen:

Power Point Präsentation, Tafelanschrieb

Literatur:

- R. Paul: Halbleiterphysik, VEB Verlag Technik, Berlin (1974)
- W. Heywang, H. W. Pötzl: Bänderstruktur und Stromtransport, Springer-Verlag (1976)
- K. Hess: Advanced Theory of Semiconductor Devices, Prentice-Hall (1988)

Modul: Planung logistischer Systeme

Lehrveranstaltungen:

Titel	Тур	SWS
Planung logistischer Systeme (Logistik II)	Vorlesung	1,00
Planung logistischer Systeme (Logistik II)	Übung	1,00

Modulverantwortlich: Prof. Dr. Günther Pawellek

Dozent(in): Prof. Dr. Günther Pawellek

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Maschinenbau [Diplom] - Fertigungstechnik	Diplom	7.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Produktentwicklung und Produktion	M.Sc.	3.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium 28; Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzung:

Keine

Angestrebte Lernergebnisse:

- Kenntnisse: über Planungssystematik von Lager-, Transport- und Distributionssystemen
- Methodenkompetenz: strukturiert und zielgerichtet Planen, Durchführung von Wirtschaftlichkeitsbetrachtungen, Simulationskompetenz
- Soziale Kompetenz: Technisch-wirtschaftliche Projektbearbeitung bei Herstellern und Anwendern logistischer Systeme

- Einführung: Begriffserklärung, Systeme, Planungsmodelle, Ziele und Restriktionen bei der Planung, Vorgehensweise der Planung.
- Analytische Methoden der Leistungsberechnung: Materialflussrechnung, Beschreibungsgrößen, Durchsatzberechnung, Spielzeitberechnung, Grenzleistungsberechnung.
- Operations Research Verfahren: Logistik und Operations Research, Modell- und Systembegriffe in der Ökonomie, mathematische Hilfsmittel, lineare Gleichungssysteme, Planungsrechnung, Näherungsverfahren und heuristische Methoden.
- Investitionsrechnung: Wirtschaftlichkeitsrechnung, Investitionsarten, Zweck, Bewertungsverfahren, Kosten-Wirksamkeits-Analyse.
- Simulation: Simulationsarten, Einsatzbereiche, Vor- und Nachteile, Ablauf einer Simulationsstudie, Simulation und Logistik, Expertensysteme.

 Distributionsplanung: Aufgaben und Funktionen von Distributionssystemen, Nachfragestruktur, Distributionsmodelle, Planung von Warenverteilzentren.

Studien/Prüfungsleistungen:

mündliche Prüfung

Literatur:

Wird überarbeitet

Modul: Mikrosystementwurf

Lehrveranstaltungen:

Titel	Тур	SWS
Mikrosystementwurf / Microsystem Design	Vorlesung	2,00
Mikrosystementwurf / Microsystem Design	Praktikum	2,00

Modulverantwortlich: Prof. Dr. Manfred Kasper

Dozent(in): Prof. Dr. Manfred Kasper

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	8.	Wahl
Elektrotechnik [Diplom] - Mikroelektronik - Physik und Technologie	Diplom	8.	Wahlpflicht
Elektrotechnik [Diplom] - Mikroelektronik - Bauelemente und Schaltungen	Diplom	8.	Wahlpflicht
Elektrotechnik [Diplom] - Mikroelektronik - Mikrosystemtechnik	Diplom	8.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	2.	Wahlpflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 48, Eigenstudium: 102

Kreditpunkte: 5,00

Voraussetzungen:

Vordiplom, Vorlesung Mikrosystemtechnik, Halbleitertechnologie

Angestrebte Lernergebnisse:

• Kentnisse: Das Praktikum vermittelt die Vorgehensweise, Techniken und den Umgang mit Simulationsverfahren beim Entwurf von Komponenten der Mikrosystemtechnik.

- Problemanalyse
- Erstellung der Spezifikation
- Komponentenmodellierung
- Auswahl und Umgang mit Simulationssoftware
- Finite Elemente Analyse
- Variantenanlyse
- Simulation des elektrischen, thermischen und mechanischen Verhaltens
- Betrachtung technologischer Randbedingungen
- Analogsimulation

Mündliche Prüfung, Berichte

Literatur:

M. Kasper: Mikrosystementwurf, Springer (2000)

S. Senturia: Microsystem Design, Kluwer (2001)

Modul: Praktikum: Schaltungsentwurf – analog / digital

Lehrveranstaltungen:

TitelTypSWSPraktischer Schaltungsentwurf analogPraktikum2,00Praktischer Schaltungsentwurf digitalPraktikum2,00

Modulverantwortlich: Prof. Dr. Wolfgang Krautschneider

Dozent(in): Prof. Dr. Wolfgang Krautschneider

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mikroelektronik - Physik und Technologie	Diplom	7.	Wahlpflicht
Elektrotechnik [Diplom] - Mikroelektronik - Bauelemente und Schaltungen	Diplom	7.	Wahlpflicht
Elektrotechnik [Diplom] - Mikroelektronik - Mikrosystemtechnik	Diplom	7.	Wahlpflicht
Elektrotechnik [Diplom] - Nachrichtentechnik - Digitale Übertragungstechnik	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	7.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	1.	Wahlpflicht
Informationstechnologie - Informationselektronik	B.Sc.	5.	Pflicht
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester und Sommersemester

Arbeitsaufwand: Präsenzstudium: 48, Eigenstudium: 72

Kreditpunkte: 4,00

Voraussetzungen:

- Kenntnisse über Halbleiterbauelemente
- Vorlesung "Halbleiterschaltungstechnik", "Entwurf von integrierten Schaltungen I" (wünschenswert)

Angestrebte Lernergebnisse:

- Kenntnisse: Professionelle Entwurfsumgebung für den praktischen Entwurfsablauf analoger integrierter Schaltungen
- Problemlösungskompetenz: Simulation von analogen integrierten Schaltungen für Verstärkeranwendungen. Erstellen des Layouts, Durchführung von Simulationen und Realisisierung von Strategien zum Beseitigen möglicher Abweichungen von den Spezifikationen.

• Soziale Kompetenz: Entwickeln und Realisieren von Lösungsstrategien in strukturierter Gruppenarbeit

Inhalt:

- Einführung
- Schaltplaneingabe
- analoge Simulation
- Layouterstellung
- Entwurfsüberprüfung

Studien/Prüfungsleistungen:

Schriftliche und mündliche Prüfung

Medienformen:

Power Point Präsentation, Folien, Skript

Literatur:

Umdruck

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc 2. Auflage, 2005, ISBN: 047170055S

Modul: Produkt Planung und -Entwicklung

Lehrveranstaltungen:

TitelTypSWSProduct Planning and -DevelopmentVorlesung3,00

Modulverantwortlich: Prof. Dr. Cornelius Herstatt

Dozent(in): Prof. Dr.-Ing. Dirk-Götz Feldmann

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Internationales Wirtschaftsingenieurwesen	M.Sc.	3.	Pflicht
Produktentwicklung und Produktion	M.Sc.	3.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 48

Kreditpunkte: 3,00

Voraussetzungen:

Grundkenntnisse der Betriebswirtschaftslehre und Ingenieurswissenschaften

Angestrebte Lernergebnisse:

- Inhalt der Veranstaltung ist das Management der frühen Innovationsphasen. Diese beinhalten alle Aktivitäten, die im Zusammenhang mit der Vorbereitung und Entwicklung eines Produkt-Konzepts stehen.
- In der Vorlesung werden diese typischen Aktivitäten sowie die dazugehörigen Instrumente vermittelt und im Rahmen einer Übung (Workshop) angewendet

- Was versteht man unter Produkt-Planung und wann wird diese im Unternehmen von wem durchgeführt?
- Wie identifiziert man einen Innovationsbedarf?
- Was versteht man unter need-assessment und welche Methoden stehen hierfür zur Verfügung?
- Was sind Lead User und andere Innovationsquellen?
- Das Konzept der Kernkompetenzen und wie Ünternehmen diese für Innovation nutzen können
- Systematsiche Suche für Innovationen ("Suchfeldanalyse")
- Bewertung von Produktkonzepten und Methoden
- Übersetzung von Kundenanforderungen in "die Sprache des Ingenieurs" (Quality Function Deployment)

Regelmässige Teilnahme und Klausur

Medienformen:

Präsentation, Gruppenarbeiten

Literatur:

Von Hippel, E.: The Sources of Innovation, Boston 1998

Von Hippel, E.: Democratizing Innovation, Boston 2005

Kramer, F.: Innovative Produktpolitik, Berlin - Heidelberg - New York, 1987

Herstatt, C./Verworn, B. Management der fruehen Innovationsphasen, zweite Auflage, Wiesbaden 2006

Ulrich, K. /Eppinger, S.: Product Design and Developments Mc Graw - Hill, 1995

Modul: Produktionslogistik

Lehrveranstaltungen:

TitelTypSWSLogistik III: ProduktionslogistikVorlesung2,00

Modulverantwortlich: Prof. Dr. Günther Pawellek

Dozent(in): Prof. Dr. Günther Pawellek

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Maschinenbau [Diplom] - Fertigungstechnik	Diplom	8.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Schiffbau und Meerestechnik	M.Sc.	2.	Wahlpflicht
Mediziningenieurwesen	M.Sc.	2.	Wahlpflicht
Produktentwicklung und Produktion	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 32

Kreditpunkte: 2,00

Voraussetzungen:

Keine

Angestrebte Lernergebnisse:

- Kenntnisse: über wirtschaftliche, flexible Organisation von Produktionsnetzen bzw. unternehmen
- Methodenkompetenz: Reorganisation und Planung effizienter, logistikorientierter Produktionsstrategien, -strukturen und –systeme
- Soziale Kompetenz: Leitung von Produktionsunternehmen, Mitarbeiter in Fertigung, Montage, Vertrieb, Beschaffung und Materialwirtschaft

- Einführung: Situation, Bedeutung und Innovationsschwerpunkte der Logistik im Produktionsunternehmen, Aspekte der Beschaffungs-, Produktions-, Distributions- und Entsorgungslogistik, Produktions- und Transportnetzwerke.
- Logistische Ziele und Produktionsstrukturen: Logistikorientierte Arbeitsweise in der Fabrik, kybernetische Produktionsorganisation und –steuerung (KYPOS), strukturierte Vernetzung, Senkung der Komplexität, integrierte Organisation, Integrierte Produkt- und Produktionslogistik (IPPL).
- Logistikgerechte Produkt- und Prozessstrukturierung: Logistikgerechte Produkt-, Materialflussund Informationsstrukturen.

- Logistikorientierte Produktionssteuerung: Situation und Entwicklungstendenzen, Logistik und Kybernetik, Marktorientierte Produktionsplanung, -steuerung, -überwachung, PPS-Systeme und Fertigungssteuerung, Produktionslogistik-Leitsysteme (PLL).
- Planung in der Produktionslogistik: Produktionslogistik-Konzepte, Einbindung von Zulieferern und Logistik-Dienstleistern, EDV-gestützte Hilfsmittel zur Planung der Produktionslogistik, IPPL-Funktionen, Wirtschaftlichkeit von Logistik-Projekten.
- Produktionslogistik-Controlling: Logistikgerechte Leistungs- und Kostenerfassung, Prozessgrößen und Prozessmengen, kybernetische Führungssysteme, Regelkreis "Unternehmen".
- Entwicklung von Optimierungstools für die Produktion (Übung): Software-Engineering, Lifecycle, Projektmanagement bei Softwareprojekten, Anforderungsdefinition, Problembeschreibung, Methoden, Hilfsmittel (SADT), Datenflussdiagramme, -lexikon (SSA), Systementwurf, Implementierung, Umsetzung, Benutzeroberfläche, Datenmodell, ER-Modelle, Datenbanken, IPPL-Tools, Programmierung, Anwendungen und Beispiele.

mündliche Prüfung

Medienformen:

Power Point, Tafelanschrieb, Folien

Literatur:

Pawellek, G.: Produktionslogistik: Planung – Steuerung – Controlling. Carl Hanser Verlag 2007

Modul: Prozessautomatisierungstechnik

Lehrveranstaltungen:

Titel Тур **SWS** Prozessautomatisierungstechnik Industrial Process Automation Vorlesung 2,00 Übung: Prozessautomatisierungstechnik / Exercise: Industrial Process Automation Übung 2,00

Modulverantwortlich: Prof. Dr.-Ing. Wolfgang Meyer

Dozent(in): Prof. Dr.-Ing. Wolfgang Meyer

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften – Systemtechnik	B.Sc.	5.	Pflicht
Elektrotechnik [Diplom] – Mess-,Steuerungs- und Regelungstechnik	Diplom	7.	Pflicht
Informatikingenieur [Diplom] – Konstruktion, Fertigung und Logistik	Diplom	7.	Wahlpflicht
Hochschulübergr. Studiengang Wirtschaftsingenieurwesen	Diplom	1.	Wahlpflicht
Mechatronics	M.Sc.	1.	Pflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	7.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	7.	Pflicht
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Flugzeug-Systemtechnik	M.Sc.	1.	Wahl
Theoretischer Maschinenbau	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 94

Kreditpunkte: 5,00

Voraussetzungen:

Grundkenntnisse in der Theorie der LTI-Systeme und der Informatik

Angestrebte Lernergebnisse:

- Kenntnisse: Modelltheorie, Petrinetz-Theorie, Diskrete Systemtheorie, Entscheidungstheorie, Organisationstheorie
- Methodenkompetenz: Analyse und Design komplexer Fertigungssysteme, Entwurf diskreter Verriegelungs- und Ablaufsteuerungen mit Petrinetzen, Softwareentwicklung für Speicherprogrammierbare Steuerungen SPS

- Systemkompetenz: Verständnis für Abstraktionsschritte beim Formalisieren, Auflösen der Zielkonflikte beim Partitionieren, Umgang mit System-Komplexität und Daten-Unsicherheit beim multikriteriellen Optimieren
- Lösungskompetenz: Problemidentifikation und Anforderungsanalyse für Industrieanwendungen, Klassifizierung und Auswahl geeigneter Problemlösungswerkzeuge
- Soziale Kompetenz: Englischsprachige Interaktion und Aufgabenzuordnung beim projektbezogenen Arbeiten am PC

Inhalt:

- Basisdefinitionen: Systemmodellierung und allgemeines Probemlösen
- Organisationstheorie: Unternehmensmatrix und GRAI-Methode
- Entscheidungstheorie: Komplexe Planung unter Unsicherheit
- Planungstheorie: Fertigungs-Strategien und Produktions-Planungssysteme PPS
- Modellbildung: Petrinetze und Automaten
- Steuerungsentwurf: Transportsteuerung mit Linearer Programmierung und Korrelationsverfahren
- Anwendungsanalyse: Fließfertigung in der Elektroindustrie
- Systemdesign: funktionale und SW-Architektur von Automatisierungssystemen
- System-Implementierungen:

 rozessdiagnose, Durchlaufzeitoptimierung, Auftragsterminierung, Transportsteuerung, Fabrikkoordination
- Gerätetechnik: Speicherprogrammierbare Steuerungen SPS

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Powerpoint Vorlesung, Internet Skript, PC Übung, Laboraufbau 'Transportsteuerung', Lehr-Video

Literatur:

- J. Lunze: "Automatisierungstechnik", 2. Auflage. Oldenbourg Verlag, München 2008
- J. Lunze: "Ereignisdiskrete Systeme". Oldenbourg Verlag, München 2006
- C. G. Cassandras, S. Lafortune: "Introduction to Discrete Event Systems", 2nd. Edition. Kluwer Academic Publ., London 2001
- W. Meyer: "Expert Systems in Factory Management Knowledge-based CIM". Ellis Horwood, New York 1990

Modul: Prozessdatenverarbeitung

Lehrveranstaltungen:

Titel	Тур	SWS
Prozessdatenverarbeitung	Vorlesung	2,00
Prozessdatenverarbeitung	Übung	1,00

Modulverantwortlich: Prof. Dr. Thomas Teufel

Dozent(in): Prof. Dr. Thomas Teufel

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	7.	Wahlpflicht
Elektrotechnik [Diplom] - Technische Informatik - Hardware	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - Algorithmen und Architekturen	Diplom	7.	Wahlpflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	7.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	5.	Pflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundkenntnisse linearer Differentialgleichungen und der Systemtheorie

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegende Prinzipien im Entwurf und der Implementierung linearer Automatisierungssysteme im Zeitbereich
- Methodenkompetenz: Modellbildung linearer Automatisierungssysteme
- Systemkompetenz: Formulieren, Analysieren und Lösen von Problemstellungen

Inhalt:

- Prozessautomatisierung durch Zustandsregelung dynamischer Systeme mittels Prozess/Mikrorechnern:
- mathematische Beschreibung dynamischer linear zeitinvarianter Systeme, Betrachtung im Zeitbereich, Zustandsraumdarstellung
- lineare Differentialgleichungen, Lösungsansätze, Normalformen, Vektordifferentialgleichungen, Matrix/Vektor-Schreibweisen
- Steuerbarkeit, Beobachtbarkeit linearer dynamischer Systeme
- Reglersynthese durch Zustandsrückführung
- Äquivalente Systembeschreibungen, Ähnlichkeitstransformationen
- Diskretisierung zeitkontinuierlicher Systeme, Abtastsysteme
- Implementierung von Abtastreglern auf Mikrorechnern
- Beispiele:
- elektromechanisches Positioniersystem
- "schwebender Magnet" (Linearisierung)

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Skript, Folien, Tafelanschrieb

Literatur:

R.C. Dorf, R.H. Bishop: Moderne Regelungstechnik. Pearson Studium, 2006

O. Föllinger: Lineare Abtastsysteme. Oldenbourg Verlag, 1990

G. Ludyk: Theoretische Regelungstechnik (Bd. 1+2). Springer Verlag, 1995

K. Ogata: State Space Analysis of Control Systems. Prentice Hall, 1967

J. Ackermann: Abtastregelung. Springer Verlag, 1988

Modul: Prozessmesstechnik

Lehrveranstaltungen:

Titel	Тур	SWS
Prozessmesstechnik	Vorlesung	2,00
Prozessmesstechnik	Übung	1,00

Modulverantwortlich: Prof. Dr. Jan Luiken ter Haseborg

Dozent(in): Prof. Dr. Jan Luiken ter Haseborg

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik	Diplom	6.	Pflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	8.	Pflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Bachelorabschluss in Elektrotechnik

Angestrebte Lernergebnisse:

- Kentnisse: Verständnis prozessmesstechnischer Zusammenhänge und Messtechnik weitverzweigter Anlagen, Signal- vorverarbeitung und -übertragung
- Methodenkompetenz: Modellierung und Bewertung komplexer Sensor- und Messdatenübertragungssysteme
- Systemkompetenz: Systemorientiertes Denken
- Soziale Kompetenz: Englischsprachige Kommunikation

Inhalt:

Die Prozeßmeßtechnik im Rahmen der Prozeßleittechnik

- Aufgaben der Prozeßmeßtechnik
- Die Instrumentierung von Prozessen
- Klassifizierung der Aufnehmer

Systemtheorie in der Prozeßmeßtechnik

- Allgemeine lineare Beschreibung der Aufnehmer
- Mathematische Beschreibung von allgemeinen Zwei-Toren

• Fourier-Transformation, Laplace-Transformation

Korrelationsmeßtechnik

- Einleitung
- Bedeutung der Breitbandsignale für die Korrelationsmeßtechnik
- Autokorrelationsfunktion (AKF)
- Kreuzkorrelationsfunktion (KKF)
- Anwendungen der AKF, der KKF
- Störfestigkeit der Korrelationsverfahren

Übertragung von analogen und digitalen Meßsignalen in der Prozeßmeßtechnik

- Einleitung
- Modulationsverfahren
- Amplitudenmodulation (AM) (Zeitfunktion, Frequenzspektrum, Bandbreitenbedarf, Wirkungsgrad, Einseitenbandübertragung, Die allgemeine AM, Demodulation der AM, Demodulation durch Gleichrichtung, Spitzenwertgleichrichtung)
- Frequenzmodulation (FM), Phasenmodulation (Zeitfunktion, Frequenzspektrum, Bandbreitenbedarf, Störabstandsverbesserung bei der FM, Demodulation der FM)
- Übertragung mehrerer Meßsignale über einen Kanal (Multiplex-Übertragung, Zeitmultiplex-Übertragung, Pulsmodulation, Frequenzmultiplex-Übertragung)
- Analog-Digital-Umsetzer (ADU) (Klassifizierung von Analog-Digital-Umsetzern, Parallelumsetzer, Halb-Parallelumsetzer, ADU mit stufenweiser Annäherung, ADU nach dem Spannungs-Zeit-Verfahren, Dual-Slope-Umsetzer, ADU nach dem Spannungs-Frequenz-Verfahren, Signal/Rausch-Abstand bei Analog-Digital-Umsetzern)
- Übertragung digitaler Meßsignale

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Tafel und Overheadfolien

Literatur:

Färber: "Prozeßrechentechnik", Springer-Verlag 1994

Kiencke, Kronmüller: "Meßtechnik", Springer Verlag Berlin Heidelberg, 1995

A. Ambardar: "Analog and Digital Signal Processing" (1), PWS Publishing Company, 1995, NTC 339

A. Papoulis: "Signal Analysis" (1), McGraw-Hill, 1987, NTC 312 (LB)

M. Schwartz: "Information Transmission, Modulation and Noise" (3,4), McGraw-Hill, 1980, 2402095

S. Haykin: "Communication Systems" (1,3), Wiley&Sons, 1983, 2419072

H. Sheingold: "Analog-Digital Conversion Handbook" (5), Prentice-Hall, 1986, 2440072

J. Fraden: "AIP Handbook of Modern Sensors" (5,6), American Institute of Physics, 1993, MTB 346

Modul: Quantencomputing

Lehrveranstaltungen:

Titel	Тур	SWS
Quantencomputing	Vorlesung	2,00
Quantencomputing	Übung	1,00

Modulverantwortlich: PD Dr. Christian Jansson

Dozent(in): PD Dr. Christian Jansson

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Technische Informatik - Hardware	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom]	Diplom	7.	Wahl
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Mathematik I und II

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegende Zusammenhänge klassischer Berechungen und des Quantencomputings sowie Grundlegende Kenntnisse der Quantenmechanik und Anwendungen des Quantencomputings
- Methodenkompetenz: Unterschiede der Methoden des klassischen parallelen Computings und des Quantencomputings
- Soziale Kompetenzen: Befähigung im Umgang mit der Fachliteratur und Selbstständiges und effizientes Lernen

- Einleitung
- Vom Bit zum Quantenregister
- Grundlagen der Quantenmechanik: Geschichte, Schrödinger Gleichung, Übergangssysteme, Experimente
- Grundlagen aus der linearen Algebra
- Postulate der Quantenmechanik
- Klassische Schaltkreise und Quantenschaltkreise
- Umkehrbare Berechnungen und Parallelität
- Algorithmus von Deutsch-Jozsa
- Teleportation

- Quanten-Fouriertransformation
- Optische Quantencomputer

mündliche Prüfung

Medienformen:

Folien, Tafelanschrieb

Literatur:

M.A. Nielsen, I.L. Chuang: Quantum Computation and Quantum Information, Cambridge University Press, 2001

M. Homeister: Quantum Computing verstehen, Vieweg, 2005

Modul: Radartechnik und -signalverarbeitung

Lehrveranstaltungen:

Titel	Тур	SWS
Radartechnik und -signalverarbeitung	Vorlesung	2,00
Radartechnik und -signalverarbeitung	Übung	1,00

Modulverantwortlich: Prof. Dr. Hermann Rohling

Dozent(in): Prof. Dr. Hermann Rohling

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Nachrichtentechnik - Hochfrequenztechnik und Optik	Diplom	7.	Wahlpflicht
Electromagnetics, Optics and Microwave Eng.	M.Sc.	3.	Wahlpflicht
Elektrotechnik	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Nachrichtenübertragung

Angestrebte Lernergebnisse:

- Kenntnisse: Verständnis über grundlegende Prinzipien und heutige Forschungsaktivitäten zum Design von Radarsystemen, Einblick in moderne Anwendungen (wie Automotive Radar).
- Methodenkompetenz: Modellbildung und Bewertung komplexer Systeme
- Systemkompetenz: Systemorientiertes Denken
- Soziale Kompetenzen: Befähigung zum selbstständigen und effizienten Lernen

- Grundlagen:
- Impuls- und Dauerstrichradare
- Radargleichung
- Dopplerfrequenz
- Sendesignalformen
- Detektions- und Meßverfahren in Radargeräten
- Aktuelle Anwendungen in Meß-, Regelungs- und Automatisierungstechnik
- Sekundärradartechnik für Flugsicherungsanwendungen

mündliche Prüfung

Medienformen:

Powerpoint Präsentation, Skript, Tafelanschrieb

Literatur:

A. Ludloff - Handbuch Radar und Radarsignalverarbeitung, Vieweg, Braunschweig 1993, ISBN 3-528-065680

H.-G. Unger - Hochfrequenztechnik in Funk und Radar, Teubner Studienskripte 1994, ISBN 3-519-20018-X

Skolnik - Introduction to Radar Systems, 2nd Edition, McGraw-Hill 1980, ISBN 0-07-066572-9

Levanon - Radar Principles, John Wiley & Sons 1988, ISBN0-471-85881-1

Modul: Projektseminar: Realisierung eines I&K Anwendungssystems

Lehrveranstaltungen:

TitelTypSWSRealisierung eines I&K Anwendungssystems / Realization of an I&K ApplicationSeminar1,00SystemRealisierung eines I&K Anwendungssystems / Realization of an I&K ApplicationProjekt3,00System

Modulverantwortlich: Prof. Dr. Volker Turau, Prof. Dr. Sibylle Schupp

Dozent(in): Prof. Dr. Volker Turau, Prof. Dr. Sibylle Schupp und Mitarbeiter

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	7.	Wahl
Elektrotechnik [Diplom] - Technische Informatik - I+K-Anwendungssysteme	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - I+K-Anwendungssysteme	Diplom	7.	Wahlpflicht
Information and Communication Systems	M.Sc.	3.	Wahlpflicht
Information and Media Technologies	M.Sc.	3.	Wahlpflicht
Hochschulübergr. Studiengang Wirtschaftsingenieurwesen	Diplom	1.	Wahl
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	3.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 124

Kreditpunkte: 6,00

Voraussetzungen:

- Bachelor in Informatik
- Grundkenntnisse in einer (möglichst objektorientierten) Programmiersprache
- Vertrautheit mit Grundkonzepten des Internet

Angestrebte Lernergebnisse:

- Kenntnisse: Konzepte, Techniken und Werkzeuge heutiger, innovativer Informations- und Kommunikationssysteme. Außerdem themenabhängig vertiefte Kenntnisse der für die Projektdurchführung benötigten Technologien
- Methodenkompetenz: Objektorientierte Analyse, Entwurf und Implementierung kennen und anwenden lernen.
- Systemkompetenz: Praktisch die Schwierigkeiten der Entwicklung eines größeren Systems erfahren

 Soziale Kompetenzen: Systemrealisierung im Team durchführen können (einschließlich Teamorganisation), präsentieren eigener Ergebnisse, selbständiges Aneignen benötigter Technologien und Programmiersprachen, Englischsprachige Kommunikation

Inhalt:

- Objektorientierte Analyse, Entwurf und Implementierung
- Eine objektorientierte Programmiersprache (typisch: Java)
- Kommunikationsprotokolle
- Weitere für das Projekt benötigte Software-Technologien
- Durchführung von Software-Entwicklungsprojekten

Studien/Prüfungsleistungen:

Präsentationen, mündliche Mitarbeit, abgegebene Programme

Medienformen:

PowerPoint Präsentation, Whiteboard, Softwareentwicklungswerkzeuge

Literatur:

lan Sommerville: Software-Engineering. Addison-Wesley. (Grundlagen: Analyse, Design, Realisierung)

J. Rumbaugh et al.: Objektorientiertes Modellieren und Entwerfen. Hanser, 1991. (Objektorientiertes OMT-Modell und Entwurfsprozeß)

Martin Fowler: UML Distilled, Applying the Standard Object Modeling Language. Addison Wesley, 1997. (Kompakte Einführung in die UML-Notation)

E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns, Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Modul: Realzeitsysteme

Lehrveranstaltungen:

Titel	Тур	SWS
Realzeitsysteme	Vorlesung	2,00
Realzeitsysteme	Übung	1,00

Modulverantwortlich: Prof. Dr. Thomas Teufel

Dozent(in): Prof. Dr. Thomas Teufel

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Informatik-Ingenieurwesen	B.Sc.	5.	Wahl
Informatikingenieur [Diplom]	Diplom	5.	Pflicht
Informationstechnologie	B.Sc.	5.	Wahlpflicht
Fach Informatik für GWL [Staatsexamen]	Lehramt	5.	Pflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	7.	Wahlpflicht
Technomathematik	Diplom	7.	Pflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundkenntnisse der Informatik und der Programmierung

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegende Verfahren und Lösungsansätze von Realzeitsystemen
- Methodenkompetenz: Auswahl der Methoden aufgrund realer Problemstellungen
- Systemkompetenz: Erkennen der realen Zeitanforderungen als zentrales Problem der Automatisierung
- Soziale Kompetenzen: Befähigung zum effizienten Lernen durch Übung

Inhalt:

Die Lösung von Grundaufgaben eines Realzeitsystems werden aus funktionaler Sicht, die Methoden der Betriebsmittelverwaltung aus Anwendersicht erklärt. Die einzelnen Prinzipien werden anhand praktischer Beispiele und bezogen auf reale Systeme veranschaulicht. Der Einfluß der Hardware-Architektur einer digitalen Rechenanlage auf Systemfunktionen in Realzeit wird gezeigt. Im Speziellen werden behandelt:

- Prozesse und parallele Prozesse
- Synchronisation und Kommunikation von Prozessen
- Programmiersprachen zur Implementierung paralleler Prozesse (ADA, C, PASCAL, M ODULA)
- Interrupt-Service in Realzeit
- Prozess-/Prozessor-Verwaltung
- Ein-/Ausgabe und Dateiverwaltung
- Strategien und Algorithmen zr Betriebsmittelverwaltung
- Vergleich verschiedener Systeme

mündliche Prüfung

Medienformen:

Skript, Folien, Tafelanschrieb

Literatur:

A. Burns, A. Wellings: Real-Time Systems and Programming Languages, Addison Wesley, 2001

Tanenbaum; Andrew S.: Betriebssysteme, Entwurf und Realisierung. Carl Hanser Verlag, 1990

Silberschatz, A.; Peterson, J.; Galvin, P.: Operating system concepts. Addison-Wesley Publishing, 1991

Tanenbaum, A.S.: Moderne Betriebssysteme. Carl Hanser Verlag, 1994

Laun, W.: Konzepte der Betriebssysteme. Springer Verlag, 1989

Kleinrock, L.: Queueing Systems. Wiley-Interscience, N.Y., 1975

Rembold, U.; Levi, P.: Realzeitsysteme zur Prozessautomatisierung. Carl Hanser Verlag, 1994

Modul: Grundlagen des IC-Entwurfes

Lehrveranstaltungen:

Titel	Тур	SWS
Grundlagen des IC-Entwurfes	Vorlesung	2,00
Grundlagen des IC-Entwurfes	Praktikum	2,00

Modulverantwortlich: Prof. Dr. Wolfgang Krautschneider

Dozent(in): Prof. Dr. Wolfgang Krautschneider

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mikroelektronik	Diplom	6.	Pflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	8.	Wahlpflicht
Informationstechnologie - Informationselektronik	B.Sc.	6.	Pflicht
Elektrotechnik	M.Sc.	2.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 94

Kreditpunkte: 5,00

Voraussetzungen:

• Grundlagen von elektronischen Bauelementen und Netzwerktheorie

Vorlesung "Elektrotechnik I und II"

Angestrebte Lernergebnisse:

- Kenntnisse: Simulationsverfahren für die unterschiedlichen Problemstellungen bei der Entwicklung mikro- und nanoelektronischer Schaltkreise.
- Methodenkompetenz: Simulation der elektrischen Funktionalität und Berücksichtigung von Zuverlässigkeitsaspekten während des Entwurfes.
- Lösungskompetenz: Verfahren und Strategien zur effizienten technologischen Realisierung komplexer integrierter Schaltungen

Inhalt:

- Simulationsprogramm SPICE (Transistormodelle, Simulationsoptionen)
- Strategien bei dem Entwurf integrierter Schaltkreise
- Beispiele von realisierten Chips
- Zuverlässigkeit mikroelektronischer Schaltungen,
- Simulationen der für die Zuverlässigkeit relevanten Größen
- Methoden zur Ermittlung des Langzeitverhalten von integrierten Schaltkreisen aus Daten von beschleunigten Messungen

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Power Point Präsentation, Folien, Skript, Tafel

Literatur:

R. J. Baker, CMOS - Circuit Design, Layout and Simulation, J. Wiley & Sons Inc 2. Auflage, 2005, ISBN: 047170055S

R.M. Kielkowski, Inside SPICE, 2. ediiton, McGraw-Hill, 1998

N. Reifschneider, CAE-gestützte IC-Entwurfsmethode, PRentice Hall, 1998

M.M. Mano und M.D. Ciletti, Digital Design, Pearson-Prentics Hall, 2007

Modul: Software für eingebettete Systeme

Lehrveranstaltungen:

Titel	Тур	SWS	
Software für eingebettete Systeme	Vorlesung	2,00	
Software für eingebettete Systeme	Übung	2,00	

Modulverantwortlich: Prof. Dr. Volker Turau

Dozent(in): Prof. Dr. Volker Turau

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 94

Kreditpunkte: 5,00

Voraussetzungen:

- Bachelor in Informatik oder Elektrotechnik
- Programmiersprache C
- Grundkenntnisse in Softwaretechnik
- Prinzipielles Verständnis von Mikroprozessoren

Angestrebte Lernergebnisse:

- Kenntnisse: Grundlegende Prinzipien und Vorgehensweisen für die Erstellung von Software für eingebettete Systeme
- Methodenkompetenz: Analyse komplexer Abläufe mit zeitlichen Ranbedingungen
- Systemkompetenz: Modularisierung komplexer Systeme

Inhalt:

- Einführung in eingebettete Systeme
- Softwareentwicklung für eingebettete Systeme
- Nebenläufige Systeme
- Echtzeit
- Programmierung eingebetteter Systeme
- Softwareentwurf eingebetteter Systeme
- Softwarequalität eingebetteter Systeme

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Power Point Präsentation, Folien, Tafelanschrieb, Aufgabenbeschreibungen

Literatur:

Peter Marwedel, Eingebettete Systeme, Springer Verlag, 2007

Peter Scholz, Softwareentwicklung eingebetteter Systeme, Springer Verlag, 2005

Peter Liggesmeyer, Dieter Rombach (Hrsg.): Software Engineering eingebetteter Systeme. Grundlagen - Methodik - Anwendungen. Spektrum Akademischer Verlag, 2005

Modul: Software-Sicherheit

Lehrveranstaltungen:

Titel	Тур	sws
Software Security / Software-Sicherheit	Vorlesung	2,00
Exercise: Software Security / Software-Sicherheit	Übung	1,00

Modulverantwortlich: Prof. Dr. Dieter Gollmann

Dozent(in): Prof. Dr. Dieter Gollmann

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	5.	Wahl
Informatikingenieur [Diplom] - I+K-Anwendungssysteme	Diplom	7.	Wahlpflicht
Information and Communication Systems	M.Sc.	3.	Wahlpflicht
Information and Media Technologies	M.Sc.	3.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Vertrautheit mit C oder C++; objekt-orientiertes Programmieren

Angestrebte Lernergebnisse:

- Kenntnisse: Hauptursachen für Sicherheitslücken in Software; aktuelle Methoden zur Identifikation und Vermeidung von Sicherheitslücken; Grundzüge der code-basierten Zugriffskontrolle.
- System- und Methodenkompetenz: Gefährdungsanalyse von Code und Softwaresystemen; sicheres Programmieren.

- Zuverlässigkeit & Softwaresicherheit
- Unicode Angriffe
- Integer-Überläufe
- Pufferüberläufe
- Wettlaufsituationen
- Testen für Sichereheit
- Typsichere Sprachen
- SQL Angriffe
- Scriptsprachen

- Identitätsbasierte Zugriffskontrolle
- Code-basierte Zugriffskontrolle
- Java Sicherheitsmodell
- .NET CLR Sicherheitsmodell
- Stack walks und History-basierte Zugriffskontrolle

Schriftliche Prüfung

Medienformen:

Powerpoint, Tafel

Literatur:

Viega & McGraw: Building Secure Software, Addison Wesley (2001)

Howard & LeBlanc: Writing Secure Code, 2nd Edition, Microsoft Press (2002)

LaMacchia, Lange, Lyons, Martin, Price: .NET Framework Security, Addison-Wesley Professional

(2002)

Li Gong: Inside Java 2 Platform Security, Addison-Wesley (1999)

Modul: Numerik und Computeralgebra

Lehrveranstaltungen:

TitelTypSWSSprachen und Algorithmen IIVorlesung2,00

Modulverantwortlich: Prof. Siegfried Rump

Dozent(in): Prof. Siegfried Rump

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Technische Informatik	Diplom	6.	Pflicht
Informatikingenieur [Diplom]	Diplom	6.	Wahlpflicht
Informationstechnologie	B.Sc.	6.	Wahlpflicht
Technomathematik	Diplom	6.	Pflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

Grundkenntnisse in Mathematik und Numerik, mind. eine Programmiersprache

Angestrebte Lernergebnisse:

• Kentnisse: Tieferes Verständnis numerischer und seminumerischer Programme

Inhalt:

- Schlecht konditionierte Probleme
- Einschließungsalgorithmen für lineare und nichtlineare Gleichungssysteme
- Sensitivitätsanalyse
- Interaktive Pakete: Maple, Mathematica
- Heuristische Algorithmen, threshold accepting, simulated annealing
- Matrixspeicher, Neuronale Netze

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Folien, Tafelanschrieb

Literatur:

Wird überarbeitet

Modul: Steuerungstechnik

Lehrveranstaltungen:

Titel Typ SWS

Steuerungstechnik / Control Systems for Machine Tools (Machine Tools IV) Vorlesung 2,00

Modulverantwortlich: Prof. Dr. Wolfgang Papiernik

Dozent(in): Prof. Dr. Wolfgang Papiernik

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatikingenieur [Diplom] - Konstruktion, Fertigung und Logistik	Diplom	8.	Wahlpflicht
Mechatronics	M.Sc.	2.	Pflicht
Maschinenbau [Diplom] - Fertigungstechnik	Diplom	8.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	8.	Pflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Mediziningenieurwesen	M.Sc.	2.	Wahlpflicht
Produktentwicklung und Produktion	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzungen:

Vordiplom, Werkzeugmaschinen I und II oder III.

Angestrebte Lernergebnisse:

 Kentnisse: Vermitteln von Kenntnissen über Aufbau, Funktion und Einsatz von numerischen Steuerungen für Werkzeugmaschinen und Roboter

Inhalt:

- Grundlagen zur Beschreibung von Raumkurven und zur Beschreibung von Bewegungen im Raum
- Konturelemente zur Programmierung von Werkstücken
- statische und kinematische Transformationen
- Bewegungsplanung und Bewegungsführung
- Roboterkinematiken
- Grundlagen und Algorithmen zur Transformation von Geschwindigkeiten mit Jacobi-Matrizen
- Antriebstechnik
- · Verfahren zur Drehmoment-, Drehzahl- und Lageregelung

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

Skript, Folien, Tafelanschrieb

Literatur:

Kief, B.: NC/CNC-Handbuch, Carl Hanser Verlag

Weck, M.: Werkzeugmaschinen Band 3: Automatisierung und Steuerungstechnik, VDI Verlag Düsseldorf

Farin, G.: Kurven und Flächen im Computer Aided Design. Vieweg Verlag Braunschweig/Wiesbaden

Modul: Strömungsmechanik

Lehrveranstaltungen:

Titel	Тур	SWS
Strömungsmechanik	Vorlesung	2,00
Übung: Strömungsmechanik	Übung	1,00

Modulverantwortlich: Prof. Dr. Heinz Herwig

Dozent(in): Prof. Dr. Heinz Herwig

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Maschinenbau	B.Sc.	5.	Pflicht
Mediziningenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Technische Thermodynamik I, II

Angestrebte Lernergebnisse:

 Kentnisse: Einführung in die Physik und die mathematische Modellierung von Strömungen sowie die Anwendung auf verschiedene Probleme in Natur und Technik

Inhalt:

Überblick

- · Physikalisch/mathematische Modellbildung
- Spezielle Phänomene
- Grundgleichungen der Strömungsmechanik
- Das Turbulenzproblem
- Stromfadentheorie f
 ür inkompressible Fluide
- Stromfadentheorie f
 ür kompressible Fluide
- Reibungsfreie Umströmungen
- Reibungsbehaftete Umströmungen
- Durchströmungen
- Vereinfachte Gleichungen für dreidimensionale Strömungen
- Spezielle Aspekte bei der numerischen Lösung komplexer Strömungsprobleme

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Powerpoint Präsentation, Skript, Tafel

Literatur:

Herwig, H.: Strömungsmechanik, 2. Auflage, Springer- Verlag, Berlin, Heidelberg, 2006

Herwig, H.: Strömungsmechanik von A-Z, Vieweg Verlag, Wiesbaden, 2004

Modul: Technische Akustik I: Akustische Wellen, Lärmschutz, Psychoakutstik

Lehrveranstaltungen:

TitelTypSWSTechnical Acoustics I / Technische Aktustik IVorlesung2,00Exercise: Technical Acoustics I / Übung: Technische Akustik IÜbung1,00

Modulverantwortlich: Prof. Dr. Otto von Estorff

Dozent(in): Prof. Dr. Otto von Estorff

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Flugzeug-Systemtechnik	M.Sc.	2.	Wahlpflicht
Produktentwicklung und Produktion	M.Sc.	2.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 45, Eigenstudium: 105

Kreditpunkte: 5,00

Voraussetzungen:

Mechanik I, II und Mathematik I, II, III wären hilfreich

Angestrebte Lernergebnisse:

- Kenntnisse: Vertiefte Kenntnisse der Akustik verknüpft mit einem breiten theoretischen und methodischen Fundament.
- Fertigkeiten: Theoriegeleitetes Anwenden anspruchsvoller Methoden und Messverfahren in der Akustik.
- Kompetenzen: Erkennen von Problemen; kreativer Umgang mit den Prozessen des wissenschaftlichen Aufbereitens und Formulierens von Fragestellungen.

Inhalt:

- Einführung und Motivation
- Schallfeldgrößen
- Akustische Wellen
- Schallquellen, Schallabstrahlung
- Schallenergie und –intensität
- Schallausbreitung
- Signalverarbeitung
- Psychoakustik

- Lärm
- Messverfahren in der Akustik
- Anwendungsbeispiele, Versuche

Studien/Prüfungsleistungen:

Klausur oder mündliche Prüfung

Medienformen:

PowerPoint Präsentation, Umdrucke, Folien, Tafelschrieb

Literatur:

Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin

Veit, I. (1988): Technische Akustik. Vogel-Buchverlag, Würzburg

Veit, I. (1988): Flüssigkeitsschall. Vogel-Buchverlag, Würzburg

Modul: Technische Akustik II: Raumakustik, Berechnungsverfahren

Lehrveranstaltungen:

TitelTypSWSTechnical Acoustics II / Technische Akustik IIVorlesung2,00Exercise: Technical Acoustics II / Technische Aktustik IIÜbung1,00

Modulverantwortlich: Prof. Dr. Otto von Estorff

Dozent(in): Prof. Dr. Otto von Estorff

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Bauingenieurwesen und Umwelttechnik [Diplom]	Diplom	6.	Wahlpflicht
Bauingenieurwesen und Umwelttechnik [Diplom] - Stadt-, Raum- und Verkehrsplanung	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - Technische Dynamik	Diplom	7.	Wahlpflicht
Mechatronics	M.Sc.	1.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik - Block II: Mechanik	Diplom	7.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	3.	Wahlpflicht
Flugzeug-Systemtechnik	M.Sc.	3.	Wahlpflicht
Produktentwicklung und Produktion	M.Sc.	3.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	3.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 45, Eigenstudium: 105

Kreditpunkte: 5,00

Voraussetzungen:

- Technischen Akustik I
- Mechanik I, II und Mathematik I, II, III (vor allem Differentialgleichungen)

Angestrebte Lernergebnisse:

- Kenntnisse: Vertiefte Kenntnisse interdisziplinärer Zusammenhänge in der Akustik (Schwerpunkt Berechnungsverfahren) und Einordnung des Fachgebietes in das wissenschaftliche Umfeld.
- Fertigkeiten: Theoriegeleitetes Anwenden anspruchsvoller Berechnungsverfahren in der Akustik.
- Kompetenzen: Bewerten unterschiedlicher Lösungsansätze in mehrdimensionalen Entscheidungsräumen.

Inhalt:

- Raumakustik
- Schallabsorber
- Standard-Berechnungen
- "Statistical Energy Approaches"
- Finite-Elemente-Methode
- Boundary-Elemente- Methode
- Geometrische Akustik
- Spezielle Formulierungen
- Anwendungen in der Praxis
- Übungen am PC: Programmierung von Elementen (Matlab)

Studien/Prüfungsleistungen:

Klausur oder mündliche Prüfung

Medienformen:

PowerPoint Präsentation, Umdrucke, Folien, Tafelschrieb

Literatur:

Cremer, L.; Heckl, M. (1996): Körperschall. Springer Verlag, Berlin

Veit, I. (1988): Technische Akustik. Vogel-Buchverlag, Würzburg

Veit, I. (1988): Flüssigkeitsschall. Vogel-Buchverlag, Würzburg

Gaul, L.; Fiedler, Ch. (1997): Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig, Wiesbaden

Bathe, K.-J. (2000): Finite-Elemente-Methoden. Springer Verlag, Berlin

Modul: Technische Schwingungslehre

Lehrveranstaltungen:

Titel	Тур	SWS
Technische Schwingungslehre	Vorlesung	2,00
Technische Schwingungslehre	Übung	1,00

Modulverantwortlich: Prof. Dr. Hoffmann, Prof. Dr. Iwankiewicz, Prof. Dr. Kreuzer

Dozent(in): Prof. Dr. Hoffmann, Prof. Dr. Iwankiewicz, Prof. Dr. Kreuzer

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Flugzeug-Systemtechnik	B.Sc.	5.	Pflicht
Allgemeine Ingenieurwissenschaften - Mechatronik	B.Sc.	5.	Pflicht
Allgemeine Ingenieurwissenschaften - Theoretischer Maschinenbau	B.Sc.	5.	Pflicht
Bauingenieurwesen und Umwelttechnik [Diplom]	Diplom	5.	Wahlpflicht
Informatikingenieur [Diplom] - Technische Dynamik	Diplom	7.	Wahlpflicht
Maschinenbau [Diplom] - Fertigungstechnik	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Konstruktionstechnik - Flugzeugsystemtechnik	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Konstruktionstechnik - Produktentwicklung	Diplom	7.	Wahlpflicht
Maschinenbau [Diplom] - Energietechnik	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Thermische Energieanlagen und Schiffsmaschinenbau - Thermische Energieanlagen	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Thermische Energieanlagen und Schiffsmaschinenbau - Schiffsmaschinenbau	Diplom	5.	Pflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	5.	Pflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	7.	Pflicht
Schiffbau [Diplom]	Diplom	5.	Pflicht
Technomathematik	Diplom	5.	Pflicht
Allgemeine Ingenieurwissenschaft (neu)	B.Sc.	5.	Pflicht
Bauingenieur-/Umweltingenieurwesen	B.Sc.	5.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Energietechnik	M.Sc.	1.	Pflicht
Maschinenbau	B.Sc.	5.	Pflicht
Maschinenbau	B.Sc.	5.	Pflicht
Maschinenbau	B.Sc.	5.	Pflicht

Mediziningenieurwesen	M.Sc.	1.	Wahlpflicht
Produktentwicklung und Produktion	M.Sc.	1.	Pflicht
Schiffbau und Meerestechnik	M.Sc.	1.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 45, Eigenstudium: 105

Kreditpunkte: 5,00

Voraussetzungen:

Kenntnisse aus Höhere Mathematik und Mechanik für Ingenieure I und II (Mechanik für Ingenieure III)

Angestrebte Lernergebnisse:

- Vermitteln von Grundlagen der technischen Dynamik zur Analyse technischer Schwingungssysteme mit endlich vielen Freiheitsgraden. Erprobung der Methoden an Beispielen aus dem Maschinenbau und der Strukturdynamik.
- Kenntnisse: Grundlegende Phänomene und Methoden der Schwingungslehre
- Methodenkompetenz: Modellbildung und Analyse schwingungsfähiger Systeme auf Basis mathematischer Grundlagen
- Systemkompetenz: Erkennen von Komponenten und Systemzusammenhängen schwingungsfähiger Systeme
- Soziale Kompetenzen: Eigen- und Teamarbeit bei Erarbeitung und Einübung der Lehrinhalte

Inhalt:

- Modellierung mechanischer Schwingungssysteme
- Kinematik von Mehrkörpersystemen
- Grundlagen der Kinetik
- Prinzipe der Mechanik
- Kinetik gewöhnlicher Mehrkörpersysteme, automatische Generierung der Bewegungsgleichungen
- Finite-Elemente-Systeme
- Kontinuierliche Systeme
- Zustandsgleichungen mechanischer Systeme
- Allgemeine Lösung zeitinvarianter Schwingungssysteme
- Stabilität und Beschränktheit
- Freie Schwingungen, Schwingungsformen, optimale Eigenschwingungen
- Erzwungene Schwingungen, Resonanz, Scheinresonanz, Tilgung
- Grundlagen nichtlinearer Schwingungen mit einem Freiheitsgrad

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Folien- und Tafelanschrieb, Powerpoint-Präsentation

Literatur:

Krätzig, W. B.; Niemann, H.-J.: Dynamics of Civil Engineering Structures. Rotterdam: A. A. Balkema, 1996.

Müller, P. C.; Schiehlen, W. O.: Linear Vibrations. Dordrecht: Nijhoff, 1985.

Modul: Theorie und Entwurf regelungstechnischer Systeme

Lehrveranstaltungen:

TitelTypSWSControl Systems Theory and DesignVorlesung2,00Control Systems Theory and DesignÜbung2,00

Modulverantwortlich: Prof. Dr. Herbert Werner

Dozent(in): Prof. Dr. Herbert Werner

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Flugzeug-Systemtechnik	B.Sc.	6.	Pflicht
Allgemeine Ingenieurwissenschaften - Mediziningenieurwesen	B.Sc.	6.	Pflicht
Allgemeine Ingenieurwissenschaften - Systemtechnik	B.Sc.	6.	Pflicht
Allgemeine Ingenieurwissenschaften - Theoretischer Maschinenbau	B.Sc.	6.	Pflicht
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik	Diplom	6.	Pflicht
Informatikingenieur [Diplom] - Technische Dynamik	Diplom	8.	Wahlpflicht
Mechatronics	M.Sc.	2.	Pflicht
Maschinenbau [Diplom] - Konstruktionstechnik - Flugzeugsystemtechnik	Diplom	6.	Pflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	6.	Pflicht
Mechatronik/Joint Curriculum Mechatronik	Diplom	6.	Pflicht
Mediziningenieurwesen	Diplom	6.	Pflicht
Technomathematik	Diplom	6.	Wahlpflicht
Elektrotechnik	M.Sc.	1.	Pflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Energietechnik	M.Sc.	1.	Wahlpflicht
Flugzeug-Systemtechnik	M.Sc.	1.	Pflicht
Produktentwicklung und Produktion	M.Sc.	1.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	1.	Pflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 94

Kreditpunkte: 5,00

Voraussetzungen:

Grundlagen der Regelungstechnik

Angestrebte Lernergebnisse:

- Kenntnisse: Zustandsraumverfahren der Regelungstechnik, Digitale Regelung, Grundlagen der Systemidentifikation
- Methodenkompetenz: Modellierung dynamischer Systeme und Synthese von Regelkreisen im Zustandsraum
- System- und Lösungskompetenz: Auswahl geeigneter Analyse- und Synthesemethoden
- Soziale Kompetenz: Englischsprachige Kommunikation

Inhalt:

Zustandsraumverfahren (Eingrößensysteme)

- Zustandsraummodelle und Übertragungsfunktionen, Zustandsrückführung Koordinatenbasis des Zustandsraums und Ähnlichkeitstransformationen
- Lösung der Zustandsgleichung, Matrix-Exponentialfunktion, Satz von Caley-Hamilton
- Steuerbarkeit und Polvorgabe
- Zustandsschätzung, Beobachtbarkeit, Kalman-Zerlegung
- Beobachtergestützte Zustandsregelung, Folgeregelung
- Übertragungsnullstellen
- Optimale Polvorgabe, Verfahren der symmetrischen Wurzelortskurven

Mehrgrößensysteme

- Übertragungsmatrizen, Zustandsraummodelle von Mehrgrößensystemen, Gilbert-Realisierung
- Pole und Nullstellen von Mehrgrößensystemen, minimale Realisierung
- Stabilität von Regelkreisen
- Polvorgabe für Mehrgrößensysteme, LQR-Entwurf, Kalman-Filter

Digitale Regelung

- Zeitdiskrete Systeme: Differenzengleichungen und z-Transformation
- Zeitdiskrete Zustandsraummodelle, Abtastsysteme, Pole und Nullstellen
- Frequenzgang von Abtastsystemen, Wahl der Abtastrate

Systemidentifikation und Modellreduktion

- Methode der kleinsten Fehlerquadrate, ARX-Modelle, Modellanregung
- Identifikation von Zustandsraummodellen, Subspace-Identifikation
- Balancierte Realisierung und Reduktion der Modellordnung

Fallstudie

Modellierung und Mehrgrößenregelung eines Verdampfers in Matlab/Simulink

Software-Werkzeuge

Matlab/Simulink

Studien/Prüfungsleistungen:

schriftliche Prüfung

Medienformen:

Tafelanschrieb, Folien, Matlab/Simulink-Demos (Beamer), Skript

Literatur:

Werner, H., Lecture Notes "Control Systems 2"

T. Kailath "Linear Systems", Prentice Hall, 1980

G.F. Franklin, J.D. Powell and A. Emami-Naeini "Feedback Control of Dynamic Systems", Addison Wesley, 2002

K.J. Astrom, B. Wittenmark "Computer Controlled Systems" Prentice Hall, 1997

L. Ljung "System Identification - Theory for the User", Prentice Hall, 1999

Modul: Umweltmesstechnik

Lehrveranstaltungen:

Titel	Тур	SWS
Umweltmesstechnik	Vorlesung	2,00
Umweltmesstechnik	Übung	1,00

Modulverantwortlich: Prof. Dr. Gerhard Matz

Dozent(in): Prof. Dr. Gerhard Matz

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Mess-,Steuerungs- und Regelungstechnik - Messsysteme	Diplom	7.	Wahlpflicht
Elektrotechnik/Informatik [Staatsexamen]	Lehramt	5.	Wahlpflicht
Grafische Technik-Medientechnik [Staatsexamen]	Lehramt	5.	Wahlpflicht
Mechatronics	M.Sc.	1.	Wahlpflicht
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Elektrotechnik	M.Sc.	3.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Bachelor Elektrotechnik

Angestrebte Lernergebnisse:

- Kenntnisse: Vertiefende Kenntnisse über analytische Instrumente zur Erfassung umweltrelevanter Stoffe in Emissionen.
- Methodenkompetenz: Theoriegeleitetes Anwenden anspruchsvoller Methoden und Verfahren der Umweltmesstechnik
- Systemkompetenz: Einweisung in Komplexität von Umweltmesssystemen; der Gasprobenahme, Gaseinlaß in Geräte und pneumatische Systeme, Vakuumtechnik und Sensortechniken, Erzeugung und Verhalten von Ionen in elektrischen und magnetischen Feldern, Elektronik und Software zur Dateninterpretation
- Problemlösungskompetenz: Zergliedern von Problemen, Beherrschen der Schnittstellenproblematik und der Lösungsmethodik
- Soziale Kompetenz: Diskussion über umweltrelevante Fragen, über interdisziplinäre Zusammenhänge und Einordnung des Fachgebietes Umweltmesstechnik in das wissenschaftliche und gesellschaftliche Umfeld

Inhalt:

- Emission Transmission Immission
- Schadstoffe in Luft, Wasser und Boden
- Chemische, physikalische und toxische Eigenschaften von Schadstoffen
- Gesetzliche Bestimmungen, Richtlinien und Normen
- Forschung und Entwicklung in der Umweltmesstechnik
- Abgasmesstechnik an Kraftfahrzeugen
- Rollenprüfstand
- Probengaskonditionierung
- Gerätetechnik für Abgasmessung Klassische Einkomponenten-Messtechnik:
- Nicht-Dispersive-Infrarot Photometrie f
 ür CO2, CO, KW
- Chemilumineszenz für NOX Photomultiplier
- Flammen-Ionisations-Detektor f
 ür KW
- Neue Mehrkomponenten-Messtechnik
- Fourier-Transform-Infrarot-Messtechnik und
- Massenspektrometrie:
- Vakuumtechnik
- Vor- und Hochvakuum, Pumpen, Ventile, Dichtungen, Probeneinlaß
- Ionisierung: Elektronenstoß-, Chemische-, Mehrphotonen-, Fast-Atom-Bombardment
- Massenfilter: Magnetische, elektrische, HF-Quadrupol und Ionenfalle, Time-of-flight
- Detektoren: Faraday Cup, Sekundär-Elektronen-Vervielfacher, Channeltron, Channelplate
- Steuer- und Auswerteelektronik
- Gaschromatographen zur Gemischtrennung
- Abgasmesstechnik an Kraftwerken
- Leitfähigkeitsmessung und UV-Fluoreszenz für SO2
- Paramagnetischer Effekt für Sauerstoff
- Photometrische Messung von Staub
- Staubmessung mit Filterband, Staubwaage
- Qualitätskontrolle bei der Abgasmessung

Studien/Prüfungsleistungen:

mündliche Prüfung

Medienformen:

PP-Vortrag, Folien im TUHH-Intranet, Homepage Messtechnik Matz Vorlesungen

Literatur:

Wird überarbeitet

Modul: Verifizierte Softwaresysteme

Lehrveranstaltungen:

TitelTypSWSVerifizierte Softwaresysteme/Verified Software SystemsVorlesung2,00Übung: Verifizierte Softwaresysteme/Lab class: Verified Software SystemsÜbung2,00

Modulverantwortlich: Prof. Dr. Sibylle Schupp

Dozent(in): Prof. Dr. Sibylle Schupp

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom]	Diplom	7.	Wahl
Elektrotechnik [Diplom] - Technische Informatik - I+K-Anwendungssysteme	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - Algorithmen und Architekturen	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - I+K-Anwendungssysteme	Diplom	7.	Wahlpflicht
Information and Communication Systems	M.Sc.	1.	Wahlpflicht
Information and Media Technologies	M.Sc.	1.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	1.	Wahlpflicht
Verfahrenstechnik [Diplom]	Diplom	7.	Wahl
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 56, Eigenstudium: 94

Kreditpunkte: 5,00

Voraussetzungen:

Diskrete Mathematik, Angewandte Logik

Angestrebte Lernergebnisse:

• Kenntnisse: grundlegender Zusammenhänge, Theorien und Methoden des Fachgebietes.

Inhalt:

- Logische Grundlagen: Wiederholung von Aussagenlogik, Prädikatenlogik Entscheidungsprobleme: Erfüllbarkeit, Folgerbarkeit, Modellüberprüfung, Modellgenerierung
- Software-Abstraktionen und automatisiertes Testen von Spezifikationen (Alloy)
- Temporal Logic of Actions (TLA+, +CAL)

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Präsentation (pdf), Tafelanschrieb

Literatur:

Uwe Schöning: Logik für Informatiker, Spektrum Akad. Vlg., Hdg. Erscheinungsdatum: 2000, Auflage: 5. Aufl., ISBN: 3827410053

Modul: Verkehrstheorie für Kommunikationsnetze

Lehrveranstaltungen:

Titel

Verkehrstheorie für Kommunikationsnetze/ Queueing Theory for Communication
Networks

Übung: Verkehrstheorie für Kommunikationsnetze/ Exercise: Queueing Theory for Communication Networks

Typ SWS

Vorlesung 2,00

1,00

Communication Networks

Modulverantwortlich: Prof. Dr. Ulrich Killat

Dozent(in): Prof. Dr. Ulrich Killat

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Elektrotechnik [Diplom] - Nachrichtentechnik	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - I+K-Anwendungssysteme	Diplom	7.	Wahlpflicht
Informatikingenieur [Diplom] - Kommunikation in Netzen	Diplom	7.	Wahlpflicht
Information and Communication Systems	M.Sc.	1.	Wahlpflicht
Elektrotechnik	M.Sc.	1.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Wahrscheinlichkeitsrechnung

Angestrebte Lernergebnisse:

- Kenntnisse: Problemklassen und Lösungsansätze für Warteschlangenprobleme in Netzen
- Methodenkompetenz: Modellbildung mit Warteschlangen, verschiedene Lösungsverfahren
- Systemkompetenz: Verständnis für Abstraktionsschritte und Zielkonflikte
- Problemlösungskompetenz: Identifikation des angemessenen Systemmodells
- Soziale Kompetenzen: Englischsprachige Kommunikation

Inhalt:

- Zufallsvariablen, Stochastische Prozesse, Markow Ketten
- Poisson Prozeß
- Deterministisches Warteschlangenmodell
- Geburts- und Sterbeprozeß
- Satz von Little
- Systeme mit mehreren Bedienstationen

- M/G/1 System
- Statische und dynamische Prioritäten
- Token Verfahren
- Netze von Warteschlangen
- Flußkontrolle
- ATM Koppelfelder

Studien/Prüfungsleistungen:

Schriftliche Prüfung

Medienformen:

Skript, Folien, Tafelanschrieb

Literatur:

P.G. Harrison, N.M. Patel: Performance Modelling of Communication Networks and Computer Architectures, Addison Wesley (1993)

Modul: Werkstoffe der Mikroelektronik

Lehrveranstaltungen:

TitelTypSWSWerkstoffe der Mikroelektronik / Microelectronic MaterialsVorlesung2,00

Modulverantwortlich: Prof. Dr. Wolfgang Bauhofer

Dozent(in): Prof. Dr. Wolfgang Bauhofer

Sprache: Deutsch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Allgemeine Ingenieurwissenschaften - Materialwissenschaften	B.Sc.	5.	Pflicht
Elektrotechnik [Diplom] - Mikroelektronik - Physik und Technologie	Diplom	7.	Pflicht
Informatikingenieur [Diplom] - Informationselektronik	Diplom	7.	Wahlpflicht
Microelectronics and Microsystems	M.Sc.	1.	Wahlpflicht
Informationstechnologie - Informationselektronik	B.Sc.	5.	Pflicht
Materials Science	M.Sc.	1.	Wahlpflicht
Joint European Master Programm Materials Science	M.Sc.	1.	Wahlpflicht
Joint European Master Programm Materials Science	M.Sc.	3.	Wahlpflicht
Elektrotechnik	M.Sc.	1.	Wahl
Informatik-Ingenieurwesen	M.Sc.	1.	Wahlpflicht
Produktentwicklung und Produktion	M.Sc.	1.	Wahlpflicht

Zeitraum: Wintersemester

Arbeitsaufwand: Präsenzstudium: 28, Eigenstudium: 62

Kreditpunkte: 3,00

Voraussetzung:

Keine

Angestrebte Lernergebnisse:

- Kenntnisse: Vertiefte Kenntnisse über technisch wichtige Eigenschaften von Materialien, die in mikroelektronischen Bauelementen Anwendung finden, wichtige Charakterisierungsmethoden, moderne Entwicklungen auf dem Gebiet der mikroelektronischen Materialien
- Methodenkompetenz: Fähigkeit, das Potenzial neuer Materialien für mikrolektronische Anwendungen abzuschätzen

Inhalt:

I. Halbleiter

- Kristallstrukturen
- Energielücke und Periodensystem
- Gitterdynamik
- Elektronische Bandstruktur
- Störstellen
- Optische Eigenschaften
- Neue Entwicklungen: Halbleiter für den blauen Spektralbereich, Polymerelektronik, Kohlenstoff-Nanoröhrchen

II. Isolatoren

- Die Si/SiO2 Grenzfläche
- Dielektrika f
 ür h
 öchstintegrierte Schaltungen

III. Metalle

- Metallisierung für integrierte Schaltungen, Silizide
- Metall/Halbleiter Grenzflächen
- Magnetoelektronik (MRAMs)

Studien/Prüfungsleistungen:

Mündliche Prüfung

Medienformen:

Powerpoint Präsentation, Tafelanschrieb

Literatur:

G. Burns: Solid State Physics, Academic Press, 1985

Karl W. Böer: Survey of Semiconductor Physics, Van Nostrand Reinhold, 1990

Modul: Zuverlässigkeit in der Maschinendynamik

Lehrveranstaltungen:

TitelTypSWSZuverlässigkeit in der Maschinendynamik Reliability in Engineering DynamicsVorlesung2,00Übung: Zuverlässigkeit in der Maschinendynamik Reliability in EngineeringÜbung1,00

Modulverantwortlich: Prof. Dr. Uwe Weltin

Dozent(in): Prof. Dr. Uwe Weltin

Sprache: Englisch

Curriculum:

Studiengang	Abschluss	Semester	Modus
Informatikingenieur [Diplom] - Technische Dynamik	Diplom	8.	Wahlpflicht
International Production Management	M.Sc.	2.	Pflicht
Mechatronics	M.Sc.	2.	Wahlpflicht
Maschinenbau [Diplom] - Fertigungstechnik	Diplom	6.	Wahlpflicht
Maschinenbau [Diplom] - Konstruktionstechnik - Produktentwicklung	Diplom	8.	Wahlpflicht
Maschinenbau [Diplom] - Thermische Energieanlagen und Schiffsmaschinenbau - Thermische Energieanlagen	Diplom	8.	Wahlpflicht
Maschinenbau [Diplom] - Thermische Energieanlagen und Schiffsmaschinenbau - Schiffsmaschinenbau	Diplom	8.	Wahlpflicht
Maschinenbau [Diplom] - Theoretischer Maschinenbau	Diplom	8.	Wahlpflicht
Mechatronik/Joint Curriculum Mechatronik - Block II: Mechanik	Diplom	8.	Wahlpflicht
Informatik-Ingenieurwesen	M.Sc.	2.	Wahlpflicht
Energietechnik	M.Sc.	2.	Wahlpflicht
Flugzeug-Systemtechnik	M.Sc.	2.	Wahlpflicht
Theoretischer Maschinenbau	M.Sc.	2.	Wahlpflicht

Zeitraum: Sommersemester

Arbeitsaufwand: Präsenzstudium: 42, Eigenstudium: 78

Kreditpunkte: 4,00

Voraussetzungen:

Grundlagen der Mathematik und Physik

Angestrebte Lernergebnisse:

Objektorientierte Einführung in Zuverlässigkeitssicherungsmaßnahmen in der Entwicklung und Produktion

Inhalt:

- Einleitung und Überblick der Maschinendynamik
- Schwingungsisolation: Auslegung einer elastischen Maschinenbettlagerung
- Modellbildung und Berechnung der erzwungenen Maschinenschwingungen
- Berechnung der durch Schwingungen verursachten Beanspruchung der elastischen Maschinenlagerung
- Diskussion geeigneter Materialeigenschaften. Woehlerkonzept. Testplan und statistische Bewertung der Vertrauensgrenzen gemäß der Weibull Theorie
- Kumulative Schadensvorhersage mit der Miner-Regel
- Methoden zur Verifikation und Validierung der vorhergesagten Lebensdauer. Diskussion und statistische Bewertung der Testergebnisse. Success Run, Bayer-Lauster Nomogramm, Sudden Death Methode
- Systemzuverlässigkeit, Boolsche Theorie, FMEA
- Moderne Methoden der Feldauswertung, Nelsons Methode

Stu	dien	/Prü	func	ıslei	stun	gen:

Mündliche Prüfung		
Medienform:		

Power Point, Tafelanschrieb, Folien

Literatur:

Wird überarbeitet