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ABSTRACT
Parallel firewalls offer a scalable architecture for the next generation of high-speed networks. While these parallel
systems can be implemented using multiple firewalls, the latest generation of stream processors can provide similar
benefits with a significantly reduced latency due to locality.

This paper describes how the Cell Broadband Engine (CBE), a popular stream processor, can be used as a
high-speed packet filter. Results show the CBE can potentially process packets arriving at a rate of 1 Gbps with
a latency less than 82 µ-seconds. Performance depends on how well the packet filtering process is translated
to the unique stream processor architecture. For example the method used for transmitting data and control
messages among the pseudo-independent processor cores has a significant impact on performance. Experimental
results will also show the current limitations of a CBE operating system when used to process packets. Possible
solutions to these issues will be discussed.
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1. INTRODUCTION
As network speeds, traffic volumes, and the demand for Quality of Service (QoS) continue to increase, so must
the performance of network firewalls (packet filters). Unfortunately a firewall can easily become a bottleneck
in such a demanding environment since packets must be inspected and compared against complex rule sets and
tables, a time-consuming process. Therefore new packet filtering approaches are needed for current and future
high-speed environments.

Parallelization has been shown to provide a scalable solution for the next generation of high-speed firewalls.1–3

These systems consist of an array of firewalls configured in either a data parallel1 or function parallel fashion.2,3

Scalability is achieved by adding additional firewalls to the array which will either improve throughput (data
parallel) or reduce latency (function parallel). While these parallel systems have several performance advantages,
the latest generation of parallel processors can offer further improvements in performance. For example due to
locality, the intercommunication latency between cores in a parallel processor is significantly less than the latency
associated with inter-device communication. Therefore the current generation of multicore processors offers an
interesting platform for network firewalls.

The stream processor offers a multicore architecture and programming paradigm that is applicable to high-
speed packet filtering. This paper will describe and utilize the Cell Broadband Engine (CBE), a stream processor
co-developed by IBM, Sony, and Toshiba. The heterogeneous processor consists of one Power Processor Element
(PPE) and eight Synergistic Processor Elements (SPE). These SPE’s can operate independently and have high
speed memory and a high-bandwidth bus interface available. Given this design, it is possible to implement
data and function parallel versions of the firewall; however as will be described and shown experimentally, data
parallel design is a more suitable approach.

Experimental results using a Sony PlayStation 3 (PS3) will indicate the CBE can filter packets (apply a
firewall policy) at a rate of 1 Gbps with a latency less than 82 µ-seconds. Using the system to filter actual
traffic, the system is only able to operate at 30 Mbps. As will be explained, this limitation is due to the current
operating system. Specifically the bottleneck occurs when reading packets from the NIC, not packet filtering.
While the CBE-based firewall is still impressive, this paper will describe solutions that will help the CBE to
operate closer to its true capacity.

The remainder of this paper is structured as follows. Section 2 reviews the firewall policies and parallel
designs. Section 3 describes stream processing and stream processors. Stream processing designs for parallel
network firewalls is given in section 4. Section 5 provides experimental results of a CBE-based firewall and
discusses limitations. Finally, section 6 summarizes this paper and discusses future work.



2. FIREWALLS AND PACKET FILTERING

Inspecting traffic sent between networks, a firewall provides access control, auditing, and traffic control based on
a security policy.4–6 The security policy is a list of ordered rules that defines the action to perform on matching
packets. A rule can be represented as a 5-tuple (protocol, IP source address, source port number, IP destination
address, destination port number). Fields can be fully specified or contain wildcards ‘*’ in standard prefix
format. For example the prefix 192.* would represent any IP address that has 192 as the first dotted-decimal
number. In addition to the prefixes, each filter rule has an action, which is to accept or deny. An accept action
passes the packet into or from the secure network, while deny causes the packet to be discarded. Rules are
applied in order to every arriving packet until a match is found; otherwise, a default action is performed.5,6 This
is considered a first-match policy and is the default behavior for the majority of firewall systems including the
Linux firewall implementation iptables.7 A packet matches a rule when every tuple of the packet is a subset
of the corresponding tuple in the rule.

2.1 Parallel Firewall Designs

As described in the introduction, parallelization offers a scalable technique for improving the performance of
network firewalls. Using this approach an array of m firewalls processes packets in parallel. Given the array of
firewalls, different systems can be created, based on what is distributed: packets or rules. Using terminology from
parallel computing, distributing packets can be considered data-parallel since the data (packets) is distributed
across the firewall.8 In contrast, function-parallel designs distribute the policy rules across the firewalls.

A data-parallel firewall architecture consists of an array of identically configured firewalls.1 Distributing
packets across the array allows a data-parallel firewall to increase system throughput (number of packets processed
per unit time) as compared to a traditional (single machine) firewall.1 Furthermore, increased throughput is
easily achieved with the addition of firewalls; therefore, this approach is very scalable.

Unlike the data-parallel model which distributes packets, the function-parallel design distributes policy rules
across the same firewall array.2 When a packet arrives to the function-parallel system it is forwarded to every
firewall. Each firewall processes the packet using its local policy. Since the local policies are smaller than the
original, the processing delay is reduced as compared to a traditional firewall. However, the policy distribution
must be done such that only one firewall will accept packets accepted by the original policy. These necessary
policy distribution techniques are discussed in.9,10

3. STREAM PROCESSORS

Stream processors allow an application programmer to access a large number of processing cores indirectly
through the use of kernel functions. Stream processors excel when computational complexity, data parallelism,
and data locality are involved.16 Given a predetermined input and output buffer size, the stream processor control
unit manipulates the processing cores, bus control, and performs memory management without programmer
intervention. Because memory transfers are expected to happen in bulk, stream processors are optimized for high
bandwidth, not latency. There are similarities between kernel functions and thread level parallelism, however,
stream processors have the ability to create and manage many times the number of kernels than a generic CPU
can threads.16,17 While mimicking function parallelism within stream processors is possible, it is not an inherent
property by design.

The IBM/Sony/Toshiba Cell Broadband Engine (CBE) is a unique, media based, stream processor capable
of 204 Gflops. It is a single chip containing a dual threaded 64-bit PowerPC core and eight SIMD based, single
precision, coprocessors. The main element is called the Power Processing Unit (PPU) while the coprocessors
are called Synergistic Processing Units (SPU) (also referred to individually as Synergistic Processing Elements
(SPE)). The processor also has an integrated high-speed memory, high-bandwidth bus interface. The PPE and
the SPE’s communicate through an internal high-speed Element Interconnect Bus (EIB) which has a peak rate
of 204 GBps.

The required work must be correctly managed across the PPU and SPE’s to fully realize the CBE potential.
The processor’s communication channels allows the transmission of data among the computation elements. Each
SPE has a small local store and a Direct Memory Access (DMA) controller that allows the high-bandwidth



transmission of data between the local store and main memory. Signaling between the SPE’s and PPE occurs
via mailboxes. Note communication between SPE’s must occur using the PPE as an intermediary.

Using the array of SPE’s, the CBE is capable of processing packets using two forms of parallelism: data and
function parallel. In both modes, the PPU forwards packets to each SPE where the PPU is the policy enforcer and
the SPE’s are the policy resolvers. Processing packets in data parallel is achieved by sending a different packet to
each SPE. Each SPE uses an identical kernel function and all resolve using identical policy sets. Function parallel
is achieved by sending the same packet to each SPE. Each SPE uses an identical kernel function, however, each
SPE resolves using only a unique portion of the entire policy set. The policy enforcer / policy resolver model was
used in part because the SPE’s are not capable of reading packets from the network interface card. While the
SPU service based model is possible, where the SPE’s directly service the network adapter, it requires extensive
modification to the operating system and time did not allow the use of this approach.

4. STREAM PROCESSING TECHNIQUES

The driving requirements of the parallel firewall under test are efficiency, support of both function and data
parallel modes, and reconfigurable policy sets. Data and function parallel modes of operation in our setup are
compile time options, so mode switching during operation is not possible. Since both modes of operation are
supported, neither is fully optimized and therefore potential bandwidth remains. Policy sets are loaded one time
from a text file during program initialization.

Program division occurs along PPU and SPU lines. The PPU is responsible for packet capture and transferring
packets to each SPE for policy resolution. The PPU performs policy enforcement during packet injection based
on the returned SPE results. For efficiency, elegance, and simplicity’s sake the SPE kernel is identical in our
setup for both data and function parallel modes of operation.

4.1 DMA vs. Mailboxes

The CBE architecture presents two possible ways to process packets, singularly or in groups. The popular DMA
transfer model yields high bandwidth at the cost of latency, however, it forces packet processing at the group
level in order to maintain a reasonable DMA transfer costs to SPE processing ratio. Group processing creates
local buffers in both the PPU and the memory starved SPE. Other considerations involving DMA transfers
include transferring the packets from the network interface into a local buffer of custom data packet structures
in order to obtain proper data alignment for the DMA transfer, the cost of memory transfers as a result of the
DMA itself, and associated memory transfers in reverse order once the SPE has resolved the policies.

The simplistic model is one packet at a time. Using DMA transfers is not an efficient solution, however,
mailboxes are as there are no memory transfers, custom data structures, or any “off chip” access sequences.
Rather than transferring an entire packet, our method uses mailboxes to only send the required information
needed for SPE policy resolution: source IP, destination IP, and protocol. Once the packet is received, the data
items are passed directly from the pcap packet into the mailbox using direct memory references, a specification
of the SDK API mailbox function call. Return messages are sent from the SPU to the PPU using interrupt
driven mailboxes ensuring a disconnect between the PPU based sending and receiving threads.

4.2 Function Parallel

There are three primary packet scheduling methods in function parallel: lock-step, signaling, and open-loop.
Lock-step based packet scheduling is when the sending process waits for all subordinate processes to return an
accept, deny, or drop message before transmitting the packet. Signaling based packet scheduling is when the main
process waits for one of the subordinate process to signal an accept before transmitting the packet. The default
action is to deny or drop the packet. Open-loop based packet scheduling is when a packet distribution process
forwards all packets to subordinate processes. A combining process receives accepted packets from subordinate
processes, without feed back to the original process, and recombines them into a final output stream.

If the system consists of only one CBE, then only lock-step and signaling based processing are good choices.
Open-loop based packet processing requires sophisticated queuing techniques that become reasonable to imple-
ment when two CBE’s are available in order to distribute the required computational load as would be found in
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Figure 1: PPU parallel processing flow charts.

a distributed inter-device firewall. Our firewall uses the lock-step method of packet processing and two features
found in signaling based processing. Included is the use of a default deny policy model and transmission of the
packet upon the first accept message.

Figure 1(a) diagrams the overarching function parallel program flow. The PPU application creates two
threads. The send thread is responsible for sending the rule set to each SPE and then begins the packet
processing loop. Processing begins by waiting on all SPE’s to become idle, after which a single packet is then
received via pcap and forwarded to each SPE while simultaneously marking each SPE as busy.

The receive thread implements the interrupt mailbox service routine (IMSR). The IMSR begins by validating
the incoming message and then begins book-keeping. If the action is accept, the IMSR immediately attempts to
inject the packet back into the network as soon as possible if it hasn’t already done so. The second book-keeping
act is to mark the SPE as idle and decrement the total running number of answers before exiting. The total
number of SPE answers variable forms a lock-step barrier.

4.3 Data Parallel

There are three primary packet scheduling methods in data parallel: round-robin, fair queuing, and max-
throughput. Round-robin based packet scheduling assigns a packet to the next available SPU in successive
order. Fair queuing based packet scheduling uses statistical multiplexing and buffering to allow n data flows to
fairly share the link capacity. Fair queuing resembles round-robin, however the first priority is maximizing the
minimum data rate, the next highest priority is the next highest data rate, and so forth n times. Max-throughput
based packet scheduling gives scheduling priority to the least expensive data flows in terms of consumed network
resources per transferred amount of information.

For simplicity and in the light of support of multi-mode operation, round-robin packet distribution was chosen.
Figure 1(b) diagrams the overarching data parallel program flow. The send thread processing loop receives a
single packet and then forwards it to the first available SPE while simultaneously marking the SPE as busy.

The receive threads IMSR validates the incoming message and forwards the packet if the policy resolution
response is an accept. Once the message is sent, the sending SPE is marked as idle and the IMSR exits.



5. PERFORMANCE EVALUATION

The performance the CBE-based packet filter was measured using an Sony PlayStation3 (PS3). The PS3 system
consisted of a 3.2 GHz CBE processor, 256MB XDR Main RAM, a single 1000 BASE-T Ethernet adapter, and 60
GB hard drive. The PS3 has only six SPE’s available for general use as opposed to all eight on other platforms,
as one SPE is used by the system software for video display and the eighth SPE is defective on all PS3’s. The
operating system was Fedora Core 6 with a custom compiled kernel, version 2.6.23, to load only the required
system modules. The firewall software was written in mixture of C and assembler, which is common for CBE
development. The firewall software relied on lib pcap for network input and output. Lib pcap is a platform
independent application programming interface (API) used for network packet-capturing and packet-injection.
The primary reason for its use is because pcap resolves the issue of injecting packets back into the network which
are not within the NIC’s network address space.

The performance of the CBE-based packet filter was evaluated as traffic rate, number of rules, and number of
SPE’s increased. Two sets of experiments were conducted using either internally or externally generated packets.
Experiments using internally generated packets were done to measure the latency and throughput of the CBE,
and can be considered as the upper bounds on performance. Externally generated packets measured the actual
performance of the firewall under realistic conditions. All experiments were performed in accordance to IETF
RFC 3511 that describes firewall performance testing.15

5.1 Internal Packets

For this set of experiments packets were generated within the CBE, and will indicate the CBE theoretical per-
formance when neither the networking subsystem or lib pcap are involved. There are a total of four experiments
for data parallel and function parallel, each utilizing six SPU’s. The policy size is set for each experiment (0,
1024, 2048, 4096) and the result is the maximum achieved bps and associated latency. The data rates listed were
based on a 1500 byte payload. Table 1 suggests data parallel has a potential throughput of nearly a gigabit per
second while Table 2 suggests function parallel has a potential of 55 Mbps.

Policy Size Max Avg Throughput Min Avg Latency
(number of rules) (Mbps) (µ-sec)

0 939.5 81.5
1024 249.1 422.2
2048 131.6 771.4
4096 73.9 1472

Table 1. Data parallel CBE results for increasing policy sizes using internally generated packets and 6 SPU’s.

Policy Size Max Throughput Min Latency
(number of rules) (Mbps) (µ-sec)

0 55.2 1000
1024 57.6 1577
2048 53.2 2420
4096 33.8 3487

Table 2. Function parallel CBE results for increasing policy sizes using internally generated packets and 6 SPU’s.

5.2 External Packets

Results from experiments using externally generated packets will show the actual performance of the CBE-based
firewall. The network topology consisted of the PS3, a 1 Gbps switch, and a SmartBits SMB200. The SmartBits
was equipped with two ML07710 100 Mbps cards and can determine the throughput and latency of networking
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Figure 2: Average packet delay for data parallel CBE packet filter and externally generated packets.

devices by sending packets at different rates. For these experiments the Smartbits sent packets to the PS3
packet filter. The PS3 read the packets using lib pcap, applied the policy, then sent accepted packets back to
the Smartbits.

When the firewall was configured in a function parallel fashion, the maximum rate achieved with zero firewall
rules was 390 Kbps with average latency of 235.5 µ-secs. Such poor performance demonstrates the lock-step
version of function parallel is not a viable solution for a single CBE and did not warrant further exploration.

Data parallel configuration provided more promising results than the function parallel design. Figure 2(a)
demonstrates throughput vs latency using a policy size of 2048 using different frame sizes. The maximum
throughput of 30 Mbps and latency of 1.3 msecs was achieved, which is impressive for a software based packet
filter and the given hardware platform. However, throughput using frame size of 512 bytes, when taken into
consideration against frame sizes of 1024 and 1280, reveals pcap’s packet processing limitations.

Figure 2(b) provides deeper insight into the CBE performance as latency between differing frame sizes are
reasonably equivalent. The latency measurements for a single SPU, not shown, shadows 6 SPU’s for each frame
size, suggesting inefficiencies lie within pcaps ability to process packets. Figure 3 demonstrates throughput
vs policy size for a maximum of 4096 rules, varying frame sizes, and SPU counts. Increasing the number of
SPU’s does increase throughput, therefore, the addition of two more SPU’s in a fully functional CBE will further
increase throughput. Figure 3 clearly illuminates the fact that smaller policy sets and differing packet sizes yields
throughput in excess of 100 Mbps, of which, we were not able to fully measure with the given test equipment.

The difference between the internal and external packet results indicate there are limitations to using a CBE-
based system as an actual packet filter. Despite the powerful feature of packet-injection, lib pcap is extraordinarily
slow and forms a system bottle neck. Although the test system was a PlayStation 3, the limitations would be
evident in any CBE-based system.13 One solution is to use PF RING to interface with the NIC, which provides
significantly faster access to network data. However the current version of PF RING only reads from the NIC
and additional work is needed to allow it to write to the NIC. Another solution is to use a BSD-based operating
system which is poll driven and provides faster access to network data.14 Unfortunately a BSD port is currently
not available for any CBE based board set. Another solution is to develop a new device driver to treat the
filtered NIC’s as serial ports, effectively by-passing all TCP stack based delays. The optimal solution is to use
the SPE service based model and move the SPE’s to ring 0 to directly service the filtered NIC’s, however, this
approach is the most difficult approach of all the suggestions.
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6. CONCLUSIONS

Parallel firewalls are a scalable approach for providing high throughput, low latency firewalls. These systems
consist of an array of processing elements configured in a data parallel or function parallel fashion. These systems
have been implemented using multiple firewalls (multiple stand-alone systems), however the stream processor (a
multicore architecture) offers an interesting implementation platform.

This paper described how the Cell Broadband Engine (CBE) can be used as a high-speed packet filter. The
CBE is a popular stream processor that consists of a main Power Processor Unit (PPU) and eight Synergistic
Processing Units (SPU). Given this design is possible to use the SPU’s as an array of packet filters that are
managed by the PPU. Both parallel designs are possible, but the data parallel approach translates best to this
architecture. This is primarily due to the communication overhead associated with function parallel since the
SPU’s must operate in a lock-step fashion. Data parallel implementation allows the SPU’s to operate more
independently.

Experimental results using a Sony PlatStation3 (PS3) show the CBE can provide a high-speed, low latency
packet filter. For example the data parallel packet filter was capable of processing packets at 1 Gbps with a
latency less than 82 µ-secs. In these experiments packets were generated inside the processor. Performance
is lower when the system reads and writes packets to the NIC. The maximum performance in this case is 30
Mbps with latency of 1.3 msec. The bottleneck is lib pcap, which has been documented by other networking
applications. Possible solutions include using a modified version of PF RING, porting a version of the BSD
operating system to the CBE, or developing NIC drivers that provide direct access to network data. Each are
areas of future work.

Other areas of future work in the networking related environment are intrusion detection and prevention
systems (IDS/IPS). A Snort type system could benefit greatly from the CBE architecture because of its flexibility
of SPU arrangements. The pipe-lining of packet processing where one SPE performs an initial match and
subsequent validation is off loaded to the remaining SPE’s, potentially in parallel, is one area. Packet pay-load
analysis is another area. Finally, a mature CBE based packet filter optimized for function parallel and/or data
parallel is an area of future work.
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